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Abstract
One of the major theoretic frameworks through which human development
is studied is a process–oriented model involving selection, optimization, and
compensation. These three processes each provide accounts for methods
by which gains are maximized and losses minimized throughout the lifes-
pan, and in particular during later life. These processes can be cast within
the framework of dynamical systems theory and then modeled using differ-
ential equations. The current article will review basic tenets of selection,
optimization, and compensation whilst introducing language and concepts
from dynamical systems. Four categories of interindividual differences and
intraindividual variability in dynamics are then described and discussed in
the context of selection, optimization, and compensation.
Keywords: Selection, Optimization, Compensation; Dynamical Systems
Analysis; Lifespan Development

Development over the lifespan involves both processes that operate more–or–less out-
side of conscious awareness as well as conscious choices of behaviors. Both types of pro-
cesses can be viewed within the framework of regulation of behavior with respect to goals.
P. B. Baltes and Baltes (1990) proposed a meta–theory for three adaptive regulatory pro-
cesses operating during the life course: selection, optimization, and compensation. These
processes are advanced as helping account for successful development and aging from an in-
traindividual process perspective — How an individual develops is deemed to be a continual
systematic interplay between current internal states and capacities of the individual and the
environmental demands and contextual opportunities in which the individual is immersed.
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Process oriented theories as underpinnings for developmental adaptation and change have
had increasing influence on developmental research (e.g. Burke & Shafto, 2008; Finucane,
Mertz, Slovic, & Schmidt, 2005; Kramer, Bherer, Colcombe, Dong, & Greenough, 2004).
The current article will discuss developmental processes within the framework of dynamical
systems analysis and aims to weave the ideas of equilibrium dynamics into the fabric of
selection, optimization, and compensation.

Selection, Optimization, and Compensation

The meta–theory of selection, optimization, and compensation (P. B. Baltes,
Staudinger, & Lindenberger, 1999) has been elaborated over the past two decades from
many perspectives and within many contexts (M. M. Baltes & Carstensen, 1996; P. B.
Baltes, 1997). Examples include conscious, goal–oriented adaptation to aging measured
through self–report (e.g. Freund & Baltes, 2002), short–term processes such as dual task
compensation (e.g. Li, Lindenberger, Freund, & Baltes, 2001), and age–related differences
emotion–regulation (e.g. Urry & Gross, 2010). While a full review of selection, optimiza-
tion, and compensation is outside the scope of this article, a brief overview is presented to
introduce to the three individual concepts and some of the possible contextualized interac-
tions between them.

Selection

The mechanism of selection is generally presented as a process of goal choice. There
are many possible ways that selection could be represented within the context of an indi-
vidual’s life. For instance selection could be a categorical choice from mutually exclusive
alternatives ,e.g., “Do I want to go swimming at the beach or camping in the mountains for
my holiday?”. It could be a selection of the number of members in a set of multiple alter-
natives, e.g., “How many different hobbies should I pursue?”. Or selection could represent
a weighting of choices from available alternatives, e.g., “What are the relative importance
of work and family as I choose how to spend my time this next year?”

Freund and Baltes (2002) distinguish between elective selection as described in the
previous paragraph and loss–based selection which is a consequence of restricted opportu-
nities and loss of function associated with late life. Taking a lifespan perspective, expanded
opportunities and gains in function should also be considered. Thus, the present article will
make the distinction voluntary and involuntary selection. Examples of involuntary selec-
tion could be a restriction of choice of daily activities as a consequence of a broken hip, or
social isolation due to loss of hearing. Positive examples of voluntary selection could be the
additional range of activities available to an infant when she begins to walk, or new travel
opportunities afforded to a young adult who learns a second language.

Optimization

Optimization refers to the application of methods to achieve selected goals. In some
contexts, this process could involve both acquisition of methods, e.g., learning a new skill,
as well as the use of mean in goal–relevant behavior, e.g., applying the skill. The process
of optimization of behavior can also be considered within the framework of regulation of
behavior. In order to regulate behavior with respect to a goal, an organism must be able
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to perceive the mismatch between its current state and the desired state and produce a
behavioral change that leads to the desired state.

An obvious example is locomotion. If one is at a workplace and desires to go home,
then a serially dependent chain of behaviors can be constructed: in order to arrive at home,
one must catch the bus; in order to catch the bus, one must first leave the office building; in
order to leave the building, one must first exit one’s office; and so on. While many motile
behaviors may lead to eventually arriving home, (e.g., driving, taking the bus, walking)
some may not (e.g., swimming, skydiving). Optimization involves both the application of
the methods relative a particular goal as well as selection of appropriate methods — one
must know in which direction to travel (e.g., home is 1 km to the northeast) as well as
applying appropriate methods (e.g., walking rather than skydiving).

Optimization may also occur within the context of either non–conscious or non–
intentional behaviors. One example is emotion regulation. While emotion regulation may
optimize affective states relative to an individual’s homeostatic equilibrium, this optimiza-
tion need not be intentionally invoked, nor even necessarily be within conscious control.
This sort of optimization may also be observed in social perception–action contexts such as
conversation, mutually directed gaze, or motor tasks.

Compensation

Compensation refers to the use of alternative methods when previously preferred
methods become unavailable. Compensation is distinguished from selection in that selec-
tion refers to choice of goals rather than choice of methods. In contrast to optimization,
compensation is defined by the tradeoff between two or more methods — as one set of meth-
ods becomes less useable, another set of methods is substituted. For instance, as age–related
presbyopia reduces the ability to focus on nearby objects, an individual may compensate
by wearing reading glasses.

Interactions between Selection, Optimization, and Compensation

It should be evident that the three mechanisms of selection, optimization, and com-
pensation are intertwined such that changes in one are almost always going to result in
changes in the other two. Some of these changes may be due to conscious use of these
strategies as a meta–strategy for successful development and aging. The use of the three
strategies appears to have a developmental trajectory in which selection becomes more im-
portant during early to middle adulthood, optimization and compensation become more
important for the so–called young–old (age 60 to 80) and then the three strategies become
more difficult to successfully apply for adults over 80 (Freund & Baltes, 2002). There is also
evidence of a positive association between use of the three strategies and higher levels of
functioning and successful life management (M. M. Baltes & Lang, 1997; Freund & Baltes,
2002; Li et al., 2001).

The dynamic relationship between the goal selection, optimization of goal achievement
by available methods, and compensatory strategies is likely to be complex in several ways.
Short term change in each of the three mechanisms may lead to long term change in any
or all of the three. However, it is reasonable to expect that these changes may be coupled
in systematic relationships that can be studied by longitudinal measurement. With that
in mind, we next provide a very short overview of longitudinal measurement and data
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analysis and then provide a description of four types of individual developmental differences
within the framework of dynamical systems analysis and their relationship to selection,
optimization, and compensation.

Longitudinal Measurement

It is important to understand human development as a set of processes that occur
within individuals. In order to study the development of individuals, one must design studies
with a longitudinal component — repeatedly measuring individuals with targeted intervals
of time separating the occasions of measurement. P. B. Baltes and Nesselroade (1979) were
influential in defining how the goals of longitudinal research into development should be
focused on the processes that lead to development and not simply on differences between
age groups. There are many reasons why a sample of individuals at two selected ages may
differ: cohort effects; selection due to morbidity or mortality; and selection due to response
propensity are but a few of the problems with age–based comparisons. In addition, there
can be large individual differences in age at which individuals experience any particular
developmental effect attributed to aging. While some of these effects are no doubt due to
biological senescence processes, many of the observable behavioral changes associated with
age are likely to be the result of processes that operate at time scales much shorter than
biological senescence. Short– and long– term processes observed in behavior and aging are
likely to be interrelated in a variety of ways (Boker, Molenaar, & Nesselroade, 2009).

Nesselroade (1991) proposed that short–term variability and long–term change, some-
times termed as trait and state variance, could be considered to be part of a fabric of de-
velopmental processes. In his metaphor these sources of variance are the warp and woof
of development, emphasizing the long threads and short threads involved in the process
of weaving cloth. This view of development has gained considerable traction and led to
empirical research in which measurement bursts with short (e.g., daily) intervals between
observations (Lebo & Nesselroade, 1978) are embedded into a longitudinal design where the
measurement bursts are themselves separated by longer (e.g., multi–year) intervals (Ram &
Gerstorf, 2009; Ong, Bergeman, & Boker, 2009). This sort of design affords the opportunity
to simultaneously model short– and long–term processes, thereby allowing tests of potential
relationships between two or more time–scales of measurement.

Dynamical Systems Analysis

Recently, dynamical systems models (Boker & Bisconti, 2006; Hubbard & West, 1991;
Kaplan & Glass, 1995; Smith & Thelen, 1993) have begun to be applied to a variety of
questions in development and aging including bereavement (Bisconti, Bergeman, & Boker,
2004, 2006), daily stress and affect (Montpetit, Bergeman, Deboeck, Tiberio, & Boker, 2010;
Sliwinski, Almeida, Smyth, & Stawski, 2009), cortisol response (Almeida, Piazza, & Stawski,
2009), postural control (Newell, Mayer-Kress, & Liu, 2009; Slobounov, Moss, Slobounov,
& Newell, 1998), resiliency (Ong et al., 2009; Sliwinski & Mogle, 2008), and cognition
(MacDonald, Li, & Bäckman, 2009; Ram, Rabbitt, Sollery, & Nesselroade, 2005; Sliwinski,
Smyth, Hofer, & Stawski, 2006). Dynamical systems analysis is based on the premise that
covariance relationships between variables and their rates of change with respect to time
can illuminate and simplify the discussion of intraindividual processes.
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Short term behavioral processes can be modeled as having dynamics (Carver &
Scheier, 2002) that express the change–related relationships between individuals’ current
states, the states of their environments, and homeostatic equilibria (Boker, 2012). This
means of thinking about within–person behavioral variability allows us to consider both
stability and change within the same theoretical framework. For instance, an individual
may organize her or his behavior in order to maintain stability in the dynamic relationship
between goals, environmental demands, and preferred equilibria. An individual’s behavior
may be organized to help regulate or stabilize this dynamic relationship rather than to
obtain stability as defined by unchanging behavior. This type of regulation means that the
relationship between the current rate of change in a behavior and the difference between
the current state and some desired state or comfort zone may itself be a stable character-
istic of an individual. Stable relationships between time derivatives of a system are called
intrinsic dynamics and can be formally modeled using methods such as difference equations
or differential equations.

But just because stable intrinsic dynamics are observed within an individual at one
point in time does not imply that all individuals regulate in the same manner or with
respect to the same equilibria. Nor does it mean that an individual exhibits no change in
his or her regulatory dynamics or maintains an unchanging set of equilibria over time. It
is important to distinguish between short–term intrinsic dynamics exhibited at one point
in time and longer term changes in equilibria or regulation that can occur as part of the
lifespan developmental processes associated with aging. In order to set the stage, we will
first introduce what is meant by regulation with respect to an equilibrium and basin of
attraction.

Individual Differences in Regulation Relative to Equilibrium

In order to better understand differences in regulation, it is useful to graphically
visualize what is often called a basin of attraction around an equilibrium. One way to
visualize a basin of attraction is to plot the relationship between distance from equilibrium
and time derivatives of a system as the slope and/or curvature of a continuous surface as
shown in Figure 1. This can give an intuitive sense of how some systems regulate since we
can use our intuitive notions of the physical world as a guide. Imagine a marble released
near the edge of the bowl in Figure 1–a. The marble would roll down the slope of the bowl
and back up the other side, repeating this process until it finally came to rest at the bottom
of the bowl. If the bowls sides were steeper, as in Figure 1–b, the marble would roll back
and forth more rapidly, producing a regulation with a faster frequency. But again, after
some time, the marble would again come to rest exactly in the middle of the bowl. Both
Figures 1–a and –b are examples of basins of attraction with point equilibria.

Now consider the behavior of a marble dropped at the edge of the basin of attraction
shown in Figure 1–c. While the marble would again roll towards the flat bottom of the bowl
and likely up the opposite side, we do not know in advance exactly where the marble will
end up coming to rest. After some time the marble will stop somewhere on the flat bottom,
but this basin of attraction is fundamentally different than the previous two point equilibria
in that there is not the same determinacy of final position — this basin of attraction has an
equilibrium set, sometimes called a “comfort zone” of equally likely final positions for the
marble. In such a system, as long as a state variable is within the comfort zone, the system
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a b c d

Figure 1. Four basins of attraction characterizing regulation around either a homeostatic point (a and
b) or a homeostatic comfort zone (c and d).

does need to engage a regulatory mechanism.

Next, consider the basin of attraction shown in Figure 1–d. In the previous three
basins of attraction, the acceleration of the marble is reduced as it nears the equilibrium.
However in Figure 1–d, the marble would increase its rate of acceleration as the ball nears
the equilibrium, coming to a sudden stop at the bottom. There is a fundamental difference
between the shape of Figure 1–d and the other basins in that each of the others has concave
curvature whereas Figure 1–d has convex curvature.

In Figure 2 a single basin of attraction morphs from left to right into four separate
basins. If a marble were to be released into the single basin of attraction in Figure 2–a, it
would roll to the center. Thus, there is a single point–equilibrium in this basin. In Figure 2–
b, the single basin becomes wider and flatter as the first stage of morphing into four basins.
A marble released into this basin would take longer to come to rest, that is to say regulation
with respect to equilibrium is weaker in Figure 2–b than in Figure 2–a. Figure 2–c has four
shallow basins, i.e., four weak point equilibria. This is fundamentally different than the
single shallow basin. This type of fundamental transition is called a bifurcation. A single
basin of attraction in Figure 2–b bifurcates into four basins in Figure 2–c. The weaker
basins of attraction on either side of this bifurcation is general characteristic of systems:
Regulation becomes more weaker near bifurcation, and thus observed trajectories (the path
of the marble) is more variable near a bifurcation.

a b c d

time

Figure 2. A single basin of attraction, (a and b), morphing into four basins of attraction of increasing
strength (c and d). This type of change in an attractor is called bifurcation and could be used as a
method of representing changes in choices for selection of goals.
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If a marble is released into the attractor surface shown in Figure 2–c, it could be
difficult to predict in which of the shallow basins the marble would come to rest. Small
unpredictable external influences (in dynamical systems terms, these are called perturba-
tions) could result in the marble coming to rest in at any one of the four equilibrium points.
Even after the marble was nearly at rest in one basin, small external perturbations could
cause the marble to unpredictably switch to another basin. Newly formed equilibria may
not appear to be well–regulated with frequent changes between basins of attraction.

In contrast, Figure 2–d has four attractor basins with steeper sides than in Figure 2–
c. It would be easier to select in which of the four basins a marble would come to rest.
Comparing Figure 2–a and Figure 2–d, it is evident that the bifurcation produced more
choices of behavior from which one might select: what was a single point attractor is now
four point attractors. In Figure 2–d, simply by pushing the marble in a selected direction,
one could move it from one basin to another, i.e, from regulating about one point equilibrium
to regulating a different point equilibrium. Thus the process of bifurcation led to increased
opportunities for selection.

As suggested by Freund and Baltes (2002), developmental changes in young to middle
adulthood may lead to greater number of choices and thus an increasing need for exercising
selection as a strategy. This hypothesis of developmental change in attractor complexity can
be represented in dynamical systems terms as morphing basins of attraction, as diagrammed
in Figure 3. Compared to childhood or late life, young and middle adulthood are represented
as having greater complexity of choice due to increased numbers of basins of attraction.
Exercising selection as choice of attractor basins would lead to more complex trajectories
of behavior in mid–life as opposed to early– or late–life. In this diagram, the late–life basin
of attraction is shown as more shallow than the early–life attractor, which would result in
trajectories with greater variability but lower complexity in late–life as opposed to mid–life.

Age
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Figure 3. Age–related changes in complexity of selection represented as as developmental change in
complexity of basins of attraction. In this hypothetical example, a single basin of attraction in childhood
bifurcates into four basins of attraction which then collapse into a single basin of attraction in old age.

If one wishes to understand mechanisms of regulation and how they exhibit devel-
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opmental change, then one must focus on the individual in order to extract individual
differences in dynamics as well as developmental change in dynamics over time. Thus, al-
though samples from individual behavioral trajectories are the data for analysis, the goal is
to describe attractors and attractor changes over time. In other words, the dark fluctuating
line in Figure 3 provides the data, but we are not looking to estimate some average trajec-
tory over all individuals. Such an estimation would only produce a single average curve,
losing the complexity of individuals’ regulatory behaviors. Rather, what we wish to esti-
mate are the attractor basins and how they change over time. In this way we can preserve
the potential complexity of ideographic regulation as well as understand nomothetic rules
that characterize populations.

There are many ways in which regulatory dynamics could differ between individuals.
Similarly, there are a variety of ways in which regulatory dynamics could change as an indi-
vidual ages. By categorizing individual differences and intraindividual changes in dynamics,
we intend to convey some of the richness and specificity that accrue when human behavior
and development are considered from a dynamical systems point of view. We will consider
four categories in which individuals’ dynamics might differ or change: i) individual differ-
ences in equilibrium values; ii) intraindividual change in equilibrium values; iii) individual
differences in regulation; and iv) intraindividual change in regulation. We then present an
instance of selection, optimization and compensation where regulatory dynamics may be
stable while the behavioral indicators change over time. Finally, we present a brief discus-
sion of how multiple regulatory processes can be coupled together — selection, optimization
and compensation may interact between regulatory processes in complex ways.

Figure 4 presents a summary grid of these sections, organizing the ideas from the next
four sections so that specific dynamical systems modeling techniques can be applied. The
three columns of the grid are organized around selection, optimization and compensation
respectively. The four rows of the grid are organized by the next four sections of this
article. Within each cell is a phrase summarizing the concept and a suggestion for a model
that might be used to test hypotheses relating to that concept. It is well beyond the
scope of this article to delve into specifics about each of these modeling techniques. This
organizational grid is presented in order to help guide the interested reader in focusing effort
on learning more about methods that may be particularly useful to him or her. References
to recommended readings on these methods will be presented in a section near the end of
the article.

Individual Differences and Intraindividual Change in Equilibria

The first two categories in which dynamics may differ are individual differences in
equilibria and intraindividual change in equilibria. These categories are what is often es-
timated in developmental studies: differences in individual’s means, mean change across
time, individual differences in variability, and intraindividual change in variability. From
the point of view of dynamical systems, these are only one part of the story, although an
important component to the whole picture.

Individual differences in equilibria can be considered from the standpoint of homeo-
static set points or comfort zones. One individual may be most comfortable with a mod-
erately high level of a variable, for instance arousal, whereas another individual may be
most comfortable in a lower arousal state. Individual differences in equilibria levels can
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Figure 4. Grid relating Selection, Optimization, and Compensation to processes in equilibrium dynamics.
Each cell contains a brief example description and possible model types for testing hypotheses.
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be modeled as individual differences in the value of the point equilibrium of the associated
attractor. Individual differences in values of point equilibria and centroids of equilibrium
sets have been observed in a wide range of variables (e.g., Bisconti et al., 2006; Boker &
Laurenceau, 2007) and one would be well advised to not rule out individual differences in
equilibria values in any variable used as a measure of intraindividual regulation.

Similarly, some individuals may not regulate unless a state variable leaves a relatively
large comfort zone of values while other individuals may begin regulating as soon as a
state variable deviates from a homeostatic value. While this type of individual difference in
equilibrium set has not been as widely reported, it has been postulated as an explanation for
some aging effects in postural control (Slobounov et al., 1998). A larger comfort zone (or
unregulated zone) would result in greater objectively observed intraindividual variability
while subjectively perceived, self–reported variability would not show this increase since
an individual would perceive themselves as being at equilibrium while in their comfort
zone. This difference between subjective and objective variability provides a possible way
of functionally modeling the dynamics of observed age–related changes in variability.

One way of interpreting voluntary selection within the framework of dynamical sys-
tems is as a choice of equilibrium as a goal state from a range of optional equilibria. For
instance, an individual might decide to pursue a hobby such as to learn to play the piano.
Time spent practicing the piano may contain both rewards and frustrations, providing feed-
back that results in a self–regulation of piano playing time investment. But this is time that
cannot be spent swimming or riding a bicycle, so other goals such as maintaining a healthy
body may also contribute to the optimal amount of piano–playing time — the equilibrium
value. Thus, an individual may not only select an equilibrium type (piano playing), but
also the level of the equilibrium value given other constraints.

An example of loss–based selection, such as gait, could be cast within the framework
of attractor basins as shown in the progression from middle adulthood to old age in the
hypothetical data plotted in Figure 3. Some basins of attraction may no longer be avail-
able and so choices must be made from a restricted set of options. In young and middle
adulthood, one might be able to walk, skip, hop on one leg, jump, or run while travers-
ing an obstacle course. But in late life, due to decreased muscle mass, reduced peripheral
sensation, and visual limitations not all of these options may be available. Ones choice of
gait might be reduced to simply walking. Each of these gaits can be considered to be a
periodic attractor, and thus in late life a set of bifurcations may occur that aggregate many
periodic attractors into a smaller set and thus reduce the opportunities for selection. As the
reduction in attractors occurs, individuals may choose to optimize their energy expenditure
within the attractors remaining. But eventually the remaining choices of gait may require
compensation such as a cane or walker.

Infants are at the other end of this continuum. As their muscles increase in strength,
new gaits become available to them. Thelen’s work on the dynamics of infant locomotion
has demonstrated that, prior to development of sufficient muscle tone to support standing,
an infant can walk on a treadmill in a tank of water that comes up to the infant’s waist.
The water provides sufficient buoyancy for the infant’s legs so that the periodic attractor of
walking emerges (Thelen & Smith, 1994). Thelen & Smith argue that this provides evidence
of developmental bifurcation in gait attractors. It is not much of a stretch to hypothesize
that a similar reduction in gait attractors occurs in late life. And just as we expect greater
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variability in infants’ gait as new attractors form, we would expect there to be greater
variability and instability in gait as attractors are lost.

Developmental change may be observed in the value of the state variable at the
centroid of the basin of attraction, i.e., the equilibrium value. Suppose the hypothetical
example shown in Figure 5 depicts positive affect. Whereas in adolescence the individual
regulates around lower levels of positive affect, from adulthood on the individual might
regulate towards relatively higher levels. This type of intraindividual change in equilibrium
values does not appear to be well–captured within the language of selection, optimization,
and compensation, although one might characterize it as a gradual developmental change
in goal level rather than a matter of selection between options.

When longitudinal data are modeled using latent growth curves (e.g., McArdle &
Hamagami, 1992), the results provide information about intraindividual change in point
equilibrium value. This comes about due to the fact that latent growth curve models are
typically fit as intercept, slope and curvature models. A latent growth curve model thus
makes an implicit assumption that the basin of attraction is a parabolic bowl for a regu-
latory process with a point equilibrium — At each age, for each individual, there is one
best point estimate for the latent growth curve. In addition, when the values of a state
variable are fluctuating around an equilibrium and are fit by this type of model, observed
variability becomes part of the error variance. Thus, individuals with greater amplitude
fluctuations are simply depicted as not fitting the model as well as those with lower am-
plitude fluctuations. On the other hand, when fluctuating data are fit using dynamical
systems models for processes, hypotheses concerning developmental processes can be tested
since the fluctuations inform the model for the process: larger fluctuations may fit a more
shallow attractor for one individual while smaller fluctuations fit a more steep attractor for
another individual.

Differentiating between intraindividual change in equilibrium and intraindividual
change in dynamics within a model allows separate estimation of an individual’s equi-
librium level relative to the population, i.e., an objective assessment of a variable and an
individual’s level relative to their own regulatory equilibrium, i.e., subjective assessment
of a variable. By separating these two components, a model can be constructed to esti-
mate functional relationships between an individual’s change in equilibrium level and their
regulatory dynamics.

Individual Differences and Intraindividual Change in Regulation

The third and fourth categories of dynamics we will consider are individual differences
in regulation and intraindividual change in regulation. This is where the dynamical systems
framework is particularly advantageous, since patterns in short term variability can be
modeled in the same context as long term changes in equilibria.

Individual differences in regulation are, in dynamical systems terms, differences in
the geometry of attractors. While one individual may regulate very closely around an equi-
librium value, producing a very steep attractor basin, another individual may not exhibit
nearly as much regulatory behavior, resulting in a relatively shallow basin. Steep basins are
associated with fast fluctuations relative to shallow basins. As an example, in a study of
recently bereaved widows, family members reported perceived control in the widows that
was associated with the steepness of the basin of attraction: steeper basins (i.e., faster
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fluctuations) were associated with lower levels of perceived control (Bisconti et al., 2006).
The degree of individual differences in attractor geometry may also be related to age.

For instance, one possible reason that greater variance and variability is observed in many
variables in older populations may be due to greater individual differences in the shape of
the attractors and/or more shallow attractor basins. Using dynamical systems models, these
become testable hypotheses. If greater individual differences observed in older populations
is due to more shallow attractor shape in older individuals than in younger individuals,
then this age–related difference will show up in group differences in the parameters of the
differential equations fit to each group. To the extent that age–related increase variability
is due to increased individual differences in equilibrium values the age–related difference
will show up in the variance of the latent equilibrium values, i.e., the intercept terms of the
equilibria.
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Figure 5. Age–related changes in variability in behavior or performance characterized as developmental
change in basins of attraction. Note that both decreased amplitude of fluctuations as well as higher
speed fluctuations are associated with the narrowing of these attractor basins.

Developmental change in equilibrium dynamics may be modeled and visualized as
changes in the geometry of basins of attraction. Figure 5 shows a graphical representation
of a hypothetical individual for whom a state variable (e.g., positive affect) is regulated as
a flat–bottomed comfort zone in youth becomes regulated with more strength in middle
age and finally exhibits a high degree of regulation in older age. In this case, we would
predict decreasing range of the variable in old age as the areas in blue become larger — the
older individual in this figure feel more need to exert regulation over behavior because he
or she would be less comfortable with a wide range of values of behavior before regulation
would be required. Please note that this example is only for didactic purposes and is
not empirically estimated. The literature is, as yet, lacking good examples of longitudinal
change in individual dynamics. Note that this sort of developmental change in basin of
attraction bears more than passing resemblance to the notion of an epigenetic landscape
first proposed by Waddington (1957) as a theory for gene–environment interactions.
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Individual differences and intraindividual change in regulation can be described as
optimization of methods for achieving a goal. Optimization in this regards refers to the idea
that regulatory methods may be chosen and emphasized so as to optimize the geometry of
an attractor basin around a selected goal, an equilibrium. An individual can have control
of her or his goal, select the methods by which to regulate, and select the amount of
regulation to exert. Thus the dynamical systems view adds a new dimension to the idea of
optimization: it is not only important to understand which methods are being employed,
but also the parametric degree to which they are emphasized and the functional form the
dynamic regulation takes (e.g., the differences between Figures 1–a, b, c, and d.

Within a dynamical systems framework, selection and optimization take on additional
nuanced meaning. Selection can be selection of equilibrium (i.e., goal), selection of opti-
mization method, as well as degree to which that optimization is applied. Optimization is
represented by the shape of the regulatory attractor, but the attractor shape can change
over time and potentially undergo bifurcation. In turn, as described previously, bifurca-
tion will imply both new opportunities for equilibrium value selection as well as necessary
changes in attractor strength during the bifurcation process.

An example hypothesis related to bifurcation and intraindividual change in regulation
is that transition from in–home living to an assisted living facility would be expected to be
accompanied by temporary reduction in self–regulation of affect. The introduction of a set
of new attractors (the opportunities for daily routines in the assisted living facility) would
necessarily require extinguishing the previous set of attractors (daily in–home routines) and
during that bifurcation process, a shallow attractor surface would form, in turn implying
greater variability in regulatory processes. To the extent that affect self–regulation is cou-
pled with daily routines, highly variable affect during the transition would be expected.
This is a testable hypothesis using differential equation models for affect regulation.

Stable Regulatory Dynamics with Change in Behavioral Indicators

There are many instances where we could expect to see intraindividual change in
equilibria and/or change in regulation coupled to the environment. For instance, environ-
mental contexts tend to change over time. Environmental change might be continuous over
a short or long time–frame, or change might also be discontinuous. Continuous short–term
environmental changes include diurnal, weekly, and monthly cycles as well as job or social
stressors and rewards. Longer term continuous environmental changes can include seasonal
cycles, accrual of savings, or age–related decline in cognitive abilities. As examples of dis-
continuous change, a person might change marital status, move from one part of a city to
another, change jobs, retire, or move to an assisted living facility. Social and family environ-
ments may change — children leave home, marry, and start families of their own. A spouse
might pass away, leaving an individual as a widow or widower. Physical challenges can also
be the source of environmental change: an individual might break a leg and thus need to
find alternate methods of transportation, a heart attack or other disease might constrain
exercise options, or onset of diabetes might require changes in diet.

In response to environmental changes, individuals may regulate their behavior using
intrinsic dynamic mechanisms as described in the two preceding sections. However, when
environmental change affords entirely new opportunities or removes the possibility of contin-
uing existing habits, individuals can adapt by making fundamental changes to their habitual
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behavior. Behaviors that had been used as a methods for regulation may be dropped and
other behaviors selected and habitualized.

These ideographic dynamic changes can be described within the framework of selec-
tion, optimization, and compensation. However, selection, optimization, and compensation
are frequently characterized in terms of discontinuous change rather than within the context
of continuous adaptation between behavioral indicators. That is to say, part of a regulatory
strategy relative to an equilibrium might include adapting which behaviors are applied. For
instance, a goal of health through exercise might be maintained through a variety of behav-
iors. By increasing the frequency of one behavior while decreasing the frequency of another
behavior, one could maintain a constant regulation of cardiovascular health even though
the behaviors were changing over time. Such regulation could be viewed in the framework
of compensation: if one form of exercise became more difficult with age, one might continue
to optimize cardiovascular health by selecting a new form of exercise. Aging knee joints
might begin to preclude running while low impact exercise like swimming could substituted.
This type of substitution does not imply a bifurcation of the attractor since the regulatory
goal (i.e., equilibrium point) and strength of regulation (i.e., attractor basin shape) might
remain constant while the observed behaviors change. The language of dynamical systems
helps provide nuance to the meaning of selection, optimization and compensation.

In order to test hypotheses related to this type of behavioral substitution in the pres-
ence of stable equilibria and regulation, it is necessary to be able to fit a model in which
the relationships between latent derivatives (i.e., the differential equation) remains con-
stant while indicators for the latent variables change over time. Nesselroade and colleagues
(Nesselroade, Gerstorf, Hardy, & Ram, 2007) have proposed ideographic filtering methods
for dealing with latent variables whose manifest indicators may differ between individuals
or within an individual over time. The basic premise of these methods is that the meaning
of a latent variable (e.g., cardiovascular health, well–being, or quality–of–life) may remain
stable, as defined by covariances between several latent variables, whereas the behaviors
that people select to express the latent construct may be fungible over time. Ideographic
filtering applied to dynamical systems models implies that underlying regulatory mecha-
nisms remain invariant while the way in which dynamics are manifested may differ between
individuals or within an individual over time.

Coupled Dynamics

We have as yet limited ourselves to univariate dynamics — systems in which there is
only a single latent construct with intrinsic dynamics. Clearly, this is a gross simplification
of the complexity of human behavioral and developmental processes. Two or more processes
may be involved — each process regulating itself as well as co–regulating processes with
which it is coupled. This is what is known as coupled dynamics. The coupled processes
might be within one individual or between two or more individuals.

As an example of coupled processes within an individual, consider eating behavior
and ovarian hormones in young women (Klump et al., in press). Daily measures of eating
behavior, estradiol, and progesterone show patterns of coupling when modeled using dy-
namical systems analysis (Hu, Boker, Neale, & Klump, in review). In addition, individual
differences in emotional reactivity appear to be related to the strength of coupling between
eating and ovarian hormones. As women age, their ovarian hormone cycles change, leading



SELECTION, OPTIMIZATION, COMPENSATION, AND EQUILIBRIUM DYNAMICS 15

to menopause. In coupled systems, we can test hypotheses of age–related changes in both
the intrinsic dynamics of each component of the system, but also in the strength of coupling.

Coupled processes may also be used to model relationships between individuals. For
instance, married couples express day–to–day variability in their need for intimacy in their
relationship (Laurenceau, Rivera, Schaffer, & Pietromonaco, 2004). Each partner in the
couple may have an intrinsic dynamic that regulates their need for intimacy given their
previous day’s need, recent events external to the marriage, and their perceptions of their
spouse’s needs. Each married pair can be considered to be (literally) a coupled system. The
coupling strengths of husband–to–wife and of wife–to–husband are parameters in which we
may observe individual differences (Boker & Laurenceau, 2005). It is also likely that devel-
opmentally related changes in these coupling strengths would be observed within couples
over time. As a married couple develops into older adulthood, we are also likely to see in-
traindividual change in the manner in which intimacy is expressed even while the pairwise
coupled dynamic stays reasonably stable.

One exciting application of coupled dynamics is to systems with multiple time–scales.
For instance, short–term regulation in stress may be coupled with longer–term develop-
mental change in health outcomes (Ong et al., 2009). Rather than looking at a simplistic
model where the level of a point equilibrium in stress is predictive of a later health–related
equilibrium level, a dynamical systems model uses the means and covariances of equilibrium
levels, regulatory mechanisms, and coupling strengths to test hypotheses. Thus, a model
can be fit in which developmental change in health has an effect on stress regulation while
simultaneously stress regulation has an effect on developmental change in health. Coupled
feedback hypotheses in multi–timescale relationships between variables such as health and
stress are both reasonable and testable using dynamical systems analysis.

Methods and Models for Dynamical Systems Analysis

There is a rapidly growing literature describing methods for specifying and fitting
dynamical systems models. While the scope of the current article precludes an in–depth
introduction to these methods, a short introduction and guide to some of the relevant
literature follows. In this section we also present a grid of some of the possible dynamical
systems modeling methods that could be applied for testing hypotheses about selection,
optimization and compensation.

The basic idea behind a dynamical systems model is that one or more equations are
specified that relate the time derivatives of selected variables to one another; that is to
say, one or more differential equations are specified. For instance, if the slope with respect
to time of a variable is proportional to its distance from equilibrium, a first order linear
differential equation results,

ẋ = ζx+ e , (1)

where ẋ is the first derivative of x with respect to time. When ζ is negative, the resulting
dynamic is one of exponential decay (see Boker, 2012, for a short introduction). Second
order linear differential equations,

ẍ = ζẋ+ ηx+ e , (2)

allow for oscillation about an equilibrium in a manner that can model resiliency with char-
acteristics of elasticity (see Boker, Montpetit, Hunter, & Bergeman, 2010, for a discussion
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of resiliency, elasticity, and differential equations). Linear coupled systems can be modeled
as systems of first and second order equations (see Boker & Laurenceau, 2007; Hu et al.,
in review, for examples). More complex models include examples of nonlinear differential
equations (Thompson & Stewart, 1986).

In order to test a dynamical systems hypothesis, repeated observations are required
for each participant in a study. These repeated observations could range from time series
output by physiological measurement devices to daily diary questionnaires to longitudinal
observations over a series of years. There must be sufficiently intensive measurement of
each individual in order to identify individual differences in dynamics. The number of
observations required per individual will depend on the internal reliability of measurement
device or scale, the amount of variability shown by each individual, the effect sizes of the
parameters of the differential equation model, and how well the time scale of measurement
matches the time scale of the process. The first of these three requirements are familiar
to those who have performed power analyses. However, the last requirement, known as
the Nyquist Limit (Luke, 1999), is unique to dynamical systems modeling. An incorrectly
specified interval of measurement can completely miss a fluctuating process (Nesselroade
& Boker, 1994). In practice, differential equation models of psychological processes have
identified reliable individual differences in dynamics with as few as 25 observations per
individual (Bisconti et al., 2006). But note that when estimating differential equations, the
power obtained by adding an additional repeated observation for each person can greatly
outweigh the power obtained by adding the same number of observations spread across
more participants (Oertzen & Boker, 2010).

There are a wide variety of estimation methods for obtaining parameter estimates for
differential equation models. One class of methods involves difference scores (e.g., McArdle,
2001). A second class of models use continuous time specifications of the integral form
of the differential equation with nonlinear constraints on parameters (e.g., Harvey, 1989;
Oud & Jansen, 2000; Singer, 1993). Another class of models estimate a latent variable
version of the differential equation (e.g., Boker, Neale, & Rausch, 2004; Boker, 2007) using
a convolution filter (Savitzky & Golay, 1964) and structural equation modeling software.
Latent differential equations have the advantage of being relatively easy to specify and can
be extended to models including moderation, coupling, categorical variables, or mixture
distributions.

Summary

Successful developmental processes have been described in terms of maximization of
gains, minimizations of losses, and resilient maintenance in a dynamic conditioned by age,
cultural, and personal factors (P. B. Baltes et al., 1999). To put this in terms of continuous
time dynamical systems, gains are positive first derivatives with respect to time, losses are
negative first derivatives with respect to time, maintenance is an attractor basin around
an equilibrium, and conditioning by age, cultural, and personal factors are moderators of
the covariance relations between the derivatives that shape the attractor basin at any one
moment in time.

Developmental and regulatory processes modeled using dynamical systems analysis
can also be considered within the framework of selection, optimization, and compensation.
Figure 4 summarizes this relationship in a grid in which individual differences and intrain-
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dividual change from the point of view of dynamics are crossed with selection, optimization,
and compensation. This grid differentiates between sources of process–oriented variance as
a step towards implementing theories of development and regulation as testable models.

By focusing on the ways in which individuals may differ or change in their regulatory
dynamics, the grid in Figure 4 emphasizes important categories in the way that selection,
optimization, and compensation occur. For instance, selection may occur as it is commonly
phrased: as a selection of behaviors in which an individual engages. But individuals can also
select which regulatory strategy they wish to use or which of several equilibria is preferred.
One obvious application of selection to coupled systems is assortative mating: a choice with
long term developmental consequences.

Similarly, optimization is commonly thought of in terms that correspond to a dy-
namical systems view of intrinsic regulation with respect to an equilibrium. However,
optimization may also be evident in long–term change in an equilibrium set as previously
illustrated in Figures 3 and 5. Optimization can also occur as incremental adjustments of
importance (i.e., weights) associated with particular behaviors, resulting in a time–varying
measurement model for latent constructs. For instance, as an individual ages, he or she
might place less emphasis on work and more on family (or vice versa) in order to optimize
his or her definition of quality of life. Resilience could be framed as optimization of cou-
pling between short–term stress regulation processes and long–term developmental changes
associated with aging — an example of optimization of coupled systems.

Compensation requires some change external to the regulating system, (formally
termed a perturbation), to which the regulatory system responds in a compensatory man-
ner. Compensation as commonly considered is, in dynamical systems terms, a regulation
response to an external perturbation. However, an external perturbation may also influ-
ence the system by effecting change in the shape and/or location of a basin of attraction
about an equilibrium. In this case, the perturbation could be modeled as having produced
a moderating effect on either the parameters of the dynamical system or on the location of
the equilibrium. The perturbation could also produce a moderating effect on loadings of a
measurement model or on the coupling strength between two or more coupled systems.

Selection, optimization, and compensation are concepts that have gained considerable
traction in the adult development and aging literature. One reason that these ideas hold
appeal is that they describe processes that happen to individuals: and thus have the po-
tential to help understand the etiology of developmental changes. Selection, optimization,
and compensation are fundamentally dynamic concepts. We have a brief introduction to
the ideas inherent in dynamical systems analysis: specifically equilibria, basins of attrac-
tion, and differential equation models. These dynamical systems concepts fit well with a
process–oriented theory of selection, optimization and compensation. By focusing on how
individuals’ dynamics may differ from each other and change over time, we have proposed a
way to improve the specificity with which individual differences in selection, optimization,
and compensation can be categorized. Dynamical systems modeling of individual differ-
ences and intraindividual changes in equilibria and in attractor dynamics provides a way
to integrate subjective experience of regulation relative to a set of goals and the functional
resources and activities required to maintain stability.
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