C. R. Acad. Sci. Paris, Ser. I 350 (2012) 807-812

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. |

www.sciencedirect.com

Algebra

On the genus of a division algebra

Sur le genre d’un corps gauche

Vladimir I. Chernousov?, Andrei S. Rapinchuk®, Igor A. Rapinchuk¢

a Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
b Department of Mathematics, University of Virginia, Charlottesville, VA 22904-4137, USA
¢ Department of Mathematics, Yale University, New Haven, CT 06520-8283, USA

ARTICLE INFO ABSTRACT
Afticl_e history: We define the genus gen(D) of a finite-dimensional central division algebra D over a field
Received 19 August 2012 K as the set of all classes [D’] in the Brauer group Br(K) that are represented by central

Accepted after revision 20 September 2012
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gen(D) is reduced to a single element, and other examples where it is finite.
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RESUME

Nous définissons le genre gen(D) d'un corps gauche central D de dimension finie sur
un corps K comme I'ensemble des classes [D’] dans le groupe de Brauer Br(K) qui sont
représentées par des corps gauches D’ de centre K ayant les mémes sous-corps maximaux
que D. Nous donnons des exemples out gen(D) est réduit a un seul élément, ainsi que
d’autres o1 gen(D) est fini.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version francaise abrégée

Soit K un corps et Br(K) son groupe de Brauer. Pour une algebre centrale simple A sur K, on note [A] sa classe dans
Br(K). On définit le genre gen(D) d'un corps gauche central D sur K comme I'ensemble des classes [D’] € Br(K), ot D’ est
un corps gauche central sur K ayant les mémes sous-corps maximaux que D. Dans cette note, on étudie les deux questions
suivantes :

Question 1. Quand est-ce que le genre est réduit a un seul élément?
Question 2. Quand est-ce que gen(D) est fini?

On observe que gen(D) peut étre réduit a un seul élément seulement si [D] est d’exposant deux dans Br(K) ; en effet,
dans cette situation, gen(D) consiste d'un seul élément si K est un corps global. On prouve, en particulier, que si K est un
corps de car. # 2 qui a la propriété que |gen(D)| =1 pour tout corps gauche D sur K d’exposant deux, alors le corps de
fractions rationelles K(x) a la méme propriété. Par conséquent, |gen(D)| =1 pour tout corps gauche D d’exposant deux sur
K =k(x1,...,%), ol k est soit un corps de nombres soit un corps fini de car. # 2.
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On établit aussi le résultat de finitude suivant : soit K un corps de type fini sur son sous-corps premier, soit D un corps
gauche central sur K de degré n, (n,car.K) = 1. Alors |gen(D)| est fini. La preuve est réduite a la démonstration de la
finitude du sous-groupe de n-torsion ,Br(K)y du groupe de Brauer de K non-ramifié par rapport a un ensemble convenable
de valuations discrétes de K. On donne un exemple d’'une borne explicite pour |gen(D)| dans le cas ot D est une algébre
de quaternions sur le corps de fractions k(E) d’'une courbe elliptique définie sur un corps de nombres k.

1. Introduction

Let K be a field, Br(K) be its Brauer group, and for any integer n > 1 let ;Br(K) be the subgroup of Br(K) annihilated
by n. For a finite-dimensional central simple algebra A over K, we let [A] denote the corresponding class in Br(K), and we
then define the genus gen(D) of a central division K-algebra D of degree n to be the set of classes [D’] € Br(K) where D’
is a central division K-algebra having the same maximal subfields as D (in more precise terms, this means that D’ has the
same degree n, and a field extension P/K of degree n admits a K-embedding P — D if and only if it admits a K-embedding
P <> D’).! One can ask the following two questions about the genus of a central division K-algebra D of degree n:

Question 1. When does gen(D) consist of a single class?
Question 2. When is gen(D) finite?

We note that since the opposite algebra D°P has the same maximal subfields as D, the genus gen(D) can reduce to a
single element only if [D°P] = [D], i.e. if D has exponent 2 in the Brauer group. On the other hand, as follows from the
theorem of Artin-Hasse-Brauer-Noether (AHBN), gen(D) does reduce to a single element for any algebra D of exponent 2
over a global field K (in which case D is necessarily a quaternion algebra).? The following theorem (which for quaternion
algebras was established earlier in [16]) expands the class of fields with this property:

Theorem 1 (Stability Theorem). Let K be a field of characteristic # 2.

(1) If K satisfies the following property:
(x) if D and D’ are central division K -algebras of exponent 2 having the same maximal subfields then D >~ D’ (in other words,
for any D of exponent 2, |gen(D) N »Br(K)| =1),
then the field of rational functions K (x) also satisfies (x).
(2) If |gen(D)| = 1 for any central division K-algebra D of exponent 2, then the same is true for any central division K (x)-algebra of
exponent 2.

Corollary 2. Let k be either a finite field of characteristic # 2 or a number field, and K = k(x1, ..., X;) be a finitely generated purely
transcendental extension of k. Then for any central division K-algebra D of exponent 2 we have |gen(D)| = 1.

While Question 1 makes sense only for division algebras of exponent 2, Question 2 can be asked for arbitrary division
algebras. As above, it follows from (ABHN) that gen(D) is finite for any finite-dimensional central division algebra D over a
global field K. For fields other than global, the finiteness question was investigated in [10] for the genus gen’(D) defined
in terms of all finite-dimensional splitting fields (note that gen’(D) C gen(D)) for division algebras D of arbitrary prime
exponent p over the field K = k(x) of rational functions, with p # chark. In particular, it was shown in [10] that if gen’(A)
is finite for any central division algebra A of exponent p over a field k, then gen’(D) is finite for any central division algebra
D of exponent p over K = k(x). At the same time, a direct generalization of the construction described in [8, §2] enables one
to provide an example of a quaternion division algebra D over an infinitely generated field K with infinite genus gen(D).
So, the following finiteness result seems to cover the most general situation:

Theorem 3. Let K be a finitely generated field (i.e., a finitely generated extension of its prime field). If D is a central division K -algebra
of exponent prime to char K, then gen(D) is finite.

2. The genus and the unramified Brauer group

We will now describe a general set-up that allows one to estimate the size of gen(D), and will then apply it to proving
Theorems 1 and 3. Given a discrete valuation v of K, we let Ok , and K, denote its valuation ring and residue field,

1 At the end of this note, we will discuss a generalization of this notion to absolutely almost simple algebraic K-groups in which maximal subfields are
replaced with maximal K-tori. We observe in this respect that only separable maximal subfields of D give rise to maximal K-tori of G =SL; p. So, in order
to make our definitions fully compatible, one should define gen(D) in terms of maximal separable subfields. In the current note, however, the degree n of
D will always be assumed to be coprime to the characteristic of K, so the issue of separability will not arise.

2 Indeed, (ABHN) implies that a quaternion algebra over a global field is uniquely determined by its set of ramified places; on the other hand, if two
quaternion division algebras have the same maximal subfields, they necessarily have the same ramified places.
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respectively. Fix an integer n > 1 (which will later be either the degree or the exponent of D) and suppose that V is a set
of discrete valuations of K that satisfies the following three conditions:

(A) Foranya e K*, theset V(a) :={v € V | v(a) # 0} is finite;
(B) There exists a finite subset V' C V such that the field of fractions of

0= () Ok

veV\V’/

coincides with K; _
(C) For any v € V, the characteristic of K, is prime to n.

(We note that if K is finitely generated, then (B) is an automatic consequence of (A).) Due to (C), for each v € V one can
define the residue map

pv : nBr(K) — Hom(G", Z/nZ),

where G is the absolute Galois group of K, (cf, for example, [17, §10] or [18, Ch. II, Appendix]). As usual, a class
[A] € nBr(K) (or a central simple K-algebra A representing this class) is said to be unramified at v if py([A]) =1, and
ramified otherwise. We let Ramy (A) (or Ramy ([A])) denote the set of all v € V where A is ramified.

Proposition 4. If V satisfies conditions (A), (B), and (C), then for any [A] € ,Br(K), the set Ramy ([A]) is finite.

Proposition 5. Let D and D’ be central division K -algebras such that [D] € ,Br(K) and [D'] € gen(D) N ,Br(K). Given v € V, we let
Xxvand x, € Hom(G™, 7,/n7.) denote the images under p, of the classes [D] and [D’], respectively. Then

Ker x, = Ker x,

forall v € V. In particular, if D is unramified at v then so is D’.

We define the unramified part of ,Br(K) relative to V as follows:

nBr(K)y := [ Ker py.

veV

The following statement relates the size of the genus to the size of ;Br(K)y:

Theorem 6. Assume that ,Br(K)y is finite. Then for any finite-dimensional central division K -algebra D of exponent n, the intersection
gen(D) N ,Br(K) is finite, of size

|gen(D) N pBr(K)| < [nBr(K)v |- ¢m)", withr=|Ramy (D),
where @ is the Euler function. In particular, if D has degree n then
|gen(D)| < [Br(K)v |- @)
We will now specialize to the situation where K = k(C) is the field of rational functions on a smooth absolutely irre-
ducible projective curve C over a field k. Set V to be the set of all geometric places of K, i.e. those discrete valuations of K
that are trivial on k. Then the corresponding unramified Brauer group ,Br(K)y will be denoted by ,Br(K),; (this is precisely

the n-torsion subgroup of the Brauer group of the curve C). Applying the techniques outlined above, in conjunction with
some considerations involving specialization, we obtain the following:

Theorem 7. Let n > 1 be an integer prime to char k. Assume that

o the set C(k) of rational points is infinite;
e [Br(K)ur/tk(nBr(k))| =: M < oo, where ty, : Br(k) — Br(K) is the canonical map.

Then
(1) if there exists N < oo such that

|gen(A) N Br(k)| <N
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for any central division k-algebra A of exponent n, then for any central division K-algebra D of exponent n we have

|gen(D) N yBr(K)| <M -N-p®),

where r = |[Ramy (D)|;
(2) if gen(A) N Br(k) is finite for any central division k-algebra A of exponent n, then gen(D) N ,Br(K) is finite for any central
division K-algebra D of exponent n.

One notable case where Theorem 7 applies is C = IP’,]( over an infinite field k (which we can assume without loss of
generality). It is well-known that in this case ,Br(K)y: = tx(,Br(k)) (cf. [9, Corollary 6.4.6]), i.e. one can take M = 1. Now, let
n =2 and assume that k satisfies condition (x) of Theorem 1, i.e. |gen(A) N,Br(k)| =1 for any central division k-algebra A
of exponent 2. The latter means that one can take N = 1. We then obtain from Theorem 7 that |gen(D) N ,Br(K)| =1 for
any central division K-algebra D of exponent 2, proving part (1) of Theorem 1. The proof of part (2) is similar.

Furthermore, it follows from Theorem 6 that in order to prove Theorem 3, it is enough to establish the following:

Theorem 8. Let K be a finitely generated field, and let n > 1 be an integer coprime to char K. Then there exists a set V of discrete
valuations of K that satisfies conditions (A), (B) and (C), and for which the unramified Brauer group ,Br(K)y is finite.

We originally proved Theorem 8 by a method related to the proof of the Weak Mordell-Weil Theorem (cf. [11, Ch. VI]),
which in principle can be used to obtain some estimates on the size of ,Br(K)y, hence of gen(D) (see below). It was later
pointed out to us by J.-L. Colliot-Théléne [4] that a (nonconstructive) proof of the finiteness of ,Br(K)y can be derived from
the following general statement:

Theorem 9. Let X be a scheme of finite type over U = Spec A, where A is either a finite field or the ring of S-integers in a number field
(with S finite). For any integer n invertible in A and any n-torsion constructible sheaf § on X, the étale cohomology groups H'ét(X , %)
are finite for all i > 0.

Given a finitely generated field K and an integer n > 1 prime to char K, we can pick a smooth affine integral scheme X
as in Theorem 9 with the field of rational functions K. Applying Theorem 9 to the étale sheaf associated with the group
scheme u, of nth roots of unity, we obtain the finiteness of He?t(X , ). Then the Kummer sequence yields the finiteness
of ,Br(X). On the other hand, it follows from the absolute purity conjecture proved by O. Gabber (see [7] for an exposition
of Gabber’s proof, and also [5, p. 153] and [3, discussion after Theorem 4.2] regarding the history of the question) that the
latter coincides with ,Br(K)y, where V is the set of discrete valuations of K associated with the divisors of X, cf. [7], hence
the required fact (obviously, this V satisfies our conditions (A), (B) and (C)).

Since the proof of Theorem 9 is not readily available in the existing literature, we reproduce below an outline of the
argument kindly explained to us by J.-L. Colliot-Théléne in [4] (with his permission). Since for our purposes we only need
to consider the smooth case, in the situation where A is a finite field the required fact follows from Corollary 4.5 or
Corollary 5.5 in [12, Ch. VI] in conjunction with the Hochschild-Serre spectral sequence (cf. [12, Ch. III, Theorem 2.20]).

Let now A be a ring of S-integers in some number field k, where S is a finite set of places of k. Applying to the
structure morphism f : X — U Theorem 1.1 of the chapter “Théorémes de finitude” in Deligne’s book [6, p. 233], we obtain
that the direct images R?f,§ are constructible n-torsion sheaves on U. Combining Proposition 2.9 in [13, Ch. II] with
Theorem 8.3.19 in [14], we obtain that the groups Hé’t(U, RIf,%) are finite for all p > 0. Then the Leray spectral sequence

H? (U, R9£, ) = HE (X, §) [12, Ch. III, Theorem 1.18] shows that the groups H (X, ) are all finite.
3. An example

We will now show how the methods involved in our original proof of Theorem 8 can actually be used to estimate the
size of the unramified Brauer group, and hence of the genus of a division algebra, in certain situations. Because of space
limitation, we will focus on the following example. Let k be a number field, and let E be an elliptic curve over k given by a
Weierstrass equation

y2=f(x) where f(x) =x> +ax®>+ Bx+y.

Without loss of generality, we may assume that all the coefficients lie in the ring of integers Oy. We will also assume that
E splits over k, i.e. f has three roots in k. Let § # 0 be the discriminant of f, and set

s=vk uvkeyuvkes)

where V¥ denotes the set of all valuations of k, Vgo the subset of archimedean valuations, and for a € k* we set V"(a) =
{veVk\ VK |v(a)#0}. Let

K :=k(E) =k(x, y).
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For a nonarchimedean v € V¥, let ¥ denote its extension to F :=k(y) given by
V(amy™ + --- +ag) = min v(q;
( mY 0) 0t0 (a;)

(cf. [1, Ch. VI, §10]). It can be shown that for v € V¥\ S, the valuation ¥ has a unique extension to K, which we will denote
by w = w(v). We now introduce the following set of discrete valuations of K:

V=VoUVyq,

where Vj is the set of all geometric places of K (i.e., those discrete valuations that are trivial on k), and V4 consists of the
valuations w = w(v) for all v € V¥\ S. It is easy to see that V satisfies conditions (A), (B) and (C).

Theorem 10. The unramified Brauer group ,Br(K)y is finite of order dividing

2ISI=t ’2C15(k)‘2 . |U5(’<)/U5(k)2}2a

where t = ¢ + 1 with ¢ being the number of complex places of k, and Cls (k) and Us (k) are the class group and the group of units of
the ring of S-integers Oy (S), respectively.

Sketch of proof. We will use the following description of the 2-torsion »Br(K)yv, in the geometric Brauer group [2]: If E splits
overk,ie. f(x) = (x—a)(x—b)(x—c)witha,b, c ek, then ,Br(K)y, = 2Br(k) ® I, where I C 2Br(K)y, is a subgroup such that every
element of I is represented by a bi-quaternion algebra (r,x — b)g ®x (s, x — ¢)g for somer,s € k*. Let [D] € 2Br(K)y. Then [D] =
[A"®k A"] where A’ = Ag ® K for some central division k-algebra Ag of exponent 2, and A” = (r,x — b)g Q (s,X — )k
for some r,s € k*. Using the corestriction map corgr, one shows that Ag is unramified at all v € vk \ S, and hence A" is
unramified at all w € V. The latter implies that v(r), v(s) =0 (mod 2) for all v € V¥\ S. Let

['={xek*|v(x)=0(mod2)forallve Vk\S},
and let I" be the image of I in I<X/I<X2. Then there is an exact sequence

0 — Us(k)/Us(k)> > T — »Cls(k) — 0

(cf. [11, §6.1]), hence |T'| = |5Cls (k)| - |Us(k)/Us(k)?|.

Our previous discussion shows that there are at most |I'|? possibilities for A”. On the other hand, it follows from
(ABHN) that zBr(k)Vk\s has order 2!/5I=t, which bounds the number of possibilities for A’. Combining this with the above
computation of |T"|, we obtain our claim. O

3

Example. Consider an elliptic curve E over Q given by y2 =x3 — x. We have § =4, so S = {00, 2}. Furthermore,

IS|—t=1, Cls@ =1 and Us(Q)={£1} x Z.

So, by Theorem 10, for K = Q(E) and the set V constructed above, the group Br(K)y has order dividing 2 - 42 = 32.
Combining this with Theorem 6, we obtain that for any quaternion algebra D over K, we have |gen(D)| < 32.

4. Concluding remarks

The questions considered in this note for division algebras can be analyzed in the broader context of arbitrary absolutely
almost simple simply connected (or adjoint) K-groups. In this set-up, one can define the genus of such a K-group G as
the collection of K-forms G’ of G that have the same isomorphism classes of maximal K-tori (as a variation, one can base
the notion only on generic tori). We note that questions about groups in the same genus arise in the analysis of weak
commensurability of Zariski-dense subgroups which in turn is related to some problems in differential geometry, cf. [15]. In
view of our Theorem 3, it seems natural to propose the following:

Conjecture. Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic
zero (or of “good” characteristic relative to G). Then there exists a finite collection G1, ..., Gr of K-forms of G such that if H is a K-form
of G having the same isomorphism classes of maximal K-tori as G, then H is K-isomorphic to one of the G;’s.

Our proof of Theorem 3 yields in fact a proof of this conjecture for inner forms of type Ay.

Theorem 11. Let G be an absolutely almost simple simply connected algebraic group of inner type A, over a finitely generated field K
whose characteristic is either zero or does not divide £ + 1. Then the above conjecture is true for G.
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(In this regard, we note that if central simple K-algebras A; = My, (D1) and Ay = My, (D2), where D and D; are division
algebras, have the same maximal étale K-subalgebras, then ¢1 = ¢> and D; and D, have the same maximal separable
subfields, cf. [16, Lemma 2.3].)

We plan to address the general case of the conjecture in our subsequent publications.
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