## ON THE NOTION OF GENUS FOR

## DIVISION ALGEBRAS AND ALGEBRAIC GROUPS

(joint work with V. Chernousov and I. Rapinchuk)

Andrei S. Rapinchuk<br>University of Virginia

AmITSUR SYMPOSIUM - June 24, 2020
(1) Division algebras with the same maximal subfields
(2) Genus of a division algebra

## (3) Genus of a simple algebraic group

We start with the following question for division algebras:

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$.

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

- $D_{1}$ and $D_{2}$ have same maximal subfields
(1) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
(2) for $P / K$ of degree $n$,

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

- $D_{1}$ and $D_{2}$ have same maximal subfields if
(1) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
(2) for $P / K$ of degree $n$,

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

- $D_{1}$ and $D_{2}$ have same maximal subfields if
(1) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
(2) for $P / K$ of degree $n$,

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

- $D_{1}$ and $D_{2}$ have same maximal subfields if
(1) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
(2) for $P / K$ of degree $n$,

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

- $D_{1}$ and $D_{2}$ have same maximal subfields if
(1) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
(2) for $P / K$ of degree $n, \quad P \hookrightarrow D_{1}$

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

- $D_{1}$ and $D_{2}$ have same maximal subfields if
(1) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
(2) for $P / K$ of degree $n, \quad P \hookrightarrow D_{1} \Leftrightarrow$

We start with the following question for division algebras:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

- $D_{1}$ and $D_{2}$ have same maximal subfields if
(1) $\operatorname{deg} D_{1}=\operatorname{deg} D_{2}=: n$;
(2) for $P / K$ of degree $n, \quad P \hookrightarrow D_{1} \Leftrightarrow P \hookrightarrow D_{2}$.


## Amitsur's Theorem

## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$.Amitsur's TheoremLet $D_{1}$ and $D_{2}$ be central division algebras over $K$.If $D_{1}$ and $D_{2}$ have same splitting fields,

## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$. If $D_{1}$ and $D_{2}$ have same splitting fields, i.e. for $F / K$ we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$. If $D_{1}$ and $D_{2}$ have same splitting fields, i.e. for $F / K$ we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $n_{1}=n_{2}$ and $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.

## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$. If $D_{1}$ and $D_{2}$ have same splitting fields, i.e. for $F / K$ we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $n_{1}=n_{2}$ and $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.

- Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties),


## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$. If $D_{1}$ and $D_{2}$ have same splitting fields, i.e. for $F / K$ we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $n_{1}=n_{2}$ and $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.

- Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties), which are infinite extensions of $K$.


## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$. If $D_{1}$ and $D_{2}$ have same splitting fields, ie. for $F / K$ we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $n_{1}=n_{2}$ and $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.

- Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties), which are infinite extensions of $K$.

Can one prove Amitsur's Theorem using only

## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$. If $D_{1}$ and $D_{2}$ have same splitting fields, ie. for $F / K$ we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $n_{1}=n_{2}$ and $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.

- Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties), which are infinite extensions of $K$.

Can one prove Amitsur's Theorem using only splitting fields of finite degree,

## Amitsur's Theorem

Let $D_{1}$ and $D_{2}$ be central division algebras over $K$. If $D_{1}$ and $D_{2}$ have same splitting fields, ie. for $F / K$ we have

$$
D_{1} \otimes_{K} F \simeq M_{n_{1}}(F) \quad \Leftrightarrow \quad D_{2} \otimes_{K} F \simeq M_{n_{2}}(F)
$$

then $n_{1}=n_{2}$ and $\left\langle\left[D_{1}\right]\right\rangle=\left\langle\left[D_{2}\right]\right\rangle$ in $\operatorname{Br}(K)$.

- Proof of Amitsur's Theorem uses generic splitting fields (function fields of Severi-Brauer varieties), which are infinite extensions of $K$.

Can one prove Amitsur's Theorem using only splitting fields of finite degree, or just maximal subfields?

The answer is (strongly) negative.

The answer is (strongly) negative.

Recall that division algebras over $Q$ can be described in terms of local invariants:

The answer is (strongly) negative.

Recall that division algebras over $\mathbb{Q}$ can be described in terms of local invariants: there is a natural embedding

$$
\left.0 \rightarrow \operatorname{Br}(\mathbf{Q}) \xrightarrow{\theta} \bigoplus \operatorname{Br}\left(\mathbf{Q}_{p}\right) \quad \text { (including } p=\infty\right)
$$

The answer is (strongly) negative.

Recall that division algebras over $Q$ can be described in terms of local invariants: there is a natural embedding

$$
\left.0 \rightarrow \operatorname{Br}(\mathbf{Q}) \xrightarrow{\theta} \bigoplus \operatorname{Br}\left(\mathbf{Q}_{p}\right) \quad \text { (including } p=\infty\right)
$$

(Artin-Hasse-Brauer-Noether Theorem (ABHN)).

The answer is (strongly) negative.

Recall that division algebras over $Q$ can be described in terms of local invariants: there is a natural embedding

$$
\left.0 \rightarrow \operatorname{Br}(\mathbb{Q}) \xrightarrow{\theta} \bigoplus \operatorname{Br}\left(\mathbf{Q}_{p}\right) \quad \text { (including } p=\infty\right)
$$

(Artin-Hasse-Brauer-Noether Theorem (ABHN)).

For $p \neq \infty$, there is an isomorphism

$$
\operatorname{inv}_{p}: \operatorname{Br}\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}
$$

The answer is (strongly) negative.

Recall that division algebras over $Q$ can be described in terms of local invariants: there is a natural embedding

$$
0 \rightarrow \operatorname{Br}(\mathbf{Q}) \xrightarrow{\theta} \bigoplus \operatorname{Br}\left(\mathbf{Q}_{p}\right) \quad \text { (including } p=\infty \text { ) }
$$

(Artin-Hasse-Brauer-Noether Theorem (ABHN)).

For $p \neq \infty$, there is an isomorphism

$$
\operatorname{inv}_{p}: \operatorname{Br}\left(\mathbb{Q}_{p}\right) \longrightarrow \mathbb{Q} / \mathbb{Z}
$$

For $p=\infty$, there is an isomorphism

$$
\operatorname{inv}_{\infty}: \operatorname{Br}(\mathbb{R}) \longrightarrow \frac{1}{2} \mathbb{Z} / \mathbb{Z}
$$

$$
\operatorname{Im} \theta=\left\{\left(i_{p}\right) \in \bigoplus_{p} \mathbb{Q} / \mathbb{Z} \left\lvert\, i_{\infty} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}\right. \text { and } \sum_{p} i_{p}=0 \text { in } \mathbb{Q} / \mathbb{Z}\right\} .
$$

$$
\operatorname{Im} \theta=\left\{\left(i_{p}\right) \in \bigoplus_{p} \mathbb{Q} / \mathbb{Z} \left\lvert\, i_{\infty} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}\right. \text { and } \sum_{p} i_{p}=0 \text { in } \mathbb{Q} / \mathbb{Z}\right\}
$$

Note: if $A$ is a central simple $Q$-algebra of degree $n$ then

$$
\operatorname{inv}_{p}([A]):=\operatorname{inv}_{p}\left(\left[A \otimes_{\mathbb{Q}} \mathbb{Q}_{p}\right]\right)=\frac{a_{p}}{n}, \quad a_{p} \in \mathbb{Z}
$$

$$
\operatorname{Im} \theta=\left\{\left(i_{p}\right) \in \bigoplus_{p} \mathbb{Q} / \mathbb{Z} \left\lvert\, i_{\infty} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}\right. \text { and } \sum_{p} i_{p}=0 \text { in } \mathbb{Q} / \mathbb{Z}\right\}
$$

Note: if $A$ is a central simple $\mathbb{Q}$-algebra of degree $n$ then

$$
\operatorname{inv}_{p}([A]):=\operatorname{inv}_{p}\left(\left[A \otimes_{\mathbb{Q}} \mathbb{Q}_{p}\right]\right)=\frac{a_{p}}{n}, \quad a_{p} \in \mathbb{Z}
$$

Example (Cubic algebras with same maximal subfields)

$$
\operatorname{Im} \theta=\left\{\left(i_{p}\right) \in \bigoplus_{p} \mathbb{Q} / \mathbb{Z} \left\lvert\, i_{\infty} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}\right. \text { and } \sum_{p} i_{p}=0 \text { in } \mathbb{Q} / \mathbb{Z}\right\}
$$

Note: if $A$ is a central simple $\mathbb{Q}$-algebra of degree $n$ then

$$
\operatorname{inv}_{p}([A]):=\operatorname{inv}_{p}\left(\left[A \otimes_{\mathbb{Q}} \mathbb{Q}_{p}\right]\right)=\frac{a_{p}}{n}, \quad a_{p} \in \mathbb{Z}
$$

Example (Cubic algebras with same maximal subfields)

Fix $r \geqslant 3$ and pick $r$ distinct primes $p_{1}, \ldots, p_{r}$.

$$
\operatorname{Im} \theta=\left\{\left(i_{p}\right) \in \bigoplus_{p} \mathbb{Q} / \mathbb{Z} \left\lvert\, i_{\infty} \in \frac{1}{2} \mathbb{Z} / \mathbb{Z}\right. \text { and } \sum_{p} i_{p}=0 \text { in } \mathbb{Q} / \mathbb{Z}\right\}
$$

Note: if $A$ is a central simple $\mathbb{Q}$-algebra of degree $n$ then

$$
\operatorname{inv}_{p}([A]):=\operatorname{inv}_{p}\left(\left[A \otimes_{\mathbb{Q}} \mathbb{Q}_{p}\right]\right)=\frac{a_{p}}{n}, \quad a_{p} \in \mathbb{Z}
$$

Example (Cubic algebras with same maximal subfields)

Fix $r \geqslant 3$ and pick $r$ distinct primes $p_{1}, \ldots, p_{r}$.
Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right)$ with $\varepsilon_{i}= \pm 1$ and $\sum_{i=1}^{r} \varepsilon_{i} \equiv 0(\bmod 3)$.

It follows from (AHBN) that there exists a cubic division algebra $D(\varepsilon)$ with local invariants

It follows from (AHBN) that there exists a cubic division algebra $D(\varepsilon)$ with local invariants

$$
\operatorname{inv}_{p} D(\varepsilon)= \begin{cases}\frac{\varepsilon_{i}}{3}, & p=p_{i} \text { for } i=1, \ldots, r \\ 0, & \left.p \notin\left\{p_{1}, \ldots, p_{r}\right\} \text { (including } p=\infty\right)\end{cases}
$$

It follows from (AHBN) that there exists a cubic division algebra $D(\varepsilon)$ with local invariants

$$
\operatorname{inv}_{p} D(\varepsilon)= \begin{cases}\frac{\varepsilon_{i}}{3}, & p=p_{i} \text { for } i=1, \ldots, r \\ 0, & \left.p \notin\left\{p_{1}, \ldots, p_{r}\right\} \text { (including } p=\infty\right)\end{cases}
$$

One shows that
(1) For any $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ as above, $D\left(\varepsilon^{\prime}\right)$ and $D\left(\varepsilon^{\prime \prime}\right)$ have same finite-dimensional snlitting fields,

It follows from (AHBN) that there exists a cubic division algebra $D(\varepsilon)$ with local invariants

$$
\operatorname{inv}_{p} D(\varepsilon)= \begin{cases}\frac{\varepsilon_{i}}{3}, & p=p_{i} \text { for } i=1, \ldots, r \\ 0, & \left.p \notin\left\{p_{1}, \ldots, p_{r}\right\} \text { (including } p=\infty\right)\end{cases}
$$

One shows that
(1) For any $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ as above, $D\left(\varepsilon^{\prime}\right)$ and $D\left(\varepsilon^{\prime \prime}\right)$ have same finite-dimensional splitting fields,

It follows from (AHBN) that there exists a cubic division algebra $D(\varepsilon)$ with local invariants

$$
\operatorname{inv}_{p} D(\varepsilon)= \begin{cases}\frac{\varepsilon_{i}}{3}, & p=p_{i} \text { for } i=1, \ldots, r \\ 0, & \left.p \notin\left\{p_{1}, \ldots, p_{r}\right\} \text { (including } p=\infty\right)\end{cases}
$$

One shows that
(1) For any $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ as above, $D\left(\varepsilon^{\prime}\right)$ and $D\left(\varepsilon^{\prime \prime}\right)$ have same finite-dimensional splitting fields, hence same maximal subfields;

It follows from (AHBN) that there exists a cubic division algebra $D(\varepsilon)$ with local invariants

$$
\operatorname{inv}_{p} D(\varepsilon)= \begin{cases}\frac{\varepsilon_{i}}{3}, & p=p_{i} \text { for } i=1, \ldots, r \\ 0, & \left.p \notin\left\{p_{1}, \ldots, p_{r}\right\} \text { (including } p=\infty\right)\end{cases}
$$

One shows that
(1) For any $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ as above, $D\left(\varepsilon^{\prime}\right)$ and $D\left(\varepsilon^{\prime \prime}\right)$ have same finite-dimensional splitting fields, hence same maximal subfields;
(2) For $\varepsilon^{\prime} \neq \varepsilon^{\prime \prime}$, algebras $D\left(\varepsilon^{\prime}\right)$ and $D\left(\varepsilon^{\prime \prime}\right)$ are nonisomorphic.

## Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of

Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of pairwise nonisomorphic cubic division algebras over $Q$

Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of pairwise nonisomorphic cubic division algebras over $Q$ having same finite-dimensional splitting fields,

Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of pairwise nonisomorphic cubic division algebras over $Q$ having same finite-dimensional splitting fields, hence same maximal subfields.

Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of pairwise nonisomorphic cubic division algebras over $Q$ having same finite-dimensional splitting fields, hence same maximal subfields.

But for any such $D$, subgroup $\langle[D]\rangle \subset \operatorname{Br}(\mathbb{Q})$ has only two generators.

Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of pairwise nonisomorphic cubic division algebras over $Q$ having same finite-dimensional splitting fields, hence same maximal subfields.

But for any such $D$, subgroup $\langle[D]\rangle \subset \operatorname{Br}(\mathbb{Q})$ has only two generators.

So, there are (many) such $D^{\prime}$ and $D^{\prime \prime}$ with $\left\langle\left[D^{\prime}\right]\right\rangle \neq\left\langle\left[D^{\prime \prime}\right]\right\rangle$ that have same finite-dimensional splitting fields /maximal subfields.

Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of pairwise nonisomorphic cubic division algebras over $Q$ having same finite-dimensional splitting fields, hence same maximal subfields.

But for any such $D$, subgroup $\langle[D]\rangle \subset \operatorname{Br}(\mathbb{Q})$ has only two generators.

So, there are (many) such $D^{\prime}$ and $D^{\prime \prime}$ with $\left\langle\left[D^{\prime}\right]\right\rangle \neq\left\langle\left[D^{\prime \prime}\right]\right\rangle$ that have same finite-dimensional splitting fields /maximal subfields.

Thus, assertion of Amitsur's Theorem cannot be proven for two division algebra sharing only finite-dimensional splitting fields.

Taking $r$ sufficiently big, we can construct arbitrarily large (but finite) families of pairwise nonisomorphic cubic division algebras over $Q$ having same finite-dimensional splitting fields, hence same maximal subfields.

But for any such $D$, subgroup $\langle[D]\rangle \subset \operatorname{Br}(\mathbb{Q})$ has only two generators.

So, there are (many) such $D^{\prime}$ and $D^{\prime \prime}$ with $\left\langle\left[D^{\prime}\right]\right\rangle \neq\left\langle\left[D^{\prime \prime}\right]\right\rangle$ that have same finite-dimensional splitting fields /maximal subfields.

Thus, assertion of Amitsur's Theorem cannot be proven for two division algebra sharing only finite-dimensional splitting fields. So, Amitsur found the right way of proving his theorem by using infinite-dimensional extensions.

What can one prove for two such division algebras?

## What can one prove for two such division algebras?

But this is a reformulation of our original question:

## What can one prove for two such division algebras?

But this is a reformulation of our original question:
(*) Let $D_{1}$ and $D_{2}$ be finite-dimensional central division algebras over a field $K$. How are $D_{1}$ and $D_{2}$ related if they have same maximal subfields?

## Geometry - Riemann surfaces

## Geometry - Riemann surfaces

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.


## Geometry - Riemann surfaces

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

## Geometry - Riemann surfaces

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

## Geometry - Riemann surfaces

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Some properties of $M$ can be understood in terms of the associated quaternion algebra $A_{\Gamma}$.


## Geometry - Riemann surfaces

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Some properties of $M$ can be understood in terms of the associated quaternion algebra $A_{\Gamma}$.

Let

- $\pi: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \operatorname{PSL}_{2}(\mathbb{R})$;


## Geometry - Riemann surfaces

- Let $\mathbb{H}=\{x+i y \mid y>0\}$.
"Most" Riemann surfaces are of the form:

$$
M=\mathbb{H} / \Gamma
$$

where $\Gamma \subset \operatorname{PSL}_{2}(\mathbb{R})$ is a discrete torsion free subgroup.

- Some properties of $M$ can be understood in terms of the associated quaternion algebra $A_{\Gamma}$.

Let

- $\pi: \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \operatorname{PSL}_{2}(\mathbb{R})$;
- $\tilde{\Gamma}=\pi^{-1}(\Gamma) \subset \mathrm{M}_{2}(\mathbb{R})$.


## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra

## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \widetilde{\Gamma}^{(2)}\right)
$$

(trace field).

## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \widetilde{\Gamma}^{(2)}\right)
$$

## (trace field).

- If $\Gamma$ is an arithmetic Fuchsian group, then


## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \widetilde{\Gamma}^{(2)}\right)
$$

## (trace field).

- If $\Gamma$ is an arithmetic Fuchsian group, then
(1) $K_{\Gamma}$ is a number field,


## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \widetilde{\Gamma}^{(2)}\right)
$$

## (trace field).

- If $\Gamma$ is an arithmetic Fuchsian group, then
(1) $K_{\Gamma}$ is a number field, and


## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \widetilde{\Gamma}^{(2)}\right)
$$

## (trace field).

- If $\Gamma$ is an arithmetic Fuchsian group, then
(1) $K_{\Gamma}$ is a number field, and
(2) $A_{\Gamma}$ is the quaternion algebra involved in the description of $\Gamma$.


## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \widetilde{\Gamma}^{(2)}\right)
$$

## (trace field).

- If $\Gamma$ is an arithmetic Fuchsian group, then
(1) $K_{\Gamma}$ is a number field, and
(2) $A_{\Gamma}$ is the quaternion algebra involved in the description of $\Gamma$.

Recall: $A_{\Gamma}$ determines commensurability class of $\Gamma$.

## Set

$$
A_{\Gamma}=\mathbb{Q}\left[\widetilde{\Gamma}^{(2)}\right], \quad \widetilde{\Gamma}^{(2)} \subset \widetilde{\Gamma} \text { subgroups generated by squares. }
$$

One shows: $A_{\Gamma}$ is a quaternion algebra with center

$$
K_{\Gamma}=\mathbb{Q}\left(\operatorname{tr} \gamma \mid \gamma \in \widetilde{\Gamma}^{(2)}\right)
$$

## (trace field).

- If $\Gamma$ is an arithmetic Fuchsian group, then
(1) $K_{\Gamma}$ is a number field, and
(2) $A_{\Gamma}$ is the quaternion algebra involved in the description of $\Gamma$.

Recall: $A_{\Gamma}$ determines commensurability class of $\Gamma$.

That is why we want to know $A_{\Gamma}$ in this case!

- For a non-arithmetic Fuchsian group $\Gamma$ :
- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
(2) $A_{\Gamma}$ does not determine $\Gamma$ up to commensurability.
- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
(2) $A_{\Gamma}$ does not determine $\Gamma$ up to commensurability.

Nevertheless, $A_{\Gamma}$ remains an important invariant of the commensurability class of $\Gamma$.

- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
(2) $A_{\Gamma}$ does not determine $\Gamma$ up to commensurability.

Nevertheless, $A_{\Gamma}$ remains an important invariant of the commensurability class of $\Gamma$.

So, when one cannot say much about $\Gamma$

- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
(2) $A_{\Gamma}$ does not determine $\Gamma$ up to commensurability.

Nevertheless, $A_{\Gamma}$ remains an important invariant of the commensurability class of $\Gamma$.

So, when one cannot say much about $\Gamma$ (which is typically the case for non-arithmetic $\Gamma$ ),

- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
(2) $A_{\Gamma}$ does not determine $\Gamma$ up to commensurability.

Nevertheless, $A_{\Gamma}$ remains an important invariant of the commensurability class of $\Gamma$.

So, when one cannot say much about $\Gamma$ (which is typically the case for non-arithmetic $\Gamma$ ), one would like to know at least $A_{\Gamma}$.

- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
(2) $A_{\Gamma}$ does not determine $\Gamma$ up to commensurability.

Nevertheless, $A_{\Gamma}$ remains an important invariant of the commensurability class of $\Gamma$.

So, when one cannot say much about $\Gamma$ (which is typically the case for non-arithmetic $\Gamma$ ), one would like to know at least $A_{\Gamma}$.

Bottom line: one would like to know $A_{\Gamma}$ in all cases

- For a non-arithmetic Fuchsian group $\Gamma$ :
(1) $K_{\Gamma}$ is not necessarily a number field;
(In principle, can be any finitely generated subfield of $\mathbb{R}$ )
(2) $A_{\Gamma}$ does not determine $\Gamma$ up to commensurability.

Nevertheless, $A_{\Gamma}$ remains an important invariant of the commensurability class of $\Gamma$.

So, when one cannot say much about $\Gamma$ (which is typically the case for non-arithmetic $\Gamma$ ), one would like to know at least $A_{\Gamma}$.

Bottom line: one would like to know $A_{\Gamma}$ in all cases (although maybe for different reasons)

Here is how $A_{\Gamma}$ is linked with geometry of $M=\mathbb{H} / \Gamma$ :

Here is how $A_{\Gamma}$ is linked with geometry of $M=\mathbb{H} / \Gamma$ :
To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds

Here is how $A_{\Gamma}$ is linked with geometry of $M=\mathbb{H} / \Gamma$ :
To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds

- geometrically - a closed geodesic $c_{\gamma} \subset M$,

$$
\text { if } \gamma \sim \pm\left(\begin{array}{cc}
t_{\gamma} & 0 \\
0 & t_{\gamma}^{-1}
\end{array}\right)\left(t_{\gamma}>1\right) \text { then length } \ell\left(c_{\gamma}\right)=2 \log t_{\gamma}
$$

Here is how $A_{\Gamma}$ is linked with geometry of $M=\mathbb{H} / \Gamma$ :
To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds

- geometrically - a closed geodesic $c_{\gamma} \subset M$,
if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

Here is how $A_{\Gamma}$ is linked with geometry of $M=\mathbb{H} / \Gamma$ :
To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds

- geometrically - a closed geodesic $c_{\gamma} \subset M$, if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

For a Riemannian manifold $M$ :

Here is how $A_{\Gamma}$ is linked with geometry of $M=\mathbb{H} / \Gamma$ :
To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds

- geometrically - a closed geodesic $c_{\gamma} \subset M$, if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

For a Riemannian manifold $M$ :
$L(M)=$ set of lengths of closed geodesics in $M$

Here is how $A_{\Gamma}$ is linked with geometry of $M=\mathbb{H} / \Gamma$ :
To a (nontrivial) semi-simple $\gamma \in \tilde{\Gamma}^{(2)}$ there corresponds

- geometrically - a closed geodesic $c_{\gamma} \subset M$, if $\gamma \sim \pm\left(\begin{array}{cc}t_{\gamma} & 0 \\ 0 & t_{\gamma}^{-1}\end{array}\right)\left(t_{\gamma}>1\right)$ then length $\ell\left(c_{\gamma}\right)=2 \log t_{\gamma}$;
- algebraically: a maximal etale subalgebra $K_{\Gamma}[\gamma] \subset A_{\Gamma}$.

For a Riemannian manifold $M$ :
$L(M)=$ set of lengths of closed geodesics in $M$ ((weak) length spectrum of $M$ )

## Definition.

## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;


## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.


## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces.

## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces.
If $M_{1}$ and $M_{2}$ are length-commensurable then:

## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces.
If $M_{1}$ and $M_{2}$ are length-commensurable then:

- $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;


## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces.
If $M_{1}$ and $M_{2}$ are length-commensurable then:

- $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
- Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces.
If $M_{1}$ and $M_{2}$ are length-commensurable then:

- $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
- Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

elements $\gamma_{1}^{m}$ and $\gamma_{2}^{n}$ are conjugate

## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces.
If $M_{1}$ and $M_{2}$ are length-commensurable then:

- $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
- Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

elements $\gamma_{1}^{m}$ and $\gamma_{2}^{n}$ are conjugate $\Rightarrow$

## Definition.

Riemannian manifolds $M_{1}$ and $M_{2}$ are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Let $M_{i}=\mathbb{H} / \Gamma_{i} \quad(i=1,2)$ be Riemann surfaces.
If $M_{1}$ and $M_{2}$ are length-commensurable then:

- $K_{\Gamma_{1}}=K_{\Gamma_{2}}=: K$;
- Given closed geodesics $c_{\gamma_{i}} \subset M_{i}$ for $i=1,2$ such that

$$
\ell\left(c_{\gamma_{2}}\right) / \ell\left(c_{\gamma_{1}}\right)=m / n \quad(m, n \in \mathbb{Z})
$$

elements $\gamma_{1}^{m}$ and $\gamma_{2}^{n}$ are conjugate $\Rightarrow$
$K\left[\gamma_{1}\right] \subset A_{\Gamma_{1}}$ and $K\left[\gamma_{2}\right] \subset A_{\Gamma_{2}}$ are isomorphic.

So, if $M_{1}$ and $M_{2}$ are length-commensurable then

So, if $M_{1}$ and $M_{2}$ are length-commensurable then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$
have same tale subalgebras that intersect $\widetilde{\Gamma}_{1}^{(2)}$ and $\widetilde{\Gamma}_{2}^{(2)}$.

So, if $M_{1}$ and $M_{2}$ are length-commensurable then

$$
A_{\Gamma_{1}} \text { and } A_{\Gamma_{2}}
$$

have same tale subalgebras that intersect $\widetilde{\Gamma}_{1}^{(2)}$ and $\widetilde{\Gamma}_{2}^{(2)}$.
(maybe not all subalgebras but let us ignore this for now ...)

So, if $M_{1}$ and $M_{2}$ are length-commensurable then

$$
A_{\Gamma_{1}} \text { and } A_{\Gamma_{2}}
$$

have same tale subalgebras that intersect $\widetilde{\Gamma}_{1}^{(2)}$ and $\widetilde{\Gamma}_{2}^{(2)}$.
(maybe not all subalgebras but let us ignore this for now ...)

Here we can see

So, if $M_{1}$ and $M_{2}$ are length-commensurable then

$$
A_{\Gamma_{1}} \text { and } A_{\Gamma_{2}}
$$

have same etale subalgebras that intersect $\widetilde{\Gamma}_{1}^{(2)}$ and $\widetilde{\Gamma}_{2}^{(2)}$.
(maybe not all subalgebras but let us ignore this for now ...)

Here we can see

- how (quaternion) algebras sharing "lots" of etale subalgebras arise in "practice";

So, if $M_{1}$ and $M_{2}$ are length-commensurable then

$$
A_{\Gamma_{1}} \text { and } A_{\Gamma_{2}}
$$

have same etale subalgebras that intersect $\widetilde{\Gamma}_{1}^{(2)}$ and $\widetilde{\Gamma}_{2}^{(2)}$.
(maybe not all subalgebras but let us ignore this for now ...)

Here we can see

- how (quaternion) algebras sharing "lots" of etale subalgebras arise in "practice";
- how results on Question $(*)$ can be applied to Riemann surfaces.


## Using (AHBN) one proves

## Using (AHBN) one proves

## Fact.

## Using (AHBN) one proves

## Fact.

Let $D_{1}$ and $D_{2}$ be central quaternion algebras over a number field K.

## Using (AHBN) one proves

## Fact.

Let $D_{1}$ and $D_{2}$ be central quaternion algebras over a number field K. If $D_{1}$ and $D_{2}$ have same maximal subfields

## Using (AHBN) one proves

## Fact.

Let $D_{1}$ and $D_{2}$ be central quaternion algebras over a number field K. If $D_{1}$ and $D_{2}$ have same maximal subfields then $D_{1} \simeq D_{2}$.

## Using (AHBN) one proves

## Fact.

Let $D_{1}$ and $D_{2}$ be central quaternion algebras over a number field K. If $D_{1}$ and $D_{2}$ have same maximal subfields then $D_{1} \simeq D_{2}$.
(Compare with above construction of families of pairwise nonisomorphic cubic algebras with same maximal subfields!)

Using (AHBN) one proves

## Fact.

Let $D_{1}$ and $D_{2}$ be central quaternion algebras over a number field K. If $D_{1}$ and $D_{2}$ have same maximal subfields then $D_{1} \simeq D_{2}$.
(Compare with above construction of families of pairwise nonisomorphic cubic algebras with same maximal subfields!)

Let

$$
M_{1}=\mathbb{H} / \Gamma_{1} \quad \text { and } M_{2}=\mathbb{H} / \Gamma_{2}
$$

be arithmetically defined Riemann surfaces,

Using (AHBN) one proves

## Fact.

Let $D_{1}$ and $D_{2}$ be central quaternion algebras over a number field K. If $D_{1}$ and $D_{2}$ have same maximal subfields then $D_{1} \simeq D_{2}$.
(Compare with above construction of families of pairwise nonisomorphic cubic algebras with same maximal subfields!)

Let

$$
M_{1}=\mathbb{H} / \Gamma_{1} \quad \text { and } \quad M_{2}=\mathbb{H} / \Gamma_{2}
$$

be arithmetically defined Riemann surfaces, i. e. $\Gamma_{1}$ and $\Gamma_{2}$ are arithmetic Fuchsian groups.

Using (AHBN) one proves

## Fact.

Let $D_{1}$ and $D_{2}$ be central quaternion algebras over a number field K. If $D_{1}$ and $D_{2}$ have same maximal subfields then $D_{1} \simeq D_{2}$.
(Compare with above construction of families of pairwise nonisomorphic cubic algebras with same maximal subfields!)

Let

$$
M_{1}=\mathbb{H} / \Gamma_{1} \quad \text { and } \quad M_{2}=\mathbb{H} / \Gamma_{2}
$$

be arithmetically defined Riemann surfaces, i. e. $\Gamma_{1}$ and $\Gamma_{2}$ are arithmetic Fuchsian groups.

Assume that $M_{1}$ and $M_{2}$ are length-commensurable.

Then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ are quaternion algebras over number field

$$
K:=K_{\Gamma_{1}}=K_{\Gamma_{2}}
$$

Then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ are quaternion algebras over number field

$$
K:=K_{\Gamma_{1}}=K_{\Gamma_{2}}
$$

sharing subfields that intersect certain arithmetic subgroups.

Then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ are quaternion algebras over number field

$$
K:=K_{\Gamma_{1}}=K_{\Gamma_{2}}
$$

sharing subfields that intersect certain arithmetic subgroups.

Using a variation of above fact, one concludes that $A_{\Gamma_{1}} \simeq A_{\Gamma_{2}}$.

Then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ are quaternion algebras over number field

$$
K:=K_{\Gamma_{1}}=K_{\Gamma_{2}}
$$

sharing subfields that intersect certain arithmetic subgroups.

Using a variation of above fact, one concludes that $A_{\Gamma_{1}} \simeq A_{\Gamma_{2}}$.

It follows that $\Gamma_{1}$ and $\Gamma_{2}$ are commensurable

Then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ are quaternion algebras over number field

$$
K:=K_{\Gamma_{1}}=K_{\Gamma_{2}}
$$

sharing subfields that intersect certain arithmetic subgroups.

Using a variation of above fact, one concludes that $A_{\Gamma_{1}} \simeq A_{\Gamma_{2}}$.

It follows that $\Gamma_{1}$ and $\Gamma_{2}$ are commensurable $\Rightarrow M_{1}$ and $M_{2}$ are commensurable,

Then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ are quaternion algebras over number field

$$
K:=K_{\Gamma_{1}}=K_{\Gamma_{2}}
$$

sharing subfields that intersect certain arithmetic subgroups.

Using a variation of above fact, one concludes that $A_{\Gamma_{1}} \simeq A_{\Gamma_{2}}$.

It follows that $\Gamma_{1}$ and $\Gamma_{2}$ are commensurable $\Rightarrow M_{1}$ and $M_{2}$ are commensurable, i.e. have a common finite-sheeted cover.

Then $A_{\Gamma_{1}}$ and $A_{\Gamma_{2}}$ are quaternion algebras over number field

$$
K:=K_{\Gamma_{1}}=K_{\Gamma_{2}}
$$

sharing subfield that intersect certain arithmetic subgroups.
Using a variation of above fact, one concludes that $A_{\Gamma_{1}} \simeq A_{\Gamma_{2}}$.

It follows that $\Gamma_{1}$ and $\Gamma_{2}$ are commensurable $\Rightarrow M_{1}$ and $M_{2}$ are commensurable, i.e. have a common finite-sheeted cover.

Theorem (A. Reid, 1992)
If two arithmetically defined Riemann surfaces are length-commensurable then they are commensurable.

In this talk we will see results on $(*)$ over arbitrary finitely generated field.

In this talk we will see results on (*) over arbitrary finitely generated field. They have applications to Riemann surfaces without any assumptions on arithmeticity.

In this talk we will see results on $(*)$ over arbitrary finitely generated field. They have applications to Riemann surfaces without any assumptions on arithmeticity.

## Theorem

Let $M_{i}=\mathbb{H} / \Gamma_{i}(i \in I)$ be a family of length-commensurable Riemann surfaces where $\Gamma_{i} \subset \mathrm{PSL}_{2}(\mathbb{R})$ is Zariski-dense. Then quaternion algebras $A_{\Gamma_{i}}(i \in I)$ split into finitely many isomorphism classes (over common center).

## (1) Division algebras with the same maximal subfields

(2) Genus of a division algebra

## (3) Genus of a simple algebraic group

## (4) "Killing" the genus

## Definition.

## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$.

## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen $(D)$ reduce to a single element?

## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen $(D)$ reduce to a single element?
(This means that $D$ is uniquely determined by maximal subfields.)

## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen $(D)$ reduce to a single element?
(This means that $D$ is uniquely determined by maximal subfields.)
Question 2. When is $\operatorname{gen}(D)$ finite?

## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does gen $(D)$ reduce to a single element?
(This means that $D$ is uniquely determined by maximal subfields.)
Question 2. When is $\operatorname{gen}(D)$ finite?
Over number fields:

## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does $\operatorname{gen}(D)$ reduce to a single element?
(This means that $D$ is uniquely determined by maximal subfields.)
Question 2. When is $\operatorname{gen}(D)$ finite?
Over number fields:

- genus of any quaternion algebra reduces to one element; - genus of any division algebra is finite.


## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does $\operatorname{gen}(D)$ reduce to a single element?
(This means that $D$ is uniquely determined by maximal subfields.)
Question 2. When is $\operatorname{gen}(D)$ finite?
Over number fields:

- genus of any quaternion algebra reduces to one element;
- genus of any division algebra is finite.


## Definition.

Let $D$ be a finite-dimensional central division algebra over $K$. The genus of $D$ is $\operatorname{gen}(D)=\left\{\left[D^{\prime}\right] \in \operatorname{Br}(K) \mid D^{\prime}\right.$ has same maximal subfields as $\left.D\right\}$

Question 1. When does $\operatorname{gen}(D)$ reduce to a single element?
(This means that $D$ is uniquely determined by maximal subfields.)
Question 2. When is $\operatorname{gen}(D)$ finite?
Over number fields:

- genus of any quaternion algebra reduces to one element;
- genus of any division algebra is finite.

Both facts follow from (AHBN).

Let $D$ be a quaternion algebra over $\mathbb{Q}$.

Let $D$ be a quaternion algebra over $Q$. Then $\operatorname{inv}_{p}([D])$ can only be 0 or $1 / 2$.

Let $D$ be a quaternion algebra over $\mathbb{Q}$.
Then $\operatorname{inv}_{p}([D])$ can only be 0 or $1 / 2$.

So, by (AHBN), $D$ is uniquely determined by finite set $\boldsymbol{\operatorname { R a m }}(D):=\left\{p \mid \operatorname{inv}_{p}([D]) \neq 0\right\}$

Let $D$ be a quaternion algebra over $\mathbb{Q}$.
Then $\operatorname{inv}_{p}([D])$ can only be 0 or $1 / 2$.

So, by (AHBN), $D$ is uniquely determined by finite set $\boldsymbol{\operatorname { R a m }}(D):=\left\{p \mid \operatorname{inv}_{p}([D]) \neq 0\right\}$ (ramified primes).

Let $D$ be a quaternion algebra over $\mathbb{Q}$.
Then $\operatorname{inv}_{p}([D])$ can only be 0 or $1 / 2$.

So, by (AHBN), $D$ is uniquely determined by finite set

$$
\boldsymbol{\operatorname { R a m }}(D):=\left\{p \mid \operatorname{inv}_{p}([D]) \neq 0\right\} \text { (ramified primes). }
$$

But maximal subfields of $D$ determine $\boldsymbol{\operatorname { R a m }}(D)$ !

Let $D$ be a quaternion algebra over $\mathbb{Q}$.
Then $\operatorname{inv}_{p}([D])$ can only be 0 or $1 / 2$.

So, by (AHBN), $D$ is uniquely determined by finite set

$$
\boldsymbol{\operatorname { R a m }}(D):=\left\{p \mid \operatorname{inv}_{p}([D]) \neq 0\right\} \text { (ramified primes). }
$$

But maximal subfields of $D$ determine $\boldsymbol{\operatorname { R a m }}(D)$ !
Namely, if quaternion algebras $D_{1}$ and $D_{2}$ are such that $\boldsymbol{\operatorname { R a m }}\left(D_{1}\right) \neq \boldsymbol{\operatorname { R a m }}\left(D_{2}\right)$,

Let $D$ be a quaternion algebra over $\mathbb{Q}$.
Then $\operatorname{inv}_{p}([D])$ can only be 0 or $1 / 2$.

So, by (AHBN), $D$ is uniquely determined by finite set

$$
\boldsymbol{\operatorname { R a m }}(D):=\left\{p \mid \operatorname{inv}_{p}([D]) \neq 0\right\} \text { (ramified primes). }
$$

But maximal subfields of $D$ determine $\boldsymbol{\operatorname { R a m }}(D)$ !
Namely, if quaternion algebras $D_{1}$ and $D_{2}$ are such that $\boldsymbol{\operatorname { R a m }}\left(D_{1}\right) \neq \boldsymbol{\operatorname { R a m }}\left(D_{2}\right)$,
then using weak approximation one finds a quadratic extension $L / Q$ which embeds into one algebra but not into the other.

## Example.

## Example.

Let $\quad D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$.

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbf{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbf{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$
Extension $P=Q(\sqrt{11})$ embeds into $D_{1}$ but not into $D_{2}$.

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$
Extension $P=Q(\sqrt{11})$ embeds into $D_{1}$ but not into $D_{2}$.

This proves that $\operatorname{gen}(D)=\{[D]\}$ for $D$ a quaternion algebra.

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$
Extension $P=Q(\sqrt{11})$ embeds into $D_{1}$ but not into $D_{2}$.

This proves that $\operatorname{gen}(D)=\{[D]\}$ for $D$ a quaternion algebra.
In fact, given a division algebra $D$ of any degree $n$ over a number field $K$,

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$
Extension $P=Q(\sqrt{11})$ embeds into $D_{1}$ but not into $D_{2}$.

This proves that $\operatorname{gen}(D)=\{[D]\}$ for $D$ a quaternion algebra.
In fact, given a division algebra $D$ of any degree $n$ over a number field $K$, for $D^{\prime} \in \operatorname{gen}(D)$ we have

$$
\boldsymbol{\operatorname { R a m }}\left(D^{\prime}\right)=\boldsymbol{\operatorname { R a m }}(D)
$$

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$
Extension $P=Q(\sqrt{11})$ embeds into $D_{1}$ but not into $D_{2}$.

This proves that $\operatorname{gen}(D)=\{[D]\}$ for $D$ a quaternion algebra.
In fact, given a division algebra $D$ of any degree $n$ over a number field $K$, for $D^{\prime} \in \operatorname{gen}(D)$ we have

$$
\boldsymbol{\operatorname { R a m }}\left(D^{\prime}\right)=\boldsymbol{\operatorname { R a m }}(D)
$$

But for each $p \in \operatorname{Ram}(D)$, there are only finitely many possibilities for $\operatorname{inv}_{p}\left(\left[D^{\prime}\right]\right)$.

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$
Extension $P=Q(\sqrt{11})$ embeds into $D_{1}$ but not into $D_{2}$.

This proves that $\operatorname{gen}(D)=\{[D]\}$ for $D$ a quaternion algebra.
In fact, given a division algebra $D$ of any degree $n$ over a number field $K$, for $D^{\prime} \in \operatorname{gen}(D)$ we have

$$
\boldsymbol{\operatorname { R a m }}\left(D^{\prime}\right)=\boldsymbol{\operatorname { R a m }}(D)
$$

But for each $p \in \operatorname{Ram}(D)$, there are only finitely many possibilities for $\operatorname{inv}_{p}\left(\left[D^{\prime}\right]\right)$. So, $\theta(\operatorname{gen}(D))$ is finite,

## Example.

Let $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$. We have
$\boldsymbol{\operatorname { R a m }}\left(D_{1}\right)=\{2,3\}$ and $\boldsymbol{\operatorname { R a m }}\left(D_{2}\right)=\{2,7\}$
Extension $P=Q(\sqrt{11})$ embeds into $D_{1}$ but not into $D_{2}$.

This proves that $\operatorname{gen}(D)=\{[D]\}$ for $D$ a quaternion algebra.
In fact, given a division algebra $D$ of any degree $n$ over a number field $K$, for $D^{\prime} \in \operatorname{gen}(D)$ we have

$$
\boldsymbol{\operatorname { R a m }}\left(D^{\prime}\right)=\boldsymbol{\operatorname { R a m }}(D)
$$

But for each $p \in \boldsymbol{\operatorname { R a m }}(D)$, there are only finitely many possibilities for $\operatorname{inv}_{p}\left(\left[D^{\prime}\right]\right)$. So, $\theta(\operatorname{gen}(D))$ is finite, hence $\operatorname{gen}(D)$ is finite since $\theta$ is injective by (AHBN).

## Theorem 1 (Stability Theorem)

Let char $k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for any quaternion algebra $D$ over $k$, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra $D^{\prime}$ over $k(x)$.

# Theorem 1 (Stability Theorem) <br> Let char $k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for any quaternion algebra $D$ over $k$, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra $D^{\prime}$ over $k(x)$. 

- Same statement is true for division algebras of exponent 2.


## Theorem 1 (Stability Theorem)

Let char $k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for any quaternion algebra $D$ over $k$, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra $D^{\prime}$ over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\operatorname{gen}(D)|>1$ if $D$ is not of exponent 2 .


## Theorem 1 (Stability Theorem)

Let char $k \neq 2$. If $|\operatorname{gen}(D)|=1$ for any quaternion algebra $D$ over $k$, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra $D^{\prime}$ over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if $D$ is not of exponent 2 .
- gen $(D)$ can be infinite.


## Theorem 1 (Stability Theorem)

Let char $k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for any quaternion algebra $D$ over $k$, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra $D^{\prime}$ over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if $D$ is not of exponent 2 .
- $\operatorname{gen}(D)$ can be infinite.

Generalizing a construction used by Schacher, Garibaldi, Saltman, ...

## Theorem 1 (Stability Theorem)

Let $\operatorname{char} k \neq 2$. If $|\boldsymbol{\operatorname { g e n }}(D)|=1$ for any quaternion algebra $D$ over $k$, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra $D^{\prime}$ over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if $D$ is not of exponent 2 .
- $\operatorname{gen}(D)$ can be infinite.

Generalizing a construction used by Schacher, Garibaldi, Saltman, ... Meyer constructed quaternion algebras over "large" fields with infinite genus,

## Theorem 1 (Stability Theorem)

Let char $k \neq 2$. If $|\operatorname{gen}(D)|=1$ for any quaternion algebra $D$ over $k$, then $\left|\operatorname{gen}\left(D^{\prime}\right)\right|=1$ for any quaternion algebra $D^{\prime}$ over $k(x)$.

- Same statement is true for division algebras of exponent 2.
- $|\boldsymbol{\operatorname { g e n }}(D)|>1$ if $D$ is not of exponent 2 .
- gen $(D)$ can be infinite.

Generalizing a construction used by Schacher, Garibaldi, Saltman, ... Meyer constructed quaternion algebras over "large" fields with infinite genus,

Tikhonov extended construction to algebras of prime degree.

## Construction

## Construction

- Start with nonisomorphic quaternion algebras $D_{1}$ and $D_{2}$ over $K($ char $K \neq 2)$ having a common maximal subfield.


## Construction

- Start with nonisomorphic quaternion algebras $D_{1}$ and $D_{2}$ over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$ )


## Construction

- Start with nonisomorphic quaternion algebras $D_{1}$ and $D_{2}$ over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$ )
- Want: find $\mathcal{K} / K$ so that $D_{1} \otimes_{K} \mathcal{K} \nsucceq D_{2} \otimes_{K} \mathcal{K}$,


## Construction

- Start with nonisomorphic quaternion algebras $D_{1}$ and $D_{2}$ over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$ )
- Want: find $\mathcal{K} / K$ so that $D_{1} \otimes_{K} \mathcal{K} \not 千 D_{2} \otimes_{K} \mathcal{K}$, and have same maximal subfields.


## Construction

- Start with nonisomorphic quaternion algebras $D_{1}$ and $D_{2}$ over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$ )
- Want: find $\mathcal{K} / K$ so that $D_{1} \otimes_{K} \mathcal{K} \not 千 D_{2} \otimes_{K} \mathcal{K}$, and have same maximal subfields.
- If $D_{1}$ and $D_{2}$ already have same maximal subfields, we are done $(\mathcal{K}=K)$.


## Construction

- Start with nonisomorphic quaternion algebras $D_{1}$ and $D_{2}$ over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$ )
- Want: find $\mathcal{K} / K$ so that $D_{1} \otimes_{K} \mathcal{K} \not 千 D_{2} \otimes_{K} \mathcal{K}$, and have same maximal subfields.
- If $D_{1}$ and $D_{2}$ already have same maximal subfields, we are done $(\mathcal{K}=K)$.

Otherwise, pick $K\left(\sqrt{d_{1}}\right) \hookrightarrow D_{1}$ such that $K\left(\sqrt{d_{1}}\right) \nrightarrow D_{2}$.

## Construction

- Start with nonisomorphic quaternion algebras $D_{1}$ and $D_{2}$ over $K($ char $K \neq 2)$ having a common maximal subfield.
(E.g., take $D_{1}=\left(\frac{-1,3}{\mathbb{Q}}\right)$ and $D_{2}=\left(\frac{-1,7}{\mathbb{Q}}\right)$ over $K=\mathbb{Q}$ )
- Want: find $\mathcal{K} / K$ so that $D_{1} \otimes_{K} \mathcal{K} \not 千 D_{2} \otimes_{K} \mathcal{K}$, and have same maximal subfields.
- If $D_{1}$ and $D_{2}$ already have same maximal subfields, we are done $(\mathcal{K}=K)$.

Otherwise, pick $K\left(\sqrt{d_{1}}\right) \hookrightarrow D_{1}$ such that $K\left(\sqrt{d_{1}}\right) \nrightarrow D_{2}$.
(E.g., $\mathbf{Q}(\sqrt{11}) \hookrightarrow D_{1}$ but $\mathbb{Q}(\sqrt{11}) \nLeftarrow D_{2}$.)

- Find $K_{1} / K$ such that

- Find $K_{1} / K$ such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$; ( 3 K $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.
- Find $K_{1} / K$ such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.
- Find $K_{1} / K$ such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.

For $K_{1}$ one can take the function field of a quadric.

- Find $K_{1} / K$ such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.

For $K_{1}$ one can take the function field of a quadric.

In our example, $K_{1}$ is function field of

$$
-x_{1}^{2}+7 x_{2}^{2}+7 x_{3}^{2}=11 x_{4}^{2}
$$

- Find $K_{1} / K$ such that
(1) $D_{1} \otimes_{K} K_{1} \not 千 D_{2} \otimes_{K} K_{1}$;
(2) $K_{1}\left(\sqrt{d_{1}}\right) \hookrightarrow D_{2} \otimes_{K} K_{1}$.

For $K_{1}$ one can take the function field of a quadric.

In our example, $K_{1}$ is function field of

$$
-x_{1}^{2}+7 x_{2}^{2}+7 x_{3}^{2}=11 x_{4}^{2}
$$

Then (2) is obvious, and (1) follows from the fact that

$$
x_{0}^{2}+x_{1}^{2}-21 x_{2}^{2}-21 x_{3}^{2}
$$

remains anisotropic over $K_{1}$.

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) ~ \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct $K_{2} / K_{1}$ similarly.
- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nLeftarrow$ $D_{2} \otimes_{K} K_{1}$ we construct $K_{2} / K_{1}$ similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nLeftarrow$ $D_{2} \otimes_{K} K_{1}$ we construct $K_{2} / K_{1}$ similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct $K_{2} / K_{1}$ similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- Then $\mathcal{K}$ is as required.
- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct $K_{2} / K_{1}$ similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- Then $\mathcal{K}$ is as required.

For infinite genus, one starts with $D_{p}=\left(\frac{-1, p}{\mathbb{Q}}\right), p \equiv 3(\bmod 4)$.

- If there exists $K_{1}\left(\sqrt{d_{2}}\right) \hookrightarrow D_{1} \otimes_{K} K_{1}$ and $K_{1}\left(\sqrt{d_{2}}\right) \nrightarrow$ $D_{2} \otimes_{K} K_{1}$ we construct $K_{2} / K_{1}$ similarly.

This generates a tower $K \subset K_{1} \subset K_{2} \subset \cdots$

Set $\mathcal{K}=\bigcup_{i=1}^{\infty} K_{i}$.

- Then $\mathcal{K}$ is as required.

For infinite genus, one starts with $D_{p}=\left(\frac{-1, p}{\mathbb{Q}}\right), p \equiv 3(\bmod 4)$.

Note that $\mathcal{K}$ is infinitely generated.

## Theorem 2.

Let $K$ be a finitely generated field. Then for any central division K-algebra $D$ the genus gen $(D)$ is finite.

## Theorem 2.

Let $K$ be a finitely generated field. Then for any central division K-algebra $D$ the genus gen $(D)$ is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Brauer group.


## Theorem 2.

Let $K$ be a finitely generated field. Then for any central division K-algebra $D$ the genus gen $(D)$ is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Brauer group.

In general case, definition of unramified algebra needs to be changed.

## Theorem 2.

Let $K$ be a finitely generated field. Then for any central division K-algebra $D$ the genus gen $(D)$ is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Brauer group.

In general case, definition of unramified algebra needs to be changed.

- A central simple algebra $D$ over $\mathbb{Q}$ is unramified at $p$ if

$$
\operatorname{inv}_{p}\left(\left[D \otimes_{\mathbf{Q}} \mathbb{Q}_{p}\right]\right)=0
$$

## Theorem 2.

Let $K$ be a finitely generated field. Then for any central division K-algebra $D$ the genus gen $(D)$ is finite.

- Proofs of both theorems use analysis of ramification and info about unramified Brauer group.

In general case, definition of unramified algebra needs to be changed.

- A central simple algebra $D$ over $\mathbb{Q}$ is unramified at $p$ if

$$
\operatorname{inv}_{p}\left(\left[D \otimes_{\mathbb{Q}} \mathbb{Q}_{p}\right]\right)=0
$$

i. e., $D \otimes_{\mathbb{Q}} Q_{p} \simeq M_{n}\left(Q_{p}\right)$.

- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$,
- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$, being unramified can be defined in several (essentially, equivalent) ways:
- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$, being unramified can be defined in several (essentially, equivalent) ways:
(1) using valuations;
(2) using residue maps;
(3) using Azumaya algebras.
- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$, being unramified can be defined in several (essentially, equivalent) ways:
(1) using valuations;
(2) using residue maps;
© using Azumaya algebras.
- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$, being unramified can be defined in several (essentially, equivalent) ways:
(1) using valuations;
(2) using residue maps;
(3) using Azumaya algebras.
- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$, being unramified can be defined in several (essentially, equivalent) ways:
(1) using valuations;
(2) using residue maps;
(3) using Azumaya algebras.


## Definition.

- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$, being unramified can be defined in several (essentially, equivalent) ways:
(1) using valuations;
(2) using residue maps;
(3) using Azumaya algebras.


## Definition.

A central simple algebra $K$-algebra $A$ is unramified at a discrete valuation $v$ of $K$

- For $D$ a central simple algebra over an arbitrary field $K$ with a discrete valuation $v$, being unramified can be defined in several (essentially, equivalent) ways:
(1) using valuations;
(2) using residue maps;
(3) using Azumaya algebras.


## Definition.

A central simple algebra $K$-algebra $A$ is unramified at a discrete valuation $v$ of $K$ if there exists an Azumaya algebra $\mathcal{A}$ over valuation ring $\mathcal{O}_{v} \subset K_{v}$ such that

$$
\mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v} \simeq A \otimes_{K} K_{v}
$$

If $D$ is a division K-algebra which is unramified at a discrete valuation $v$ of $K$

## Fact

If $D$ is a division K-algebra which is unramified at a discrete valuation $v$ of $K$ then every $D^{\prime} \in \operatorname{gen}(D)$ is also unramified at $v$.

## Fact

If $D$ is a division K-algebra which is unramified at a discrete valuation $v$ of $K$ then every $D^{\prime} \in \operatorname{gen}(D)$ is also unramified at $v$.

If degree $n$ of $D$ is prime to char $K^{(v)}$ (residue field), we can relate ramification data of $D$ and $D^{\prime}$ even when $D$ is ramified.

## Fact

If $D$ is a division K-algebra which is unramified at a discrete valuation $v$ of $K$ then every $D^{\prime} \in \operatorname{gen}(D)$ is also unramified at $v$.

If degree $n$ of $D$ is prime to char $K^{(v)}$ (residue field), we can relate ramification data of $D$ and $D^{\prime}$ even when $D$ is ramified.

Suppose $K$ is equipped with a set $V$ of discrete valuations.

## Fact

If $D$ is a division K-algebra which is unramified at a discrete valuation $v$ of $K$ then every $D^{\prime} \in \operatorname{gen}(D)$ is also unramified at $v$.

If degree $n$ of $D$ is prime to char $K^{(v)}$ (residue field), we can relate ramification data of $D$ and $D^{\prime}$ even when $D$ is ramified.

Suppose $K$ is equipped with a set $V$ of discrete valuations.

Instead of analyzing kernel of global-to-local map (as in (ABHN)),

## Fact

If $D$ is a division K-algebra which is unramified at a discrete valuation $v$ of $K$ then every $D^{\prime} \in \operatorname{gen}(D)$ is also unramified at $v$.

If degree $n$ of $D$ is prime to char $K^{(v)}$ (residue field), we can relate ramification data of $D$ and $D^{\prime}$ even when $D$ is ramified.

Suppose $K$ is equipped with a set $V$ of discrete valuations.

Instead of analyzing kernel of global-to-local map (as in $(\mathrm{ABHN})$ ), we consider unramified Brauer group w. r. t. $V$ :

## Fact

If $D$ is a division K-algebra which is unramified at a discrete valuation $v$ of $K$ then every $D^{\prime} \in \operatorname{gen}(D)$ is also unramified at $v$.

If degree $n$ of $D$ is prime to char $K^{(v)}$ (residue field), we can relate ramification data of $D$ and $D^{\prime}$ even when $D$ is ramified.

Suppose $K$ is equipped with a set $V$ of discrete valuations.

Instead of analyzing kernel of global-to-local map (as in (ABHN)), we consider unramified Brauer group w. r. t. $V$ :

$$
\operatorname{Br}(K)_{V}=\{x \in \operatorname{Br}(K) \mid x \text { is unramified at all } v \in V\} .
$$

Note that if $D$ of degree $n$ is unramified at all $v \in V$ then

Note that if $D$ of degree $n$ is unramified at all $v \in V$ then $\operatorname{gen}(D) \subset{ }_{n} \operatorname{Br}(K)_{V} \quad(n$-torsion subgroup $)$

Note that if $D$ of degree $n$ is unramified at all $v \in V$ then $\operatorname{gen}(D) \subset{ }_{n} \operatorname{Br}(K)_{V} \quad(n$-torsion subgroup $)$

## Theorem 3

Let $K$ be a finitely generated field, and $n \geqslant 2$ be an integer prime to char $K$.

Note that if $D$ of degree $n$ is unramified at all $v \in V$ then $\boldsymbol{\operatorname { g e n }}(D) \subset{ }_{n} \operatorname{Br}(K)_{V} \quad(n$-torsion subgroup)

## Theorem 3

Let $K$ be a finitely generated field, and $n \geqslant 2$ be an integer prime to char $K$. Then for any divisorial set of places $V$ of $K$, the groups ${ }_{n} \operatorname{Br}(K)_{V}$ is finite.

Note that if $D$ of degree $n$ is unramified at all $v \in V$ then $\operatorname{gen}(D) \subset{ }_{n} \operatorname{Br}(K)_{V} \quad(n$-torsion subgroup $)$

## Theorem 3

Let $K$ be a finitely generated field, and $n \geqslant 2$ be an integer prime to char $K$. Then for any divisorial set of places $V$ of $K$, the groups ${ }_{n} \operatorname{Br}(K)_{V}$ is finite.

This implies finiteness of $\operatorname{gen}(D)$ over a f.g. field $K$ of characteristic prime to degree $n$ of $D$.

Note that if $D$ of degree $n$ is unramified at all $v \in V$ then $\boldsymbol{\operatorname { g e n }}(D) \subset{ }_{n} \operatorname{Br}(K)_{V} \quad(n$-torsion subgroup)

## Theorem 3

Let $K$ be a finitely generated field, and $n \geqslant 2$ be an integer prime to char $K$. Then for any divisorial set of places $V$ of $K$, the groups ${ }_{n} \operatorname{Br}(K)_{V}$ is finite.

This implies finiteness of $\operatorname{gen}(D)$ over a f.g. field $K$ of characteristic prime to degree $n$ of $D$.

In fact, in this case one can give an estimate on size of $\operatorname{gen}(D)$ that depends on seize of ${ }_{n} \operatorname{Br}(K)_{V}$ for a fixed $V$ :

$$
|\boldsymbol{\operatorname { g e n }}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|
$$

$$
|\operatorname{gen}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|
$$

where $\varphi$ is Euler's function, $r$ is \# of $v \in V$ where $D$ ramifies.

$$
|\boldsymbol{\operatorname { g e n }}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|
$$

where $\varphi$ is Euler's function, $r$ is \# of $v \in V$ where $D$ ramifies.

In particular, we have $|\operatorname{gen}(D)| \leqslant{ }_{2} \operatorname{Br}(K)_{V}$ for all quaternion K-algebras $D$

## $|\boldsymbol{\operatorname { g e n }}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|$

where $\varphi$ is Euler's function, $r$ is \# of $v \in V$ where $D$ ramifies.

In particular, we have $|\operatorname{gen}(D)| \leqslant{ }_{2} \operatorname{Br}(K)_{V}$ for all quaternion K-algebras $D$ (in fact, for all algebras of exponent 2).

$$
|\boldsymbol{\operatorname { g e n }}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|
$$

where $\varphi$ is Euler's function, $r$ is \# of $v \in V$ where $D$ ramifies.

In particular, we have $|\operatorname{gen}(D)| \leqslant{ }_{2} \operatorname{Br}(K)_{V}$ for all quaternion K-algebras $D$ (in fact, for all algebras of exponent 2).

Note that Theorem 2 has no restrictions on characteristic!

$$
|\boldsymbol{\operatorname { g e n }}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|
$$

where $\varphi$ is Euler's function, $r$ is \# of $v \in V$ where $D$ ramifies.

In particular, we have $|\operatorname{gen}(D)| \leqslant{ }_{2} \operatorname{Br}(K)_{V}$ for all quaternion K-algebras $D$ (in fact, for all algebras of exponent 2).

Note that Theorem 2 has no restrictions on characteristic!

Recently we gave a variation of the above argument (Israel J. Math. 236 (2020)) that works in all characteristics

$$
|\boldsymbol{\operatorname { g e n }}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|
$$

where $\varphi$ is Euler's function, $r$ is \# of $v \in V$ where $D$ ramifies.

In particular, we have $|\operatorname{gen}(D)| \leqslant{ }_{2} \operatorname{Br}(K)_{V}$ for all quaternion K-algebras $D$ (in fact, for all algebras of exponent 2).

Note that Theorem 2 has no restrictions on characteristic!

Recently we gave a variation of the above argument (Israel J. Math. 236 (2020)) that works in all characteristics but does not give an estimate on size of gen $(D)$.

$$
|\boldsymbol{\operatorname { g e n }}(D)| \leqslant \varphi(n)^{r} \cdot\left|{ }_{n} \operatorname{Br}(K)_{V}\right|
$$

where $\varphi$ is Euler's function, $r$ is \# of $v \in V$ where $D$ ramifies.

In particular, we have $|\operatorname{gen}(D)| \leqslant{ }_{2} \operatorname{Br}(K)_{V}$ for all quaternion K-algebras $D$ (in fact, for all algebras of exponent 2).

Note that Theorem 2 has no restrictions on characteristic!

Recently we gave a variation of the above argument (Israel J. Math. 236 (2020)) that works in all characteristics but does not give an estimate on size of gen $(D)$.

It is based on finiteness of certain subgroups of ${ }_{2} \operatorname{Br}(K)_{V}$.

To prove Theorem 1 (Stability Theorem) over $K=k(x)$, one analyzes ramification w. r. t. set $V$ of geometric places of $K$

To prove Theorem 1 (Stability Theorem) over $K=k(x)$, one analyzes ramification w. r. t. set $V$ of geometric places of $K$ and uses Faddeev's Theorem which yields that

$$
{ }_{2} \operatorname{Br}(K)_{V}={ }_{2} \operatorname{Br}(k)
$$

if char $k \neq 2$.

To prove Theorem 1 (Stability Theorem) over $K=k(x)$, one analyzes ramification w. r. t. set $V$ of geometric places of $K$ and uses Faddeev's Theorem which yields that

$$
{ }_{2} \operatorname{Br}(K)_{V}={ }_{2} \operatorname{Br}(k)
$$

if char $k \neq 2$.

Open question. Does there exist a quaternion division algebra $D$ over $K=k(C)$, where $C$ is a smooth geometrically integral curve over a number field $k$, such that

$$
|\operatorname{gen}(D)|>1 ?
$$

To prove Theorem 1 (Stability Theorem) over $K=k(x)$, one analyzes ramification w. r. t. set $V$ of geometric places of $K$ and uses Faddeev's Theorem which yields that

$$
{ }_{2} \operatorname{Br}(K)_{V}={ }_{2} \operatorname{Br}(k)
$$

if char $k \neq 2$.

Open question. Does there exist a quaternion division algebra $D$ over $K=k(C)$, where $C$ is a smooth geometrically integral curve over a number field $k$, such that

$$
|\operatorname{gen}(D)|>1 ?
$$

- The answer is not known for any finitely generated $K$.

To prove Theorem 1 (Stability Theorem) over $K=k(x)$, one analyzes ramification w. r. t. set $V$ of geometric places of $K$ and uses Faddeev's Theorem which yields that

$$
{ }_{2} \operatorname{Br}(K)_{V}={ }_{2} \operatorname{Br}(k)
$$

if char $k \neq 2$.

Open question. Does there exist a quaternion division algebra $D$ over $K=k(C)$, where $C$ is a smooth geometrically integral curve over a number field $k$, such that

$$
|\operatorname{gen}(D)|>1 ?
$$

- The answer is not known for any finitely generated $K$.
- One can construct examples where ${ }_{2} \operatorname{Br}(K)_{V}$ is "large."


## (1) Division algebras with the same maximal subfields

## (2) Genus of a division algebra

(3) Genus of a simple algebraic group

## (4) "Killing" the genus

- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- Let $G_{1}$ and $G_{2}$ be semi-simple groups over a field $K$.
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- Let $G_{1}$ and $G_{2}$ be semi-simple groups over a field $K$. $G_{1} \& G_{2}$ have same isomorphism classes of maximal K-tori if every maximal $K$-torus $T_{1}$ of $G_{1}$ is $K$-isomorphic to a maximal $K$-torus $T_{2}$ of $G_{2}$, and vice versa.
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- Let $G_{1}$ and $G_{2}$ be semi-simple groups over a field $K$. $G_{1} \& G_{2}$ have same isomorphism classes of maximal K-tori if every maximal $K$-torus $T_{1}$ of $G_{1}$ is $K$-isomorphic to a maximal $K$-torus $T_{2}$ of $G_{2}$, and vice versa.
- Let $G$ be an absolutely almost simple K-group.
- To define the genus of an algebraic group, we replace maximal subfields with maximal tori in the definition of genus of division algebra.
- Let $G_{1}$ and $G_{2}$ be semi-simple groups over a field $K$. $G_{1} \& G_{2}$ have same isomorphism classes of maximal K-tori if every maximal $K$-torus $T_{1}$ of $G_{1}$ is $K$-isomorphic to a maximal $K$-torus $T_{2}$ of $G_{2}$, and vice versa.
- Let $G$ be an absolutely almost simple K-group.
$\operatorname{gen}_{K}(G)=$ set of isomorphism classes of $K$-forms $G^{\prime}$ of $G$ having same K-isomorphism classes of maximal K-tori.

Question $\mathbf{1}^{\prime}$. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?
Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?
Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

## Theorem 4 (Prasad-A.R.)

Let $G$ be an absolutely almost simple simply connected algebraic group over a number field $K$.

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?
Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

## Theorem 4 (Prasad-A.R.)

Let $G$ be an absolutely almost simple simply connected algebraic group over a number field $K$.
(1) $\operatorname{gen}_{K}(G)$ is finite;

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?
Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

## Theorem 4 (Prasad-A.R.)

Let $G$ be an absolutely almost simple simply connected algebraic group over a number field $K$.
(1) $\operatorname{gen}_{K}(G)$ is finite;
(2) If $G$ is not of type $A_{n}, D_{2 n+1}$ or $E_{6}$, then $\left|\operatorname{gen}_{K}(G)\right|=1$.

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?
Question $\mathbf{2}^{\prime}$. When is $\operatorname{gen}_{K}(G)$ finite?

## Theorem 4 (Prasad-A.R.)

Let $G$ be an absolutely almost simple simply connected algebraic group over a number field $K$.
(1) $\operatorname{gen}_{K}(G)$ is finite;
(2) If $G$ is not of type $A_{n}, D_{2 n+1}$ or $E_{6}$, then $\left|\operatorname{gen}_{K}(G)\right|=1$.

Conjecture. (1) For $K=k(x), k$ a number field, and $G$ an absolutely almost simple simply connected K-group with $|Z(G)| \leqslant 2$, we have $\left|\operatorname{gen}_{K}(G)\right|=1$;

Question 1'. When does $\operatorname{gen}_{K}(G)$ reduce to a single element?
Question 2'. When is $\operatorname{gen}_{K}(G)$ finite?

## Theorem 4 (Prasad-A.R.)

Let $G$ be an absolutely almost simple simply connected algebraic group over a number field $K$.
(1) $\operatorname{gen}_{K}(G)$ is finite;
(2) If $G$ is not of type $A_{n}, D_{2 n+1}$ or $E_{6}$, then $\left|\operatorname{gen}_{K}(G)\right|=1$.

Conjecture. (1) For $K=k(x), k$ a number field, and $G$ an absolutely almost simple simply connected K-group with $|Z(G)| \leqslant 2$, we have $\left|\operatorname{gen}_{K}(G)\right|=1$;
(2) If $G$ is an absolutely almost simple group over a finitely generated field $K$ of "good" characteristic then $\operatorname{gen}_{K}(G)$ is finite.

- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.
- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.

Theorem 5.

- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.


## Theorem 5.

(1) Let $D$ be a central division algebra of exponent 2 over $K=k\left(x_{1}, \ldots, x_{r}\right)$ where $k$ is a number field or a finite field of characteristic $\neq 2$. Then for $G=\operatorname{SL}_{m, D}(m \geqslant 1)$ we have $\left|\operatorname{gen}_{K}(G)\right|=1$.

- Results for division algebras do not automatically imply results for $G=\mathrm{SL}_{m, D}$.


## Theorem 5.

(1) Let $D$ be a central division algebra of exponent 2 over $K=k\left(x_{1}, \ldots, x_{r}\right)$ where $k$ is a number field or a finite field of characteristic $\neq 2$. Then for $G=\operatorname{SL}_{m, D}(m \geqslant 1)$ we have $\left|\operatorname{gen}_{K}(G)\right|=1$.
(2) Let $G=\mathrm{SL}_{m, D}$, where $D$ is a central division algebra over a finitely generated field $K$. Then $\operatorname{gen}_{K}(G)$ is finite.

Theorem 6.

## Theorem 6.

Let $K=k(C)$ where $C$ is a geometrically integral smooth curve over a number field $k$,

## Theorem 6.

Let $K=k(C)$ where $C$ is a geometrically integral smooth curve over a number field $k$, and let $G$ be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over $K$ and $n$ is odd,


## Theorem 6.

Let $K=k(C)$ where $C$ is a geometrically integral smooth curve over a number field $k$, and let $G$ be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over $K$ and $n$ is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over a quadratic extension $L / K$.


## Theorem 6.

Let $K=k(C)$ where $C$ is a geometrically integral smooth curve over a number field $k$, and let $G$ be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over $K$ and $n$ is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over a quadratic extension $L / K$. Then $\operatorname{gen}_{K}(G)$ is finite.


## Theorem 6.

Let $K=k(C)$ where $C$ is a geometrically integral smooth curve over a number field $k$, and let $G$ be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over $K$ and $n$ is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over a quadratic extension $L / K$. Then $\operatorname{gen}_{K}(G)$ is finite.


## Theorem 7.

Let $G$ be a simple algebraic group of type $G_{2}$.

## Theorem 6.

Let $K=k(C)$ where $C$ is a geometrically integral smooth curve over a number field $k$, and let $G$ be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over $K$ and $n$ is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over a quadratic extension $L / K$. Then $\operatorname{gen}_{K}(G)$ is finite.


## Theorem 7.

Let $G$ be a simple algebraic group of type $G_{2}$.
(1) If $K=k(x)$, where $k$ is a number field, then $\left|\operatorname{gen}_{K}(G)\right|=1$;

## Theorem 6.

Let $K=k(C)$ where $C$ is a geometrically integral smooth curve over a number field $k$, and let $G$ be either

- $\operatorname{Spin}_{n}(q), q$ a quadratic form over $K$ and $n$ is odd, or
- $\mathrm{SU}_{n}(h), h$ hermitian form over a quadratic extension $L / K$. Then $\operatorname{gen}_{K}(G)$ is finite.


## Theorem 7.

Let $G$ be a simple algebraic group of type $G_{2}$.
(1) If $K=k(x)$, where $k$ is a number field, then $\left|\operatorname{gen}_{K}(G)\right|=1$;
(2) If $K=k\left(x_{1}, \ldots, x_{r}\right)$ or $k(C)$, where $k$ is a number field, then $\operatorname{gen}_{K}(G)$ is finite.

- Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.
- Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.

Definition.

- Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.


## Definition.

Let $G$ be an absolutely almost simple algebraic group over $K$, $v$ be a discrete valuation of $K$.

- Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.


## Definition.

Let $G$ be an absolutely almost simple algebraic group over $K$, $v$ be a discrete valuation of $K$.
$G$ has good reduction at $v$ if there exists a reductive group scheme $\mathcal{G}$ over valuation ring $\mathcal{O}_{v} \subset K_{v}$ with generic fibre

$$
G \times_{K} K_{v}
$$

- Adequate substitute for unramified algebras in case of algebraic groups is algebraic groups with good reduction.


## Definition.

Let $G$ be an absolutely almost simple algebraic group over $K$, $v$ be a discrete valuation of $K$.
$G$ has good reduction at $v$ if there exists a reductive group scheme $\mathcal{G}$ over valuation ring $\mathcal{O}_{v} \subset K_{v}$ with generic fibre

$$
G \times_{K} K_{v}
$$

Then special fiber (reduction)

$$
\underline{G}^{(v)}=\mathcal{G} \otimes_{\mathcal{O}_{v}} K^{(v)}
$$

is a connected simple group of same type as $G$.

## Examples.

## Examples.

0 . Let $G$ be a simply connected split K-group.

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$.

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra.

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v$

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(i. e., $A$ is unramified at $v$ )

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(i. e., $A$ is unramified at $v$ )
2. Assume char $K^{(v)} \neq 2$.

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(i. e., $A$ is unramified at $v$ )
2. Assume char $K^{(v)} \neq 2$. Then $G=\operatorname{Spin}_{n}(q)$ has good reduction at $v$

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(i. e., $A$ is unramified at $v$ )
2. Assume char $K^{(v)} \neq 2$. Then $G=\operatorname{Spin}_{n}(q)$ has good reduction at $v \Leftrightarrow$

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(i. e., $A$ is unramified at $v$ )
2. Assume char $K^{(v)} \neq 2$. Then $G=\operatorname{Spin}_{n}(q)$ has good reduction at $v \Leftrightarrow$

$$
q \sim_{K_{v}} \lambda\left(u_{1} x_{1}^{2}+\cdots+u_{n} x_{n}^{2}\right), \quad u_{i} \in \mathcal{O}_{v}^{\times}, \quad \lambda \in K_{v} .
$$

## Examples.

0 . Let $G$ be a simply connected split K-group. Then $G$ has good reduction at any discrete valuation $v$ of $K$. (The $\mathcal{O}_{v}$-scheme $\mathcal{G}$ is provided by Chevalley construction.)

1. Let $A$ be a central simple $K$-algebra. Then $G=\mathrm{SL}_{1, A}$ has good reduction at $v \Leftrightarrow$ there exists an Azumaya $\mathcal{O}_{v}$-algebra $\mathcal{A}$ such that

$$
A \otimes_{K} K_{v} \simeq \mathcal{A} \otimes_{\mathcal{O}_{v}} K_{v}
$$

(i. e., $A$ is unramified at $v$ )
2. Assume char $K^{(v)} \neq 2$. Then $G=\operatorname{Spin}_{n}(q)$ has good reduction at $v \Leftrightarrow$

$$
q \sim_{K_{v}} \lambda\left(u_{1} x_{1}^{2}+\cdots+u_{n} x_{n}^{2}\right), \quad u_{i} \in \mathcal{O}_{v}^{\times}, \quad \lambda \in K_{v} .
$$

A. R., I. Rapinchuk, Linear algebraic groups with good reduction, arXiv: 2005.05484

## Theorem 8.

Let $G$ be an absolutely almost simple simply connected group over $K$, and $v$ be a discrete valuation of $K$.

## Theorem 8.

Let $G$ be an absolutely almost simple simply connected group over $K$, and $v$ be a discrete valuation of $K$. Assume that $K^{(v)}$ is finitely generated, and $G$ has good reduction at $v$.

## Theorem 8.

Let $G$ be an absolutely almost simple simply connected group over $K$, and $v$ be a discrete valuation of $K$.

Assume that $K^{(v)}$ is finitely generated, and $G$ has good reduction at $v$.

Then every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at $v$.

## Theorem 8.

Let $G$ be an absolutely almost simple simply connected group over $K$, and $v$ be a discrete valuation of $K$.

Assume that $K^{(v)}$ is finitely generated, and $G$ has good reduction at $v$.

Then every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at $v$.

For applications to genus problem assume $K$ is equipped with a set $V$ of discrete valuations satisfying:

## Theorem 8.

Let $G$ be an absolutely almost simple simply connected group over $K$, and $v$ be a discrete valuation of $K$.

Assume that $K^{(v)}$ is finitely generated, and $G$ has good reduction at $v$.

Then every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at $v$.

For applications to genus problem assume $K$ is equipped with a set $V$ of discrete valuations satisfying:
(I) for any $a \in K^{\times}$, set $V(a):=\{v \in V \mid v(a) \neq 0\}$ is finite;

## Theorem 8.

Let $G$ be an absolutely almost simple simply connected group over $K$, and $v$ be a discrete valuation of $K$.

Assume that $K^{(v)}$ is finitely generated, and $G$ has good reduction at $v$.

Then every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at $v$.

For applications to genus problem assume $K$ is equipped with a set $V$ of discrete valuations satisfying:
(I) for any $a \in K^{\times}$, set $V(a):=\{v \in V \mid v(a) \neq 0\}$ is finite;
(II) for every $v \in V$, residue field $K^{(v)}$ is finitely generated.

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group.

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on $G$ ) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on $G$ ) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

So, question about finiteness of $\operatorname{gen}_{K}(G)$ reduces to

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on $G$ ) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

So, question about finiteness of $\operatorname{gen}_{K}(G)$ reduces to

## Problem

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on $G$ ) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

So, question about finiteness of $\operatorname{gen}_{K}(G)$ reduces to

## Problem

Let $K$ be a finitely generated field.

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on $G$ ) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

So, question about finiteness of $\operatorname{gen}_{K}(G)$ reduces to

## Problem

Let $K$ be a finitely generated field. Can one equip $K$ with a set $V$ of discrete valuations that satisfies (I) and (II) and also

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on $G$ ) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

So, question about finiteness of $\operatorname{gen}_{K}(G)$ reduces to

## Problem

Let $K$ be a finitely generated field. Can one equip $K$ with a set $V$ of discrete valuations that satisfies (I) and (II) and also $(\Phi)$ For any finite subset $S \subset V$, set of $K$-isomorphism classes of K-forms $G^{\prime}$ of $G$ having good reduction at all $v \in V \backslash S$ is finite?

## Corollary

Let $G$ be an absolutely almost simple simply connected K-group. There exists a finite subset $S \subset V$ (depending on $G$ ) such that every $G^{\prime} \in \operatorname{gen}_{K}(G)$ has good reduction at all $v \in V \backslash S$.

So, question about finiteness of $\operatorname{gen}_{K}(G)$ reduces to

## Problem

Let $K$ be a finitely generated field. Can one equip $K$ with a set $V$ of discrete valuations that satisfies (I) and (II) and also $(\Phi)$ For any finite subset $S \subset V$, set of $K$-isomorphism classes of K-forms $G^{\prime}$ of $G$ having good reduction at all $v \in V \backslash S$ is finite?

Variations: one can consider only groups of a specific type, only inner forms, impose restrictions on characteristic etc.

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$ (normal separated scheme of finite type over $\mathbb{Z}$ )

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial. Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$ (normal separated scheme of finite type over $\mathbb{Z}$ )

## Example

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$ (normal separated scheme of finite type over $\mathbb{Z}$ )

## Example

For $K=\mathbb{Q}(x)$ one can take $\mathfrak{X}=\operatorname{Spec} \mathbb{Z}[x]$.

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$ (normal separated scheme of finite type over $\mathbb{Z}$ )

## Example

For $K=\mathbb{Q}(x)$ one can take $\mathfrak{X}=\operatorname{Spec} \mathbb{Z}[x]$. Then

$$
V=V_{0} \cup V_{1}
$$

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$ (normal separated scheme of finite type over $\mathbb{Z}$ )

## Example

For $K=\mathbb{Q}(x)$ one can take $\mathfrak{X}=\operatorname{Spec} \mathbb{Z}[x]$. Then

$$
V=V_{0} \cup V_{1}
$$

where valuations in $V_{0}$ correspond to rational primes,

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$ (normal separated scheme of finite type over $\mathbb{Z}$ )

## Example

For $K=\mathbb{Q}(x)$ one can take $\mathfrak{X}=\operatorname{Spec} \mathbb{Z}[x]$. Then

$$
V=V_{0} \cup V_{1}
$$

where valuations in $V_{0}$ correspond to rational primes, and valuations in $V_{1}$ to irreducible polynomials $p(x) \in \mathbb{Z}[x]$ with content 1.

Every finitely generated field $K$ can be equipped with an almost canonical set $V$ of discrete valuations called divisorial.

Valuation $v \in V$ correspond to prime divisors on a model $\mathfrak{X}$ for $K$ (normal separated scheme of finite type over $\mathbb{Z}$ )

## Example

For $K=\mathbb{Q}(x)$ one can take $\mathfrak{X}=\operatorname{Spec} \mathbb{Z}[x]$. Then

$$
V=V_{0} \cup V_{1}
$$

where valuations in $V_{0}$ correspond to rational primes, and valuations in $V_{1}$ to irreducible polynomials $p(x) \in \mathbb{Z}[x]$ with content 1.

One expects that divisorial sets are as required.

## Finiteness Conjecture

## Finiteness Conjecture

Let $G$ be a reductive algebraic group over a finitely generated field $K$, and let $V$ be a divisorial set of discrete valuations of $K$.

## Finiteness Conjecture

Let $G$ be a reductive algebraic group over a finitely generated field $K$, and let $V$ be a divisorial set of discrete valuations of $K$. Then set of K-isomorphism classes of (inner) K-forms of $G$ that have good reduction at all $v \in V$ is finite

## Finiteness Conjecture

Let $G$ be a reductive algebraic group over a finitely generated field $K$, and let $V$ be a divisorial set of discrete valuations of $K$. Then set of K-isomorphism classes of (inner) K-forms of $G$ that have good reduction at all $v \in V$ is finite (at least when char $K$ is "good.")

## Finiteness Conjecture

Let $G$ be a reductive algebraic group over a finitely generated field $K$, and let $V$ be a divisorial set of discrete valuations of $K$. Then set of K-isomorphism classes of (inner) K-forms of $G$ that have good reduction at all $v \in V$ is finite (at least when char $K$ is "good.")

For $G$ absolutely almost simple, $p=\operatorname{char} K$ is "good" if either $p=0$ or $p$ does not divide order of Weyl group;

## Finiteness Conjecture

Let $G$ be a reductive algebraic group over a finitely generated field $K$, and let $V$ be a divisorial set of discrete valuations of $K$. Then set of K-isomorphism classes of (inner) K-forms of $G$ that have good reduction at all $v \in V$ is finite (at least when char $K$ is "good.")

For $G$ absolutely almost simple, $p=\operatorname{char} K$ is "good" if either $p=0$ or $p$ does not divide order of Weyl group; for $G$ non-semisimple, only $p=0$ is "good."

## Finiteness Conjecture

Let $G$ be a reductive algebraic group over a finitely generated field $K$, and let $V$ be a divisorial set of discrete valuations of $K$. Then set of K-isomorphism classes of (inner) K-forms of $G$ that have good reduction at all $v \in V$ is finite (at least when char $K$ is "good.")

For $G$ absolutely almost simple, $p=\operatorname{char} K$ is "good" if either $p=0$ or $p$ does not divide order of Weyl group; for $G$ non-semisimple, only $p=0$ is "good."

This conjecture can be viewed as an analog of Shafarevich's
Conjecture for abelian varieties proved by Faltings,

## Finiteness Conjecture

Let $G$ be a reductive algebraic group over a finitely generated field $K$, and let $V$ be a divisorial set of discrete valuations of $K$. Then set of K-isomorphism classes of (inner) K-forms of $G$ that have good reduction at all $v \in V$ is finite (at least when char $K$ is "good.")

For $G$ absolutely almost simple, $p=\operatorname{char} K$ is "good" if either $p=0$ or $p$ does not divide order of Weyl group; for $G$ non-semisimple, only $p=0$ is "good."

This conjecture can be viewed as an analog of Shafarevich's
Conjecture for abelian varieties proved by Faltings, but presents a different set of challenges.

- Finiteness Conjecture $\Rightarrow$ finiteness of gen $_{K}(G)$ in "good" characteristic
- Finiteness Conjecture $\Rightarrow$ finiteness of $\operatorname{gen}_{K}(G)$ in "good" characteristic
- Consider

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

- Finiteness Conjecture $\Rightarrow$ finiteness of $\operatorname{gen}_{K}(G)$ in "good" characteristic
- Consider

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Finiteness Conjecture for a semi-simple $G \Rightarrow \iota_{\bar{G}, V}$ is proper

- Finiteness Conjecture $\Rightarrow$ finiteness of $\operatorname{gen}_{K}(G)$ in "good" characteristic
- Consider

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Finiteness Conjecture for a semi-simple $G \Rightarrow l_{\bar{G}, V}$ is proper (preimage of a finite set is finite) for adjoint $\bar{G}$.

- Finiteness Conjecture $\Rightarrow$ finiteness of $\operatorname{gen}_{K}(G)$ in "good" characteristic
- Consider

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Finiteness Conjecture for a semi-simple $G \Rightarrow l_{\bar{G}, V}$ is proper (preimage of a finite set is finite) for adjoint $\bar{G}$. In particular,

$$
\amalg(\bar{G}, V):=\operatorname{Ker} \iota_{\bar{G}, V} \text { is finite. }
$$

- Finiteness Conjecture $\Rightarrow$ finiteness of $\operatorname{gen}_{K}(G)$ in "good" characteristic
- Consider

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Finiteness Conjecture for a semi-simple $G \Rightarrow l_{\bar{G}, V}$ is proper (preimage of a finite set is finite) for adjoint $\bar{G}$. In particular,

$$
\amalg(\bar{G}, V):=\operatorname{Ker} \iota_{\bar{G}, V} \text { is finite. }
$$

One expects $\iota_{G, V}$ to be proper for all reductive $G$.

- Finiteness Conjecture $\Rightarrow$ finiteness of $\operatorname{gen}_{K}(G)$ in "good" characteristic
- Consider

$$
\iota_{G, V}: H^{1}(K, G) \longrightarrow \prod_{v \in V} H^{1}\left(K_{v}, G\right)
$$

Finiteness Conjecture for a semi-simple $G \Rightarrow l_{\bar{G}, V}$ is proper (preimage of a finite set is finite) for adjoint $\bar{G}$. In particular,

$$
\amalg(\bar{G}, V):=\operatorname{Ker} \iota_{\bar{G}, V} \text { is finite. }
$$

One expects $\iota_{G, V}$ to be proper for all reductive $G$.

These and other connections shift focus of current work to
Finiteness Conjecture.

- Finiteness Conjecture and properness of $\iota_{G, V}$ is known for all tori
- Finiteness Conjecture and properness of $\iota_{G, V}$ is known for all tori
- Finiteness Conjecture is known for inner forms of type $A_{n-1}$ over all finitely generated $K$ provided that $(\operatorname{char} K, n)=1$
- Finiteness Conjecture and properness of $\iota_{G, V}$ is known for all tori
- Finiteness Conjecture is known for inner forms of type $A_{n-1}$ over all finitely generated $K$ provided that $(\operatorname{char} K, n)=1 \Rightarrow \iota_{\mathrm{PSL}_{n}, V}$ is proper
- Finiteness Conjecture and properness of $\iota_{G, V}$ is known for all tori
- Finiteness Conjecture is known for inner forms of type $A_{n-1}$ over all finitely generated $K$ provided that $(\operatorname{char} K, n)=1 \Rightarrow \iota_{\mathrm{PSL}_{n}, V}$ is proper
- Over $K=k(C)$, function field of an irreducible curve $C$ over a number field $k$, Finiteness Conjecture is known for spinor groups, some unitary groups and groups of type $G_{2}$
- Finiteness Conjecture and properness of $\iota_{G, V}$ is known for all tori
- Finiteness Conjecture is known for inner forms of type $A_{n-1}$ over all finitely generated $K$ provided that $(\operatorname{char} K, n)=1 \Rightarrow \iota_{\mathrm{PSL}_{n}, V}$ is proper
- Over $K=k(C)$, function field of an irreducible curve $C$ over a number field $k$, Finiteness Conjecture is known for spinor groups, some unitary groups and groups of type $G_{2}$

General case is work in progress ...

- Finiteness Conjecture and properness of $\iota_{G, V}$ is known for all tori
- Finiteness Conjecture is known for inner forms of type $A_{n-1}$ over all finitely generated $K$ provided that $(\operatorname{char} K, n)=1 \Rightarrow \iota_{\mathrm{PSL}_{n}, V}$ is proper
- Over $K=k(C)$, function field of an irreducible curve $C$ over a number field $k$, Finiteness Conjecture is known for spinor groups, some unitary groups and groups of type $G_{2}$

General case is work in progress ...
Finiteness of $\operatorname{gen}_{K}(G)$ is derived from results on Finiteness
Conjecture

## Challenges:

## Challenges:

Results for $G=\mathrm{SL}_{1, A}$ are based on (known) finiteness of

$$
{ }_{n} \operatorname{Br}(K)_{V}=H^{2}\left(K, \mu_{n}\right)_{V} \quad(\text { unramified cohomology })
$$

## Challenges:

Results for $G=\mathrm{SL}_{1, A}$ are based on (known) finiteness of

$$
{ }_{n} \operatorname{Br}(K)_{V}=H^{2}\left(K, \mu_{n}\right)_{V} \quad(\text { unramified cohomology })
$$

where $\mu_{n}$ is group of $n$th roots of unity (assuming that $n$ is prime to char $K$ )

## Challenges:

Results for $G=\mathrm{SL}_{1, A}$ are based on (known) finiteness of

$$
{ }_{n} \operatorname{Br}(K)_{V}=H^{2}\left(K, \mu_{n}\right)_{V} \quad(\text { unramified cohomology })
$$

where $\mu_{n}$ is group of $n$th roots of unity (assuming that $n$ is prime to char $K$ )

Consideration of type $G_{2}$ requires finiteness of $H^{3}\left(K, \mu_{2}\right)_{V}$,

## Challenges:

Results for $G=\mathrm{SL}_{1, A}$ are based on (known) finiteness of

$$
{ }_{n} \operatorname{Br}(K)_{V}=H^{2}\left(K, \mu_{n}\right)_{V} \quad(\text { unramified cohomology })
$$

where $\mu_{n}$ is group of $n$th roots of unity (assuming that $n$ is prime to char $K$ )

Consideration of type $G_{2}$ requires finiteness of $H^{3}\left(K, \mu_{2}\right)_{V}$, and of spinor groups - finiteness of

$$
H^{i}\left(K, \mu_{2}\right)_{V} \text { for } i=1, \ldots,\left[\log _{2} n\right]+1
$$

## Challenges:

Results for $G=\mathrm{SL}_{1, A}$ are based on (known) finiteness of

$$
{ }_{n} \operatorname{Br}(K)_{V}=H^{2}\left(K, \mu_{n}\right)_{V} \quad(\text { unramified cohomology })
$$

where $\mu_{n}$ is group of $n$th roots of unity (assuming that $n$ is prime to char $K$ )

Consideration of type $G_{2}$ requires finiteness of $H^{3}\left(K, \mu_{2}\right)_{V}$, and of spinor groups - finiteness of

$$
H^{i}\left(K, \mu_{2}\right)_{V} \text { for } i=1, \ldots,\left[\log _{2} n\right]+1
$$

However, proving finiteness of unramified cohomology groups $H^{i}\left(K, \mu_{n}^{\otimes j}\right)_{V}$ is a very difficult problem for $i \geqslant 3$ resolved only is special cases!

At the same time, a precise description of $K$-forms in terms of commutative Galois cohomology is available only for certain types.

At the same time, a precise description of $K$-forms in terms of commutative Galois cohomology is available only for certain types.

So, to handle general case in Finiteness Conjecture one will need to develop an intrinsic approach to analysis of forms with good reduction.

## (1) Division algebras with the same maximal subfields

(2) Genus of a division algebra

## (3) Genus of a simple algebraic group

44 "Killing" the genus

## Question. What happens to genus under base change?

Question. What happens to genus under base change?

Using (ABHN), one can construct a cubic division algebra $D$ over $Q$ and finite extensions $F_{1}$ and $F_{2}$ of $Q$ such that

$$
\left|\boldsymbol{\operatorname { g e n }}\left(D \otimes_{K} F_{1}\right)\right|<|\operatorname{gen}(D)|<\left|\boldsymbol{\operatorname { g e n }}\left(D \otimes_{K} F_{2}\right)\right| .
$$

Question. What happens to genus under base change?

Using (ABHN), one can construct a cubic division algebra $D$ over $Q$ and finite extensions $F_{1}$ and $F_{2}$ of $Q$ such that

$$
\left|\boldsymbol{\operatorname { g e n }}\left(D \otimes_{K} F_{1}\right)\right|<|\operatorname{gen}(D)|<\left|\boldsymbol{\operatorname { g e n }}\left(D \otimes_{K} F_{2}\right)\right| .
$$

Similar examples can be constructed for algebraic groups.

Question. What happens to genus under base change?

Using (ABHN), one can construct a cubic division algebra $D$ over $Q$ and finite extensions $F_{1}$ and $F_{2}$ of $Q$ such that

$$
\left|\operatorname{gen}\left(D \otimes_{K} F_{1}\right)\right|<|\operatorname{gen}(D)|<\left|\operatorname{gen}\left(D \otimes_{K} F_{2}\right)\right| .
$$

Similar examples can be constructed for algebraic groups.
So, there appears to be no regularity for finite extensions of base field.

Question. What happens to genus under base change?

Using (ABHN), one can construct a cubic division algebra $D$ over $Q$ and finite extensions $F_{1}$ and $F_{2}$ of $Q$ such that

$$
\left|\operatorname{gen}\left(D \otimes_{K} F_{1}\right)\right|<|\operatorname{gen}(D)|<\left|\operatorname{gen}\left(D \otimes_{K} F_{2}\right)\right| .
$$

Similar examples can be constructed for algebraic groups.

So, there appears to be no regularity for finite extensions of base field.

However, for purely transcendental extensions we have:

## Theorem 9

## Theorem 9

Let $D$ be a central division algebra over a field $K$.

## Theorem 9

Let $D$ be a central division algebra over a field $K$. Then for any $\Delta \in \operatorname{gen}\left(D \otimes_{K} K(x)\right)$ there exists $\Delta_{0} \in \operatorname{gen}(D)$ such that

$$
\Delta=\Delta_{0} \otimes_{K} K(x)
$$

## Theorem 9

Let $D$ be a central division algebra over a field $K$. Then for any $\Delta \in \operatorname{gen}\left(D \otimes_{K} K(x)\right)$ there exists $\Delta_{0} \in \operatorname{gen}(D)$ such that

$$
\Delta=\Delta_{0} \otimes_{K} K(x)
$$

## Theorem $9^{\prime}$

## Theorem 9

Let $D$ be a central division algebra over a field $K$. Then for any $\Delta \in \operatorname{gen}\left(D \otimes_{K} K(x)\right)$ there exists $\Delta_{0} \in \operatorname{gen}(D)$ such that

$$
\Delta=\Delta_{0} \otimes_{K} K(x)
$$

## Theorem $9^{\prime}$

Let $G$ be an absolutely almost simple simply connected algebraic group over a finitely generated field $K$.

## Theorem 9

Let $D$ be a central division algebra over a field $K$. Then for any $\Delta \in \operatorname{gen}\left(D \otimes_{K} K(x)\right)$ there exists $\Delta_{0} \in \operatorname{gen}(D)$ such that

$$
\Delta=\Delta_{0} \otimes_{K} K(x)
$$

## Theorem $9^{\prime}$

Let $G$ be an absolutely almost simple simply connected algebraic group over a finitely generated field $K$. Then any

$$
H \in \boldsymbol{g e n}_{K(x)}\left(G \times_{K} K(x)\right)
$$

is of the form $H=H_{0} \times_{K} K(x)$ for some $H_{0} \in \operatorname{gen}_{K}(G)$.

## Theorem 9

Let $D$ be a central division algebra over a field $K$. Then for any $\Delta \in \operatorname{gen}\left(D \otimes_{K} K(x)\right)$ there exists $\Delta_{0} \in \operatorname{gen}(D)$ such that

$$
\Delta=\Delta_{0} \otimes_{K} K(x)
$$

## Theorem $9^{\prime}$

Let $G$ be an absolutely almost simple simply connected algebraic group over a finitely generated field $K$. Then any

$$
H \in \boldsymbol{\operatorname { g e n }}_{K(x)}\left(G \times_{K} K(x)\right)
$$

is of the form $H=H_{0} \times_{K} K(x)$ for some $H_{0} \in \operatorname{gen}_{K}(G)$.

## Corollary

## Theorem 9

Let $D$ be a central division algebra over a field $K$. Then for any $\Delta \in \operatorname{gen}\left(D \otimes_{K} K(x)\right)$ there exists $\Delta_{0} \in \operatorname{gen}(D)$ such that

$$
\Delta=\Delta_{0} \otimes_{K} K(x)
$$

## Theorem $9^{\prime}$

Let $G$ be an absolutely almost simple simply connected algebraic group over a finitely generated field $K$. Then any

$$
H \in \boldsymbol{\operatorname { g e n }}_{K(x)}\left(G \times_{K} K(x)\right)
$$

is of the form $H=H_{0} \times_{K} K(x)$ for some $H_{0} \in \operatorname{gen}_{K}(G)$.

## Corollary

In above notations, if $\operatorname{gen}_{K}(G)$ is finite, then so is

$$
\operatorname{gen}_{K(x)}\left(G \times_{K} K(x)\right)
$$

## Theorem 9

Let $D$ be a central division algebra over a field $K$. Then for any $\Delta \in \operatorname{gen}\left(D \otimes_{K} K(x)\right)$ there exists $\Delta_{0} \in \operatorname{gen}(D)$ such that

$$
\Delta=\Delta_{0} \otimes_{K} K(x)
$$

## Theorem $9^{\prime}$

Let $G$ be an absolutely almost simple simply connected algebraic group over a finitely generated field $K$. Then any

$$
H \in \boldsymbol{\operatorname { g e n }}_{K(x)}\left(G \times_{K} K(x)\right)
$$

is of the form $H=H_{0} \times_{K} K(x)$ for some $H_{0} \in \operatorname{gen}_{K}(G)$.

## Corollary

In above notations, if $\operatorname{gen}_{K}(G)$ is finite, then so is $\boldsymbol{g e n}_{K(x)}\left(G \times_{K} K(x)\right)$.
In particular, the latter is finite if $K$ is a number field.

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Does genus remain same or shrink?

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Does genus remain same or shrink?

We are not saying that

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Does genus remain same or shrink?

We are not saying that
if $\Delta_{0} \in \operatorname{gen}(D)$ then $\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{gen}\left(\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right)\right)$.

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Does genus remain same or shrink?

We are not saying that
if $\Delta_{0} \in \operatorname{gen}(D)$ then $\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{gen}\left(\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right)\right)$.

In fact, the opposite is true:

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Does genus remain same or shrink?

We are not saying that
if $\Delta_{0} \in \operatorname{gen}(D)$ then $\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{gen}\left(\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right)\right)$.

In fact, the opposite is true:
Theorem 10

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Does genus remain same or shrink?

We are not saying that
if $\Delta_{0} \in \operatorname{gen}(D)$ then $\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{gen}\left(\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right)\right)$.

In fact, the opposite is true:

## Theorem 10

Let $D$ be a central division algebra of degree $n$ over a field $K$.

Both Theorems and Corollary remain valid over $K\left(x_{1}, \ldots, x_{r}\right)$.

Does genus remain same or shrink?

We are not saying that
if $\Delta_{0} \in \operatorname{gen}(D)$ then $\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right) \in \operatorname{gen}\left(\Delta_{0} \otimes_{K} K\left(x_{1}, \ldots, x_{r}\right)\right)$.

In fact, the opposite is true:

## Theorem 10

Let $D$ be a central division algebra of degree $n$ over a field $K$. Then

$$
\operatorname{gen}\left(D \otimes_{K} K\left(x_{1}, \ldots, x_{n-1}\right)\right)
$$

consists of $D^{\prime} \otimes_{K} K\left(x_{1}, \ldots, x_{n-1}\right)$ where $\left\langle\left[D^{\prime}\right]\right\rangle=\langle[D]\rangle$ in $\operatorname{Br}(K)$.

So,

So,

- After base change $K\left(x_{1}, \ldots, x_{n-1}\right) / K$, genus becomes finite and "minimal possible";

So,

- After base change $K\left(x_{1}, \ldots, x_{n-1}\right) / K$, genus becomes finite and "minimal possible";
- If $D$ is a quaternion algebra, then $\left|\operatorname{gen}\left(D \otimes_{K} K(x)\right)\right|=1$.

So,

- After base change $K\left(x_{1}, \ldots, x_{n-1}\right) / K$, genus becomes finite and "minimal possible";
- If $D$ is a quaternion algebra, then $\left|\operatorname{gen}\left(D \otimes_{K} K(x)\right)\right|=1$.

Informally: genus of $D$ can be "killed" by a purely transcendental extension.

So,

- After base change $K\left(x_{1}, \ldots, x_{n-1}\right) / K$, genus becomes finite and "minimal possible";
- If $D$ is a quaternion algebra, then $\left|\operatorname{gen}\left(D \otimes_{K} K(x)\right)\right|=1$.

Informally: genus of $D$ can be "killed" by a purely transcendental extension.

Proofs use Amitsur's Theorem and results of Saltman and Matzri on function fields of Severi-Brauer varieties.

So,

- After base change $K\left(x_{1}, \ldots, x_{n-1}\right) / K$, genus becomes finite and "minimal possible";
- If $D$ is a quaternion algebra, then $\left|\operatorname{gen}\left(D \otimes_{K} K(x)\right)\right|=1$.

Informally: genus of $D$ can be "killed" by a purely transcendental extension.

Proofs use Amitsur's Theorem and results of Saltman and Matzri on function fields of Severi-Brauer varieties.

Can one extend this phenomenon to all simple algebraic groups?

We have analog of Theorem 10 for groups $G=\mathrm{SL}_{1, A}$.

We have analog of Theorem 10 for groups $G=\mathrm{SL}_{1, A}$.

We also have the following:

We have analog of Theorem 10 for groups $G=\mathrm{SL}_{1, A}$.

We also have the following:

Theorem 11

We have analog of Theorem 10 for groups $G=\mathrm{SL}_{1, A}$.

We also have the following:

## Theorem 11

Let $G$ be a group of type $G_{2}$ over a finitely generated field $K$ of characteristic $\neq 2,3$.

We have analog of Theorem 10 for groups $G=\mathrm{SL}_{1, A}$.

We also have the following:

## Theorem 11

Let $G$ be a group of type $G_{2}$ over a finitely generated field $K$ of characteristic $\neq 2,3$. Then

$$
\boldsymbol{\operatorname { g e n }}_{K\left(x_{1}, \ldots, x_{6}\right)}\left(G \times_{K} K\left(x_{1}, \ldots, x_{6}\right)\right) \mid=1
$$

We have analog of Theorem 10 for groups $G=\mathrm{SL}_{1, A}$.

We also have the following:

## Theorem 11

Let $G$ be a group of type $G_{2}$ over a finitely generated field $K$ of characteristic $\neq 2,3$. Then

$$
\boldsymbol{\operatorname { g e n }}_{K\left(x_{1}, \ldots, x_{6}\right)}\left(G \times_{K} K\left(x_{1}, \ldots, x_{6}\right)\right) \mid=1 .
$$

Proof uses properties of Pfister forms.

We have analog of Theorem 10 for groups $G=\mathrm{SL}_{1, A}$.

We also have the following:

## Theorem 11

Let $G$ be a group of type $G_{2}$ over a finitely generated field $K$ of characteristic $\neq 2,3$. Then

$$
\boldsymbol{\operatorname { g e n }}_{K\left(x_{1}, \ldots, x_{6}\right)}\left(G \times_{K} K\left(x_{1}, \ldots, x_{6}\right)\right) \mid=1
$$

Proof uses properties of Pfister forms.

General case remains open.

