
Comment. Math. Helv. 85 (2010), xxx–xxx
DOI 10.4171/CMH/

Commentarii Mathematici Helvetici
© Swiss Mathematical Society

Local–global principles for embedding of fields with involution
into simple algebras with involution

Gopal Prasad and Andrei S. Rapinchuk

Dedicated to Jean-Pierre Serre

Abstract. In this paper we prove local–global principles for the existence of an embedding
.E; �/ ,! .A; �/ of a given global field E endowed with an involutive automorphism � into
a simple algebra A given with an involution � in all situations except where A is a matrix
algebra of even degree over a quaternion division algebra and � is orthogonal (Theorem A of
the introduction). Rather surprisingly, in the latter case we have a result which in some sense
is opposite to the local–global principle, viz. algebras with involution locally isomorphic to
.A; �/ are distinguished by their maximal subfields invariant under the involution (Theorem B
of the introduction). These results can be used in the study of classical groups over global
fields. In particular, we use Theorem B to complete the analysis of weakly commensurable
Zariski-dense S -arithmetic groups in all absolutely simple algebraic groups of type different
fromD4 which was initiated in our paper [23]. More precisely, we prove that in a group of type
Dn, n even> 4, two weakly commensurable Zariski-dense S-arithmetic subgroups are actually
commensurable. As indicated in [23], this fact leads to results about length-commensurable and
isospectral compact arithmetic hyperbolic manifolds of dimension 4n C 7, with n > 1. The
appendix contains a Galois-cohomological interpretation of our embedding theorems.

Mathematics Subject Classification (2010). 11E57, 14L35, 20G30, 22E40, 53C35.

Keywords. Local–global principles, central simple algebras, involutions, arithmetic groups,
locally symmetric spaces.

1. Introduction

Let A be a central simple algebra of dimension n2 over a field L, and let � be an
involution of A. Set K D L� . We recall that � is said to be of the first (resp.,
second) kind if the restriction � jL is trivial (resp., nontrivial); involutions of the
second kind are often called unitary. While dealing with central simple algebras
with involution of the first kind, we will always assume that the center is a field of
characteristic ¤ 2. If � is an involution of the first kind, then it is either of symplectic
type (if dimLA

� D n.n � 1/=2) or of orthogonal type (if dimLA
� D n.nC 1/=2),
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cf. [14], Proposition 2.6. Now, let E be an n-dimensional commutative étale L-al-
gebra endowed with an automorphism � of order two such that � jL D � jL. In this
paper, we will investigate the validity of the local–global principle for the existence
of an L-embedding � W .E; �/ ,! .A; �/ of algebras with involution (i.e., satisfying
� B � D � B �) in case K is a global field. More precisely, if K is a global field,
we say that the local–global principle for embeddings holds (for a particular class of
commutative étale algebras with involution .E; �/, or for a particular class of central
simple algebras with involution .A; �/) if the existence of .L˝K Kv/-embeddings

�v W .E ˝K Kv; � ˝ idKv
/ ,! .A˝K Kv; � ˝ idKv

/ for all v 2 V K

(here V K denotes the set of all places ofK) implies the existence of anL-embedding
� W .E; �/ ,! .A; �/ as above. We will only be interested in the commutative étale
L-algebras E with involution � such that

dimK E
� D

´
n if � jL ¤ idL;�
nC1
2

�
if � jL D idL;

(1)

as the � -invariant maximal commutative étale subalgebras of A satisfying this con-
dition (for � D � jE) correspond to the maximal K-tori of the associated (special)
unitary group SU.A; �/ (cf. Proposition 2.3). So, (1) will be tacitly assumed to hold
for all algebras .E; �/ considered in the paper (notice that (1) is satisfied automatically
if either E is a field or � jL ¤ idL, cf. Proposition 2.1).

It turns out that the local–global principle holds unconditionally (i.e., without
any additional restriction on .E; �/) only if � is a symplectic involution of A, and
moreover, in this case, provided that there exists an embedding E ,! A as algebras
without involutions, one needs to check the local conditions only for real v – cf. Theo-
rem 5.1 and Corollary 5.3 for the precise statements. In most of the other cases, the
local–global principle holds if E is a field extension of L (as opposed to a general
commutative étale L-algebra). The following theorem combines the essential parts
of Theorems 4.1, 6.1 and 7.3.

TheoremA. LetL be global field. LetA be a central simpleL-algebra of dimension
n2 with an involution � , and let E=L be a field extension of degree n endowed with
an involutive automorphism � such that � jL D � jL. Then the local–global principle
for the existence of an embedding � W .E; �/ ,! .A; �/ holds in each of the following
situations:

(i) � is an involution of the second kind;

(ii) A D Mn.K/, and � is an orthogonal involution;

(iii) A D Mm.D/, where D is a quaternion division algebra, m is odd, and � is an
orthogonal involution.
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Assertion (i) of the above theorem for n odd was established earlier in our paper
[21] (Proposition A.2 in Appendix A) where it was used to compute the metaplectic
kernel for absolutely simple simply connected groups of outer type An. The other
assertions of Theorem A were unknown prior to this work (however as this work pro-
gressed we became aware of the fact that the questions about existence of local–global
principles for embeddings were raised in various contexts by different mathemati-
cians). The results of §§ 4, 6 and 7 furnish local–global principles for embedding of
commutative étale algebras with involution in more general situations. On the other
hand, the examples constructed in §§ 4 and 7 show that the local–global principle
may fail in general if E is not a field.

The only case not covered by the above theorem is A D Mm.D/, where D is a
quaternion division algebra,m is even, and � is an orthogonal involution ofA (then the
corresponding algebraic group SU.A; �/ is of typeDm). For us, this case was, in fact,
the main motivation to investigate the local–global principle for embeddings since it
is linked to a question left open in the original version of our paper [23]; this question
has now been resolved using Theorem B of this paper. The main focus in [23] was
to determine when the “weak commensurability” of arithmetic groups implies their
commensurability. Since the relevant definitions are somewhat technical, we will
postpone them until §9, and instead discuss here a closely related problem whether
two forms over a number fieldK, of an absolutely simple simply connected algebraic
groupG, areK-isomorphic if they have the sameK-isomorphism classes of maximal
K-tori. It was shown in [23], Theorem 7.3, that the latter condition indeed forces the
forms to beK-isomorphic if the type of G is different from An .n > 1/,Dn .n > 4/

or E6. On the other hand, in §9 of [23] we developed a Galois-cohomological
construction of nonisomorphic K-forms having the same K-isomorphism classes of
maximal K-tori for each of the following types: An, n > 1, Dn with n odd > 1,
and E6. We will now explain how examples of this kind (for classical types) can be
produced using Theorem A.

Suppose we are able to construct two central simple L-algebras A1 and A2 of
dimension n2 endowed with involutions �1 and �2 of the same kind and type such
that

(a) .A1; �1/ is not isomorphic to .A2; �2/ or its opposite;

(b) for each v 2 V K , the algebra .A1 ˝K Kv; �1 ˝ idKv
/ is isomorphic as a

.L˝K Kv/-algebra to either .A2 ˝K Kv; �2 ˝ idKv
/ or its opposite.

Then the corresponding special unitary groups Gi D SU.Ai ; �i / are not isomorphic
over K but are isomorphic over Kv for all v 2 V K . Furthermore, any maximal
K-torus of G1 corresponds to a maximal commutative étale �1-invariant subalgebra
E1 of A1 satisfying (1). Condition (b) implies that for each v 2 V K , there is an
embedding

.E1 ˝K Kv; .�1jE1/˝ idKv
/ ,�! .A2 ˝K Kv; �2 ˝ idKv

/
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of algebras with involution. So, if the local–global principle for embeddings holds
for .E1; �1jE1/, there exists an embedding .E1; �1jE1/ ,! .A2; �2/. Thus, under
appropriate assumptions, we obtain that A1 and A2 have the same isomorphism
classes of maximal commutative étale subalgebras, invariant under the involutions
and satisfying (1), hence the groups G1 and G2 have the same isomorphism classes
of maximal K-tori.

It is simplest to implement this construction by taking for A1 and A2 suitable
division algebras with involutions of the second kind as then, by Theorem A (i),
the local–global principle for embeddings holds for all maximal commutative étale
subalgebras invariant under involutions. (This was actually done in Example 6.6
in [23] for n odd – the restriction on n was due to the fact that while working on
[23] we did not know if the local–global principle for embeddings of fields holds for
arbitrary n.) Along the same lines, one can construct, for each odd m > 3, a central
simpleK-algebraAof dimensionn2, withn D 2m, and two orthogonal involutions �1
and �2 such that .A; �1/ 6' .A; �2/ but .A˝KKv; �1˝idKv

/ ' .A˝KKv; �2˝idKv
/

for all v 2 V K , and then use Theorem A (iii) to conclude that .A; �1/ and .A; �2/
have at least the same isomorphism classes of maximal subfields invariant under
the involutions (existence of involutions which give the same isomorphism classes
of all maximal commutative étale subalgebras, invariant under the involutions and
satisfying (1), is more subtle and requires the Galois-cohomological constructions
described in [23], §9). Theorem A, however, does not provide information that
would allow one to construct similar examples if m is even. Rather surprisingly, it
turned out that such examples simply do not exist in this case, so in effect algebras of
dimension n2, with 4jn, endowed with orthogonal involutions are differentiated by
the isomorphism classes of maximal commutative étale subalgebras invariant under
the involutions and satisfying (1) (and even by the isomorphism classes of maximal
invariant subfields).

Theorem B. (i) Let A1 and A2 be two central simple K-algebras, of dimension n2,
n > 3, endowed with orthogonal involutions �1 and �2, respectively. If A1 and A2
have the same isomorphism classes of n-dimensional commutative étale subalge-
bras invariant under the involutions and satisfying (1) (i.e., for any n-dimensional
�1-invariant commutative étale subalgebra E1 of A1 satisfying (1), there exists an
embedding .E1; �1jE1/ ,! .A2; �2/, and vice versa), then

.A1 ˝K Kv; �1 ˝ idKv
/ ' .A2 ˝K Kv; �2 ˝ idKv

/ for all v 2 V K ;
and hence, in particular, A1 ' A2. If n is even, then the same conclusion holds if
.A1; �1/ and .A2; �2/ just have the same isomorphism classes of maximal subfields
invariant under the involutions.

(ii) Let A be a central simple K-algebra with an orthogonal involution � , of
dimension n2 with 4jn. Let I D I .A; �/ be the set of orthogonal involutions � of
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A such that .A ˝K Kv; � ˝ idKv
/ ' .A ˝K Kv; � ˝ idKv

/ for all v 2 V K . Then
given � 2 I , one can find an �-invariant maximal field E� in A so that if � 2 I is
such that there exists an embedding .E�; �jE�/ ,! .A; �/, then .A; �/ ' .A; �/.

We notice that since I in general contains more than one isomorphism class (cf.
[16] in conjunction with Proposition 3.3 below), the local–global principle does not
hold even for embeddings of fields with involution when n is a multiple of four (cf.
Remark 8.6).

Theorem B can be used to resolve the ambiguity left open in the original version
of [23] for groups of type D2r : we show in §9 that at least when r > 2, weak com-
mensurability of two arithmetic subgroups of an absolutely simple group of this type
implies their commensurability (see Theorem 9.1 below for the precise formulation).
To describe some geometric consequences of this result, we will now recall the main
geometric results of [23]. Given a connected absolutely simple real algebraic group
G, let X be the symmetric space of G.R/ and �1 and �2 be two torsion-free lattices
in the latter, at least one of which is arithmetic. Let L.X=�1/ and L.X=�2/ be the
set of lengths of closed geodesics onX=�1 andX=�2 respectively. X=�1 andX=�2
are said to be length-commensurable if Q � L.X=�1/ D Q � L.X=�2/. We have
proved in [23] that if either X=�1 and X=�2 are length-commensurable, or they are
compact and isospectral, andG is of type other thanAn (n > 1),Dn (n > 4) andE6,
then X=�1 and X=�2 are commensurable (i.e., they admit a common finite-sheeted
cover). Theorem 9.1 of this paper allows us to draw the same conclusion if G is of
typeD2r with r > 2, for example, if X is the hyperbolic space of dimension 4r � 1,
with r > 2. It has been shown in [23], §9, that if G is of type Ar , D2rC1, r > 1, or
E6, then the above conclusion fails in general.

In the Appendix, we interpret the problem of the existence of an embedding
.E; �/ ,! .A; �/ in terms of Galois cohomology and also relate it to the problem of
finding a rational point on a certain homogeneous space.

Notation. For a field K, xK will denote an algebraic closure. If K is a global field,
V K will denote the set of all places of K, and V Kr (resp., V K

f
) the set of real (resp.,

finite) places.
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2. On commutative étale algebras with involution

In §§2, 3, we collect, with partial proofs, some known results about étale algebras and
their embeddings into central simple algebras. In these two sections,Lwill denote an
arbitrary infinite field. LetE be a commutative étaleL-algebra of dimension n. Then
E D Qr

iD1Ei , where Ei=L is a separable field extension and
Pr
iD1ŒEi W L� D n.

As usual, for x D .x1; : : : ; xr/ 2 E, we set NE=L.x/ D Qr
iD1NEi=L.xi /. Let � be

a ring automorphism of E of order two leaving L invariant.

Proposition 2.1. (1) Assume that � jL ¤ idL and set K D L� . Then dimK E
� D n

and any x 2 E such that x�.x/ D 1 is of the form x D y�.y/�1 for some y 2 E�.
(2) Let now � jL D idL, and assume that dimLE

� D �
nC1
2

�
. If x 2 E satisfies

x�.x/ D 1, then in each of the following cases: (i) n is even, or (ii) n is odd and
NE=L.x/ D 1, we have x D y�.y/�1 for some y 2 E�.

Proof. (1) We have E D E� ˝K L (cf. [1], AG 14.2), so dimK E
� D n. Clearly, E

is a direct product of � -invariant subalgebras R of one of the following types: (a) R
is a separable field extension of L, or (b) R D R0 � R00 with R0, R00 separable field
extensions of L interchanged by � , and it is enough to prove the second assertion
of (1) for each of these types of algebras. In case (a), the claim follows from the
Hilbert’s Theorem 90. In case (b), we have x D .x0; x00/ with x0�.x00/ D 1R0 and
x00�.x0/ D 1R00 . Set y D .x0; 1R00/. Then x D y�.y/�1, as required.

(2) HereE is a direct product of � -invariant subalgebrasR of the following three
types: (a) R is a separable field extension of L and � jR ¤ idR; (b) same R but
� jR D idR; (c) R D R0 � R00 where R0, R00 are separable field extensions of L
interchanged by � . In cases (a) and (c), we have dimLR

� D .1=2/ dimLR, and
the same argument as in (1) shows that any x 2 R satisfying x�.x/ D 1 is of the
form x D y�.y/�1 for some y 2 R�, in particular, NR=L.x/ D 1. The assumption
dimLE

� D �
nC1
2

�
implies that if n is even, then E does not have components of

type (b), and our assertion follows. If n is odd, then there is only one component of
type (b), and this component is 1-dimensional, i.e.,E D E 0 �E 00 whereE 0 is a direct
product of components of types (a) and (c), and E 00 D L. Writing x D .x0; x00/, we
observe thatNE=L.x/ D 1 implies that x00 D 1, and our assertion again follows. �

Proposition 2.2. We assume thatL is not of characteristic 2. LetE be a commutative
étale L-algebra with an involution � such that � jL D idL, with n WD dimLE even.
Set F D E� and assume that dimL F D n=2. Then there exists d 2 F � such that

.E; �/ ' .F Œx�=.x2 � d/; 	/;

where 	 is defined by x 7! �x.
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Proof. We have seen in the proof of Proposition 2.1 (2) that E is a direct product of
� -invariant subalgebras R of type (a) or (c) introduced therein, and it is enough to
prove our claim for algebras of each of those types. IfR is of type (a), then the assertion
is well known. So, let R D R0 � R00 where R0 and R00 are separable extensions of
L such that �.R0/ D R00. Then F D R� coincides with f.a; �.a//ja 2 R0g, using
which it is easy to see that the map F Œx� ! E, x 7! .1;�1/, yields an isomorphism

.F Œx�=.x2 � 1/; 	/ ' .E; �/;

so we can take d D 1. �

Now, let A be a central simple L-algebra with an involution � , dimLA D n2. Set
K D L� , and let H D U.A; �/ and G D SU.A; �/ be the corresponding algebraic
K-groups. Given an n-dimensional � -invariant (maximal) commutative étale L-
subalgebra E of A, we consider the associated maximal K-torus RE=K.GL1/ �
RL=K.GL1;A/, and then define the corresponding K-tori

S D .RE=K.GL1/ \H/B and T D .RE=K.GL1/ \G/B

in H and G, respectively.

Proposition 2.3. S is a maximal torus inH (resp., T is a maximal torus inG) if and
only if (1) holds (for � D � jE ). Any maximal K-torus in H (resp., G) corresponds
to an n-dimensional � -invariant commutative étale L-subalgebra E of A for which
(1) holds.

Proof. The involution � induces an automorphism of RE=K.GL1/, and we then get
a homomorphism

' W RE=K.GL1/ �! S; x 7�! �.y/y�1:

Clearly, ker ' D RE�=K.GL1/, yielding the bound

dim S > dimK E � dimK E
� D dimK E�1;

whereE�1 is the .�1/-eigenspace of � inE. On the other hand, the Cayley–Dickson
parametrization s 7! .1 � s/.1C s/�1 gives an injective rational map of S into the
affine space corresponding to E�1, providing the opposite bound. Therefore,

dim S D dimK E � dimK E
� D dimK E�1 (2)

in all cases. If � jL ¤ idL, then, on the one hand, dimK E
� D n (Proposition 2.1 (1)),

hence dim S D n, and on the other hand, rkH D n. So, S is a maximal torus
of H . Furthermore, dim T > n � 1 and rkG D n � 1, so T is a maximal torus
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of G. Now, suppose � jL D idL. Then G D H B and S D T . If n is even, then
for both orthogonal and symplectic involutions we have rkG D n=2, and in view
of (2), the fact that dim S D n=2 is equivalent to dimK E

� D n=2, i.e., to (1). In
n is odd, then the involution is necessarily orthogonal and rkG D .n � 1/=2. Then
again from (2) we obtain that dim S D .n � 1/=2 is equivalent to the assertion that
dimK E

� D .nC 1/=2, which is again (1).
Using the well-known description of the possibilities for .A ˝K

xK; � ˝ id xK/,
one easily produces a maximal torus T0 of G which generates a xK-subalgebra of
dimension n if � jL D idL, and of dimension 2n otherwise, and in the latter case this
subalgebra is an algebra over L˝K

xK. Then in view of the conjugacy of maximal
tori ([1], 11.3), we see that the same is true for any maximal torus. Now, if T is
a maximal K-torus of G, then the Zariski-density of T .K/ in T ([1], 8.14) implies
that the K-subalgebra E of A generated by T .K/ (which is automatically étale and
� -invariant) is an n-dimensional L-algebra. Since T is maximal, (1) holds for E by
the first part of the proof. The argument for maximal tori in H is similar. �

The connection between the subalgebras satisfying (1) and the maximal tori of
the corresponding unitary group can be used to prove the following.

Proposition 2.4. LetA be a central simple algebra over a global fieldL, of dimension
n2, with an involution � , and letG D SU.A; �/. Suppose that we are given a finite set
V of places ofK D L� , and for each v 2 V , an n-dimensional .� ˝ idKv

/-invariant
commutative étale .L ˝K Kv/-subalgebra E.v/ of A ˝K Kv satisfying (1) of §1.
Then there exists an n-dimensional � -invariant commutative étale L-subalgebra E
of A satisfying (1) of §1 such that

E.v/ D g�1
v .E ˝K Kv/gv with gv 2 G.Kv/;

in particular, .E.v/; .� ˝ idKv
/jE.v// ' .E ˝K Kv; .� jE/˝ idKv

/ as L˝K Kv-
algebras with involutions, for all v 2 V .

Proof. Corresponding to E.v/, there is a maximalKv-torus T .v/ ofG. Using weak
approximation in the variety of maximal tori of G (cf. [20], Corollary 3 in §7.2),
we can find a maximal K-torus T of G such that for all v 2 V , T .v/ D g�1

v Tgv
for some gv 2 G.Kv/. By Proposition 2.3, T corresponds to an n-dimensional � -
invariant commutative étale L-subalgebra E of A, which is as required (notice that
since gv 2 G.Kv/, the Kv-algebra isomorphism a 7! gvag

�1
v , E.v/ ! E ˝K Kv ,

respects involutions). �

Next, we will recall the definition of a class of maximal tori in a given semi-
simple group which will play an important role in §9 (cf. also [22], [23]). Let G
be a connected semi-simple group defined over a field F . Fix a maximal F -torus
T of G, and let ˆ D ˆ.G; T / denote the corresponding root system. Furthermore,
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let FT be the minimal splitting field of T (over F ). Then the action of the Galois
group Gal.FT =F / on the character group X.T / of T induces an injective group
homomorphism 	T W Gal.FT =F / ! Aut.ˆ/. In the sequel, we will identify the
Weyl group W.ˆ/ of the root system ˆ with the Weyl group W.G; T /. We say that
T is generic (over F ) if 	T .Gal.FT =F // � W.G; T /.

Proposition 2.5. Let .A; �/ be a central simpleL-algebra with involution, of dimen-
sion n2, with n > 2. Set K D L� , and let G D SU.A; �/ be the corresponding
algebraic K-group. Furthermore, let E be an n-dimensional � -invariant commuta-
tive étale L-subalgebra of A that satisfies (1) of §1, and let T be the corresponding
maximal K-torus of G. Assume that T is generic over K.

� If either � is of the first kind and n is even, or � is of the second kind, then E is
a field extension of L.

� If � is of the first kind and n is odd, then E D E 0 � K where E 0 is a field
extension of K D L.

Proof. Since the Weyl group acts on X.T /˝Z Q (nontrivially and) irreducibly, the
assumption that T is generic over K implies that T does not contain proper K-
subtori and is K-anisotropic. Assume that � is of the first kind. If E is not as
described in the statement of the proposition, then (cf. the proof of Proposition 2.1)
there is a nontrivial decomposition E D E1 � E2 such that E2 ¤ K and E1 is
either a � -stable field extension of K such that � jE1 is nontrivial, or is of the form
E1 D E 0 � E 00 and � interchanges E 0 and E 00. But in the first case T has a proper
K-subtorus corresponding to E1, and in the second case a 1-dimensional K-split
subtorus coming from the subalgebra K �K � E 0 �E 00, which is impossible.

Let now � be of the second kind. Then E ' L ˝K F where F D E� . Given
a K-subalgebra F 0 of F of dimension n0, corresponding to it there is a K-subtorus
of T of dimension n0 � 1. As T does not contain proper K-subtori, we conclude
that F does not contain any proper K-subalgebra of dimension > 1. Since by our
assumption, n > 2, we see that F must be a field extension of K. To prove that
E is a field, we need to show that L and F are linearly disjoint over K. If L and
F are not linearly disjoint over K, E contains a subalgebra of the form L ˝K L

(with the involution acting on the first factor). Corresponding to this subalgebra, we
have a K-torus S � H WD U.A; �/ which is K-isomorphic to RL=K.GL1/. Since

H=G ' R.1/
L=K

.GL1/ is K-anisotropic, the 1-dimensional K-split subtorus of S is
contained in G, hence in T , a contradiction. �

We will now formulate, for the convenience of future reference, two propositions
about embeddings of commutative étale algebras into central simple algebras. The
first proposition is a particular case of Proposition 4.3 in [6].
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Proposition 2.6. Let A be a central simple algebra of dimension n2 over a field L,
and let E be an n-dimensional commutative étale L-algebra. If E D Q`

jD1Ej ,
whereEj is a (separable) field extension ofL, thenE admits anL-embedding intoA
if and only if each Ej splits A, or, equivalently, A˝L E is a direct product of matrix
algebras over field extensions of L.

Proposition 2.7. LetA be a central simple algebra of dimensionn2 over a global field
L, and E be an n-dimensional commutative étale L-algebra. Then an L-embedding
" W E ,! A exists if and only if for every w 2 V L there exists an Lw -embedding
"w W E ˝L Lw ,! A˝L Lw .

This follows from Proposition 2.6 and the fact that for a global field F , the map
Br.F / ! L

w2V F Br.Fw/ is injective (cf. [19], §18.4).

3. Embeddings of commutative étale algebraswith involution into central simple
algebras with involution

In this section,L is an arbitrary field,A is a central simpleL-algebra of dimension n2,
and � an involution on A. Let E be an n-dimensional commutative étale L-algebra
with an involutive automorphism � such that � jL D � jL and condition (1) of the
introduction holds. Let F D E� . Let " W E ,! A be an L-embedding which may
not respect the given involutions.

Proposition 3.1 (cf. [13], §2.5). There exists a � -symmetric g 2 A� such that for

	 D � B Intg D Intg�1 B �;
we have

".�.x// D 	.".x// for all x 2 E; (3)

i.e., " W .E; �/ ,! .A; 	/ is an L-embedding of algebras with involution.

Proof. Since � B " B � is an L-embedding of E into A, according to the “Skolem–
Noether Theorem” for commutative étale subalgebras of dimension n (see [12], Hil-
fssatz 3.5, or [13], p. 37)1 there exists g 2 A� such that

".x/ D g�1.� B " B �/.x/g for all x 2 E:
1We would like to point out the fact, apparently missing in the literature, that this form of the Skolem–Noether

Theorem immediately follows from “Hilbert’s Theorem 90”. More precisely, letA be a central simpleL-algebra
of dimension n2, and let E be a commutative étale L-algebra of dimension n. Let us show that given two
L-embeddings �i W E ,! A for i D 1; 2, there exists g 2 A� such that �2.x/ D g�1�1.x/g for all x 2 E .
We will use �i to also denote its natural extension E ˝L Lsep ,! A ˝L Lsep, where Lsep is a separable
closure ofL. There exists a 2 E ˝L Lsep whose characteristic polynomial p.t/ has n distinct roots, and then
E ˝L Lsep D LsepŒa�. The matrices �1.a/; �2.a/ 2 A˝L Lsep D Mn.Lsep/ have p.t/ as their common
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Substituting �.x/ for x, we obtain

".�.x// D g�1�.".x//g: (4)

Now

".x/ D g�1.� B " B �/.x/g D g�1�
�
g�1�.".x//g

�
g D .g�1�.g//".x/.�.g/�1g/;

for all x 2 E. Since ".E/ is its own centralizer in A, we see that

g�1�.g/ D ".a/ for some a 2 E:
Furthermore,

".�.a// D g�1�.".a//g D g�1�.g�1�.g//g D �.g/�1g D ".a�1/:

Therefore, a�.a/ D 1, so according to Proposition 2.1, a D b�.b/�1 for some
b 2 E� (one needs to observe that if � jL D idL and n is odd, NE=L.a/ D
NrdA=L.g�1�.g// D 1). Set h D g".b/. Then we have

".�.x// D ".b/�1".�.x//".b/ D h�1�.".x//h for x 2 E
and, in addition,

�.h/ D �.".b//�.g/ D g".�.b//g�1�.g/ D g".�.b/a/ D g".b/ D h:

So, we could have assumed from the very beginning that g in (4) is � -symmetric.
Then

	 WD Int g�1 B � D � B Int g

is an involution, and it follows from (4) that (3) holds. �

Fix an involution 	 D � B Int g, where �.g/ D g, satisfying (3).

Theorem 3.2. The following conditions are equivalent:

(i) There exists an L-embedding � W .E; �/ ! .A; �/ of algebras with involution.

(ii) There exists an a 2 F � such that .A; 	a/ ' .A; �/ as algebras with involution,
where for x 2 F �, we set 	x D 	 B Int ".x/ D � B Int.g".x//.

characteristic polynomial, and are therefore conjugate to each other. It follows that there existsh 2 .A˝LLsep/
�

such that �2.x/ D h�1�1.x/h for all x 2 E˝LLsep. Then for any � 2 Gal.Lsep=L/, the element h�.h/�1

centralizes �1.E/, and hence there exists �� 2 .E ˝LLsep/
� such that �1.�� / D h�.h/�1. Then the family

� D f�� g is a Galois 1-cocyle with values in T.Lsep/ D .E ˝L Lsep/
�, where T D RE=L.GL1/ in the

standard notations. Since H1.L;T / D f1g (“Hilbert’s Theorem 90”), there exists t 2 .E ˝L Lsep/
� such

that �� D t�.t/�1 for all � 2 Gal.Lsep=L/. Set g D �1.t/
�1h 2 .A˝L Lsep/

�. Then �.g/ D g for
every � , implying that g 2 A�. At the same time, �2.x/ D g�1�1.x/g for all x 2 E , as required.
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(iii) g".b/ D �.h/h for some b 2 F � and h 2 A�.

Proof. (i) H) (ii) Using the Skolem–Noether Theorem, we see that there exists
s 2 A�, such that � D Int s B ". By our assumption, � B � D � B � on E, and by our
construction of 	 , we have " B � D 	 B " on E. Let  D Int s. Then

 B 	 B " D  B " B � D � B  B " on E:

So, there exists b 2 E� such that

� B  D  B 	 B Int ".b/; (5)

i.e.,
� B  D  B 	b: (6)

From
idA D . �1 B � B  /2 D .	 B Int ".b//2 D Int ".�.b/�1b/;

it follows that t WD �.b/�1b 2 L, and clearly �.t/ D t�1. If � jL D idL, then
t D ˙1. However, if t D �1, then 	b is an involution of type different from that of
	 and � (cf. [14], Proposition 2.7(3)), and (6) would be impossible. So, t D 1 and
b 2 F �, as desired. If � jL ¤ idL, then NL=K.t/ D 1, and therefore by Hilbert’s
Theorem 90, we can write

t D �.b/�1b D �.c/c�1 for some c 2 L�:

Then �.bc/ D bc and 	b D 	bc . Take a D bc.
(ii) H) (iii) Let ' W .A; 	a/ ! .A; �/ be an isomorphism of L-algebras with

involution. Then ' D Int h for some h 2 A�. Equation (4) implies that

".a/ D ".�.a// D g�1�.".a//g;

so
�.g".a// D �.".a//�.g/ D �.".a//g D g".a/;

i.e., g".a/ is � -symmetric. Using the equality ' B 	a D � B ' we obtain that

Int h B 	a D Int h B � B Int.g".a// D � B Int.�.h/�1g".a// D � B Int h:

Therefore, .g".a//�1�.h/h 2 L�, i.e., �.h/h D 
g".a/ for some 
 2 L�. Since
g".a/ is � -symmetric, 
 must lie in K�. Let b D a
 2 F �. Then g".b/ D �.h/h.

(iii) H) (i) Suppose g".b/ D �.h/h for some b 2 F � and h 2 A�. Set ' D Int h.
Then

' B 	b D Int h B � B Int.g".b// D � B Int.�.h/�1g".b// D � B Int h D � B ':
It follows that for � D ' B " we have

� B � D ' B " B � D ' B 	 B " D ' B 	b B " D � B ' B " D � B �;
as required. �
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We conclude this section with the following well-known fact.

Proposition 3.3. Let A D Mm.D/, where D is a central division algebra over
L endowed with an involution a 7! Na, and define an involution x 7! x� of A by
.xij / 7! .xj i /. Let � be either C1 or �1. For i D 1; 2, let Qi 2 A� be such that
Q�
i D �Qi , and define involutions �i by �i .x/ D Q�1

i x�Qi . Then .A; �1/ ' .A; �2/

as L-algebras with involution if and only if there exist z 2 A� and 
 2 K� (where
K D L� ) such thatQ2 D 
z�Q1z.

Proof. Any L-algebra automorphism ' W A ! A is inner, i.e., it is of the form
x 7! z�1xz for some z 2 A�. Furthermore, a direct computation shows that
the condition �2.'.x// D '.�1.x//, for all x 2 A, is equivalent to the fact that

 WD .z�/�1Q2z�1Q�1

1 belongs to Z.A/ D L. Then Q2 D 
z�Q1z, and applying
� we obtain that actually 
 2 K. �

We notice that the matrix equation relating Q1 and Q2 says that the associated
(skew)-hermitian forms are similar, i.e., an appropriate scalar multiple of one is
equivalent to the other.

4. Algebras with an involution of the second kind

In this section, we will establish a local–global principle for embedding of fields with
an involutive automorphism into simple algebras with an involution of the second
kind, which is assertion (i) of Theorem A (of the introduction). A partial result
(with some extra conditions) in this direction was obtained earlier in our paper [21],
Proposition A.2, and the argument below is a modification of the argument given
therein. What has not been previously observed is that the local–global principle fails
for general commutative étale algebras (see Example 4.6 below).

Theorem4.1. LetAbea central simple algebraover a globalfieldL, of dimensionn2,
with an involution � of the second kind,K D L� , and let E=L be a field extension of
degree n provided with an involutive automorphism � such that � jL D � jL. Suppose
that for each v 2 V K there exists an .L˝K Kv/-embedding

�v W .E ˝K Kv; � ˝ idKv
/ ,�! .A˝K Kv; � ˝ idKv

/

of algebras with involutions. Then there exists an L-embedding

� W .E; �/ ,�! .A; �/

of algebras with involutions.
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Proof. First, we observe that the existence of �v for all v 2 V K implies the existence
of an Lw -embedding "w W E ˝L Lw ,! A˝L Lw , for all w 2 V L. Indeed, fix a w
and let v 2 V K be such that wjv. If L˝K Kv is a field, then it coincides with Lw ,
and then "w D �v is the required embedding. On the other hand, if L˝K Kv is not a
field, then v has two extension to L, one of which is w and the other will be denoted
w0. We have

L˝K Kv ' Lw � Lw0 ' Kv �Kv;
and

E ˝K Kv ' E ˝L .L˝K Kv/ ' .E ˝L Lw/ � .E ˝L Lw0/:

Furthermore,

A˝K Kv ' A˝L .L˝K Kv/ ' .A˝L Lw/ � .A˝L Lw0/: (7)

It follows that the restriction of �v to the component E ˝L Lw provides the required
embedding "w . Now, by Proposition 2.7, the existence of the embeddings "w for
w 2 V L implies the existence of an L-embedding " W E ,! A, which we will fix.

Next, using Proposition 3.1, we can find an involution 	 on A of the form

	 D � B Int g D Int g�1 B �
that satisfies 	.".x// D ".�.x// for all x 2 E. Then according to Theorem 3.2, an
L-embedding � W .E; �/ ,! .A; �/ as algebras with involutions exists if and only if
we can find a 2 F �, where F D E� , and h 2 A� so that

g D �.h/h".a/: (8)

For v 2 V K , the existence of �v implies the existence of av 2 .F ˝K Kv/
� and

hv 2 .A˝K Kv/
� such that

g D �.hv/hv".av/ (9)

(to avoid cumbersome notations, we write " and � instead of "˝ idKv
and � ˝ idKv

).
Indeed, if L˝K Kv is a field, this immediately follows from Theorem 3.2.

To treat the case whereL˝KKv is not a field, we first note the following fact that
will be used repeatedly: as in (7), we have an isomorphism A˝K Kv ' A1 � A2,
where A1, A2 are simple Kv-algebras, and � interchanges A1 and A2. Thus, A2
can be identified with the opposite algebra Aop

1 , and moreover, this identification can
be chosen so that � corresponds to the exchange involution .x1; x2/ 7! .x2; x1/. It
follows that any � -symmetric element in A˝K Kv (i.e., any element in A� ˝K Kv)
can be written in the form �.hv/hv for some hv 2 A˝KKv .2 In particular, it follows
that (9) has a solution with av D 1.

2We note here for future use that the the same argument shows that any � -symmetric element in A˝K Kv

with reduced norm 1 can be written in the form �.hv/hv with hv 2 A˝K Kv of reduced norm 1 - one only
needs to observe that the natural extension NrdA˝K Kv=L˝K Kv

of the reduced norm map NrdA=L coincides
with .NrdA1=Kv

;NrdA2=Kv
/ in terms of the above identification.
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Taking reduced norms in (9), we obtain

NrdA=L.g/ D NF˝KKv=Kv
.av/NL˝KKv=Kv

.bv/; (10)

where bv D NrdA˝KKv=L˝KKv
.hv/. We will now make use of the following.

Proposition 4.2. Let L=K be an abelian Galois extension of degree m that satisfies
the Hasse norm principle (which is automatically the case if L=K is cyclic), and
F=K be a finite extension linearly disjoint from L over K. Then the pair F and L
satisfies the Hasse multinorm principle over K, i.e.,

NF=K.JF /NL=K.JL/ \K� D NF=K.F
�/NL=K.L�/; (11)

where JF and JL denote the group of idèles of F and L respectively.

Proof. Let E D FL. By our assumption, the restriction map

Gal.E=F /
��! Gal.L=K/

is an isomorphism. Using the commutative diagram (cf. [5], Chapter VII, Proposi-
tion 4.3)

JF

NF=K

��

 E=F �� Gal.E=F /

�

��
JK

 L=K �� Gal.L=K/,

in which  E=F and  L=K are the corresponding Artin maps, we see that NF=K
induces an isomorphism

JF =F
�NE=F .JE / ' JK=K

�NL=K.JL/: (12)

Now, suppose
a D NF=K.x/NL=K.y/

where a 2 K�, x 2 JF and y 2 JL. Then

NF=K.x/ D aNL=K.y/
�1:

So, it follows from the isomorphism (12) that x 2 F �NE=F .JE /, i.e.

x D x0NE=F .z/ with x0 2 F �; z 2 JE :
Then

aNF=K.x
0/�1 D NL=K.y/NE=K.z/ D NL=K.yNE=L.z// 2 NL=K.JL/:
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Since L=K satisfies the Hasse norm principle, we see that

aNF=K.x
0/�1 D NL=K.y

0/ for some y0 2 L�;

as required. �

Continuing with the notations introduced in the previous proposition, we notice
that given z 2 K�, for any v 2 V K

f
which is unramified in both F and L, and z is a

unit inK�
v , z is automatically the norm of a unit. Since all but finitely many v 2 V K

f

satisfy the above conditions, we see that if for every v 2 V K ,

z 2 NF˝KKv=Kv
..F ˝K Kv/

�/NL˝KKv=Kv
..L˝K Kv/

�/;

then actually
z 2 NF=K.JF /NL=K.JL/:

This remark in conjunction with (10) implies that Proposition 4.2 can be applied in
our situation with F D E� , which yields the existence of a 2 F �, b 2 L� such that

NrdA=L.g/ D NF=K.a/NL=K.b/ D NrdA=L.".a//NL=K.b/: (13)

We claim that a solution .a; b/ to (13) can be chosen so that

g".a/�1 2 †.v/ WD f�.hv/hv j hv 2 .A˝K Kv/
�g (14)

and
b 2 ‚.v/ WD NrdA˝KKv=L˝KKv

..A˝K Kv/
�/ (15)

for all v 2 V Kr . To see this, we consider the K-torus

T D f.x; y/ 2 RF=K.GL1/ � RL=K.GL1/ j NF=K.x/NL=K.y/ D 1g:
Fix a solution .a; b/ to (13). Then for .av; bv D NrdA˝KKv=L˝KKv

.hv//, where
.av; hv/ is a solution to (9), we have

t WD .ava
�1; bvb�1/v2VK

r
2 T .V Kr / WD

Y
v2VK

r

T .Kv/:

Since †.v/ D †.v/�1 and ‚.v/ D ‚.v/�1 are open in .A� ˝K Kv/
� and .L˝K

Kv/
� respectively, the set � D Q

v2VK
r
�.v/, where

�.v/ D f.x; y/ 2 T .Kv/ j x 2 †.v/g".a/�1; y 2 ‚.v/b�1g;
is an open neighborhood of t in T .V Kr /. However, T has the weak approximation
property with respect to V Kr (cf. [20], Proposition 7.8, or [30], §11.5). So,� contains
an element .a0; b0/ 2 T .K/. Then

NrdA=L.g/ D NF=K.a0a/NL=K.b0b/
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and g".a0a/�1 2 †.v/ and b0b 2 ‚.v/, for all v 2 V Kr . After replacing a with a0a,
and b with b0b, we will assume that a 2 F � and b 2 L� satisfy (13), (14) and (15).
Then it follows from Eichler’s Norm Theorem (cf. [20], Theorem 1.13 and §6.7) that
there exists h0 2 A� such that NrdA=L.h0/ D b. To complete the argument, we need
the following.

Lemma 4.3. Let S be the variety of � -symmetric elements in M D SL1;A. If
x 2 S .K/ is such that x 2 †.v/ D f�.hv/hv j hv 2 .A˝K Kv/

�g for all v 2 V Kr ,
then x D �.h/h for some h 2 M.K/.
Proof. We can write x D �.y/y for some y 2 M.Ksep/, where Ksep is a separable
closure ofK. Then 	 WD y�.y/�1 for � 2 Gal.Ksep=K/ defines a Galois 1-cocycle
 with values inG D SU.A; �/. It is enough to show that  defines the trivial element
of H 1.K;G/. Indeed, then there exists z 2 G.Ksep/ with the property

	 D y�.y/�1 D z�1�.z/ for all � 2 Gal.Ksep=K/:

It follows that h WD zy 2 M.K/, and obviously, x D �.h/h, as required. It is
known that H 1.K;G/ is trivial if K is either a global function field [11] or a totally
imaginary number field (cf. [20], §6.7), so our assertion follows immediately. To
prove the assertion in the general case, we will use the Hasse principle forG, i.e., the
fact that the map

H 1.K;G/ �!
Y
v2VK

r

H 1.Kv; G/

is injective (cf. [20], Theorem 6.6). So, it is enough to show that the image of  in
H 1.Kv; G/ is trivial, for all v 2 V Kr , which, by the argument above, is equivalent
to the fact that x D �.hv/hv for some hv 2 M.Kv/. But if L˝K Kv is not a field,
then according to the observation made in a footnote above, any x 2 S .Kv/ can be
written in the form �.hv/hv for some hv 2 M.Kv/, and there is nothing to prove.
Thus, it remains to consider the case where L ˝K Kv is a field (which, of course,
coincides with C). Let H D U.A; �/. The fact that x 2 †.v/ implies that the
image of  in H 1.Kv;H/ is trivial, and it is enough to show that in this situation,
the map H 1.Kv; G/ ! H 1.Kv;H/ has trivial kernel. But over Kv D R, we have
compatible isomorphisms

H ' U.f / and G ' SU.f /

for some nondegenerate hermitian form f . The exact sequence

1 �! SU.f / �! U.f /
det�! T �! 1;

where T D R.1/C=R.GL1/, gives rise to the following exact cohomological sequence

U.f /.R/
det�! T .R/ �! H 1.R;SU.f // �! H 1.R;U.f //:
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Since the first map is obviously surjective, the third map has trivial kernel, as required.
�

We will now complete the proof of Theorem 4.1. It follows from our construction
that x D �.h0/

�1.g".a/�1/h�1
0 satisfies the assumptions of Lemma 4.3. So, it can

be written in the form �.h/h for some h 2 A�, and therefore the same is true for
g".a/�1, yielding the required presentation (8) for g. �

Remarks 4.4. (1) In the notations of Lemma 4.3, for any v 2 V K
f

, we have

H 1.Kv; G/ D f1g, so the argument therein yields the following fact: anyx 2 S .Kv/

can be written in the form �.hv/hv for some hv 2 .A ˝K Kv/
�. We will use this

observation in the example below.
(2) Using Theorem 4.1, it has been proved in [9] that if eitherK is totally complex,

or the degree n of A is odd, there exists a cyclic Galois extension F of K such that
.F ˝K L; idF ˝ �/ embeds in .A; �/.

(3) Some sufficient conditions for the existence of �v at a particular v 2 V K are
given in [21], Propositions A.3 and A.4. We will use these conditions in the proof of
the following corollary.

Corollary 4.5. Let .A1; �1/ and .A2; �2/ be two central simple algebras with invo-
lutions of the second kind over a global field L. Assume that

dimLA1 D dimLA2 DW n2 and �1jL D �2jL DW �:
Then there exists a field extension E=L of degree n with an involutive automorphism
� satisfying �.L/ D L and � jL D � , such that .E; �/ embeds into .Ai ; �i / as an
algebra with involution, for i D 1; 2.

Proof. Let Gi D SU.Ai ; �i /, and let Vi be the finite set of all v 2 V K such that Gi
is not quasi-split over Kv (cf. [20], Theorem 6.7). Set V D V1 [ V2, and let

S1 D fv 2 V j L˝K Kv ' Kv �Kvg; S2 D V n S1:
Pick an extension F=K of degree n which is linearly disjoint from L over K and
satisfies the following conditions: F˝KKv is a field for v 2 S1, andF˝KKv ' Knv
for v 2 S2. Set E D FL D F ˝K L and let � be the involution idF ˝ � of E.
Then it follows from Proposition A.3 (resp., Proposition A.4) in [21] that there exist
embeddings �iv W .E ˝K Kv; � ˝ idKv

/ ,! .Ai ˝K Kv; �i ˝ idKv
/ for v 2 S1 (resp.,

v 2 S2) and i D 1; 2. On the other hand, for v … V and any i D 1; 2, the existence
of �iv follows from the fact that Gi is quasi-split over K (cf. [20], p. 340). Applying
Theorem 4.1, we obtain the existence of embeddings �i W .E; �/ ,! .Ai ; �i /, for
i D 1; 2. �
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We will now construct an example showing that the assertion of Theorem 4.1 does
not extend to embeddings of étale algebras.

Example 4.6. Let K be a number field. Pick a 2 K� n K�2 so that a > 0 in all
real completions ofK, and setL D K.

p
a/. Furthermore, pick two nonarchimedean

places v1; v2 of K so that a 2 K�
vi

2 for i D 1; 2, and then pick b 2 K� with the

property b … K�
vi

2 for i D 1; 2. Set

F1 D K.
p
b/; F2 D K.

p
ab/;

and let
F D F1L D F2L D K.

p
a;

p
b/:

Let �i 2 Gal.F=Fi / be the nontrivial automorphism for i D 1; 2; notice that both �1
and �2 act nontrivially on L. Consider the commutative étale L-algebraE D F �F
with the involutive automorphism � D .�1; �2/; clearly, E� D F1 � F2.

Now, letD0 be the quaternion division algebra overK with local invariant 1=2 2
Q=Z at v1 and v2, and 0 everywhere else. Then both F1 and F2 are isomorphic
to, and henceforth will be identified with, maximal subfields of D0. Fix a basis 1,
i , j , k of D0 over K such that i 2 D ˛, j 2 D ˇ for some ˛; ˇ 2 K�, and
ij D k D �ji . Let ı be the standard involution of D0, and DC

0 D K and
D�
0 D Ki CKj CKk be the spaces of ı-symmetric and ı-skew-symmetric elements,

respectively. Let D D D0 ˝K L with the involution � D ı ˝ �0, where �0 is the
nontrivial automorphism of L=K, and let D
 be the set of �-symmetric elements.

Lemma 4.7. NrdD=L.D
/ D K.

Proof. We obviously have

D
 D DC
0 C p

aD�
0 D K C p

a.Ki CKj CKk/;

from which it follows that NrdD=L.D
/ is the set of elements represented by q D
x20 � a˛x21 � aˇx22 C a˛ˇx23 over K. To show that this set coincides with K, it is
enough to show that the quadratic form q is indefinite at all real places ofK. But by our
construction, at those places the algebraD0 splits, so the form ˛x21 Cˇx22 �˛ˇx23 is
not negative definite. Since a > 0, the same is true for the form a.˛x21Cˇx22�˛ˇx23/,
and the required fact follows. �

Now, we observe that

F1 ˝K L ' F2 ˝K L ' F;

and
.F1 ˝K L/


 D F2 and .F2 ˝K L/

 D F1:
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Thus, F has two embeddings �i W F ! D, where i D 1; 2, such that �i .F / is
�-invariant and

��1
1 B � B �1 D �2 and ��1

2 B � B �2 D �1:

Consider the embedding

" W E D F � F ! M2.D/ DW A; ".x1; x2/ D
�
�1.x2/ 0

0 �2.x1/

�
:

It follows from our construction that if we endow A with the involution 	..xij // D
.�.xj i //, then " W .E; �/ ! .A; 	/ is an embedding of algebras with involutions.

We now need to recall the following, which is actually Exercise 5.2 in [5].

Lemma 4.8. Let F D K.
p
a;

p
b/ be a bi-quadratic extension of a number fieldK.

Assume that for all v 2 V K , the local degree ŒFv W Kv� is 6 2. Let Ki D K.
p
ai /

for i D 1; 2; 3, be the three quadratic subfields of F , and set

Ni D NKi=K.K
�
i / and N v

i D NKi v=Kv
.Ki

�
v / for v 2 V K :

Then N v
1N

v
2N

v
3 D K�

v for all v 2 V K , but N1N2N3 ¤ K�.

Proof. For those who did not have a chance to work out all the details in Exercise 5.2
in [5], we briefly sketch the argument. First, by our assumption, for any v 2 V K ,
we have Ki v D Kv for at least one i , and therefore N v

1N
v
2N

v
3 D K�

v . Next, set
Si D fv 2 V K j Ki v D Kvg. Then, letting .�;�/v denote the Hilbert symbol over
Kv , we can define the following homomorphism ' W K� ! f˙1g,

'.x/ D
Y
v2S1

.a2; x/v
1/D

Y
v2S1

.a3; x/v
2/D

Y
v2S2

.a3; x/v

D
Y
v2S2

.a1; x/v D
Y
v2S3

.a1; x/v D
Y
v2S3

.a2; x/v:

We notice that equality 1) follows from the fact that for v 2 S1 we have a2a�1
3 2 K�

v
2.

To prove equality 2), we observe that by our assumption V K D S1 [S2 [S3, so the
product formula for the Hilbert symbol combined with the facts that S1 \ S2 � S3
and a3 2 K�

v
2 for v 2 S3, yields

1 D
Y
v2VK

.a3; x/v D
Y

v2S1[S2

.a3; x/v D
Y
v2S1

.a3; x/v �
Y
v2S2

.a3; x/v;

as required. All other equalities are established similarly. It follows from the appro-
priate description of ' that '.Ni / D 1 for all i D 1; 2; 3. Thus, '.N1N2N3/ D 1.
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On the other hand, it follows from Chebotarev’s Density Theorem that one can pick
u1 2 S1 and u2 … S1 so that a2 … K�2

uj
for j D 1; 2. Using Exercise 2.16 in [5]3,

we can find x 2 K� satisfying

.a2; x/u1
D .a2; x/u2

D �1 and .a2; x/u D 1 for all u 2 V K n fu1; u2g:
Then '.x/ D �1, implying that N1N2N3 ¤ K�. �

We will assume henceforth that a; b 2 K� are chosen so that F D K.
p
a;

p
b/

satisfies our previous assumptions and those of Lemma 4.8, i.e., the local degree
ŒFv W Kv� is 6 2 for all v 2 V K . (Explicit example: K D Q, a D 13, b D 17; then
one can take for v1; v2 the p-adic places of Q corresponding to the primes p D 3

and 23.) According to Lemma 4.8, one can choose s 2 K� so that

s … NK.pa/=K.K.
p
a/�/N

K.
p
b/=K

.K.
p
b/�/N

K.
p
ab/=K

.K.
p
ab/�/ (16)

It follows from Lemma 4.7 that there exists g 2 A� such that NrdA=L.g/ D s (in
fact, we can choose such a g of the form diag.t; 1/ where t 2 D
). Consider the
involution � D Int g B 	 . We claim that the equation

g".x/ D h�.h/ for x 2 .E� /�; h 2 A�; (17)

is solvable everywhere locally, but not globally. Then one can embed .E˝KKv; �˝
idKv

/ into .A˝K Kv; � ˝ idKv
/ for all v 2 V K , but one cannot embed .E; �/ into

.A; �/.
First, suppose (17) holds for some x 2 .E� /� and h 2 A�. Since E� D

K.
p
b/ �K.pab/, taking reduced norms, we obtain

s D NrdA=L.g/

2 NK.pa/=K.K.
p
a/�/N

K.
p
b/=K

.K.
p
b/�/N

K.
p
ab/=K

.K.
p
ab/�/;

which contradicts (16).
Now, fix v 2 V K . If v 2 V Kr , then by our construction L ˝K Kv is not a

field. Then every � -symmetric element in .A ˝K Kv/
� can be written in the form

�.hv/hv for some hv 2 .A˝K Kv/
�, and there is nothing to prove. So, assume now

that v 2 V K
f

. Since v splits in at least one of the extensions K.
p
a/, K.

p
b/ and

K.
p
ab/, and E� D K.

p
b/�K.pab/, we see that there exits sv 2 .E� ˝K Kv/

�
and tv 2 .L˝K Kv/

� such that

NrdA=L.g/ D NE� ˝KKv=Kv
.sv/NL˝KKv=Kv

.tv/:

3For the reader’s convenience, we recall the statement of this result, which will be used again in §6: Let
a 2 K�, and suppose that for each v 2 VK , we are given "v 2 f˙1g so that the following three conditions are
satisfied: (i) "v D 1 for all but finitely many v; (ii)

Q
v "v D 1; (iii) for each v 2 VK , there exists xv 2 K�

v

such that .a; xv/v D "v . Then there exists x 2 K� such that .a; x/v D "v for all v.
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Furthermore, the homomorphism of reduced norm

NrdA˝KKv=L˝KKv
W .A˝K Kv/

� ! .L˝K Kv/
�

is surjective, so there exists zv 2 A˝K Kv such that Nrd.zv/ D tv . Then

x D �.zv/
�1g".sv/�1z�1

v

is a � -symmetric element inA˝KKv of reduced norm one. So, using Remark 4.4 (1),
we conclude that x can be written in the form �.hv/hv with hv 2 .A˝K Kv/

�, and
then the same is true for g".av/�1, yielding a local solution to (17) at v.

Remark 4.9. It should be pointed out that the proof of the local–global principle for
embeddings of fields with involution in a central simple algebra with an involution
of the second kind (Theorem 4.1) depends in a very essential way on the multinorm
principle (i.e., (11)). Proposition 4.2 describes one situation in which this principle
holds; some other sufficient conditions are given in Proposition 6.11 of [20]. In fact,
we are not aware of any examples where the multinorm principle (for two fields) fails,
and it is probably safe to conjecture that it always holds if one of the fields satisfies
the usual Hasse norm principle and the extensions are linearly disjoint over K. On
the other hand, Lemma 4.8 demonstrates that the multinorm principle may fail for
three fields, even when all the fields are quadratic extensions. It would be interesting
to complete the investigation of the multinorm principle, and in particular, provide an
explicit computation of the obstruction, at least in the case where all fields are Galois
extensions.

After a preliminary version of this paper was circulated, J-L. Colliot-Thélène
informed us about an unpublished joint work of his with J-J. Sansuc in which they
gave two proofs of a multinorm principle for a pair of extensions, one of which is
cyclic.

In the remainder of this paper, we will work exclusively with simple algebras A
endowed with an involution � of the first kind. The center of A, which is fixed point-
wise under � , will be denoted K (instead of L) and will be assumed to be a global
field of characteristic ¤ 2. E will be a commutative étale algebra of dimension
n D p

dimA equipped with an involution � .

5. Algebras with a symplectic involution

In this section, A will denote a central simple K-algebra, of dimension n2, with a
symplectic involution � (then, of course, n is necessarily even). Our goal is to prove
the local–global principle for embedding of an n-dimensional commutative étale K-
algebra E given with an involutive K-automorphism � (Corollary 5.3). In fact, in
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this case one has the following more convenient criterion for the existence of an
embedding.

Theorem 5.1. With notations as above, assume that there exists an embedding
" W E ,! A as algebras without involutions, and that for each real v 2 V K there
exists a Kv-embedding

�v W .E ˝K Kv; � ˝ idKv
/ ,�! .A˝K Kv; � ˝ idKv

/

of algebras with involutions. Then there exists a K-embedding

� W .E; �/ ,�! .A; �/

of algebras with involutions.

The proof relies on the following lemma which is analogous to Lemma 4.3. We
will denote the involution � ˝ idKv

of A˝K Kv simply by � in the following lemma
and in the proof of Theorem 5.1.

Lemma 5.2. Let x 2 A� be a � -symmetric element. Assume that for every real
v 2 V K , there is hv 2 .A˝K Kv/

� such that x D �.hv/hv . Then there is h 2 A�
such that x D �.h/h.

Proof. Since � is symplectic, G D U.A; �/ D SU.A; �/ is a form of Spn, hence it
is connected, absolutely almost simple and simply connected. This implies that the
map

H 1.K;G/
��!

Y
v2VK

r

H 1.Kv; G/

is bijective (cf. [20], Theorem 6.6, for number fields, and [11] for global fields of
positive characteristic). LetKsep be a fixed separable closure ofK. Pick y 2 .A˝K

Ksep/
� so that x D �.y/y. Then the map

� 7! 	 WD y�.y/�1; � 2 Gal.Ksep=K/;

is a Galois 1-cocycle with values in G. The fact that x D �.hv/hv , with hv 2
.A˝K Kv/

�, for each v 2 V Kr , means that the corresponding cohomology class lies
in the kernel of �. It follows from the injectivity of � that the class is trivial, i.e., there
exist z 2 G.Ksep/ such that

	 D y�.y/�1 D z�1�.z/ for all � 2 Gal.Ksep=K/:

Then h WD zy 2 A� and x D �.h/h, as required. �
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Proof of Theorem 5.1. By Proposition 3.1, there exists an involution 	 D � B Int g
on A, where g 2 A� is � -symmetric, such that " W .E; �/ ,! .A; 	/ is an embedding
of algebras with involutions. Set F D E� . It follows from our assumptions and
the equivalence (i) H) (iii) in Theorem 3.2 that for each v 2 V Kr there exists bv 2
.F ˝K Kv/

� such that

g"v.bv/ D �.hv/hv for some hv 2 .A˝K Kv/
�:

Since the subgroup .F ˝K Kv/
�2 � .F ˝K Kv/

� is open, by weak approximation,
there exists b 2 F � such that

b D bvt
2
v with tv 2 .F ˝K Kv/

�

for each v 2 V Kr . Using the facts that tv is �v-symmetric and that " intertwines �
and 	 , one finds that g"v.tv/ D �."v.tv//g, so

g".b/ D �."v.tv//g"v.bv/"v.tv/ D �.hv"v.tv//.hv"v.tv//:

Then by Lemma 5.2, we have g".b/ D �.h/h for some h 2 A�, and invoking
Theorem 3.2, we see that there is an embedding � W .E; �/ ,! .A; �/. �

Corollary 5.3. Let A and E be as above and assume that for every v 2 V K there is
a Kv-embedding

�v W .E ˝K Kv; � ˝ idKv
/ ,�! .A˝K Kv; � ˝ idKv

/

of algebras with involutions. Then there exists a K-embedding

� W .E; �/ ,�! .A; �/

of algebras with involutions.

Indeed, in view of Proposition 2.7, the existence of �v for all v 2 V K implies the
existence of an embedding " W E ,! A of algebras without involutions.

6. Algebras with orthogonal involutions: nonsplit case

Let A be a central simple algebra over a global field K of characteristic ¤ 2, of
dimension n2, endowed with an involution � of the first kind. Then, if A ' Mm.D/,
withD a division algebra, then the class ŒD� 2 Br.K/ has exponent 6 2, and therefore
eitherD D K, orD is a quaternion central division algebra overK (cf. [19], §18.6).
Thus, either A D Mn.K/, or A D Mm.D/, whereD is a quaternion central division
algebra overK, and n D 2m. We will refer to the first possibility as the split case, and
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to the second as the nonsplit case. Henceforth, we will work only with orthogonal
involutions, and in this section will focus on the nonsplit case. Thus, n will be even
throughout the section, and m D n=2.

Now, let E be an n-dimensional commutative étale K-algebra given with a K-
involution � such that F D E� is of dimension m (so (1) of §1 holds). Then,
according to Proposition 2.2 we can identifyE withF Œx�=.x2�d/ for some d 2 F �
so that � is defined by x 7! �x. Theorem 6.1 below (which implies assertion (iii) of
Theorem A of the introduction) is formulated for the case whereF is a field extension
ofK andm is odd, however most of our considerations apply to a much more general
situation (cf., in particular, Theorem 6.7). So, we will assume that F D Qr

jD1 Fj ,
Fj a separable field extension of K, and in terms of this decomposition the element
d 2 F � that defines E is written as d D .d1; : : : ; dr/.

Theorem 6.1. In the above notations, assume that F is a field extension of K of
degree m, and m is odd. If for every v 2 V K there exists a Kv-embedding

�v W .E ˝K Kv; � ˝ idKv
/ ,�! .A˝K Kv; � ˝ idKv

/;

then there exists a K-embedding � W .E; �/ ,! .A; �/.

6.2. Some facts about Clifford algebras. The main difficulty in the proof of Theo-
rem 6.1 is that orthogonal involutions onA D Mm.D/, whereD is a quaternion divi-
sion algebra, correspond to (the similarity classes of)m-dimensional skew-hermitian
forms (with respect to the standard involution onD), and the Hasse principle for (the
equivalence of) such forms generally fails (cf. [13], §5.11 or [26], Chapter 10, §4).
However, one can still use local–global considerations via an analysis of the associ-
ated Clifford algebras. We refer the reader to [14], Chapter II, §8B, for the notion and
the structure of the Clifford algebra C.A; �/ associated to a simple algebraAwith an
involution �.

We will crucially use a result of Lewis and Tignol [15] which asserts that for two
orthogonal involutions �1 and �2 of A as above, .A; �1/ ' .A; �2/ (that is, �1 and �2
are conjugate in the terminology of [15]) if and only if they have the same signature
at every real place v ofK (i.e., .A˝KKv; �1˝ idKv

/ ' .A˝KKv; �2˝ idKv
/), and

the Clifford algebras C.A; �1/ and C.A; �2/ are K-isomorphic. (This result follows
from Theorems A and B (see also Proposition 11) of [15] since for a global field
K, the fundamental ideal I.K/ of the Witt ring W.K/ has the property that I.K/3

(which is commonly denoted by I 3.K/ in the literature) is torsion-free, and it is f0g
ifK does not embed in R, cf., for example, [26], Theorem 14.6 in Chapter 2 together
with Corollary 6.6 (vi) in Chapter 6.)

Another ingredient is the computation of classes in the Brauer group corresponding
to certain Clifford algebras. To formulate these results, we need to make some
preliminary remarks. If E D Qr

jD1 Ej is a commutative étale algebra over a field



26 G. Prasad and A. S. Rapinchuk CMH

K , where the Ej ’s are finite separable field extensions of K , then Br.E / is defined
to be

Lr
jD1 Br.Ej /. Furthermore, the restriction and corestriction maps are defined

by

ResE =K W Br.K / �! Br.E /; ˛ 7�! .ResE1=K .˛/; : : : ;ResEr=K .˛//;

and

CorE =K W Br.E / �! Br.K /; .˛1; : : : ; ˛r/ 7�! CorE1=K .˛1/C� � �CCorEr=K .˛r/:

For a D .a1; : : : ; ar/; b D .b1; : : : ; br/ 2 E �, we define

.a; b/E D ..a1; b1/E1
; : : : ; .ar ; br/Er

/ 2 Br.E /;

where .aj ; bj /Ej
is the class in Br.Ej / of the quaternion Ej -algebra defined by the

pair aj ; bj . As usual, if E is a local field, then we identify Br.E /2 with f˙1g, which
makes .a; b/E into the Hilbert symbol. (If F is a global field and v 2 V F , then
instead of . � ; �/Fv

we will occasionally write . � ; �/v if this is not likely to lead to
confusion.) We note that if K is a local field and F is a quadratic field extension of
K , then ResF=K .Br.K /2/ D 0 (cf. [5], Theorem 1.3 in Chapter VI).

Let now A be a central simple K-algebra with an orthogonal involution �. Then
the center Z.C.A; �// of the corresponding Clifford algebra C.A; �/ is a quadratic
étaleK-algebra (cf. [14], Chapter II, Theorem 8.10), i.e., either a (separable) quadratic
field extension ofK, orK�K. Moreover,C.A; �/ is a “simple”Z.C.A; �//-algebra,
which in the case Z.C.A; �// D K �K means that C.A; �/ D C1 � C2, where C1
and C2 are simpleK-algebras. In all cases, one can consider the corresponding class
ŒC.A; �/� 2 Br.Z.C.A; �///. Now, fix a quadratic étale K-algebra Z, and suppose
that there exists a K-isomorphism � W Z ! Z.C.A; �//. Then one can consider the
simple Z-algebra C.A; �; �/ obtained from C.A; �/ by change of scalars using �,
and also the corresponding class ŒC.A; �; �/� 2 Br.Z/. Let x� W Z ! Z.C.A; �// be
the other K-isomorphism. Then

ŒC.A; �; x�/� � ŒC.A; �; �/� D ResZ=K.ŒA�/ (18)

(cf. [14], (9.9) and Proposition 1.10). It follows that if �1 and �2 are two orthogonal
involutions of A such that the centers of C.A; �i / are isomorphic to Z for i D 1; 2,
then C.A; �1/ ' C.A; �2/ if and only if for some (equivalently, any) isomorphisms
�i W Z ! Z.C.A; �i //, one of the following two conditions holds:

ŒC.A; �1; �1/� D ŒC.A; �2; �2/�

or

ŒC.A; �1; �1/� D ŒC.A; �2; �2/�C ResZ=K.ŒA�/:
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6.3. After the above recollections, we are ready to embark on our investigation of
the local–global principle in the situation described prior to Theorem 6.1. First, we
observe that the existence of Kv-embeddings �v , for all v 2 V K , as in the statement
of Theorem 6.1 implies that

� there exists a K-embedding " W E ,! A which may or may not respect involu-
tions.

Next, using Proposition 3.1, we can construct an involution 	 of A for which (3)
holds. For a 2 F �, we let 	a denote the involution 	 B Int ".a/ (then (3), with 	
replaced by 	a, holds). According to Theorem 3.2, the existence of �v is equivalent
to the existence of av 2 .F ˝K Kv/

� such that

.A˝K Kv; .	 ˝ idKv
/av
/ ' .A˝K Kv; � ˝ idKv

/: (19)

We now observe that the centers of the Clifford algebras C.A˝K Kv; .	 ˝ idKv
/av
/

and C.A˝K Kv; 	 ˝ idKv
/ are isomorphic - this follows from the description of the

center given in [14], Theorem 8.10, the definition of the discriminant of an orthogonal
involution, loc. cit., §7A, and the fact that

NrdA˝KKv=Kv
.av/ D NE˝KKv=Kv

.av/ D NF˝KKv=Kv
.av/

2 2 K�
v
2
;

from which we deduce that

Z.C.A; 	//˝K Kv ' Z.C.A˝K Kv; .	 ˝ idKv
/av
// ' Z.C.A; �//˝K Kv

for all v 2 V K . Using Chebotarev’s Density Theorem, we conclude that
� Z.C.A; 	// ' Z.C.A; �//.

We will denote this quadratic étale K-algebra by Z, and fix isomorphisms � W Z !
Z.C.A; 	// and  W Z ! Z.C.A; �//. A fundamental role in our analysis is played
by the following computation of the class of the Clifford algebra C.A; 	a/ valid over
an arbitrary field K of characteristic ¤ 2 (cf. [4], Proposition 5.3):

ŒC.A; 	a; �a/� D ŒC.A; 	; �/�C ResZ=KCorF=K..a; d/F /: (20)

In our argument, we will not need the precise description of the isomorphism �a
involved in this equation, the only property that will be used is that �a depends only
on the coset aNE=F .E�/ 2 F �=NE=F .E�/, cf. [4], p. 99; in particular, �a D � if
a 2 F �2.

According to Theorem 3.2, the existence of � W .E; �/ ,! .A; �/ is equivalent to
the existence of an a 2 F � such that .A; 	a/ ' .A; �/, and we are now in a position
to prove the following local–global principle for that.

Proposition 6.4. Suppose that for each place v 2 V K one can choose an element
av 2 .F ˝K Kv/

� so that the following conditions are satisfied:
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(a) .A˝K Kv; .	 ˝ idKv
/av
/ ' .A˝K Kv; � ˝ idKv

/ for all v 2 V Kr ;

(b) one of the following two families of equalities in Br.Z ˝K Kv/:

ŒC.A˝K Kv; .	 ˝ idKv
/av
; �av

/� D ŒC.A; �;  /˝K Kv�

and

ŒC.A˝K Kv; .	 ˝ idKv
/av
; �av

/� D ŒC.A; �;  /˝K Kv�

C ResZ˝KKv=Kv
ŒA˝K Kv�;

holds for all v 2 V K .

Assume also that the following condition holds:

.�/ for any finite subset V of V K , there exists v0 2 V K n V such that for j 6 r , if
dj … F �

j
2, then dj … .Fj ˝K Kv0

/�2, and moreover, Z ˝K Kv0
is a field if Z

is a field.

Then there exists an a 2 F � such that .A; 	a/ ' .A; �/. Furthermore, condi-
tion .�/ holds automatically if F=K is a field extension of odd degree.

For the proof of this proposition, we need the following two lemmas about the
Hilbert symbol. (In essence, these lemmas are well known, but we have not been
able to locate suitable references for them.)

Lemma 6.5. Let F be a global field of characteristic ¤ 2, and t 2 F �. Suppose
that for each v 2 V F we are given ˛v 2 f˙1g and sv 2 F �

v so that .sv; t /v D ˛v
for all v 2 V F , ˛v D 1 for all but finitely many v 2 V F , and

Q
v2VF ˛v D 1 (here

. � ; �/v denotes the Hilbert symbol on Fv). Then for any finite subset � of V F , there
exists s 2 F � such that .s; t/v D ˛v for all v 2 V F , and s 2 svF �

v
2 for all v 2 � .

Proof. The existence of s0 2 F � satisfying .s0; t /v D ˛v for all v 2 V F follows
from the result described in the footnote in the proof of Lemma 4.8. So, we will only
indicate how to modify s0 so that the resulting s would also satisfy the additional
condition s 2 svF �

v
2 for v 2 � . Let E D F .

p
t / and Ev D Fv.

p
t / for v 2 V F ,

and consider the corresponding norm groups

N D NE =F .E
�/ ; Nv D NE ˝F Fv=Fv

..E ˝F Fv/
�/ D NEv=Fv

.E �
v /:

It follows from the weak approximation property that N is dense in
Q
v2� Nv , and

therefore, Y
v2�

Nv D N �
� Y
v2�

F �
v
2
	

(21)
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Since .s0; t /v D .sv; t /v for all v 2 � , we see that .s0s�1
v /v2� 2 Q

v2� Nv . So
by (21), there exists z 2 N such that s0s�1

v z�1 2 F �
v
2 for all v 2 � . Then, for

s D s0z
�1

.s; t/v D .s0; t /v D ˛v for all v 2 V F ;

and s 2 svF �
v
2, as required. �

Lemma 6.6. Let F D Qr
jD1Fj be a commutative étale algebra over a global field

K , and t D .t1; : : : ; tr/ 2 F �. For v 2 V K , let Fv D F ˝K Kv . Suppose
we are given a finite subset � � V K , and for each v 2 � , an element sv 2 F �

v .
Furthermore, let v0 2 V K n � be such that for each j 6 r with tj … F �

j
2, we have

tj … .Fj ˝K Kv0
/�2. Then there exists s 2 F � such that ss�1

v 2 F �
v
2 for all

v 2 � , and .s; t/Fv
D 1 for all v 2 V K n .� [ fv0g/.

Proof. It is enough to consider the case where F is a field and t … F �2 (indeed, if
t 2 F �2, then everything boils down to proving the existence of an s 2 F � such
that s 2 svF �

v
2 for all v 2 � , which is obvious). We now define ˛w 2 f˙1g for all

w 2 V F as follows. For v 2 V K , we let w.1/; : : : ; w.`v/ denote all the extensions
of v to F . Then we have

Fv D F ˝K Kv D
`vY
kD1

Fw.k/ :

In particular, for v 2 � , in terms of this decomposition, we write

sv D .sw.1/ ; : : : ; sw.`v//;

and we then set ˛w.k/ D .sw.k/ ; t /F
w.k/

for k 6 `v . Furthermore, if w 2 V F lies

over v 2 V K n .� [ fv0g/, we set ˛w D 1. Finally, if w.1/0 ; : : : ; w
.`0/
0 are the

extensions of v0, then by our assumption, there exists k0 6 `0 such that t … F �2

w
.k0/

0

.

We then set ˛
w

.k/
0

D 1 for k ¤ k0, and let ˛
w

.k0/

0

D Q
w¤w.k0/

0

˛w where the product

is taken over all w 2 V F n fw.k0/
0 g (notice that the ˛w ’s for all these places have

already been defined). Then
Q
w2VF ˛w D 1, and for each w 2 V F , there exists

aw 2 F �
w such that .aw ; t /Fw

D ˛w : indeed, if wjv, where v 2 � , then one takes

for aw the w-component of sv; for any w ¤ w
.k0/
0 lying over v 2 V K n � we can

takes aw D 1, and finally, such aw exists for w D w
.k0/
0 because t … F �

w
2. Now,

our claim follows from Lemma 6.5. �

Proof of Proposition 6.4. Let

S1 D fv 2 V Kf j A˝K Kv 6' Mn.K/g [ V Kr ;
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S2 D fv 2 V K j ŒC.A; 	; �/˝K Kv� ¤ ŒC.A; �;  /˝K Kv� in Br.Z ˝K Kv/g;
and S D S1[S2. Using .�/ for V D S , we can find v0 2 V K nS with the properties
described therein, and then it follows from Lemma 6.6 that there exists an a 2 F �
such that

aa�1
v 2 F �

v
2 for all v 2 S and .a; d/Fv

D 1 for all v 2 V K n .S [ fv0g/;
where Fv D F ˝K Kv . We claim that a is as required, i.e.,

.A; 	a/ ' .A; �/ as K-algebras with involution. (22)

According to the result of Lewis and Tignol mentioned above in 6.2, to establish (22),
it is enough to show that 	a and � have the same signature at every real places of K,
i.e.,

.A˝K Kv; 	a ˝ idKv
/ ' .A˝K Kv; � ˝ idKv

/ for all v 2 V Kr ; (23)

and
C.A; 	a/ ' C.A; �/ as K-algebras. (24)

We notice that (23) immediately follows from condition (a) in the statement of the
proposition and the fact that aa�1

v 2 .F ˝K Kv/
�2 for all v 2 V Kr . To prove (24),

we set  0 D  if the first family of equalities in condition (b) holds, and  0 D x ,
the other isomorphism betweenZ andZ.C.A; �//, if the second family of equalities
in condition (b) hold. Then it follows from (18) that

ŒC.A˝K Kv; .	 ˝ idKv
/av
; �av

/� D ŒC.A; �;  0/˝K Kv� for all v 2 V K : (25)

We now recall that by our construction, v0 has the property that ifZ=K is a quadratic
field extension, then so is Z˝K Kv0

=Kv0
, which implies that the map of the Brauer

groups
Br.Z/ �!

M
v¤v0

Br.Z ˝K Kv/

is injective. So, to prove that ŒC.A; 	a; �a/� D ŒC.A; �;  0/� in Br.Z/, which will
immediately yield (24), it is enough to show that

ŒC.A; 	a; �a/˝K Kv� D ŒC.A; �;  0/˝K Kv� in Br.Z ˝K Kv/; (26)

for all v 2 V K n fv0g. If v 2 S , then aa�1
v 2 .F ˝K Kv/

�2, so

ŒC.A; 	a; �a/˝K Kv� D ŒC.A˝K Kv; .	 ˝ idKv
/av
; �av

/�;

and (26) follows from (25). Now, suppose v 2 V K n .S [ fv0g/. Since v … S2, and
by our construction .a; d/Fv

D 1, using (20), we obtain that

ŒC.A; 	a; �a/˝K Kv� D ŒC.A; 	; �/˝K Kv� D ŒC.A; �;  /˝K Kv�:
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On the other hand, since v … S1, according to (18), we have

ŒC.A; �;  /˝K Kv� D ŒC.A; �;  0/˝K Kv�;

and again (26) follows.
Finally, we will show that .�/ automatically holds if F=K is a field extension

of odd degree. Indeed, if d 2 F �2 then all we need to prove is that there exists
v0 2 V K nV such thatZ˝KKv0

is a field ifZ is a field, which immediately follows
from Chebotarev’s Density Theorem. Thus, we may suppose that d … F �2, so that
E D F.

p
d/ is a quadratic extension of F , and then we let L D E if Z D K �K,

and let L D EZ if Z=K is a quadratic field extension. Then L=F is a Galois
extension with Galois group isomorphic to Z=2Z or Z=2Z � Z=2Z. In either case,
there exists � 2 Gal.L=F / that acts nontrivially on E, and also on Z if Z=K is a
quadratic extension (notice that in this case Z 6� F as F has odd degree over K).
By Chebotarev’s Density Theorem, there exist infinitely many w0 2 V F

f
such that

L=F is unramified at w0 and the corresponding Frobenius automorphism is �. In
particular, we can choose such a w0 which lies over some v0 2 V K n V , and then
this v0 is as required. �

We will derive Theorem 6.1 from the following result which applies also in the
case where m is even.

Theorem 6.7. Let A D Mm.D/, where D is a quaternion division algebra over a
global fieldK of characteristic ¤ 2, and � be an orthogonal involution ofA. Further-
more, let F be a commutative étaleK-algebra of degreem, andE D F Œx�=.x2�d/
for some d 2 F � with the involution � W x 7! �x. Assume that for every v 2 V K

there exists a Kv-embedding

�v W .E ˝K Kv; � ˝ idKv
/ ,�! .A˝K Kv; � ˝ idKv

/:

Moreover, assume that condition .�/ of Proposition 6.4 holds along with the following
condition:

.#/ for all v 2 V K such that A˝K Kv 6' Mn.Kv/ and Z ˝K Kv ' Kv �Kv , we
have d … .F ˝K Kv/

�2.

Then there exists a K-embedding � W .E; �/ ,! .A; �/. Furthermore, condition .#/
holds automatically if m is odd.

Proof. We will keep the notations introduced earlier. By Theorem 3.2, the existence
of �v is equivalent to the existence of av 2 .F ˝K Kv/

� such that

.A˝K Kv; .	 ˝ idKv
/av
/ ' .A˝K Kv; � ˝ idKv

/: (27)
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On the other hand, in view of Proposition 6.4, to prove the first assertion, it suffices
to exhibit, for each v 2 V K , an element cv 2 .F ˝K Kv/

� for which the following
two conditions hold:

.A˝K Kv; .	 ˝ idKv
/cv
/ ' .A˝K Kv; � ˝ idKv

/ for all v 2 V Kr I (28)

and

ŒC.A˝K Kv; .	 ˝ idKv
/cv
; �cv

/� D ŒC.A; �;  /˝K Kv� for all v 2 V K : (29)

We notice that (27) implies that there is an isomorphism of Kv-algebras

C.A˝K Kv; .	 ˝ idKv
/av
/ ' C.A˝K Kv; � ˝ idKv

/;

so it follows from (9.9) and Proposition 1.10 of [14] (see 6.2 above) that either

ŒC.A˝K Kv; .	 ˝ idKv
/av
; �av

/� D ŒC.A; �;  /˝K Kv� (30)

or

ŒC.A˝K Kv; .	 ˝ idKv
/av
; �av

/� D ŒC.A; �;  /˝K Kv�

C ResZ˝KKv=Kv
ŒA˝K Kv�

(31)

holds. In particular, if A˝K Kv ' Mn.Kv/, then (28) and (29) hold for cv D av .
Assume now that A˝K Kv 6' Mn.Kv/. If such a v is real, then there is only one

equivalence class of involutions (cf. [26], Theorem 3.7 in Chapter 10), and therefore
(28) holds for any choice of cv . Thus, in all cases, it suffices to find cv satisfying only
(29). If (30) holds, we can take cv D av . So, suppose that (31) holds. We will look
for cv of the form cv D avbv with bv 2 .F ˝K Kv/

�. It follows from (20) that then

ŒC.A˝K Kv; .	 ˝ idKv
/cv
; �cv

/�

D ŒC.A˝K Kv; .	 ˝ idKv
/av
; �av

/�

C ResZ˝KKv=Kv
CorF˝KKv=Kv

.bv; d /F˝KKv
:

Comparing this with (31), we see that it is enough to find bv 2 .F ˝K Kv/
� such

that

ResZ˝KKv=Kv
CorF˝KKv=Kv

.bv; d /F˝KKv
D ResZ˝KKv=Kv

ŒA˝K Kv�: (32)

If Z ˝K Kv=Kv is a quadratic field extension, then ResZ˝KKv=Kv
.Br.Kv/2/ D 0.

So, in this case (32) holds automatically for any bv . Thus, it remains only to consider
the case whereZ˝KKv ' Kv�Kv . Then (32) amounts to finding bv 2 .F˝KKv/

�
such that

CorF˝KKv=Kv
.bv; d /F˝KKv

D ŒA˝K Kv�; (33)
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which we will do making use of condition .#/. First, we observe that since ŒA˝KKv�

is the only element of order two in Br.Kv/, it is enough to find bv for which
CorF˝KKv=Kv

.bv; d /F˝KKv
is nontrivial. We have

F ˝K Kv D
Ỳ
jD1

Fwj
; (34)

where w1; : : : ; w` are the extensions of v to F . If d D .dw1
; : : : ; dw`

/ in terms of

this decomposition, then by .#/ there exists j0 2 f1; : : : ; `g such that dwj0
… F �2

wj0
.

So, we can find bwj0
2 F �

wj0
such that .bwj0

; dwj0
/Fwj0

is nontrivial. We claim that

CorFwj0
=Kv

.bwj0
; dwj0

/Fwj0
is also nontrivial. This is obvious for v real (because

then Fwj0
D Kv D R), and follows from the next lemma for v nonarchimedean.

Lemma 6.8. Let L =K be a finite extension of nonarchimedean local fields. Then
CorL =K W Br.L / ! Br.K / is an isomorphism.

Proof. Cf. [17], Corollary 7.1.4. �

We now see that the element bv D .1; : : : ; bwj0
; : : : ; 1/ is as required, completing

the proof of the first assertion of Theorem 6.7.
Finally, we will show that .#/ holds automatically ifm is odd. Let v be a place ofK

such thatA˝KKv 6' Mn.Kv/. In the decomposition (34), for some j0 2 f1; : : : ; `g,
the degree ŒFwj0

W Kv� is odd. We claim that then the corresponding component

dwj0
… F �2

wj0
, and .#/ will follow. Indeed, otherwise E ˝K Kv would have the

following structure:
� � � � Fwj0

� Fwj0
� � � � ;

which would prevent it from being a maximal commutative étale subalgebra ofA˝K

Kv as .A˝KKv/˝Kv
Fwj0

is a nontrivial element of Br.Fwj0
/ (cf. Proposition 2.6).

�

Corollary 6.9. Let .A; �/ be as inTheorem 6.7,Z be the center of the Clifford algebra
C.A; �/, and E=K be a field extension of degree n D 2m with an automorphism �

of order two. Set F D E� , and write E D F.
p
d/ with d 2 F �. Assume that

.˘/ if Z is a field, then so is F ˝K Z,

and that condition .#/ of Theorem 6.7 holds. Then the existence of Kv-embeddings
�v W .E ˝K Kv; � ˝ idKv

/ ,! .A ˝K Kv; � ˝ idKv
/ for all v 2 V K implies the

existence of a K-embedding .E; �/ ,! .A; �/.

Proof. We only need to show that .˘/ implies condition .�/ of Proposition 6.4. For
this, we observe that the extension EZ=F admits an automorphism � that restricts
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nontrivially to both E and Z. Then the required fact is established by the argument
used in last paragraph of the proof of Proposition 6.4. �

Proof of Theorem 6.1. If F=K is a field extension of odd degree, then conditions .�/
and .#/ hold automatically. So, our assertion follows from Theorem 6.7. �

7. Orthogonal involutions: split case

In this section, we examine the local–global principle for embeddings in the case
whereA D Mn.K/with an orthogonal involution � . Forn even, these considerations,
in principle, can be built into the analysis given in §6 for the nonsplit case, however
this would make the statements somewhat cumbersome. In any case, one would still
need to consider the case of n odd. It turns out that the theory of quadratic forms
provides a natural framework for treating both cases (i.e., n even andn odd) and in fact
all we need in our analysis is the Hasse-Minkowski Theorem and the classification
of quadratic forms over the completions Kv of a global field K of characteristic
¤ 2. For the reader’s convenience, we recall that two nondegenerate quadratic forms
q1 and q2 of equal rank over Kv are equivalent if and only if (1) v 2 V Kr and q1
and q2 have the same signature over Kv D R; (2) v 2 V K

f
and q1 and q2 have

the same determinant and the same Hasse invariant (if q D a1x
2
1 C � � � C anx

2
n,

then the determinant and the Hasse invariant are given by dv.q/ D a1 : : : anK
�
v
2

(in K�
v =K

�
v
2) and hv.q/ D Q

i<j .ai ; aj /v respectively, where . � ; �/v 2 f˙1g is the
Hilbert symbol over Kv), cf. [26], Chapter 6, §4. Even though the arguments in
this section are considerably simpler than those in §6, they use similar ideas, and
the same auxiliary statements. The fact that the local–global principle holds for
the equivalence of quadratic forms (while it fails for the skew-hermitian forms over
quaternion division algebras) is the reason why the split case is easier to analyze than
the nonsplit case.

First, let us write � in the form �.x/ D Q�1xtQ for some nondegenerate symmet-
ric matrixQ (cf. [14], Proposition 2.7), and let b.v; w/ D vtQw be the corresponding
bilinear form onKn (notice that b is determined, up to a scalar multiple, by the prop-
erty b.xv;w/ D b.v; �.x/w/ for x 2 A and all v;w 2 Kn). Let q be the quadratic
form associated with b.

Now, let E be a commutative étale K-algebra of dimension n, with an involu-
tive K-automorphism � . Set F D E� . Then for any a 2 F �, the bilinear form
ba.v; w/ WD TrE=K.av�.w// on E is symmetric and satisfies

ba.xv;w/ D ba.v; �.x/w/ for all v;w; x 2 E:
Let qa denote the corresponding quadratic form. The following proposition is valid
over an arbitrary field of characteristic ¤ 2. It is essentially Proposition 3.9 of [4]
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formulated in our context; it follows from Theorem 3.2, however we give a simple
direct proof.

Proposition 7.1. An embedding � W .E; �/ ,! .A; �/ as algebras with involution
exists if and only if there is an a 2 F � such that .E; ba/ and .Kn; b/ are isometric.

Proof. First, we observe that for a symmetric bilinear form f on E

f .xv;w/ D f .v; �.x/w/ for all v;w; x 2 E (35)

if and only if there is an a 2 F for which f D ba. Indeed, suppose (35) holds. Since
E=K is étale, the trace form .v; w/ 7! TrE=K.vw/ is nondegenerate and therefore
we can write f .v;w/ D TrE=K.v'.w// for some ' 2 EndK.E/. Then (35) implies
that

TrE=K.xv'.w// D TrE=K.v'.�.x/w//

and, consequently, x'.w/ D '.�.x/w/, for all w; x 2 E. It follows that for  D
' B � we have  .xw/ D x .w/. Let  .1/ D a 2 E. Then  .x/ D ax, and hence,
'.w/ D a�.w/. Thus,

f .v;w/ D TrE=K.av�.w// D ba.v; w/:

Finally, the fact that f is symmetric implies that �.a/ D a. Conversely, for any
a 2 F , the form ba is bilinear and symmetric, and satisfies (35).

Now, we identify E with Kn as a K-vector space in some way, and use the
resulting identification of End.E/ with End.Kn/ D A. Let 
 W E ! EndK.E/
be the left regular representation. Pick ˛ 2 AutK.E/ and consider the embedding
� W E ,! EndK.E/ given by �.x/ D ˛
.x/˛�1. Set Qb.v; w/ D b.˛.v/; ˛.w//. We
claim that the following

Qb.xv;w/ D Qb.v; �.x/w/ (36)

is equivalent to the fact that � W .E; �/ ,! .A; �/ respects involutions. We have

Qb.xv;w/ D b.˛.xv/; ˛.w// D b.�.x/˛.v/; ˛.w// D b.˛.v/; �.�.x//˛.w//:

On the other hand,

Qb.v; �.x/w/ D b.˛.v/; ˛.�.x/w// D b.˛.v/; �.�.x//.˛.w///;

and our claim follows.
Suppose now that there exists an embedding � W .E; �/ ,! .A; �/ of algebras with

involution. Then � is of the form �.x/ D ˛
.x/˛�1 for some ˛ 2 AutK.E/, and (36)
holds for the corresponding form Qb. The first part of the proof shows that Qb D ba
for some a 2 F � (notice that Qb is nondegenerate), and then ˛ defines an isometry
between .E; ba/ and .Kn; b/. Conversely, if ˛ yields such an isometry, then b D ba,
and consequently (36) holds. This implies that � W E ,! A given by �.x/ D ˛
.x/˛�1
respects the involutions. �
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We will now use Proposition 7.1 to reduce the problem of the existence of an
embedding .E; �/ ,! .A; �/ to the case of even n.

Proposition 7.2. Let A D Mn.K/ with n odd, and let � be an orthogonal involution
ofA. Furthermore, let .E; �/ be ann-dimensional étaleK-algebrawith an involution
� such that (1) of §1 holds. Then

(i) E D E 0 �K for some � -invariant subalgebraE 0 ofE for which (1) of §1 holds
for � 0 D � jE.

(ii) Assume that for each v 2 V K , there exists an embedding

�v W .E ˝K Kv; � ˝ idKv
/ ,�! .A˝K Kv; � ˝ idKv

/:

Then there exists an involution Q� on A given by Q�.x/ D zQ�1xt zQ with zQ
symmetric of the form zQ D diag .Q0; ˛/, such that .A; �/ ' .A; Q�/ and forA0 D
Mn�1.K/ with the involution � 0.x/ D .Q0/�1xtQ0, there exists an embedding

�0v W .E 0 ˝K Kv; �
0 ˝ idKv

/ ,�! .A0 ˝K Kv; �
0 ˝ idKv

/

for all v 2 V K .

(iii) With � 0 as in (ii), the existence of an embedding � W .E; �/ ,! .A; �/ is equivalent
to the existence of an embedding �0 W .E 0; � 0/ ,! .A0; � 0/.

Proof. (i) was actually established in the proof of Proposition 2.1 (2). Set F 0 D
.E 0/� 0

. To prove (ii), given a0 2 .F 0/�, we let b0
a0 denote the bilinear form on E 0

defined by b0
a0.x

0; y0/ D TrE 0=K.a
0x0� 0.y0//. It is easy to see that the determinant

d 0 of b0
a0 is independent of a0 (cf. [4], Proposition 4.1), and we set ˛ D d=d 0, where

d is the determinant of b. We claim that ˛ is represented by q over K. Indeed, by
the Hasse-Minkowski Theorem, it is enough to show that ˛ is represented by q over
Kv for all v 2 V K . According to Proposition 7.1, it follows from the existence of
�v that there is an av D .a0

v; ˛v/ 2 .F ˝K Kv/
� D .F 0 ˝K Kv/

� � K�
v such that

bav
D b0

a0
v

? h˛vi, where h˛vi is the 1-dimensional form corresponding to ˛v , is
Kv-equivalent to b. As we observed above, the determinant of b0

a0
v

is d 0, so

det bav
D det b0

a0
v

� ˛v D d 0 � ˛v D det b D d in K�
v =K

�
v
2
;

which implies that ˛=˛v 2 K�
v
2. So b, which is equivalent to bav

D b0
a0

v
? h˛vi, is

equivalent to b0
a0

v
? h˛i. Hence, ˛ is a value assumed by q over Kv for all v, and

therefore, also overK. This implies thatQ is equivalent to a symmetric matrix zQ of
the form zQ D diag .Q0; ˛/, and we will show that the corresponding involution Q� is
as required. Since .A; �/ ' .A; Q�/, we can actually assume that Q D zQ, and we let
b0 denote the bilinear form corresponding to Q0.
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As Q D diag .Q0; ˛/, b is equivalent to b0 ? h˛i. We have seen above that it is
also equivalent to b0

a0
v

? h˛i. Now, it follows from the Witt Cancelation Theorem
(cf. [26], Chapter I, §5) that b0

a0
v

' b0, and therefore by Proposition 7.1 there exists
an embedding �0v W .E 0 ˝K Kv; �

0 ˝ idKv
/ ,! .A0 ˝K Kv; �

0 ˝ idKv
/.

Finally, to prove (iii), we observe that the existence of �0 W .E 0; � 0/ ,! .A0; � 0/
obviously implies the existence of � W .E; �/ ,! .A; �/. Conversely, if � exists,
then by Proposition 7.1 there exists a D .a0; ˇ/ 2 F � D .F 0/� � K� such that
ba D b0

a0 ? hˇi is equivalent to b D b0 ? h˛i. Taking determinants, we obtain

det ba D d 0 � ˇ D det b D d D d 0 � ˛ in K�=K�2;

so ˛=ˇ 2 K�2. It follows that b0
a0 ? h˛i is equivalent to b D b0 ? h˛i, so by the

Witt Cancelation Theorem b0
a0 ' b0, implying the existence of �0. �

Henceforth, we will assume that n is even and .E; �/ is an n-dimensional étale
K-algebra with involution satisfying (1) of §1. Then, according to Proposition 2.2,
we have E ' F Œx�=.x2 � d/ where F D E� is an étale K-algebra of dimension
m D n=2 and d 2 F �. We writeF D Qr

jD1 Fj , whereFj is a separable extension of
K, and suppose that in terms of this decomposition d D .d1; : : : ; dr/. The following
result contains assertion (ii) of Theorem A of the introduction as a particular case.

Theorem 7.3. Assume that for every v 2 V K there exists a Kv-embedding

�v W .E ˝K Kv; � ˝ idKv
/ ,�! .A˝K Kv; � ˝ idKv

/:

If the following condition holds:

.Þ/ for any finite subset V � V K , there exists v0 2 V K n V such that for j 6 r , if
dj … F �

j
2, then dj … .Fj ˝K Kv0

/�2;

then there exists an embedding � W .E; �/ ,! .A; �/. Furthermore, .Þ/ automatically
holds if F is a field.

Proof. We need to show that if for every v 2 V K , there exists an av 2 .F ˝K Kv/
�

such that qav
is equivalent to q over Kv , then there exists an a 2 F � such that qa

is equivalent to q over K. Let Qq D qa for a D 1. For any v 2 V K , we have the
following equalities of determinants

d. Qq/ D d.qav
/ D d.q/ .in K�

v =K
�
v
2
/:

It follows that d. Qq/ D d.q/ inK�=K�2, and therefore, d.qa/ D d.q/ for all a 2 F �.
So, our task is to find an a 2 F � such that

(1) qa is equivalent to q over Kv for all v 2 V Kr ,
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(2) hv.qa/ D hv.q/ for all v 2 V K .

We will use the following formula (written in the additive notation) for the Hasse
invariant ([4], Theorem 4.3):

hv.qa/ D hv. Qq/C CorF˝KKv=Kv
.a; d/F˝KKv

for all v 2 V K : (37)

Let V be the (finite) set of places ofK containing all the archimedean ones and those
nonarchimedean v for which hv. Qq/ ¤ hv.q/, and choose v0 as in .Þ/ for this V . By
Lemma 6.6, there exists a 2 F � such that

(i) aa�1
v 2 .F ˝K Kv/

�2 for all v 2 V , and

(ii) .a; d/F˝KKv
D 1 for all v 2 V K n .V [ fv0g/.

Then (i) implies that qa ' q overKv , and in particular, hv.qa/ D h.q/, for all v 2 V .
On the other hand, it follows from (ii) and (37) that for v 2 V K n .V [ fv0g/we have

hv.qa/ D hv. Qq/ D hv.q/:

Thus, hv.qa/ D hv.q/ for all v ¤ v0. But the product formula for the Hilbert symbol
implies that Y

v

hv.qa/ D
Y
v

hv.q/ D 1;

whence hv.qa/ D hv.q/ holds also for v D v0. So, a is as required.
Finally, ifF is a field and d … F �2, then lettingL denote a finite Galois extension

of K containing F.
p
d/, we can choose � 2 Gal.L=F / which acts nontrivially onp

d . Then by Chebotarev’s Density Theorem, we can find v0 2 V K n V such that
the Frobenius automorphism of L=K at v0 is �, and this v0 is as required. �

Corollary 7.4. Let .E; �/ D .E 0; � 0/ � .K; idK/ where E 0=K is a field extension
with a K-automorphism � 0 of order two, n D dimK E. Let A D Mn.K/ with
an orthogonal involution � . Then the existence of embeddings �v W .E ˝K Kv; � ˝
idKv

/ ,! .A˝KKv; �˝ idKv
/ for all v 2 V K implies the existence of an embedding

� W .E; �/ ,! .A; �/.

This follows from Theorem 7.3 and Proposition 7.2.

Example 7.5. We will now construct an example of an étaleK-algebra E of dimen-
sion n D 6 with an involution � satisfying (1) of §1, and an orthogonal involution
� of A D M6.K/ such that the local–global principle for embeddings of .E; �/
into .A; �/ fails. (Notice that then Proposition 7.2 enables one to construct a similar
counter-example also for n D 7.)

We begin with the following general observation. Let K be a number field, and
let a; b 2 K� be chosen so that F D K.

p
a;

p
b/ is a degree four extension of
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K. Let V denote the subset of V K consisting of all archimedean places, and those
nonarchimedean places which ramify in F=K. Set F1 D K, F2 D K.

p
a/, and

d1 D a, d2 D b. Let v … V be such that d1 … K�
v
2 D .F1 ˝K Kv/

�2. Then
ŒKv.

p
a/ W Kv� D 2. Since FKv=Kv is unramified, hence cyclic, we conclude that

Kv.
p
a;

p
b/ D Kv.

p
a/, i.e., d2 2 Kv.pa/�2 D .F2 ˝K Kv/

�2. Thus, for every
v … V , dj 2 .Fj ˝K Kv/

�2 for at least one j 2 f1; 2g.
Let K D Q, and p1; p2 be two distinct primes of the form 4k C 1, with one of

them of the form 8k C 1, such that
�
p1

p2

	
D 1 (one can take, for example, p1 D 13

and p2 D 17). Set

F1 D Q; F2 D Q.
p
p1/; F D F1 � F2; d D .p1; p2/

and E D F Œx�=.x2 � d/ with the involution � defined by x 7! �x. Let Qq be the 6-
dimensional quadratic form onE corresponding to the bilinear form TrE=Q.x�.y//.
Now, Let q be the quadratic form which is equivalent to Qq over Qv for all v ¤ vp1

; vp2

(including the unique real place), and which has the Hasse invariant hv.q/ D hv. Qq/C
1=2 for v D vp1

; vp2
(in the additive notation). It follows from [26], Theorem 6.10

in Chapter 6, or [27], Chapter IV, 3.3, that such a form exists, and we let � denote the
orthogonal involution on A D M6.K/ corresponding to (the matrix of) q. We claim
that for each v 2 V Q there exists av 2 .F ˝Q Qv/

� such that the quadratic form
qav

, corresponding to the bilinear form TrE=K.avx�.y//, is equivalent to q over Qv ,
but there is no a 2 F � such that qa is equivalent to q. (In view of Proposition 7.1,
this will yield the existence of local embeddings �v for all v 2 V Q, but the absence
of a global embedding �.)

For the local assertion, we observe that we only need to consider v 2 fvp1
; vp2

g.
For v D vp1

, we pick s 2 Q�
p1

such that .s; p1/p1
D �1, and then avp1

D .s; 1/ 2
Q�
p1

� Qp1
.
p
p1/

� D .F ˝Q Qp1
/� is as required. Similarly, for v D vp2

, we pick
t 2 Q�

p2
so that .t; p2/p2

D �1, and then avp2
D .1; t; 1/ 2 Q�

p2
� Q�

p2
� Q�

p2
D

.F ˝Q Qp2
/� is as required.

Now, suppose there exists a D .a1; a2/ 2 F � D F �
1 � F �

2 such that qa is
equivalent to q over Q. Then

hvp1
.qa/ D hvp1

. Qq/C CorF˝Qp1
=Qp1

.a; d/F˝QQp1
D hvp1

. Qq/C 1=2;

so CorF˝Qp1
=Qp1

.a; d/F˝QQp1
D 1=2. Since p2 2 Q�

p1

2, we necessarily have
.a1; p1/p1

D �1. So, by the product formula, there exists a v ¤ vp1
such that

.a1; p1/v D �1. Since p1 2 Q�
p2

2; R�2, we have v ¤ vp2
; v1. But it is easy to see

that F D Q.
p
p1;

p
p2/ is unramified outside V D fvp1

; vp2
g, so according to the

observation made earlier, since p1 … Q�
v
2, we necessarily have p2 2 .F2 ˝ Qv/

�2.
Then CorF˝QQv=Qv

.a; d/v D 1=2, which contradicts hv.qa/ D hv.q/ D hv. Qq/.
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8. Invariant maximal subfields distinguish locally isomorphic algebras, of de-
gree a multiple of 4, with orthogonal involutions

Let A be a central simple algebra over a global fieldK, of dimension n2, and let � be
an orthogonal involution ofA. In this section, we will deal with the set I D I .A; �/

of all orthogonal involutions � of A such that

.A˝K Kv; �˝ idKv
/ ' .A˝K Kv; � ˝ idKv

/: (38)

for all v 2 V K . To put this notion in a more traditional context, we recall that if
A D Mm.D/, with D being a division algebra, then D itself admits an involution N
(which may be trivial) and then any involution � of A can be written in the form
�.x/ D Q�1

� x�Q� , where .xij /� D .xj i / and Q�
� D ˙Q� . In this case, we let h�

denote the correspondingm-dimensional (skew)-hermitian form. Then, according to
Proposition 3.3, we have .A; �/ ' .A; �/ if and only if the corresponding forms h�
and h� are similar, i.e., a scalar multiple of h� is equivalent to h� . So, the elements
of I correspond to the (classes of proportional) forms that are similar to h� at every
place of K, and the investigation of I essentially boils down to the Hasse principle
for similarity of forms of a specific type. The analysis of the latter was recently
completed in [16].

For orthogonal involutions �, we either have A D Mn.K/, with Q� symmetric,
making h� a quadratic form (split case), or A D Mm.D/, with D a quaternion
division algebra, N being the canonical involution of D, and Q� satisfying Q�

� D
�Q� , in this case h� is a skew-hermitian form (nonsplit case). It is known (cf. the
references in [16], or Proposition 8.7 below) that the Hasse principle does hold for
similarity of quadratic forms, which implies that in the split case I consists of a single
isomorphism class. On the other hand, in the nonsplit case, I often contains more
than one isomorphism class (cf. [16]), and therefore in this section we will entirely
focus on this case. In particular, unless stated otherwise, A will denote an algebra
of the form Mm.D/, where D is a quaternion division algebra, so that n D 2m.
(For the sake of completeness, we mention that the Hasse principle is known to hold
for similarity of hermitian forms over quaternion division algebras with the standard
involution, and also for similarity of hermitian forms over division algebras with an
involution of the second kind, cf. [16] and the references therein, so the nonsplit
case above is the only case where I may not reduce to a single isomorphism class.)
Our goal is to show that when m is even, the isomorphism class of each � 2 I is
determined by the isomorphism classes of �-invariant maximal fields in A. To give
a precise statement of this result, we need to make some preliminary remarks and
introduce some notations. First, we observe that the isomorphism (38) leads to an
isomorphism

C.A; �/˝K Kv ' C.A; �/˝K Kv
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of the corresponding Clifford algebras for every v 2 V K . In particular,

Z.C.A; �//˝K Kv ' Z.C.A; �//˝K Kv for all v 2 V K ;
so by applying Chebotarev’s Density Theorem we see that there exists a quadratic
étale K-algebra Z such that the center Z.C.A; �// is isomorphic to Z for every
� 2 I . We let V denote the finite set of all v 2 V K such that

A˝K Kv 6' Mn.Kv/ and Z ˝K Kv ' Kv �Kv:
The following theorem, together with Corollary 8.5, implies assertion (ii) of Theorem
B (of the introduction). Assertion (i) of that theorem is contained in Proposition 9.4.

Theorem 8.1. Assume that m is even.

(i) Given � 2 I , there is an n-dimensional �-invariant commutative étale sub-
algebra E� of A such that .E�; �jE�/ is isomorphic as algebra with invo-
lution to .F�Œx�=.x2 � d/; 	/, where F� D .E�/

� , d 2 F �
� is such that

d 2 .F� ˝K Kv/
�2 for all v 2 V , and 	 is defined by 	.x/ D �x.

(ii) Let � 2 I and let E� be any commutative étale subalgebra of A with the prop-
erties described in (i). If � 2 I and there exists an embedding .E�; �jE�/ ,!
.A; �/, then .A; �/ ' .A; �/.

We begin by constructing the required subalgebras over the completions Kv for
v 2 V .

Lemma 8.2. Let v 2 V , and assume thatm is even. Then for any � 2 I , the algebra
Av D A ˝K Kv contains an n-dimensional commutative étale Kv-subalgebra Ev
which is invariant under �v D � ˝ idKv

and for which there is an isomorphism of
algebras with involution

.Ev; �vjEv/ ' .FvŒx�=.x
2 � 1/; 	v/;

where Fv WD E
�v
v , and 	v is defined by x 7! �x.

Proof. We have Av D Mm.Dv/, where Dv D D ˝K Kv is a division algebra as
v 2 V . We will first construct certain Kv-algebras and their embeddings into
M2.Dv/. Pick a maximal field Lv in Dv , and let gv 2 D�

v be an element such that
Int gv induces the nontrivial automorphism ofLv; notice that Sgv D �gv where x de-
notes the canonical involution ofDv . Consider the algebraCv D LvŒx�=.x

2�1/with
the involution �v defined by x 7! �x. Then .Cv; �v/ is isomorphic to .Lv �Lv; "v/,
where "v is the involution .a; b/ 7! .b; a/. Let � be the (symplectic) involution of

M2.Dv/ given by .aij /� D .aj i /. Then the matrixQ D
�
0 gv

gv 0

	
obviously satisfies
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Q� D �Q, so � given by �.a/ D Q�1a�Q is an orthogonal involution ofM2.Dv/.
Now, it is easy to check that .a; b/ 7! diag.a; b/ defines an embedding

�v W .Cv; �v/ ' .Lv � Lv; "v/ ,�! .M2.Dv/; �/

of algebras with involution.
By our assumption, m is even, say m D 2r . Let Sv be the direct product of r

copies ofLv , and letRv D SvŒx�=.x
2�1/with the involution 	v defined by x 7! �x.

Then, obviously,

.Rv; 	v/ '
rY
iD1
.Cv; �v/ and R�v

v D Sv:

For .a1; : : : ; ar/ 2 Rv , where ai 2 Cv , we set

�v.a1; : : : ; ar/ D diag .�v.a1/; : : : ; �v.ar// 2 Mm.Dv/:

Then �v yields an embedding of algebras with involution

.Rv; 	v/ ,! .Mm.Dv/; �v/ with �v.a/ D M�1a�M;

where, again, � is defined by .aij /� D .aj i /, and M D diag.Q; : : : ;Q/. It follows
from the definitions that the discriminant of �v equals discr.�/ 2 K�

v
2 (cf. [14],

Chapter II, §7). On the other hand, since v 2 V , we have Z ˝ Kv D Kv � Kv ,
which implies that discr.�v/ 2 K�

v
2 (cf. [14], Chapter II, Theorem 8.10). But then

.Av; �v/ ' .Av; �v/ (cf. [26], Chapter 10, Theorem 3.6 for the nonarchimedean case
and Theorem 3.7 for the real case). Thus, there exists an embedding .Rv; 	v/ ,!
.Av; �v/, the image of which furnishes a subalgebra Ev of Av with the desired prop-
erties. �

Proof of Theorem 8.1 (i). For each v 2 V , pick a commutative étale subalgebra Ev
of Av WD A ˝K Kv as in the preceding lemma. Using Proposition 2.4, we find an
n-dimensional �-invariant commutative étale subalgebra E of A which satisfies (1)
of §1 and for which

.E ˝K Kv; .�jE/˝ idKv
/ ' .Ev; �vjEv/:

By Proposition 2.2, we have

.E; �jE/ ' .F Œx�=.x2 � d/; 	/
where F D E� , d 2 F � and 	 is defined by x 7! �x. Then by our construction,
for every v 2 V we have

.F ˝K Kv/Œx�=.x
2 � d/ ' .F ˝K Kv/Œx�=.x

2 � 1/;
implying that d 2 .F ˝K Kv/

�2, as required. �
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Proof of Theorem 8.1 (ii). The argument relies on characterizing the isomorphism
classes in I as fibers of a certain map ı, which we will now construct. For each
� 2 I we fix an isomorphism �� W Z ! Z.C.A; �//, and then letC.A; �; ��/ denote
C.A; �/ with the structure of Z-algebra defined using �� . Consider the following
subgroup:

B D
Y
v2V

h ResZ˝KKv=Kv
.ŒA˝K Kv�/ i �

Y
v2V

Br.Z ˝K Kv/:

Furthermore, let B0 be the subgroup of B generated by the element

.ResZ˝KKv=Kv
.ŒA˝K Kv�/ /v2V ;

and let xB D B=B0. This group will be the target of the required map ı. To define
it, we need to fix an element of I ; to keep our notations simple, we will pick the the
involution � used to define I D I .A; �/ as the fixed element, but in fact any other
element of I can be utilized equally well. Given � 2 I , for any v 2 V K there
is an isomorphism as in (38). Then with an appropriate choice of an isomorphism
 W Z ˝K Kv ! Z.C.A˝K Kv; �˝ idKv

//, we will obtain an isomorphism

C.A˝K Kv; �˝ idKv
;  / ' C.A˝K Kv; � ˝ idKv

; �� ˝ idKv
/

of .Z ˝K Kv/-algebras. Using (18) of §6, we see that in Br.Z ˝Kv/ the following
difference

ı.�; ��; v/ WD ŒC.A; �; ��/˝K Kv� � ŒC.A; �; �� /˝K Kv�

equals either 0 or ResZ˝KKv=Kv
.ŒA˝K Kv�/. In fact, ı.�; ��; v/ D 0 for all v … V ,

which leads us to consider the element .ı.�; ��; v//v2V 2 B. Now, for a different
isomorphism �0

� W Z ! Z.C.A; �//, again by (18) in §6, we have

ŒC.A; �; �0
�/� � ŒC.A; �; ��/� D ResZ=K.ŒA�/:

This means that the coset

ı.�/ WD .ı.�; ��; v//v2V C B0 2 xB
depends only on �, not on the choice of �� , and therefore the map

ı W I �! xB; � 7�! ı.�/;

is well-defined.

Lemma 8.3. For �; � 2 I , the condition ı.�/ D ı.�/ implies that .A; �/ ' .A; �/.
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Proof. Indeed, ı.�/ D ı.�/means that after replacing �� with another isomorphism
�0
� W Z ! Z.C.A; �// if necessary, we can assume that

ŒC.A; �; ��/˝K Kv� D ŒC.A; �; ��/˝K Kv� (39)

in Br.Z ˝K Kv/ for all v 2 V . At the same time, as we observed above, the fact
that �; � 2 I automatically implies (39) for v 2 V K n V . Using the injectivity of
Br.Z/ ! L

v2VK Br.Z ˝K Kv/, we conclude that

ŒC.A; �; ��/� D ŒC.A; �; ��/�;

and in particular, C.A; �/ ' C.A; �/ as K-algebras. Since in addition we have

.A˝K Kv; �˝ idKv
/ ' .A˝K Kv; � ˝K Kv/ for all v 2 V Kr ;

by the result of Lewis and Tignol [15] recalled in 6.2 we have .A; �/ ' .A; �/. �

Let now � 2 I , and let E� be a commutative étale subalgebra of A as in The-
orem 8.1 (i). Furthermore, let � 2 I , and suppose that there is an embedding
� W .E�; �jE�/ ,! .A; �/. By Lemma 8.3, to show that .A; �/ ' .A; �/ it is enough
to show that ı.�/ D ı.�/. Observing that for the involution 	 in Theorem 3.2 which
extends �jE� , one can take � itself, we see that the existence of � implies that there
is an a 2 F �

� such that .A; �a/ ' .A; �/, where �a D � B Int a. Then �a 2 I and
ı.�a/ D ı.�/. So, to prove Theorem 8.1 (ii), it remains only to show that

ı.�a/ D ı.�/: (40)

But according to (20) in §6, for any v 2 V K , we have

ŒC.A˝K Kv; �a ˝ idKv
; .��/a ˝ idKv

/�

D ŒC.A˝K Kv; �˝ idKv
; �� ˝ idKv

/�

C ResZ˝KKv=Kv
CorF�˝KKv=Kv

.a; d/F�˝KKv
:

If now v 2 V , then the assumption that d 2 .F ˝K Kv/
�2 implies that

ŒC.A˝K Kv; �a ˝ idKv
; .��/a ˝ idKv

/� D ŒC.A˝K Kv; �˝ idKv
; �� ˝ idKv

/�;

i.e.,
ı.�a; .��/a; v/ D ı.�; ��; v/;

and (40) follows. �

Corollary 8.4. Let A D Mm.D/, whereD is a quaternion division algebra over K
and m is even, and let � be an orthogonal involution of A. Suppose we are given
� 2 I D I .A; �/, a finite set S � V K nV , and for each v 2 S , an n-dimensional
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(with n D 2m) commutative étale subalgebra E.v/ of Av WD A ˝K Kv invariant
under �v D �˝ idKv

such that dimKv
E
�v
v D m. Then there exists an n-dimensional

�-invariant commutative étale subalgebra E of A with the properties described in
Theorem 8.1 (i) (with “E�” replaced by “E” and “F�” by “F ”), and such that for
every v 2 S we have

E.v/ D g�1
v .E ˝K Kv/gv for a gv 2 G�.Kv/; (41)

where G� D SU.A; �/.

Proof. Let E� be a commutative étale subalgebra of A as in Theorem 8.1 (i), and
for v 2 V , set E.v/ D E� ˝K Kv . Applying Proposition 2.4 we can find an
n-dimensional �-invariant commutative étale subalgebra E of A such that

E.v/ D g�1
v .E ˝K Kv/gv with gv 2 G�.Kv/ for all v 2 S [ V:

Then (41) holds automatically. On the other hand, writing E� and E in the form

E� D F�Œx�=.x
2 � d/ and E D F Œx�=.x2 � d 0/;

where F� D .E�/
� , F D E� , and d 2 F �

� , d 0 2 F � (cf. Proposition 2.2), we
observe that for v 2 V , the fact that the isomorphism

�v W E ˝K Kv �! E.v/ D E� ˝K Kv; a 7�! g�1
v agv;

commutes with �v , implies that �v.F ˝K Kv/ D F� ˝K Kv , and �v.d 0/ 2 d �
.F� ˝K Kv/

�2. Since by our construction, d 2 .F� ˝K Kv/
�2, we obtain that

d 0 2 .F ˝K Kv/
�2, as required. �

Combining this corollary with the results of [22], we obtain the following stronger
assertion, which we will need in §9.

Corollary 8.5. Keep the notations of Corollary 8.4. Then there exists an n-dimen-
sional �-invariant commutative étale subalgebra E of A which has the properties
described in Theorem 8.1 (i) (with “E�” replaced by “E” and “F�” by “F ”),
satisfies (41) for all v 2 S , and for which the corresponding maximal K-torus T�
of G� D SU.A; �/ is generic overK (“generic” in the sense of §2). This algebra E
is automatically a field extension of K.

Proof. The group G� is semisimple, and we let r denote the number of nontrivial
conjugacy classes in the Weyl group ofG� . Using Chebotarev’s Density Theorem, we
choose a subset S � V K

f
n .S [V / of cardinality r so thatG� splits overKv for all

v 2 S . Then, according to Theorem 3 of [22] (cf. also Theorem 3.1 in [23]), one can
pick a maximalKv-torus T .v/ ofG� , for each v 2 S , so that every maximalK-torus
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which is conjugate to T .v/ by an element ofG�.Kv/, for all v 2 S , is generic overK.
By Proposition 2.3, T .v/ corresponds to an n-dimensional �v-invariant commutative
étale subalgebra E.v/ of Av satisfying (1) of §1. Using Corollary 8.4, we can find
an n-dimensional �-invariant commutative étale subalgebra E of A which possesses
the properties described in Theorem 8.1 (i) (with “E�” replaced by “E” and “F�” by
“F ”) and for which E ˝K Kv is conjugate to E.v/ by an element of G�.Kv/, for
all v 2 S [ S (in particular, yielding (41) for all v 2 S ). Let T� be the maximal
K-torus of G� corresponding to E. Then T� is conjugate to T .v/ by an element of
G.Kv/, for all v 2 S , hence is generic. The fact that E is a field extension ofK now
follows from Proposition 2.5. �

Remark 8.6. Assume that m is even, and let � and � 2 I . Then for any �-invariant
étale subalgebra E of A and any v 2 V , there is an embedding

.E ˝K Kv; .�jE/˝ idKv
/ ,�! .A˝K Kv; �˝ idKv

/ ' .A˝K Kv; � ˝ idKv
/:

Now, letE� be a subalgebra having the properties described in Theorem 8.1 (i); notice
that according to Corollary 8.5 we can even choose E� to be a field extension of K.
Then according to Theorem 8.1 (ii) there is an embedding .E�; �jE/ ,! .A; �/ if and
only if .A; �/ ' .A; �/. Since I typically contains more than one isomorphism class
(cf. [16] in conjunction with Proposition 3.3 of this paper), we see that the local–global
principle for embeddings of fields with involution usually fails for even m.

We close this section with the Hasse principle for similarity of quadratic forms. As
we already mentioned earlier, an important consequence of this result in our context is
that the set I in the split case reduces to a single isomorphism class. This fact will be
used in §9. The Hasse principle in question is known (cf. [18], [8]), but unfortunately
it is not recorded in the standard books on quadratic forms. So, we decided to sketch
the argument for the sake of completeness, especially since it uses nothing more than
Lemma 6.6.

Proposition 8.7. Let f and g be two nondegenerate quadratic forms of the same
dimension n over a global field K of characteristic ¤ 2. If for every v 2 V K there
exists 
v 2 K�

v such that g is equivalent to 
vf over Kv , then there exists 
 2 K�
such that g is equivalent to 
f over K.

Proof. We will use d. �/ and hv. �/ to denote the determinant and the Hasse invariant
over Kv , respectively (cf. §7). It is easy to check that

d.
f / D 
nd.f / and hv.
f / D .
; ı.f //v � hv.f / (42)

where ı.f / D .�1/n.n�1/=2 � d.f /.
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Let now n be odd. Set 
 D d.g/=d.f /. Then d.g/ � d.
f / in K�=K�2. For
v 2 V K , since g and 
vf are equivalent over Kv , by taking determinants we obtain

 � 
v in K�

v =K
�
v
2. So, being equivalent to 
vf , the form g is equivalent to 
f

over Kv , for any v 2 V K . Applying the Hasse-Minkowski Theorem, we obtain that
g is equivalent to 
f .

Now, we consider the case of even n. Notice that for any v 2 V K we have

d.g/=d.f / � d.
vf /=d.f / � 1 in K�
v =K

�
v
2
:

So, d.g/ � d.f / inK�=K�2, and therefore, d.g/ � d.
f / for any 
 2 K�. First,
assume that ı.f / 2 K�2. Then it follows from (42) that for any v 2 V K we have

hv.g/ D hv.
vf / D hv.f /;

consequently
hv.g/ D hv.
f /

for any 
 2 K�. In particular, this means that g and 
f are equivalent over Kv for
any 
 2 K� and any v 2 V K

f
. Now, choose 
 2 K� so that 

�1

v 2 K�
v
2 for all

v 2 V Kr . Then g is equivalent to 
f over Kv for all v 2 V K , hence over K.
Finally, we consider the case where ı.f / … K�2. Let S be a finite set of places

of K containing all the archimedean ones and those nonarchimedean v for which
hv.f / ¤ hv.g/. By Chebotarev’s Density Theorem, we can find v0 2 V K n S such
that ı.f / … K�

v0

2. Then by Lemma 6.6 there exists 
 2 K� such that 

�1
v 2 K�

v
2

for all v 2 S and .
; ı.f //v D 1 for all v 2 V K n .S [ fv0g/. Using (42), we see
that hv.g/ D hv.
f / for all v ¤ v0. SinceY

v

hv.g/ D
Y
v

hv.
f / D 1;

we infer that hv0
.g/ D hv0

.
f / as well. Arguing as above, we conclude that g and

f are equivalent over K. �

9. Application to weakly commensurable arithmetic subgroups

In this section, we will show how our previous results (particularly, Theorem 8.1)
can be used to complete the analysis of weakly commensurable arithmetic subgroups
in the case that was left open in the original version of [23], viz. where the ambient
algebraic groups are of type D2r , with r > 3 (for obvious reasons, type D4 requires
a special treatment, we hope to study groups of this type later).

We first recall the notion of weak commensurability introduced in [23]. Let G1
and G2 be two connected semi-simple algebraic groups defined over a field F of
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characteristic zero. Semi-simple elements �i 2 Gi .F /, where i D 1; 2, are said to be
weakly commensurable if there exist maximal F -tori Ti of Gi such that �i 2 Ti .F /,
and for some characters �i of Ti (defined over an algebraic closure xF of F ) we have

�1.�1/ D �2.�2/ ¤ 1:

Furthermore, (Zariski-dense) subgroups �i of Gi .F / are weakly commensurable if
given a semi-simple element �1 2 �1 of infinite order, there is a semi-simple element
�2 2 �2 of infinite order which is weakly commensurable to �1, and conversely,
given a semi-simple element �2 2 �2 of infinite order, there is a semi-simple element
�1 2 �1 of infinite order weakly commensurable to �2. In the present paper, we
will be concerned exclusively with the situation where both groups G1 and G2 are
absolutely almost simple of the same typeD2r with r > 3. (We note that in general,
for absolutely almost simple groups Gi , the existence of finitely generated weakly
commensurable Zariski-dense subgroups �i of Gi .F /, for i D 1; 2, implies that
either G1 and G2 are of the same type, or one of them is of type Bn and the other
of type Cn, cf. Theorem 1 in [23].) It is easy to show ([23], Lemma 2.4) that weak
commensurability of finitely generated Zariski-dense subgroups is preserved by the
F -isogenies of ambient algebraic groups ([23], Lemma 2.4). So, by replacing the
given groups Gi ’s with isogenous ones and enlarging the field F if necessary, we
reduce our analysis of weakly commensurable subgroups to the situation whereG1 D
G2 D G, and moreover,G is a F -form of SOn, hence F -isomorphic to SU.A; �/ for
some central simple n2-dimensional F -algebra A with an orthogonal involution � .

One of the central issues in [23] was to determine when weak commensurability
of S -arithmetic subgroups implies their commensurability, which in turn led to some
interesting results about length-commensurable and isospectral locally symmetric
spaces (see [24] for a nontechnical exposition of these results). We used the following
definition ofS -arithmeticity. LetG be a connected absolutely almost simple algebraic
group defined over a field F of characteristic zero, xG be its adjoint group and � W
G ! xG be the natural isogeny. Two subgroups � 0; � 00 of G.F / are said to be
commensurable up to an F -automorphism of xG if there exists an F -automorphism
� of xG such that �.�.� 0// and �.� 00/ are commensurable in the usual sense. Now,
suppose we are given a number field K, an embedding K ,! F , and a connected
semi-simple algebraicK-group G such that theF -groupF G obtained from the adjoint
group G of G by extension of scalarsK ,! F , is F -isomorphic to xG (in other words,
G is an F=K-form of xG). Then we have an embedding � W G .K/ ,! xG.F / which is
well defined up to anF -automorphism of xG. Now, given a subsetS ofV K containing
V K1 , but not containing any nonarchimedean places whereG is anisotropic, a subgroup
� of G.F / such that �.�/ is commensurable with �.G .OK.S/// (where OK.S/ is
the ring of S -integers of K) up to an F -automorphism of xG is called a .G ; K; S/-
arithmetic subgroup. We note that in the situation at hand, i.e., where G is a form
of SOn, with n D 4r and r > 3, for every F=K-form G of xG, there exists a unique
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F=K-form G ofG admitting aK-isogeny G ! G compatible with � . Furthermore,
two F=K-forms G1 and G2 of xG are K-isomorphic if and only if the corresponding
F=K-forms G1 and G2 of G are K-isomorphic. Finally, a subgroup � of G.F / is
.G ; K; S/-arithmetic if and only if it is commensurable up to an F -automorphism
of G with �.G .OK.S/// where � W G .K/ ,! G.F / is the natural embedding lifting
� (in view of this, .G ; K; S/-arithmetic subgroups of G.F / may be referred to as
.G ; K; S/-arithmetic subgroups, as we will often do in this section).

We showed in [23], for a general absolutely almost simple algebraic F -group G,
that if �i is a Zariski-dense .Gi ; Ki ; Si /-arithmetic subgroup of G.F / for i D 1; 2,
then the weak commensurability of �1 and �2 implies that K1 D K2 and S1 D S2
(Theorem 3 of [23]), and then their commensurability up to an F -automorphism
of xG is equivalent to the assertion that G1 ' G2 over K (Proposition 2.5 of [23]).
Furthermore, we showed that the latter follows from weak commensurability of�1 and
�2 ifG is of type different from An,Dn, andE6. On the other hand, we showed that
groups of typesAn .n > 1/,Dn (n odd), andE6 contain weakly commensurable, but
not commensurable, S -arithmetic subgroups (cf. Examples 6.5, 6.6 and §9 in [23]).
The only unresolved question in the original version of [23] involved the groups of
typeDn, with n even. We are now able to show that, as far as weak commensurability
is concerned, these groups behave like “good groups” if n > 4.

Theorem 9.1. Let G be an absolutely almost simple algebraic group of type D2r ,
with r > 2, defined over a field F of characteristic zero, and let �i be a Zariski-
dense .Gi ; K; S/-arithmetic subgroup ofG.F / for i D 1; 2. If �1 and �2 are weakly
commensurable, then G1 ' G2 (hence G1 ' G2) over K, and consequently �1 and
�2 are commensurable up to an F -automorphism of xG.

The proof of the theorem relies on Theorem 8.1 and a connection, valid over
arbitrary fields, between weak commensurability of elements and isomorphism of
commutative étale subalgebras associated to the corresponding maximal tori, which
we will now describe. As we explained earlier, we may (and we will) assume that
G D SU.A; �/ where A is a central simple F -algebra of dimension n2 (if G is of
type D2r , then n D 4r , r > 2, but some of our considerations are valid for arbitrary
n > 3, n ¤ 8) and � is orthogonal involution of A. Then any F=K-form G of G
equals SU.A ; �A / for a suitable central simple n2-dimensional algebra A over K
equipped with an orthogonal involution �A such that .A ˝K F; �A ˝ idF / ' .A; �/

(cf. Lemma 9.3 (1) below). So, as a preparation for the proof of Theorem 9.1, we first
consider the following general situation. For i D 1; 2, let Ai be two central simple
algebras over the same (infinite) fieldK, of dimension n2, endowed with orthogonal
involutions �i . Furthermore, let F=K be a field extension such that

.A1 ˝K F; �1 ˝ idF / ' .A2 ˝K F; �2 ˝ idF /I
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we will denote this common F -algebra with involution by .A; �/. Then Gi WD
SU.Ai ; �i / is an F=K-form of G WD SU.A; �/ for i D 1; 2, and in the sequel, we
will view the groups Gi .K/ as subgroups of the group G.F /. We refer the reader to
§2 for the definition of a generic maximal K-torus.

Proposition 9.2. Assume that n > 3, n ¤ 4; 8, and let Li be the minimal Galois
extension of K over which Gi becomes an inner form. Furthermore, let Ei be a
�i -invariant maximal commutative étale subalgebra of Ai satisfying (1) of §1, and
let Ti be the corresponding maximal K-torus of Gi . Assume that

(a) L1 D L2;

(b) T1 is a generic maximal K-torus of G1.

If there exists an element�1 2 T1.K/of infinite orderwhich isweakly commensurable
to some �2 2 T2.K/, then .E1; �1jE1/ ' .E2; �2jE2/ as algebras with involution.

Proof. We begin with the following lemma, which is valid for all n > 3 (and also for
symplectic involutions).

Lemma 9.3. (1) Let F=K be a field extension, and let ' W G1 ! G2 be an F -
isomorphism of algebraic groups. Then ' extends uniquely to an isomorphism

z' W .A1 ˝K F; �1 ˝ idF / �! .A2 ˝K F; �2 ˝ idF /

of algebras with involution.
(2) For i D 1; 2, let Ti be a maximal K-torus of Gi , and let Ei be the cor-

responding maximal commutative étale K-subalgebra of Ai . If ' W G1 ! G2 is a
xK-isomorphism of algebraic groups such that '.T1/ D T2, and the restriction 'jT1
is defined over K, then .E1; �1jE1/ ' .E2; �2jE2/ as algebras with involution.

Proof. (1) As the referee has pointed out, the first assertion follows from Theo-
rem 26.15 of [14], but for the convenience of the reader we give the following direct
proof. Since both involutions are orthogonal, there exists an isomorphism

z W .A1 ˝K
xF ; �1 ˝ id xF / �! .A2 ˝K

xF ; �2 ˝ id xF /

of algebras with involution. We let W G1 ! G2 denote the induced isomorphism be-
tween the special unitary groups, and observe that˛ WD  �1B' is an xF -automorphism
of G1. But it is well known that any xF -automorphism of G1 D SU.A1; �1/ is conju-
gation by a suitable h 2 H1. xF / where H1 WD U.A1; �1/. (Indeed, over xF , we have
G1 ' SOn and H1 ' On. If n is odd, then G1 is of typeBr , and every automorphism
of G1 is inner. For n even, the group of outer automorphisms of G1 has order two, and
conjugation by any element h 2 H1. xF / n G1. xF / does give an outer automorphism
of G1. Thus, any xF -automorphism of G1 is conjugation by an element of H1. xF /.)
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So, we can pick h 2 H1. xF / such that ' D  B Int h. Then z' WD z B Int h is
an isomorphism .A1 ˝K

xF ; �1 ˝ id xF / ! .A2 ˝K
xF ; �2 ˝ id xF / of algebras with

involution. It is easy to check that Gi . xF / spans Ai ˝K
xF as a xF -vector space, so the

Zariski-density of Gi .F / in Gi (cf. [1], 18.3) implies that Gi .F / spans A˝K F as a
F -vector space. Since '.G1.F // D G2.F /, we see that z'.A1 ˝K F / D A2 ˝K F ,
as required.

(2) By (1), ' extends to an isomorphism z' W .A1 ˝K
xK; �1 ˝ id xK/ ! .A2 ˝KxK; �2˝id xK/of algebras with involution. Since'.T1.K// D T2.K/ andEi coincides

with the K-subalgebra generated by Ti .K/ (cf. the proof of Proposition 2.3), we
obtain that z'.E1/ D E2, and assertion (2) follows. �

To prove Proposition 9.2, we pick simply connected coverings zGi i�! Gi of Gi
defined over K, and set zTi D ��1

i .Ti /. In view of our assumptions (a) and (b),
the fact that �1 and �2 are weakly commensurable implies the existence of a xK-
isomorphism z' W zG1 ! zG2 such that z'j zT1 is an isomorphism of zT1 onto zT2 defined
overK (cf. Theorem 4.2 and Remark 4.4 in [23]). Since n > 8, we automatically have
z'.ker �1/ D ker �2, and therefore z' descends to a xK-isomorphism ' W G1 ! G2 such
that 'jT1 is defined over K. Then our assertion follows from Lemma 9.3 (2). �

The following proposition establishes assertion (i) of Theorem B. As we already
noted in §8, assertion (ii) of that theorem is implied by Theorem 8.1 and Corollary 8.5.

Proposition 9.4. For i D 1; 2, letAi be a central simple algebra over a number field
K, of dimension n2, with n > 3, endowed with an orthogonal involution �i , and let
Gi D SU.Ai ; �i /. Assume that either

(a) .A1; �1/ and .A2; �2/ have the same isomorphism classes of n-dimensional com-
mutative étale subalgebras invariant under the involutions and satisfying (1)
(i.e., for any n-dimensional �1-invariant commutative étale subalgebra E1 of
A1 satisfying (1)), there exists an embedding .E1; �1jE1/ ,! .A2; �2/, and vice
versa),

or

(b) n ¤ 4, and for some finite S � V K , for i D 1; 2, any .Gi ; K; S/-arithmetic
subgroup �i of Gi .K/ is Zariski-dense in Gi , and �1 and �2 are weakly com-
mensurable.

Then

(i) A1 ' A2 (in other words, A1 and A2 involve the same division algebra in their
description);

(ii) .A1 ˝K Kv; �1 ˝ idKv
/ ' .A2 ˝K Kv; �2 ˝ idKv

/ for all v 2 V K .

If n is even, then the same conclusion holds if A1 and A2 just have the same isomor-
phism classes of maximal subfields invariant under the involutions.
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Proof. We begin by establishing the following two key properties of the K-groups
Gi D SU.Ai ; �i /:

.˛/ rkKv
G1 D rkKv

G2 for all v 2 V K ;

.ˇ/ L1 D L2, whereLi is the minimal Galois extension ofK over which Gi becomes
an inner form.

These properties have been proven in [23], Theorems 6.2 and 6.3, if (b) holds, so
we will prove them assuming that (a) holds. (In condition (b) we have assumed that
n ¤ 4 since if n D 4, the corresponding special unitary groups are semi-simple but
not absolutely simple, which prevents us from using the results of [23].) To prove
.˛/we basically repeat the argument given in the proof of Theorem 6.2 in [23]. More
precisely, by symmetry it is enough to show that

rkKv
G1 6 rkKv

G2: (43)

Let T1.v/ be a maximal Kv-torus of G1 that contains a maximal Kv-split torus, and
let E1.v/ be the corresponding commutative étale subalgebra of A1 ˝K Kv . By
Proposition 2.4, there exists a �1-invariant commutative étale subalgebra E1 of A1
satisfying (1) of §1 such that the corresponding K-torus T1 is conjugate to T1.v/
by an element of G1.Kv/; in particular, rkKv

T1 D rkKv
T1.v/. By our assumption,

there exists an embedding .E1; �1jE1/ ,! .A2; �2/, which implies that there is a
K-embedding T1 ,! G2, and (43) follows.

Next, we observe that the argument given in the proof of Theorem 6.3 in [23]
shows that .ˇ/ is a consequence of .˛/. Indeed, there exists a finite subset S of V K

such that G1 and G2 are quasi-split overKv for any v 2 V KnS (cf. [20], Theorem 6.7).
Then .˛/ implies that a place v 2 V K n S splits in L1 if and only if it splits in L2,
and then L1 D L2 by Chebotarev’s Density Theorem.

(i) We will now use .˛/ and .ˇ/ to prove (i). For n odd, we haveA1 ' Mn.K/ '
A2, and there is nothing to prove. So, we assume that n is even and write Ai D
Mm.Di / for some quaternion central simple K-algebra Di , where m D n=2. To
show that D1 ' D2 (which will prove our claim) it is enough to show that D1 and
D2 are ramified at exactly the same places. By symmetry it suffices to show that
for v 2 V K if D1v WD D1 ˝K Kv is a division algebra, then D2v WD D2 ˝K Kv
is also a division algebra. Assume the contrary. First, let us show that G2 is Kv-
isotropic. This is obvious if n > 4 and v 2 V K

f
. If v 2 V Kr , then our assumption

that D1v is a division algebra implies that G1 is Kv-isotropic (cf. [26], Chapter 10,
Theorem 3.7). But then, by .˛/, G2 must also beKv-isotropic. It remains to consider
the case n D 4 and v 2 V K

f
. Here we need to use .ˇ/ and the description of Li

in terms of discriminant ([14], Chapter 2, Theorem 8.10). The unique anisotropic
quadratic form in four variables over Kv has determinant (which coincides with its
discriminant) inK�

v
2, so if G2 happens to beKv-anisotropic, then v splits inL2. But

then v must split in L1, which means that the binary skew-hermitian form over D1v
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corresponding to �1 has determinant (discriminant) in K�
v
2. However, it is known

that any such form is necessarily isotropic ([26], Chapter 10, Theorem 3.6). So, G1
is Kv-isotropic, contradicting .˛/.

Now, the assumption that A2 ˝K Kv D Mn.Kv/ and G2 is isotropic means that
.A2˝KKv; �2˝idKv

/ is isomorphic to .Mn.Kv/; �2/where�2.x/ D Q�1
2 xtQ2with

Q2 D diag.R; T / andR D �
0 1
1 0

�
. Notice that if � is the nontrivialKv-automorphism

ofKv�Kv , then the map .a; b/ 7! diag.a; b/ defines an embedding .Kv�Kv; �/ ,!
.M2.Kv/; �/ where �.x/ D R�1xtR. Using Proposition 2.4 we now see that there
exists a n-dimensional �2-invariant commutative étale subalgebraE2 ofA2 satisfying
(1) of §1 such that .E2˝KKv; .�2jE2/˝idKv

/ contains .Kv�Kv; �/ as a direct factor.
By our assumption, .E2; �2jE2/ can be embedded into .A1; �1/. But thenA1˝K Kv
contains an n-dimensional commutative étale subalgebra which has Kv � Kv as a
direct factor which, by Proposition 2.6, contradicts the assumption that D1v is a
division algebra.

If n is even, we will letD denote the common quaternion central simpleK-algebra
involved in the description of A1 and A2 (D may be M2.K/), and assume (as we
may) in the rest of the proof that A1 and A2 coincide with A D Mm.D/.

(ii) In this paragraph, we treat the case where n is odd. ThenA1 D A2 D Mn.K/,
and �i .x/ D Q�1

i xtQi with Qi symmetric, i D 1; 2. Let qi be the quadratic form
with matrix Qi . We need to show that for any v 2 V K , the forms q1 and q2 are
similar over Kv (cf. Proposition 3.3). By .˛/, the groups G1 and G2 have the same
Kv-rank, and therefore the forms q1 and q2 have the same Witt index over Kv . For
v 2 V Kr , this immediately implies that q1 is equivalent to ˙q2, as required. Let now
v 2 V K

f
. Replacing one of the forms by a proportional form, we can assume that

d.q1/ D d.q2/ in K�
v =K

�
v
2 (cf. (42)). We can write qi D qhi ? qai where qhi is

hyperbolic and qai is anisotropic over Kv . Then qa1 and qa2 have the same dimension
s (which can only be 1 or 3) and the same determinant. But then qa1 and qa2 are
equivalent: for s D 1, this is obvious, and for s D 3 it follows from the fact that,
up to equivalence, there is a unique anisotropic ternary quadratic form of a given
determinant. Thus, q1 and q2 are equivalent over Kv , and the required isomorphism
in (ii) follows from Proposition 3.3.

Let now n be even, m D n=2 and A D Mm.D/, where D is a quaternion central
simpleK-algebra. Notice that it follows from .ˇ/ that the involutions �1 and �2 have
the same discriminant (equivalently, the same determinant). Let v 2 V K be such
that Dv D D ˝K Kv is a division algebra. Write �i in the form �i .x/ D Q�1

i x�Qi ,
where .xij /� D .xj i / and N is the standard involution of Dv , Qi 2 Mm.Dv/ is an
invertible skew-hermitian matrix, and let hi be the corresponding skew-hermitian
form. Then h1 and h2 have the same discriminant, and therefore are equivalent over
Dv: for v nonarchimedean this follows from Theorem 3.6 of [26], Chapter 10, and
for v real it follows from Theorem 3.7 of loc. cit. As above, this leads to the required
isomorphism.



54 G. Prasad and A. S. Rapinchuk CMH

Next, we consider the case whereDv ' M2.Kv/, and henceA ' Mn.Kv/. Then
the involutions �i ˝ idKv

, which for simplicity we will denote by �i , can be written in
the form �i .x/ D Q�1

i xtQi , whereQi 2 Mn.Kv/ is an invertible symmetric matrix.
Let qi be the quadratic form with matrix Qi . As above, we conclude that q1 and q2
have the same Witt index (over Kv) and the same determinant: d.q1/ D d.q2/, or,
equivalently, the same discriminant: ı.q1/ D ı.q2/, where ı.q/ D .�1/n=2 � d.q/,
and to establish our claim we need to show that q1 and q2 are similar over Kv . If
v 2 V Kr , then the mere fact that q1 and q2 have the same Witt index implies that q1
is equivalent to ˙q2, yielding the required fact. Let now v 2 V K

f
. First, suppose

that the common discriminant ı 2 K�
v
2. Since binary forms whose discriminant is a

square, are isotropic, the common value of the Witt index of q1 and q2 can only be n=2
or .n � 4/=2. It is well known that there is a unique anisotropic quadratic form over
Kv in four variables (viz., the reduced norm form of the unique quaternion division
algebra over Kv), so in both cases, q1 and q2 are equivalent. It remains to consider
the case where the common discriminant ı … K�

v
2. Let q be any n-dimensional

quadratic form with discriminant ı, and let 
 2 K�
v be such that the Hilbert symbol

.ı; 
/v D �1 (which exists as ı … K�
v
2). Then it follows from (42) that the Hasse

invariant hv.
q/ equals �hv.q/, and therefore the forms q and 
q represent the two
equivalence classes of n-dimensional forms of discriminant ı. This, clearly, implies
that in our situation q1 and q2 are similar, as required.

Finally, we note that arguing as in the proof of Corollary 8.5, we see that the
subalgebras E used in the above argument can be chosen so that the corresponding
K-torus T is generic. If n is even, then such an E is automatically a field extension
ofK (Proposition 2.5), so effectively our argument only relies on the assumption that
A1 and A2 contain the same isomorphism classes of maximal fields invariant under
the given involutions. �

Using the fact that for A D Mn.K/ and any orthogonal involution � , the set
I D I .A; �/ reduces to a single isomorphism class (Proposition 8.7), we obtain
the following interesting consequence of Proposition 9.4.

Corollary 9.5. Let Ai , i D 1; 2, be central simple algebras over a number field K,
of dimension n2, where n > 3, n ¤ 4, given with orthogonal involutions �i , and let
Gi D SU.Ai ; �i /. Assume that for some finite S � V K , for i D 1; 2, any .Gi ; K; S/-
arithmetic subgroup �i of Gi .K/ is Zariski-dense in Gi , and �1 and �2 are weakly
commensurable. Then, if one of the algebras is isomorphic to Mn.K/, the groups
G1 and G2 are K-isomorphic, and hence the S -arithmetic subgroups �1 and �2 are
commensurable.

Proof of Theorem 9.1. There exist central simple algebras with orthogonal involu-
tions .A1; �1/ and .A2; �2/ over K, of dimension n2, where n D 4r and r > 2, such
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that Gi D SU.Ai ; �i /. We need to show that the existence of Zariski-dense weakly
commensurable S -arithmetic subgroups �1 of G1.K/ and �2 of G2.K/ implies that
.A1; �1/ ' .A2; �2/. According to Proposition 9.4 (i), A1 and A2 involve the same
division algebra D in their description. If D D K (i.e., A1 D A2 D Mn.K/), then
the assertion of the theorem follows from Corollary 9.5. So, we can assume in the rest
of the proof that D is a quaternion division algebra over K, and A1 and A2 coincide
with A D Mm.D/, where m D 2r . Let I D I .A; �1/. Using Corollary 8.5, one
can find for each � 2 I , an n-dimensional �-invariant commutative étale subalgebra
E� of A satisfying (1) of §1 so that if T� is the corresponding maximal K-torus
of G� WD SU.A; �/, and V is the finite set of places of K described just before the
statement of Theorem 8.1, then the following conditions hold:

(a) E� is as in Theorem 8.1 (i);

(b) T� is generic (in the sense of §2);

(c) T�S WD
Y
v2S

T�.Kv/ is noncompact.

Indeed, first assume that there exists v0 2 S \ V . Then applying Corollary 8.5
with S D ; we find a subalgebra E� such that (a) and (b) hold. To see that
(c) holds automatically in this case, one needs to observe that since .E�; �jE�/ D
.F�Œx�=.x

2 � d/; 	/ (notations as in Theorem 8.1) and d 2 .F� ˝K Kv0
/�2, there

is a Kv0
-isomorphism T� ' RF�˝KKv0

=Kv0
.GL1/, implying that T�.Kv0

/ is non-
compact. It remains to consider the case where S \ V D ;. Since G1.K/ contains a
Zariski-dense S -arithmetic group, the group G1S WD Q

v2S G1.Kv/ is noncompact,
i.e., there exists v0 2 S such that G1.Kv0

/ is noncompact. But the groups G1 and G�
are isomorphic over Kv0

, so G�.Kv0
/ is noncompact as well.4 Then G� contains a

maximalKv0
-torus T0 such that T0.Kv0

/ is noncompact, and we letE.v0/ denote the
corresponding commutative étale subalgebra of A˝K Kv0

. Applying Corollary 8.5
to S D fv0g, we can find E� so that both (a) and (b) hold, and in addition

.E� ˝K Kv0
; .�˝ idKv0

/jE� ˝K Kv0
/ ' .E.v0/; .�˝ idKv0

/jE.v0//:
Then T� ' T0 over Kv0

, implying that T�.Kv0
/ is noncompact and yielding (c).

Now, let T1 WD T�1 in the above notation. Then T1 isK-anisotropic, so the quo-
tient T1S=T1.O.S// is compact ([20], Theorem 5.7), where T1S D Q

v2S T1.Kv/,
and O.S/ is the ring of S -integers inK. Since, by (c), T1S is noncompact, the group
T1.O.S// is infinite, and therefore there exists an element �1 2 T1.K/ \ �1 of
infinite order. By our assumption, �1 is weakly commensurable to some semi-simple
�2 2 �2. Let T2 be a maximalK-torus of G2 containing �2, and letE1 andE2 be the
n-dimensional commutative étale subalgebras of A corresponding to T1 and T2 re-
spectively. ByTheorem 6.3 of [23], we haveL1 D L2, whereLi is the minimal Galois

4This, in particular, shows that S -arithmetic subgroups in G� are Zariski-dense, for any � 2 I .
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extension ofK over which Gi becomes an inner form. So, condition (b) above permits
an application of Proposition 9.2, from which we get .E1; �1jE1/ ' .E2; �2jE2/. In
particular, there is an embedding .E1; �1jE1/ ,! .A; �2/. Due to condition (a), we
can apply Theorem 8.1 (ii), to obtain .A; �1/ ' .A; �2/. �

Remark 9.6. Theorem 9.1 implies that if K is a number field and G is a connected
absolutely simple K-group of type D2r with r > 2, then any K-form G0 of G
having the same set of isomorphism classes of maximal K-tori as G, is necessarily
K-isomorphic to G; see Theorem 7.5 in [23].

9.7. We take this opportunity to point out the following corrections in [23]. (i) In
assertion (2) of Theorem 4.2, replace the condition “if L1 D L2,” by “if L1 D
L2 DW L, and 	T1

.Gal.LT1=L// � W.G1;T1/,”. (ii) In the proof of Proposition 5.6,
after the proof of Lemma 5.7, replace “G”, occurring without a subscript, with “G2”
everywhere. (iii) In the fourth line of the proof of Theorem 4 (in §6), replace “G” by
“G1”, and in the next line, replace “obtained from G ” by “obtained from G ”.

Appendix

The goal of this appendix is to describe a Galois-cohomological approach to the prob-
lem of embedding of a commutative étale algebra with an involutive automorphism
into a simple algebra with an involution, and also to interpret the latter as a problem of
finding rational points on certain homogeneous spaces. Even though these methods
do provide some additional insight, it appears that neither of them is likely to yield
any simplification in the proofs of our embedding theorems, nor can they be used to
give an alternative proof of Theorem 8.1, which is one of the central results of the
current paper. For this reason, we chose to present the results in the main body of
the paper in the set-up of simple algebras with involution and their subalgebras, and
confine a discussion of relevant Galois-cohomological techniques to this appendix.

As in the main body of the paper, we let .A; �/ denote a central simpleL-algebra,
with dimLA D n2, endowed with an involution � . Furthermore, we let .E; �/ be an
n-dimensional commutative étale L-algebra with an involutive automorphism � that
leaves L invariant and satisfies � jL D � jL and also condition (1) §1. Set K D L� .
To streamline the exposition, we will leave out the case where � is of the first kind
and n is odd as otherwise we find ourselves in the split case which is well-understood
in terms of the classical results of the theory of quadratic forms, cf. §7. So we will
assume that either � is of the second kind, or � is of the first kind (henceK D L), n is
even and dimK F D n=2 where F D E� . Then it follows from Propositions 2.1 and
2.2 that E is a 2-dimensional free F -module, and hence the corresponding unitary
group U.E; �/ is a torus which we will denote by T . Clearly,

T ' RF=K.R
.1/

E=F
.GL1// (A1)
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in the standard notations. Furthermore, we let H denoted the unitary group U.A; �/
regarded as an algebraic K-group.

Next, we assume that there is an embedding " W E ,! A which may or may not
respect involutions. In the sequel, we will use the same notations ", � for the natural
extensions of these maps toE˝KKsep,A˝KKsep etc. According to Proposition 3.1,
there exists a � -symmetric g 2 A� such that

".�.x// D g�1�.".x//g for all x 2 E: (A2)

Pick s 2 .A˝K Ksep/
� so that

g D �.s/s: (A3)

In the sequel, we will use the standard notation and conventions from Galois cohomol-
ogy of algebraic groups (cf., for example, [20], Chapter VI, or [28], Chapter III); in
particular, for an algebraicK-group G we let Z1.K;G/ denote the set of 1-cocycles
on Gal.Ksep=K/with values inG.Ksep/, and letH 1.K;G/ denote the corresponding
cohomology set.

Proposition A. (i) Given  D f�g 2 Z1.K; T /, set �� D s".� /	.s/
�1. Then

� D f��g 2 Z1.K;H/. Furthermore, the correspondence  7! � yields a well-
defined map

' W H 1.K; T / �! H 1.K;H/:

(ii) The equation g".b/ D �.h/h has a solution .b; h/ 2 F � �A� (which is equiv-
alent to the existence of an embedding .E; �/ ,! .A; �/ as algebraswith involutions –
cf. Theorem 3.2) if and only if Im ' contains the trivial element ofH 1.K;H/.

Proof. (i) First, we observe that

s".T /s�1 � H: (A4)

Indeed, for any x 2 T .K/, using (A2) and (A3), we obtain

�.s".x/s�1/.s".x/s�1/ D �.s/�1�.".x//g".x/s�1

D �.s/�1g".�.x/x/s�1

D �.s/�1gs�1 D 1:

It follows that for any 	 2 Gal.Ksep=K/, we have

�� D .s".� /s
�1/.s	.s/�1/ 2 H.Ksep/

as
g D �.s/s D 	.g/ D 	.�.s//	.s/ D �.	.s//	.s/;
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hence s	.s/�1 2 H.Ksep/. Furthermore, for any 	1; 	2 2 Gal.Ksep=K/, we have

��1
	1.��2

/ D s".�1�2
/.	1	2/.s/

�1 D ��1�2
;

proving that � D f��g 2 Z1.K;H/. Finally, we show that the correspondence  7! �

takes cohomologus cocycles into cohomologus cocycles. Indeed, for any t 2 T .Ksep/

we have
s".t�	.t/

�1/	.s/�1 D .s".t/s�1/��	.s".t/s�1/�1;
which defines a cocycle cohomologus to �� , in view of (A4). So, the correspondence
 7! � gives rise to a well-defined map ' W H 1.K; T / ! H 1.K;H/.

(ii) First, recall that if a 2 A� is � -symmetric and a D �.x/x with x 2 .A˝K

Ksep/
�, then � D f��g, where �� D x	.x/�1, is a cocycle in Z.K;H/, which is

cohomologus to the trivial cocycle if and only if the equation a D �.x/x has a
solution in A�. Next, it follows from (A1) that

H 1.K; T / ' F �=NE=F .E�/; (A5)

and the inverse of this isomorphism can be described as follows. Given b 2 F �, pick
c 2 .E ˝K Ksep/

� so that b D �.c/c (D NE=F .c/), and for 	 2 Gal.Ksep=K/ set
� D c	.c/�1. Then  D f�g 2 Z1.K; T /, and the correspondence

bNE=F .E
�/ 7! .class of /

gives the inverse of the isomorphism (A5).
Now, suppose that the equation g".b/ D �.h/h has a solution .b; h/ 2 F � �A�.

We then choose c 2 .E ˝K Ksep/
� and construct  2 Z1.K; T / as in the previous

paragraph, for that b. Then with s as in (A3), we have

g".b/ D g".�.c/c/ D �.".c//g".c/ D �.s".c//.s".c//: (A6)

So, x WD s".c/ is a solution to g".b/ D �.x/x, which also has the solution h 2 A�.
By the remark above, this means that the cocycle � 2 Z1.K;H/, corresponding to
x, given by

�� D x	.x/�1 D s".c	.c/�1/	.s/�1; (A7)

lies in the trivial class inH 1.K;H/. On the other hand, './ D �, and therefore Im '

contains the trivial element ofH 1.K;H/. Conversely, suppose  2 Z1.K; T / is such
that './ represents the trivial element of H 1.K;H/. Using (A5) and subsequent
remarks, we can write  D f�g, where

� D c	.c/�1 for some c 2 .E ˝K Ksep/
� such that b WD �.c/c 2 F �:

Then (A6) shows that x D s".c/ satisfies g".b/ D �.x/x, and (A7) combined with
the definition of ' implies that the class in H 1.K;H/ corresponding to x, coincides
with './, hence is trivial. So, the equation g".b/ D �.h/h has a solution h 2 A�,
as required. �
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We can now reformulate the question about the local–global principle for the
existence of an embedding .E; �/ ,! .A; �/ as algebras with involutions as follows.
For v 2 V K , define the corresponding local map 'v W H 1.Kv; T / ! H 1.Kv;H/

just as we defined ' in Proposition A1 (i). Does the fact that Im 'v contains the trivial
element of H 1.Kv;H/ for all v 2 V K imply that Im ' contains the trivial element
ofH 1.K;H/? To analyze this question, we consider the following diagram

H 1.K; T /

˛

��

' �� H 1.K;H/

ˇ

��Q
v2VK H 1.Kv; T /

ˆ �� Q
v2VK H 1.Kv;H/,

(A8)

in whichˆ D Q
'v and ˛, ˇ are induced by restrictions. Clearly, the above question

is much more tractable if ˇ is injective, i.e.,H satisfies the Hasse principle for Galois
cohomology. The Hasse principle may fail for orthogonal involutions in the non-split
case - see below, but it is valid in all other cases at hand. We will now use this to
explain why the proof of Theorem 5.1, which yields the unconditional local–global
principle for embeddings if � is symplectic, was so easy. In this case,H is connected
and simply connected (of type C`, for ` D n=2), soH 1.Kv;H/ D 1 for all v 2 V K

f

(cf. [20], Theorem 6.4). So, instead of (A8), we can work with the following:

H 1.K; T /

˛

��

' �� H 1.K;H/

ˇ

��Q
v2VK

1
H 1.Kv; T /

ˆ ��
Q
v2VK

1
H 1.Kv;H/.

(A9)

It is known that ˛ is surjective ([20], Proposition 6.17), and ˇ is injective (in fact,
bijective) ([20], Theorem 6.6). So, a simple diagram chase shows that if Im 'v
contains the trivial class in H 1.Kv;H/ for all v 2 V K1 , then Im ' contains the
trivial class inH 1.K;H/, as required. (Notice that this is not an alternative proof of
Theorem 5.1, but rather a cohomological interpretation of the argument given in §5.)

Next, we consider the case where � is of the second kind. ThenH is a connected
reductive group, whose commutator subgroup G D SU.A; �/ is simply connected.
So, H 1.Kv; G/ D 1 for all v 2 V K

f
, however H 1.Kv;H/ ¤ 1 for v 2 V K

f
that do

not split in L, and therefore it is not enough to work with (A9) in this case. To study
cohomology of H we consider the exact sequence

1 �! G �! H
det�! S �! 1; (A10)

where S D R.1/
L=K

.GL1/, and det is the homomorphism of reduced norm, and the
corresponding sequence of cohomology

H 1.K;G/
	�! H 1.K;H/

ı�! H 1.K; S/:
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We have an isomorphism H 1.K; S/ ' K�=NL=K.L�/ similar to (A5), and it is
easy to compute that in terms of these isomorphisms the composite map ı B ' can be
described as follows

H 1.K; T / 3 bNE=F .E�/
ıB'��! .NrdA=L.g/ �NF=K.b//NL=K.L�/ 2 H 1.K; S/:

The compositions ıv B 'v , where ıv W H 1.Kv;H/ ! H 1.Kv; S/ is obtained from
(A10) over Kv , have a similar description. For every v 2 V K , there exists bv 2
.F ˝K Kv/

� such that for the corresponding cocycle v 2 H 1.Kv; T /, the element
'v.v/ 2 H 1.Kv;H/ is trivial. Applying ıv and using the above description, we
obtain that

NrdA=L.g/ �NF˝KKv=Kv
.bv/ 2 NL˝KKv=Kv

..L˝K Kv/
�/:

Now, assuming that E=L is a field extension, which enables us to use the multinorm
principle (Proposition 4.2) and the subsequent argument in §4, we conclude that there
exists b 2 F � such that

NrdA=L.g/ �NF=K.b/ 2 NL=K.L�/ (A11)

and
b 2 bvNE˝KKv=F˝KKv

..E ˝K Kv/
�/ for all v 2 V K1 : (A12)

We claim that if  2 H 1.K; T / is the cocycle corresponding to b then � WD './

is trivial. Indeed, (A11) implies that ı.�/ D 1, and therefore � 2 �.H 1.K;G//.
But for any v 2 V K

f
we have H 1.Kv; G/ D 1, which yields that the image of � in

H 1.Kv; G/ is trivial. On the other hand, due to (A12), for any v 2 V K1 , the image of
� inH 1.Kv;H/ coincides with that 'v.v/, hence is also trivial. Thus, ˇ.�/ D 1, so
the injectivity of ˇ (which is equivalent to Landherr’s theorem, cf. [20], §6.7, implies
that � D 1, as required. (Again, this argument is simply the cohomological version
of the proof of Theorem 4.1.)

For an orthogonal involution � , the group H is no longer connected, and more
importantly, may fail to satisfy the Hasse principle for Galois cohomology, i.e., ˇ
need not be injective, in the nonsplit case (cf. [13], §5.11, or [20], §6.6). This is
a serious obstacle to obtaining a purely cohomological proof of Theorem 6.1. To
overcome this obstacle, we were forced to introduce some new techniques in §6 and
study the classes ŒC.A; �; �/�.

Finally, one can view Theorem 3.2 as the assertion that the existence of an em-
bedding .E; �/ ,! .A; �/ is equivalent to the existence of a K-rational point on the
variety

Y WD f.b; h/ 2 RF=K.GL1/ � GL1;A j g".b/ D �.h/hg:
So, we would like to point out that Y is in fact a homogeneous space of the group
G WD H � RE=K.GL1/ under the following action

.x; z/ � .b; h/ D .�.z/bz; xhz/:
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Furthermore, in our previous notations, .1; s/ 2 Y , and the stabilizer of this point is
the torus f.st�1s�1; t / j t 2 T g. Thus, the question about the local–global principle
for the existence of an embedding .E; �/ ,! .A; �/ fits into the general framework of
the Hasse principle for homogeneous spaces of linear algebraic groups. Among early
results in this area one can mention the validity of the Hasse principle for projective
homogeneous varieties (Harder [10]) and for symmetric spaces of absolutely simple
simply connected groups (Rapinchuk [25]). Later, Borovoi in a series of papers de-
veloped cohomological methods for analyzing the Hasse principle for homogeneous
spaces with connected stabilizers, of an arbitrary connected group whose maximal
semi-simple subgroups are simply connected. In particular, in [2], he proved that
the Brauer–Manin obstruction is the only obstruction to the Hasse principle in this
situation, and in [3], computed this obstruction in terms of Galois cohomology (some
methods for computing the Brauer group of a compactification of a given homoge-
neous space are given in [7]). It would probably be interesting to use these techniques
to show that the Brauer–Manin obstruction for Y is trivial if � is a symplectic invo-
lution, and to compute it precisely when � is of the second kind (apparently, it is
related to the Tate–Shafarevich group of the multinorm torus associated with the pair
of ètale algebras .F;L/). However, because of the concrete description of Y , one
can give a direct Galois-cohomological analysis of the existence of aK-rational point
on it which results in the condition described in Proposition A (ii). We feel that the
general results on homogeneous spaces are unlikely to lead to an alternative proof of
our results. Moreover, for an orthogonal involution � , the group G is disconnected,
which makes Borovoi’s results inapplicable, but this can serve as a motivation to
extend these results to some class of disconnected groups which includes G .
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