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Abstract
This paper introduces an Item Factor Analysis (IFA) module for
OpenMx, a free, open-source, and modular statistical modeling package
that runs within the R programming environment on GNU/Linux, Mac
OS X, and Microsoft Windows. The IFA module offers a novel model
specification language that is well suited to programmatic generation
and manipulation of models. Modular organization of the source code
facilitates the easy addition of item models, item parameter estimation
algorithms, optimizers, test scoring algorithms, and fit diagnostics all
within an integrated framework. Three short example scripts are pre-
sented for fitting item parameters, latent distribution parameters, and
a multiple group model. The availability of both IFA and structural
equation modeling in the same software is a step toward the unification
of these two methodologies.
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Introduction

When a test consisting of items is administered, it is desirable to understand
what those items measure. Furthermore, if a test is to be summarized as a single
score, the items should assess a single latent dimension. This is especially important
for computer adaptive testing because each examinee may receive a different set
of items intended to measure the same latent ability. These issues have received
attention in the literature since at least the 1950s. However, it was the publication
of the marginal maximum likelihood algorithm (MML; Bock & Aitkin, 1981) and the
increasing availability of computing power that opened the way for efficient analysis of
practical problems grounded with a sound theoretical footing. With demonstrations
of the flexibility and sensitivity of MML for modeling tests and questionnaires (e.g.,
Bock, Gibbons, & Muraki, 1988), full-information item factor analysis (IFA) has
grown in popularity.

A wide variety of software is available for estimation of IFA models. Examples
include ConQuest (M. L. Wu, Adams, Wilson, & Haldane, 2007), EQSIRT (E. J. C.
Wu & Bentler, 2012), flexMIRT (Cai, 2012), IRTPRO (Cai, Thissen, & du Toit, 2011),
and mirt (Chalmers, 2012). In light of the many excellent choices already available,
it may be surprising that there is an opportunity for new IFA software. Even so,
the present article introduces the availability of IFA software that is substantially
different from what is currently available.

Why new software for IFA?

Modular design is an important software attribute that has been neglected by
current IFA software. Modular software is written such that each section of code
operates independently and is accessed via a well-defined interface. A benefit of mod-
ularity is that many programmers can work on the code simultaneously as long as
each module maintains the expected behavior of its interface. Our new IFA software
is itself a module within OpenMx (Boker et al., 2011), a free and open-source software
originally designed for structural equation modeling (SEM). OpenMx runs inside the
R statistical programming environment (R Core Team, 2014) in heterogeneous com-
puting environments. Similar to the OpenMx style of model specification for SEM, the
IFA module offers a novel model specification language.

Open-Source

OpenMx is open-source; hence, the source code is available for everybody to
view, modify, and use. In order to help organize a community around the project,
the OpenMx team maintains a web site (http://openmx.psyc.virginia.edu) that hosts
binary and source versions of the software and several forms of tutorials and reference
documentation. Help with OpenMx is available on the web site from discussion forums
and a community-maintained Wiki.

http://openmx.psyc.virginia.edu
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OpenMx is not the only open-source software for IFA. The R package mirt
is also open-source. In fulfillment of some of the claimed benefits of open-source
software, a friendly exchange of code and ideas has taken place between OpenMx
and mirt (Pritikin, 2014). The OpenMx team welcomes contributors and encourages
cross-pollination between implementations. Of course, open-source software is peer-
reviewed. In many software engineering projects, peer-review has led to more reliable
and higher quality software in comparison to a closed-source approach (Aberdour,
2007).

Heterogeneous Computing Environments

OpenMx runs on a variety of operating systems including GNU/Linux, Mac OS
X, and Microsoft Windows. OpenMx scripts that are written on one operating sys-
tem can be used on other operating systems without modification. This platform-
independence is useful in today’s heterogeneous computing environments, where each
researcher on a team may have a different preferred computing platform. Moreover,
since OpenMx is free, no license obligations hinder the use of OpenMx on computer
clusters or exotic supercomputers.

Model Specification

While IFA software has grown more capable, model specification generally fol-
lows a structure that have changed very little since the 1980s. Specification of IFA
models is generally accomplished with a serially ordered script written in a domain
specific language unique to a particular software package. One of the key innovations
in the design of OpenMx was the recognition that models can be specified directly in R,
leveraging the fact that R is interactive and offers a full programming language. One
may use OpenMx without changing one’s conception of model building, engaging in
programming minimally. However, consider the challenge of specifying nominal item
models for testlets.

The nominal model (e.g., Thissen, Cai, & Bock, 2010) is defined as,

a = Taα

c = Tcγ

Pr(pick = k|s,θ, ak, ck) = C
1

1 + exp(−(sθak + ck))

where the kth entry of a and c are the result of multiplying two vectors of free
parameters α and γ by fixed matrices Ta and Tc, respectively; a0 and c0 are fixed
to 0 for identification; and C is a normalizing factor such that ∑

k Pr(pick = k) = 1.
For locally dependent items that share a common stimulus, Thissen, Steinberg, and
Mooney (1989) suggested fitting a nominal item model to their sum-score. Orthogonal
polynomial contrasts were used for the Ta and Tc matrices. To avoid overfitting, a
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proportion of the αk and γk parameters were fixed to zero and the remainder estimated
as free parameters, typically obtaining satisfactory fit with a less than full-rank model.

The specification of such nominal items is somewhat labor intensive. The trans-
formation matrices, Ta and Tc, depend on the number of outcomes and the proportion
of free parameters may be controlled by freeing or fixing individual parameters. A
function is given in Appendix A that takes as arguments a dataset, the item name,
the number of factors, the proportion of full-rank of α, and proportion of full-rank of
γ. This is a simpler interface because, conceptually, these are the form of the param-
eters that a user wants to control and the user has direct control of them. Granted,
there is nothing that precludes an analyst from writing a similar function for any IFA
software package. However, this is often regarded as extra work and is rarely, if ever,
done.

Automation of the specification of nominal testlet items is one example of the use
of programming to ease a modeling task. One of the main contributions of OpenMx has
been to encourage treatment of statistical models and their components as things that
can be generated and manipulated within a programming environment. The OpenMx
IFA module also uses this style of model specification. Not all users will prefer to
exploit such a low-level user interface. Our goal is to extend the range of utility in both
directions, toward both expert and novice users. Sophisticated users are empowered to
build non-standard models or to simplify application of routine analyses by developing
higher level interfaces. For example, the metaSEM package (Cheung, 2014) simplifies
the specification of OpenMx models for meta-analysis. A similar package could simplify
the specification of nominal testlets to make the technique simpler for non-specialists
to put into practice.

Modular Components

OpenMx is written using modular programming techniques in the R and C++ lan-
guages with the intent that it will be maintained and extended by members of the
research community. The core programming team helps and encourages statistical
and quantitative researchers to add their research projects to the larger OpenMx frame-
work. We believe that nurturing a sustainable community around OpenMx is essential
to the project’s long-term prosperity (Nakakoji, Yamamoto, Nishinaka, Kishida, &
Ye, 2002). In order to work on part of OpenMx, one does not need to understand the
inner workings of all other modules; it is only necessary to understand and adhere to
the interface of the thing that one wishes to customize or extend. Although OpenMx
originally focused on SEM, the scope of OpenMx is often stretched in new directions,
expanding its scope (e.g., state-space modeling, Hunter, 2014). The IFA module is
another instance of this happening. In creation of the IFA module, economy of effort
was realized by leveraging the existing model specification and data handling meth-
ods already built into OpenMx. The IFA module, in turn, adds a new set of interfaces
that can be customized and extended. Those who practice basic research on IFA are
invited to incorporate their research projects into the OpenMx IFA module.
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Item Models

The IFA module of OpenMx relies on the RPF package for response probability
functions (Pritikin, Chalmers, Weeks, Cai, & Houts, 2014). Three functions are
currently available: the 4PL dichotomous response model (Loken & Rulison, 2010),
graded response model (Samejima, 1969), and nominal response model (Thissen et
al., 2010). Of course, the 1PL, 2PL, 3PL, partial credit model (Masters, 1982), and
generalized partial credit model (Muraki, 1992) can be constructed as restrictions
of the available models. All models use the logistic metric and a multidimensional
parameterization.

The community is invited to expand the list of available models. All that is
required to add a new response probability function is to contribute computer code
to implement the RPF interface (see Table 1). Beyond this modular interface, no
additional computer code is required to add a new type of item model. From the
point of view of the rest of the software suite, a new item model is indistinguishable
from any of the 3 original item models. Item estimation and fit statistics would work
seamlessly with a new item model just as they do with the item models that are
currently implemented.

Item Parameter Estimation

Item parameters are optimized using MML (Bock & Aitkin, 1981) with an
equal interval quadrature. For a convenient performance boost, automatic detection
of two-tier covariance structure is implemented (Cai, 2010a). Bayesian priors of any
functional form can be placed on any parameter. As per usual SEM practice, a free
parameter can be fixed to a constant or equated with other free parameters. Precision
of estimates (e.g., standard errors) can be assessed by the direct method (Oakes,
1999), covariance of the row-wise gradients, Richardson extrapolation (Jamshidian
& Jennrich, 2000), Supplemented EM (Meng & Rubin, 1991; Tian, Cai, Thissen, &
Xin, 2013), sandwich-type covariance (Louis, 1982; Yuan, Cheng, & Patton, 2013),
likelihood-based confidence intervals, and bootstrap. Accuracy of parameter recovery
and standard errors is indistinguishable from accuracy reported by Cai, Yang, and
Hansen (2011). However, users are encouraged to verify our accuracy claims for
themselves. A number of ready-to-run simulation studies are included with OpenMx,
including both simulation studies from Cai, Yang, and Hansen (2011).

Optimizers

IFA is closely related to factor analysis (Kamata & Bauer, 2008; Takane & De
Leeuw, 1987). However, IFA makes the simplifying assumption of conditional inde-
pendence (Equation 1) to achieve higher performance. The Hessian of the completed
data model is block diagonal (Cai, 2010b). OpenMx takes full advantage with a block-
wise matrix inversion routine and Newton-Raphson optimizer. To demonstrate and
exercise this code, a test in the OpenMx test suite routinely fits a model with 1536
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2PL items. This test completes in 17 s on a developer laptop, less than the time it
takes to invert a 3072×3072 matrix once on the same hardware. MML offers remark-
able efficiency but at the cost of flexibility. To compute likelihood-based confidence
intervals, a general non-linear optimizer is required.

OpenMx currently offers two non-linear optimizers: NPSOL (Gill, Murray, Saun-
ders, & Wright, 1986) and CSOLNP (Zahery, Gillespie, & Neale, 2014). Since op-
timizers use a modular interface, a non-linear optimizer can be substituted for the
Newton-Raphson optimizer in the M-step of MML or can optimize an IFA model
directly without MML. The non-linear optimizers are much slower than Newton-
Raphson but can optimize a much broader class of problems. The ability to switch
optimizers can also simplify debugging. For example, if Newton-Raphson cannot solve
a problem then it is a simple matter to check whether NPSOL can solve it. NPSOL
tries to optimize the fit function without the use of analytic derivatives. If NPSOL
cannot solve it either then, most likely, there is a mistake in the problem specification.

Test Scores

Examinee scores can be obtained with expected a posteriori (EAP; Bock &
Mislevy, 1982), maximum a posteriori (MAP), and sum-score EAP (Thissen, Pom-
merich, Billeaud, & Williams, 1995) methods. However, the user interface is different
than what many traditional IFA packages offer (e.g. menu options or buttons). EAP
family scores do not involve optimization whereas MAP scores do. Therefore, EAP
family scores are available from the RPF package, while MAP scores involve running
an OpenMx optimization function. This seemingly minor difference is of great philo-
sophical importance to the OpenMx design team. OpenMx is intended to accurately
reflect the underlying mathematical process. We believe that closely following the
math is the best way to avoid designing ourselves into a corner. Our users expect
their data analysis scripts to continue working year after year, even as we add features
and evolve the software. If we design ourselves into a corner then we will be forced to
break backward compatibility and users will be forced to update their scripts. This
means that some of the OpenMx IFA interfaces are not as streamlined as most other
IFA software in popular use. One could regard OpenMx as a middle layer to support
a point-and-click style IFA user interface for analysts who are satisfied with fitting
an occasional single factor 2PL model. On the other hand, we believe sophisticated
users will appreciate the power and consistency of the OpenMx approach when building
intricate or non-standard models.

Fit Diagnostics

OpenMx offers popular model fit statistics for IFA models including CFI, TLI,
RMSEA, AIC, and BIC, consistent with treatment of structural equation models.
In addition, the RPF package includes IFA specific diagnostic tests. These include a
test of the assumption of conditional independence (W.-H. Chen & Thissen, 1997),
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a sum-score-based test of item fit (Kang & T. T. Chen, 2008; Orlando & Thissen,
2000), and a full-information multinomial fit test (Bartholomew & Tzamourani, 1999).
These tests are optimized for two-tier covariance structure. Also available are Rasch
residual-based fit statistics (Wright & Masters, 1982). Consistent with our theme of
modularity, each diagnostic procedure is an independent R function. Easy access to
single tests make it straightforward to verify the uniformity of the null distribution
or compute a bootstrap p-value.

Example Scripts

Before we present the scripts, a brief review of IFA models will be helpful. The
conditional likelihood of response xij to item j from person i with item parameters
ξj and latent ability θi is

L(xi|ξ, θi) =
∏
j

Pr(pick = xij|ξj, θi). (1)

One implication of Equation 1 is that items are assumed to be conditionally indepen-
dent given the latent ability θ. That is, the outcome of one item does not have any
influence on another item after controlling for ξ and θi. The unconditional likelihood
is obtained by integrating over the latent distribution θi,

L(xi|ξ) =
∫
L(xi|ξ, θi)L(θi)dθi. (2)

With an assumption that examinees are independently and identically distributed,
we can sum the individual log likelihoods,

L =
∑

i

logL(xi|ξ). (3)

One important observation about Equation 3 is that there are two kinds of
parameters. There are item parameters ξ and latent distribution parameters θ of the
participants. For didactic purposes, we will start with a model for item parameters ξ
and neglect the latent distribution, assuming that the latent distribution is standard
multivariate normal. Once there is some experience with item models, we will fix
item parameters and focus on estimating latent distribution parameters. Finally, an
example will be given of a model that estimates both item and latent distribution
parameters simultaneously.

Readers familiar with prior versions of OpenMx know that only one strategy was
available to find the maximum likelihood estimate and obtain an estimate of the in-
formation matrix. Many more options are available for IFA models. To accommodate
the additional choices, the user can attach an explicit compute plan to a model. The
compute plan is flexible way to communicate to OpenMx which operations to perform.
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Item Parameters

Suppose you regularly administer the PANAS (Watson, Clark, & Tellegen,
1988), but instead of scoring participants by adding up the item scores, you want
to try IFA. Here is how you might do it. Without loss of generality, we will only
consider the positive affect part of the scale.
1 l i b r a r y (OpenMx) # load the OpenMx and RPF packages in t o R
2 l i b r a r y ( rp f )
3

4 spec <− l i s t ( ) # spec w i l l map item models to data columns
5 # rp f . grm c r e a t e s a graded response item model
6 spec [ 1 : 1 0 ] <− rp f . grm( outcomes = 5)
7 data <− read . csv ( 'demo1 . csv ' )
8 # Coerce data to ordered f a c t o r s
9 data <− mxFactor ( data , l e v e l s =1:5)

10

11 # make s t a r t i n g va l u e s matrix
12 s t a r t i ngVa lue s <− matrix ( c (1 , seq (1 ,−1 , l ength . out =4)) ,
13 nco l=length ( spec ) , nrow=5)
14 # make an mxMatrix o b j e c t to ho ld the f r e e item parameters
15 imat <− mxMatrix (name= ' item ' , va lue s=sta r t ingVa lue s , f r e e=TRUE,
16 dimnames=l i s t ( names ( rp f . rparam ( spec [ [ 1 ] ] ) ) , colnames ( data ) ) )
17 rownames ( imat ) [ 1 ] <− ' posAff '
18 # Labe l s c r ea t e e q u a l i t y c o n s t r a i n t s
19 imat$ l a b e l s [ 1 , ] <− ' s l ope '
20

21 # Give i n s t r u c t i o n s on how to op t imize the model
22 computePlan <− mxComputeSequence ( s t ep s=l i s t (
23 mxComputeEM( expec ta t i on= ' expec ta t i on ' , p r e d i c t= ' s c o r e s ' ,
24 mstep=mxComputeNewtonRaphson ( ) ) ,
25 mxComputeOnce( from= ' f i t f u n c t i o n ' , what= ' i n fo rmat ion ' , how= ' meat ' ) ,

26 mxComputeStandardError ( ) ) )
27 # Construct an mxModel o b j e c t c a l l e d ' panas1 ' con ta in ing data , expec ta t i on ,
28 # f i t func t ion , and compute p lan .
29 panas1 <− mxModel ( model= ' panas1 ' , imat ,
30 mxData( observed=data , type= ' raw ' ) ,
31 mxExpectationBA81 ( ItemSpec=spec ) ,
32 mxFitFunctionML ( ) , computePlan )
33 panas1 <− mxRun( panas1 , s i l e n t=TRUE) # run the model
34 summary( panas1 ) # p r i n t a summary o f the r e s u l t s
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The item parameters are stored in the item matrix with 1 item per column
(line 15). Regardless of item model, the first rows contain the factor loadings. The
exact parameterization of the graded response model used (lines 6 and 13) is given
in the RPF package (Pritikin et al., 2014). We use traditional parameter names from
the item model except for the first row where we override the name with the name
of our factor (line 17). An equality constraint is placed on the parameters in the
first row of the item matrix by giving them a label of slope (line 19). This causes
the estimation of a Rasch model instead of unconstrained 2PL items. The compute
plan (line 22) tells OpenMx what we want to do with the model. The default compute
plan is to optimize the parameters of a model using a non-linear optimizer. This
is usually suitable for structural equation models, but for IFA models, it is much
more efficient to use the Expectation-Maximization algorithm (Dempster, Laird, &
Rubin, 1977). We must request this explicitly with mxComputeEM (line 24). The
information matrix is approximated by the inverse of the covariance of the row-wise
first derivatives (line 25). This estimate is called meat because it also forms the inside
of a sandwich covariance matrix (White, 1994). The last of step the compute plan,
mxComputeStandardError (line 26), summarizes the information matrix as standard
errors.

Latent Distribution Parameters

Suppose an enterprising researcher has administered the PANAS to a large
sample from the general population, fit an item model to these data, and published
item parameters. You are testing an experimental intervention that should increase
positive affect and wish to check whether your sample has significantly more positive
affect than the general population mean.

35 # Here we are going to reuse the item parameters from our f i r s t
36 # example . Ins t ead o f e s t ima t ing them , we are going to f i x
37 # them and assume t h a t they are the t rue popu la t i on parameters .
38 panas1$ item $ f r e e [ , ] <− FALSE
39

40 # s e t up the matr ices to ho ld our l a t e n t f r e e parameters
41 m. mat <− mxMatrix (name= 'mean ' , nrow=1, nco l =1, va lue s =0, f r e e=TRUE)
42 rownames (m. mat) <− ' posAff '
43 cov . mat <− mxMatrix (name= ' cov ' , nrow=1, nco l =1, va lue s=diag ( 1 ) , f r e e=TRUE)
44 dimnames ( cov . mat) <− l i s t ( ' posAff ' , ' posAff ' )
45

46 # b u i l d the item par t o f the model
47 data <− read . csv ( 'demo2 . csv ' )
48 # Coerce data to ordered f a c t o r s
49 data <− mxFactor ( data , l e v e l s =1:5)
50 panasModel <− mxModel ( model=panas1 , m. mat , cov . mat ,
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51 mxData( observed=data , type= ' raw ' ) , name= ' panas ' )
52

53 # b u i l d the l a t e n t d i s t r i b u t i o n par t o f the model
54 latentModel <− mxModel ( model= ' l a t e n t ' ,
55 mxDataDynamic ( type= ' cov ' , expec ta t i on= ' panas . expec ta t i on ' ) ,
56 mxExpectationNormal ( covar iance= ' panas . cov ' , means= ' panas . mean ' ) ,
57 mxFitFunctionML ( ) )
58

59 computePlan <− mxComputeSequence ( s t ep s=l i s t (
60 mxComputeEM( expec ta t i on= ' panas . expec ta t i on ' , p r e d i c t= ' s c o r e s ' ,
61 mstep=mxComputeGradientDescent ( f i t f u n c t i o n= ' l a t e n t . f i t f u n c t i o n ' ) ) ,

62 mxComputeConfidenceInterval ( ) ) )
63

64 # b u i l d the conta iner model
65 e1Model <− mxModel ( model= ' experiment1 ' , panasModel , latentModel ,
66 mxFitFunctionMultigroup ( ' panas . f i t f u n c t i o n ' ) ,
67 mxCI( ' panas . mean ' ) ,
68 computePlan )
69 e1Model <− mxRun( e1Model , s i l e n t=TRUE) # run the model
70 summary( e1Model ) # p r i n t a summary o f the r e s u l t s

If you want to run this code on your own computer, note that this example is not
self-contained but depends on the previous example. Inside the M-step (line 61), the
latent distribution of an IFA model is independent of item parameters (Cai, 2010b).
The discrete masses accumulated in the quadrature are converted to a multivariate
normal distribution by mxDataDynamic (line 55). The model multivariate normal
distribution is fit against these dynamic data by mxExpectationNormal (line 56).
Since the latent model does not have any constraints, the optimizer will find a model
distribution that is essentially identical to the data distribution. However, this is not
generally the case. Within the M-step, we can fit an arbitrary structural equation
model to the data covariance and mean vector. In fact, mxExpectationNormal is
exactly the same function that we could use to specify a SEM. The compute plan
(line 59) tells OpenMx what we want to do with the model. It is necessary to specify
an explicit compute plan because there are more choices to make than can be ac-
commodated by the default plan. mxComputeGradientDescent invokes a non-linear
optimizer (line 61). Our use of mxFitFunctionMultigroup is not strictly necessary
(line 66). This fit function is used because it generalizes to more than 1 group (as
in Appendix B). We request a likelihood-based confidence interval around the mean
(using mxCI) to obtain a more robust test of our hypothesis than we could expect
from a Wald test (line 67).
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Item and Latent Distribution Parameters

The reader may be aware that other IFA software is more succinct when it
comes to model specification. Only a single line of R code is required to fit our
first example with mirt. The benefits of the OpenMx approach become apparent in
the specification of more intricate models. Multiple group models often involve one
group anchored to a standard normal distribution with latent distribution parameters
of the other groups estimated relative to the anchoring group. An example is given
in Appendix B that is approximately a combination of our first two examples. The
specification is lengthy, but the user has control over every detail. As few as another
10-20 lines of R code are required to turn this example into a Monte Carlo study to
predict statistical power at a range of candidate sample sizes (e.g., Kelly et al., in
press).

Discussion

OpenMx is an open-source statistical modeling software package with IFA and
SEM modules that runs in the R statistical computing environment. The IFA module
builds on a strength of the OpenMx design wherein a full programming language is used
for model specification. The IFA engine (Bock & Aitkin, 1981) has been carefully
tuned to perform well on multicore hardware (Levon, 2014; Valgrind Developers,
2014) and can fit a wide variety of multidimensional IFA models. Once an IFA model
is fit, a selection of factor scores, fit statistics, and diagnostic tests are available.

Projects like OpenMx are never fully completed and the IFA module is no ex-
ception. For higher-dimensional models, the Metropolis-Hastings Robbins-Monro al-
gorithm (Cai, 2010b) would make a useful addition since Bock and Aitkin (1981)
becomes impractically slow as the number of dimensions increase (the curse of di-
mensionality). Once we can efficiently estimate models with more factors then it
would be a straightforward extension to allow RAM (McArdle & McDonald, 1984) or
LISREL (Jöreskog & Van Thillo, 1972) notation to model the mean and covariance
matrix. The assumption that the latent distribution is multivariate normal could
be relaxed using splines (Woods, 2006) or empirical histograms (Woods, 2007). A
limited-information goodness of fit test (e.g. Cai & Hansen, 2013) would be help-
ful since the full-information test performs poorly as the number of items increase.
Scripts to automate exploration of differential item function and test linking would
ease these common tasks.

The current article only briefly covers the many features and facilities of OpenMx.
To learn more, obtain a free download of the software, and participate in the forums
please go to http://openmx.psyc.virginia.edu (Boker et al., 2011).

Conclusions

OpenMx, a freely available open-source statistical software package, is now ca-
pable of estimating IFA models via MML. However, datasets often include other

http://openmx.psyc.virginia.edu


MODULAR OPEN-SOURCE IFA 12

indicators measured on an interval or ratio scale. For example, in an educational con-
text, students are often recorded with an age and a socioeconomic score. Educators
want to understand how school performance is influenced by demographic factors in
a general SEM setting. There is some work in this direction (e.g., Adams, Wilson, &
Wang, 1997). However, at the time of writing, there is still no consensus on how to
best combine IFA and SEM approaches without resorting to Monte Carlo methods
(Cai, 2013). The availability of an IFA algorithm within capable, open-source SEM
software is a step toward the unification of IFA and SEM. We hope OpenMx will spur
research into a more satisfactory reconciliation of these two methodologies.
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Appendix A
Nominal Item Model, Testlet Construction

71 l i b r a r y (OpenMx) # load the OpenMx and RPF packages in t o R
72 l i b r a r y ( rp f )
73 nomina lTest l e t <− f unc t i on ( data , name , f a c t o r s , aRank , cRank ) {
74 l e v <− l ength ( l e v e l s ( data [ [ name ] ] ) ) # f i n d the number o f outcomes
75 spec1 <− rp f . nrm( lev , f a c t o r s ) # crea t e a nominal item model
76 nthresh <− spec1 $outcomes − 1
77

78 # determine which parameters are f r e e

http://valgrind.org/
http://valgrind.org/
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http://dx.doi.org/10.1007/s11336-013-9334-4
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79 f r e e <− rep (FALSE, spec1 $ f a c t o r s + 2 ∗ nthresh )
80 f r e e [ 1 ] <− TRUE
81 base <− spec1 $ f a c t o r s+1
82 i f ( nthresh ∗ aRank >= 1) {
83 f r e e [(1+ base ) : ( base + nthresh ∗ aRank − 1 ) ] <− TRUE
84 }
85 base <− base + nthresh
86 i f ( nthresh ∗ cRank >= 1) {
87 f r e e [ base : ( base + nthresh ∗ cRank − 1 ) ] <− TRUE
88 }
89

90 # s u g g e s t f e a s i b l e s t a r t i n g va l u e s
91 sv <− f r e e ∗ c ( rep (1 , spec1 $ f a c t o r s ) , rep (1 , nthresh ) , rep (0 , nthresh ) )
92 sv [ c (1 , spec1 $ f a c t o r s +1) ] <− 1
93

94 l i s t ( spec1 , f r e e=f r e e , s t a r t i ngVa lue s=sv ) # return r e s u l t s
95 }
96

97 # crea t e some demonstrat ion data and i tems
98 data <− data . frame ( f r u i t f l y=mxFactor ( sample . i n t (5 , 10 , r e p l a c e=TRUE) , 1 : 5 ) ,
99 l i n c o l n=mxFactor ( sample . i n t (6 , 10 , r e p l a c e=TRUE) , 1 : 6 ) )

100 # What the user would do to c r ea t e a nominal t e s t l e t once they had data
101 t1 <− nomina lTest l e t ( data , ' f r u i t f l y ' , 1 , . 1 , . 5 )
102 t2 <− nomina lTest l e t ( data , ' l i n c o l n ' , 1 , . 5 , . 3 )

Appendix B
A Two Group Model, Estimating Item and Latent Distribution Parameters

103 l i b r a r y (OpenMx) # load the OpenMx and RPF packages in t o R
104 l i b r a r y ( rp f )
105 spec <− l i s t ( ) # spec w i l l map item models to data columns
106 # rp f . grm c r e a t e s a graded response item model
107 spec [ 1 : 1 0 ] <− rp f . grm( outcomes = 5)
108

109 g1Data <− read . csv ( 'demo1 . csv ' )
110 # Coerce data to ordered f a c t o r s
111 g1Data <− mxFactor ( g1Data , l e v e l s =1:5)
112

113 # make s t a r t i n g va l u e s matrix
114 s t a r t i ngVa lue s <− matrix ( c (1 , seq (1 ,−1 , l ength . out =4)) ,
115 nco l=length ( spec ) , nrow=5)
116 # make an mxMatrix o b j e c t to ho ld the f r e e item parameters
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117 imat <− mxMatrix (name= ' item ' , va lue s=sta r t ingVa lue s , f r e e=TRUE,
118 dimnames=l i s t ( names ( rp f . rparam ( spec [ [ 1 ] ] ) ) , colnames ( g1Data ) ) )
119 rownames ( imat ) [ 1 ] <− ' posAff '
120 # l a b e l item parameters to equate them across groups
121 f o r ( rx in 1 : nrow ( imat ) ) f o r ( cx in 1 : nco l ( imat ) ) {
122 imat$ l a b e l s [ rx , cx ] <− paste ( ' i ' , rx , ' , ' , cx , sep= ' ' )
123 }
124

125 # The l a t e n t d i s t r i b u t i o n o f t h i s group i s f i x e d to s tandard normal .
126 anchor <− mxModel ( model= ' anchor ' , imat ,
127 mxData( observed=g1Data , type= ' raw ' ) ,
128 mxExpectationBA81 ( ItemSpec=spec ) , mxFitFunctionML ( ) )
129

130 # s e t up the matr ices to ho ld our l a t e n t f r e e parameters
131 m. mat <− mxMatrix (name= 'mean ' , nrow=1, nco l =1, va lue s =0, f r e e=TRUE)
132 rownames (m. mat) <− ' posAff '
133 cov . mat <− mxMatrix (name= ' cov ' , nrow=1, nco l =1, va lue s=diag ( 1 ) , f r e e=TRUE)
134 dimnames ( cov . mat) <− l i s t ( ' posAff ' , ' posAff ' )
135

136 # b u i l d the item par t o f the 2nd group
137 g2Data <− read . csv ( 'demo2 . csv ' )
138 # Coerce data to ordered f a c t o r s
139 g2Data <− mxFactor ( g2Data , l e v e l s =1:5)
140 panasModel <− mxModel ( model= ' panas2 ' , m. mat , cov . mat , imat ,
141 mxData( observed=g2Data , type= ' raw ' ) ,
142 mxExpectationBA81 ( ItemSpec=spec ) , mxFitFunctionML ( ) )
143

144 # b u i l d the l a t e n t d i s t r i b u t i o n par t o f the 2nd group
145 latentModel <− mxModel ( model= ' l a t e n t ' ,
146 mxDataDynamic ( type= ' cov ' , expec ta t i on= ' panas2 . expec ta t i on ' ) ,
147 mxExpectationNormal ( covar iance= ' panas2 . cov ' , means= ' panas2 . mean ' ) ,
148 mxFitFunctionML ( ) )
149

150 # b u i l d the conta iner model
151 groups <− c ( ' anchor ' , ' panas2 ' )
152 mstepPlan <− l i s t (
153 mxComputeNewtonRaphson( f r e e S e t=paste ( groups , ' item ' , sep= ' . ' ) ) ,
154 mxComputeGradientDescent ( f i t f u n c t i o n= ' l a t e n t . f i t f u n c t i o n ' ,
155 f r e e S e t=c ( ' panas2 . mean ' , ' panas2 . cov ' ) ) )

156 cModel <− mxModel ( model= ' conta ine r ' , anchor , panasModel , latentModel ,
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157 mxFitFunctionMultigroup ( c ( ' anchor . f i t f u n c t i o n ' , ' panas2 . f i t f u n c t i o n ' ) ) ,
158 mxComputeEM( expec ta t i on=paste ( groups , ' expec ta t i on ' , sep= ' . ' ) ,
159 p r e d i c t= ' s c o r e s ' , mstep=mxComputeSequence ( s t ep s=mstepPlan ) ) )
160 cModel <− mxRun( cModel ) # run the model
161 summary( cModel ) # p r i n t a summary o f the r e s u l t s

This example uses the same data as the first two examples. However, instead of using
only the first dataset to estimate item parameters (line 30), both datasets combined
influence item parameters. In the mstepPlan (line 152), freeSet is used to partition
the free parameters into item parameters and latent distribution parameters (lines 153
and 155). These two sets of parameters are optimized separately every E-M cycle.



MODULAR OPEN-SOURCE IFA 19

Table 1
Interface for response probability functions.

Method
Descriptive:
Count of non-estimated parameters
Count of estimated parameters
Default upper & lower bounds (if any)

Imperative:
Plausible random parameters
Response probability function

First and second derivatives:
Estimable parameters with respect to the log likelihood
Outcome probabilities with respect to examinee ability
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