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MODELING NOISY DATA WITH DIFFERENTIAL EQUATIONS USING OBSERVED
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Complex intraindividual variability observed in psychology may be well described using differential
equations. It is difficult, however, to apply differential equation models in psychological contexts, as time
series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error.
Furthermore, current methods for differential equation modeling usually consider data that are atypical of
many psychological applications. Using embedded and observed data matrices, a statistical approach to
differential equation modeling is presented. This approach appears robust to many characteristics common
to psychological time series.

Key words: intraindividual variability, differential equation model(s)(ing), time series, damped linear
oscillator, analytic solution(s).

The analysis of time series is critical to answering questions about how, why, and when
individuals change on psychological variables (Nesselroade & Ram, 2004). Classical ergodic
theorems suggest that it is unlikely that models based on cross-sectional data and those based on
intraindividual data will lead to concurrent conclusions (Molenaar, 2004). Modeling of intrain-
dividual variability requires advancement beyond methods commonly used to examine intrain-
dividual change, as methods designed to analyze trends may average over variability of interest
(Boker & Nesselroade, 2002); for example, (latent) growth curve modeling and hierarchical lin-
ear modeling.

Differential equation modeling is one promising methodology for modeling of intraindivid-
ual variability, as it can be used to model person-specific trajectories. Common characteristics
of many psychological time series make unbiased parameter estimation problematic; such char-
acteristics include: short time series (<100 observations), large proportions of measurement er-
ror (>20%), low sampling rates (where smoothing may obscure change of interest), significant
sources of dynamic error (e.g., daily perturbations to the current state of a system), observations
that are unequally spaced in time (e.g., diary data or occasional missing data), and univariate time
series. We present a method that can produce unbiased differential equation model estimates over
a wide range of such conditions by fitting localized estimates solutions or approximate solutions
to a time series. This is done by modifying a common statistical approach where parameters are
estimated by minimizing the differences between an observed matrix and an expected matrix.
Focus is placed on the damped linear oscillator model, due to its potential uses in psychology
as a first-order approximation of many self-regulating systems, although the principles presented
should be applicable to any differential equation model.

Requests for reprints should be sent to Pascal R. Deboeck, Department of Psychology, University of Kansas,
Lawrence, KS, USA. E-mail: pascal@ku.edu
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Differential Equation Modeling

Differential equation models express the relationship(s) between the current state of a system
and its derivatives. Modeling these relationships, rather than the observed trajectories, provide
several advantages including: expression of complex trajectories using linear equations with few
parameters, parameters with meaningful interpretations, parameter estimates that do not depend
on the selection of initial time (# = 0), and vastly differing trajectories for differing individuals
described by a common dynamical system. Parameter estimation of a differential equation model
is often approached by either (1) estimating the parameters directly from a time series using
a model (e.g., Ramsay & Silverman, 2005), or (2) estimating the derivatives of a time series
which are then used to estimate the model parameters (e.g., Boker, Neale & Rausch, 2004).
The first approach works well when variables that change over time are not expected to violate
the dynamics of the system described by a set of differential equation models; examples are
abundant in the physical sciences, where one would not expect a physical object to display a
discontinuous change in position. Such random displacements, often called dynamic error, seem
plausible for many psychological variables due to the occurrence of random, external life events.
The second approach is more appropriate for many psychological applications, as it allows for
modeling of the state space—that is, the instantaneous relationships between observed values and
derivatives—without assuming a specific trajectory (i.e., a lack of dynamic error). Unfortunately,
estimation error variance rapidly increases as higher order derivatives are estimated (Ramsay
& Silverman, 2005). A common approach is to smooth data prior to derivative estimation, but
this implicitly assumes sampling rates which are uncharacteristic high for many psychological
applications.

As most psychological time series include both dynamic and measurement error, an ideal
method would work well with both types of error. We propose that differential equation models
can be fit to observed data while (1) maintaining the advantages of derivative-estimation when
modeling systems with large proportions of dynamic error, and (2) avoiding problems associ-
ated with the estimation of individual derivatives due to measurement error. Paralleling common
statistical approaches, one could minimize the difference between an observed time series and
the expected values for a time series, based on one’s theoretical model. To differentiate this de-
scription from the first general approach previously described (which does not work as well with
dynamic error) to allow for dynamic error, any parameters of the expected matrix that are depen-
dent on time must be estimated for every observation in time; that is, one would need to estimate
a set of observation-specific parameters, in addition to the model parameters. The estimation
of both sets of parameters can be accomplished using a time delay embedded matrix (Takens,
1981), thus allowing for consideration of data with both significant amounts of measurement and
dynamic error.

Damped Linear Oscillator Model

The damped linear oscillator model can be used to describe changes between extreme values
around some equilibrium or “typical” value. As many psychological constructs may be self-
regulating, the damped linear oscillator may be a reasonable first approximation of such systems.
To model an observed time series X = {x1, x2, ..., x;} as a damped linear oscillator, we express
the expected value of each observation. One solution for the differential equation model of a
damped linear oscillator,

d*x 9 dx
=_ = |
i G St (1)
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can be written

x; = Agexp®/? cos(w't + 8),

o =Jw? —12/4,

where x; is the value of some variable at time #, @ describes the frequency of oscillation, ¢
is related to the damping or amplification of the observations, Ag is the amplitude at + = O,
and § is the phase of oscillation at £ = 0. It should be noted that only the real part of ' is
utilized in calculating x;; systems where w? — ¢2/4 < 0 correspond to systems that return or
depart from equilibrium without oscillations occurring. This paper will assume that @ and ¢ are
constant within a time series (model parameters), but that Ag and é are dependent on the time of
observation due to dynamic error (observation-specific parameters).

It is assumed that systems being modeled oscillate. This is apparent in Equation (1), as the
frequency of oscillation is related to the coefficient —w?. Other papers will represent this coef-
ficient using 7 (e.g., Boker & Nesselroade, 2002). Using —w? will constrain the solutions to lie
within the range of systems that may exhibit oscillation; n must be less than zero before oscilla-
tion is possible. While not examined here, models that allow for positive n values would allow
for systems where individuals could be repelled from, rather than attracted to, their equilibrium.

2

Observed and Expected Values

For this model, two observation-specific parameters are estimated for each observation in
addition to the two model parameters. This is accomplished by using localized vectors (e.g., x;—2
to xy42); these localized vectors are the same conceptually as the rows of a time delay embedded
matrix, which is one approach for recreating a state space (Takens, 1981). Embedding matrices
have been used previously in psychology (e.g., Boker, Neale & Rausch, 2004), but such studies
have initially estimated the derivatives of a time series; this can result in correlations between
derivative estimates, which in turn can bias model parameter estimates.

An embedded matrix is created in the same manner as prescribed by other research (Boker
et al. 2004; Takens, 1981). Given the time series x, where X = x1, x2, ..., x7, a five-dimensional
embedding X is created using five replicates of the time series, offset in time by a selected number
of observations. This embedded matrix would have the form:

X1 X2 X3 X4 X5
b%) X3 X4 X5 X6

Xobserved = . . . . . . 3)
XT—-4 XT-3 XT-2 XT—-1 XT

The number of embeddings will depend on the number of parameters being estimated, but should
be close to the minimum required for identification.

The observed matrix will be compared to an expected matrix. Given Equation (2), the first
row of Xexpected 1S €qual to

Agexpt (2812 cos(—2w'tp + 8)
Agexpt (Tl8)/2 cos(—a'ta + 8)
Xexpected[1,] = Ap GXpO cos(6) ,
Agexpt1a)/2 cos(w'tp + 8)
Agexpt P82 cos2w'ta + 8)

o =,/w?—2/4

“)
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assuming ¢t = 0 for the middle observation, and that observations are equally spaced 7 units
apart. The observation-specific parameters Ag and § are estimated by constraining these parame-
ters to be constant within a single row of Xexpected, but not across rows. The model parameters
w and ¢ are constrained to be constant across all rows. Changes of Xexpected Can be made to
accommodate nonconstant w and ¢ parameters, as well as data that are not equally spaced in
time.

Given Xopserved and Xexpected, and a function to be minimized or maximized, estimated pa-
rameters can be produced that allow simultaneously for both dynamic and measurement error.
The minimization of the differences between the observed and expected matrices for differential
equations parallels methods for the estimation of complex nonlinear problems and, therefore, in-
herits similar advantages and disadvantages, for example, the presence of local minima (Ramsay
et al., 2007; Esposito & Floudas, 2000). It should also be noted that we have to create Xexpected
based on an analytic solution for the damped linear oscillator. It is very probable that approx-
imate analytic solutions and numerical methods such as Runge—Kutta fourth order integration
could be used for generating Xexpected-

1. Simulated Example

The simulation that follows examines the robustness of the proposed method when estimat-
ing the w and ¢ parameters of a damped linear oscillator model with time series that may have
characteristics common to much of psychology. The simulated, univariate time series were gen-
erated with a variety of less-than-ideal conditions, including: few observations, large proportions
of measurement and dynamic error, low sampling rates, and unequally spaced observations.

1.1. Methods

1.1.1. Simulated Data Generation Univariate time series were generated using Mathe-
matica (Mathematica, 2005) and the differential equation for a damped linear oscillator (Equa-
tion (1)). Time series of 500 observations were generated for each possible w, from which initial
pairs of x and ig—f were randomly selected, thus quasi-randomly selecting the initial phase of
each time series. Runge—Kutta fourth order numerical integration of the differential equation for
a damped linear oscillator was then used to generate each of the time series. Five values were
selected for the w parameter1 : «/g, ﬁ, «/ﬁ, +/0.125, 4/0.03125. Five values were selected for
the ¢ parameter: —0.10, —0.05, 0.00, 0.05, 0.10.

Independent, normally-distributed observations (i.e., measurement error) were added to each
time series such that the ratio of the variance of the measurement error to the variance of the
signal was either 1:1 or 1:4. Two different lengths of time series were examined: 25 and 50
observations. Time series were generated with both equally and unequally spaced observations.
For cases with equally spaced observations, the forward integration procedure was advanced one
time unit between observations. For cases with unequally spaced observations, the forward inte-
gration procedure was advanced an amount of time randomly drawn from a normal distribution
with mean of 1 and standard deviation of 0.15. All conditions, including three dynamic error
conditions, were crossed for a total of 1000 conditions. Five-hundred time series were generated
for each condition.

The first dynamic error condition consisted of true damped linear oscillators, that is, there
was no dynamic error. In the second condition, as each observation was integrated, a number

1 As the time between observations was selected to be 1, in a true damped linear oscillator these w values correspond
approximately to 2.2, 3.1, 8.9, 17.8 and 35.5 observations measured per cycle, assuming equally spacing of observations
and ¢ = 0. Note that some of the sampling rates are so low that they approach the Nyquist limit.
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FIGURE 1.

Examples of time series generated with different types of dynamic error (grey line) relative to time series with no dy-
namic error (black line). In the top graph (a), both phase and amplitude have a 20% chance of reseting at any particular
observation. In the bottom figure (b), small perturbations occur at every observation, leading to changes in amplitude and
frequency over time.

was randomly drawn from a uniform distribution bounded by 0 and 1. When this value exceeded
a criterion of 0.2, the values of x and 'Zl—’t‘ were randomly reselected from the time series origi-
nally used to randomize the initial conditions. In the third condition, the observed values used to
calculate a subsequent observation was multiplied by a random number from a normal distribu-
tion with a mean of 1 and a variance of 0.2, prior to forward integration of the next observation.
Figures 1a and 1b show examples of the second and third types of dynamic error.

The first dynamic error condition served as a baseline to ensure that unbiased estimates could
be produced with the proposed method. The second type of dynamic error produced sharp, sud-
den changes. The implementation of this dynamic error will result in the phase being randomly
perturbed and the maximum amplitude returned to the initial maximum amplitude occasionally
throughout the time series. The third type of dynamic error produced small, constantly occur-
ring changes. By multiplying previous values by a randomly selected value, rather than adding,
observations closer to equilibrium (zero) are perturbed less than observations at the extremes.

1.1.2. Analysis The matrices, Xobserved and Xexpected, Were generated using five embed-
ding dimensions and Equation 2. Minimization of the sum of squared errors was performed us-
ing the Broyden, Fletcher, Goldarb, and Shanno method (BFGS; Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970) with the function optim () in R (2007). The optimization was
repeated 30 times for each time series with differing starting values. The amplitude A and phase
8 were estimated for each row; w and ¢ were then fixed across all rows. Estimates of w were
transformed into equivalent values bounded by O and =; this requires the assumption that the
sampling rate is greater than the Nyquist limit (Shannon, 1948). An R script for this analysis is
presented in Appendix.
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TABLE 1.
Mean parameter estimates, equally spaced intervals and signal to noise ratio of 1:1.

True Damped Linear Oscillator

w= w Estimates ¢ Estimates
283 141 071 035 0.18 2.83 1.41 0.71 0.35 0.18

¢=-0.10 285 142 071 034 0.14 -0.115 -0.106 —-0.104 —0.126 —0.146
¢=-0.05 1285 141 071 035 0.15 —-0.066 —0.056 —0.058 —0.058 —0.096
¢ =0.00 284 142 072 035 0.16 0.002 0.000 —-0.001 —0.001 —0.011
¢ =0.05 285 141 072 035 0.16 0.056 0.053 0.055 0.056 0.065
¢ =0.10 2.84 142 071 035 0.16 0.129 0.109 0.114 0.120 0.164

Damped Linear Oscillator with Phase Resets (p(reset) = 0.2)

w=  Estimates ¢ Estimates
283 141 071 035 0.18 2.83 1.41 0.71 0.35 0.18

¢=-0.10 273 143 0.70 042 033 —-0.006 —-0.004 —0.007  0.000 —0.017
¢=-0.05 276 144 0.71 041 030 —-0.005 —-0.008 —0.008 —0.004 —0.008
¢ =0.00 276 141 0.74 042 031 0.002 0.004 0.003  —0.007 0.005
¢ =0.05 278 142 069 041 031 0.002 0.005 0.002 0.009 0.001
¢ =0.10 277 140 069 041 0.31 0.008 0.010 0.014 0.002 0.018

Damped Linear Oscillator with Small Perturbations (perturbations ~ N (1, .2))

w= w Estimates ¢ Estimates
283 141 071 035 0.18 2.83 1.41 0.71 0.35 0.18

¢=-0.10 283 142 072 035 0.16 -0.134 -0.120 -0.114 —-0.130 —-0.192
¢=-0.05 284 142 0.72 036 0.17 -0.079 -0.073 -0.064 —0.074 —0.087
¢ =0.00 284 142 072 035 017 -0.015 -0.009 —-0.010 -0.017 —0.020
¢ =0.05 283 142 072 035 0.17 0.060 0.045 0.044 0.059 0.073
¢ =0.10 285 142 071 037 0.17 0.125 0.098 0.099 0.131 0.169

Notes: Mean parameter estimates based on time series of 50 observations. Results for time series consisting
of 25 observations were similar.

1.2. Results

All summary statistics presented consist of the calculation of the statistic within the 500
time series created for a specific combination of conditions, unless otherwise noted. Despite the
large number of estimated parameters, the optimization method converged on a solution for every
single time series. Tables 1 and 2 present the mean estimated values of @ and ¢ for time series
with equally spaced and unequally spaced observations. Within each combination of conditions,
similar results were observed for equally and unequally spaced time series.

With a true damped linear oscillator, the means of the estimated w and ¢ values closely
correspond to the values used to generate the data. With phase and amplitude resetting, there
are conditions where the expected values of the parameters may deviate from the values used to
generate the data. This is apparent with the estimates of ¢ which consistently produced estimates
near zero, and with the estimates for the two lowest values of w. The results for the model with
small amplitude perturbations suggest that the expected values of the parameters are similar to the
values used to generate the damped linear oscillator time series. While small perturbations can
cause long-term changes in phase and amplitude, within any small window of time the observed
values closely correspond to the model used to generate data.

Tables 3 and 4 present the 95% confidence intervals of the w and ¢ estimates, as well as the
mean of the squared errors of the estimates around the true parameter values (MSE). The true
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TABLE 2.
Mean parameter estimates, unequally spaced intervals and signal to noise ratio of 1:1.

True Damped Linear Oscillator

w= w Estimates ¢ Estimates
283 141 071 035 0.18 2.83 1.41 0.71 0.35 0.18

t=-010 282 142 0.74 041 032 -0.125 -0.111 -0.126 —-0.126 —0.115
¢=-005 284 142 0.74 039 026 —-0.057 -0.057 —0.049 —0.060 —0.061
¢ =0.00 2.84 141 073 037 024 -0.001 0.003 —0.003 0.002 —0.011
¢ =0.05 2.84 142 073 040 0.24 0.028 0.047 0.054 0.053 0.062
¢ =0.10 279 142 074 038 031 0.120 0.108 0.109 0.118 0.159

Damped Linear Oscillator with Phase Resets (p(reset) = 0.2)

w=  Estimates ¢ Estimates
2.83 141 071 035 0.18 2.83 1.41 0.71 0.35 0.18

t=-0.10 266 146 0.82 056 043 0.001 —-0.021 -0.015 —0.015 0.001
¢=-005 265 146 078 052 042 0.004 —0.012 —0.015 0.002 —0.014
¢=0.00 271 151 076 049 045 0.000  —0.005 0.010 0.005 0.013
¢ =0.05 272 147 075 052 046 —0.001 0.006 0.012 0.013 0.006
¢ =0.10 270 147 078 049 042 0.027 0.013 0.022 0.024 0.024

Damped Linear Oscillator with Small Perturbations (perturbations ~ N (1, .2))

w=  Estimates ¢ Estimates
283 141 071 035 0.18 2.83 1.41 0.71 0.35 0.18

¢=-0.10 278 143 0777 044 033 -0.134 -0.120 -0.123 —-0.128 —0.157
t=-0.05 282 142 0.74 041 029 -0.073 —-0.066 —-0.075 —0.089 —0.086
¢ =0.00 282 143 074 040 031 -0.021 -0.012 -0.013 -0.017 —0.022
¢ =0.05 281 141 073 039 0.28 0.058 0.046 0.043 0.042 0.047
¢ =0.10 278 140 073 040 0.32 0.125 0.100 0.097 0.113 0.120

Notes: Mean parameter estimates based on time series of 50 observations. Results for time series consisting
of 25 observations were similar with one exception—the 0.18 column for the w estimates, for the small per-
turbations condition. With 25 observations the mean w were about 10% higher, suggesting that combining
very high sampling rates with measurement of very short time series and very unequally spaced intervals
may lead to slightly biased estimates.

damped linear oscillators tended to produce more efficient estimates than time series with dy-
namic error; however, in many cases the difference in MSE was small. The estimates using time
series with equally spaced observations were more efficient than those measured without equally
spaced observations; the reduction in MSE with equally spaced observations was pronounced for
estimates of frequency. While confidence intervals are large, particularly for the estimates of ¢,
the confidence intervals narrow substantially if one considers data with some positive character-
istics. For example, Table 5 shows the 95% confidence interval and the MSE of the estimates
based on data with a signal to noise ratio of 4:1; this would correspond to a test—retest reliability
of approximately 0.80.

1.2.1. Discussion The simulations examined an extreme set of conditions in order to
demonstrate the robustness of the proposed method; these extreme conditions were selected as
it is difficult at this time to know what realistic error conditions would be, given a lack of em-
pirical research in many areas of psychology. The mean estimated values of the parameters were
approximately equal to those used to generate the data, over most conditions. The exceptions
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TABLE 3.
Confidence intervals & MSE, equally spaced intervals and signal to noise ratio of 1:1.

True Damped Linear Oscillator

w Estimates ¢ Estimates
True value 97.5%"1e 2.5%4e MSE True value 97.5%!1e 2.5%"e MSE
2.828 3.096 2.712 0.011 —0.100 0.207 —0.629 0.038
1.414 1.538 1.299 0.006 —0.050 0.222 —0.499 0.028
0.707 0.853 0.594 0.006 0.000 0.289 —0.319 0.017
0.354 0.468 0.121 0.009 0.050 0.423 —0.269 0.021
0.177 0.336 0.031 0.013 0.100 0.628 —0.177 0.038

Damped Linear Oscillator with Phase Resets (p(reset) = 0.2)

 Estimates ¢ Estimates
True value 97.5%"1e 2.5%4e MSE True value 97.5%1e 2.5%"e MSE
2.828 3.107 2.436 0.049 —0.100 0.375 —0.403 0.052
1.414 1.893 0.892 0.076 —0.050 0.398 —0.421 0.035
0.707 1.196 0.371 0.056 0.000 0.360 —0.337 0.036
0.354 0.768 0.051 0.041 0.050 0.340 —0.345 0.031
0.177 0.609 0.038 0.056 0.100 0.327 —0.292 0.032

Damped Linear Oscillator with Small Perturbations (perturbations ~ N (1, .2))

w Estimates ¢ Estimates
True value 97.5%11e 2.5%41e MSE True value 97.5%!1e 2.5%"1 MSE
2.828 3.099 2.678 0.013 —0.100 0.152 —0.731 0.050
1.414 1.568 1.291 0.006 —0.050 0.223 —0.537 0.031
0.707 0.878 0.588 0.008 0.000 0.294 —0.369 0.025
0.354 0.499 0.061 0.016 0.050 0.484 —0.253 0.029
0.177 0.368 0.031 0.014 0.100 0.671 —0.204 0.049

Notes: Estimates for w average over all values of ¢, and estimates for ¢ average over all w values. Estimates
are based on time series of 50 observations with equally spaced observations.

occurred when there was a large amount of phase and amplitude resetting. Frequent phase re-
setting, combined with high sampling rates, tended to produce frequency estimates that reflected
higher frequencies than the true frequency; this effect was not apparent with lower sampling
rates. Frequent amplitude resetting, on the other hand, produces estimates of the damping pa-
rameter approximately equal to zero—reflecting a system where the average amplitude was not
changing over time. The biased results for frequent amplitude and phase resetting are what would
be expected given the mismatch between the model used to generate the expected values and the
true model. The current method’s use of embedded matrices to examine the state space has al-
lowed for consideration of systems with significant amounts of measurement and dynamic error,
sampling rates close to the Nyquist limit, time series with relatively few observations and both
equally and unequally spaced observations. These advantages suggest that the presented method
is likely to be useful and robust in a very wide range of potential applications.

The simulations suggest a few considerations for applied researchers. (1) In general, it is not
necessary to record every possible perturbation to a construct of interest in order to recover the
parameters of a system. (2) It is not necessary to intensively sample constructs, as long as the fun-
damental dynamics are being appropriately sampled. (3) If there is frequent amplitude resetting,
to accurately recover small periods of damping over time a model will be required that allows
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TABLE 4.
Confidence intervals & MSE, unequally spaced intervals and signal to noise ratio of 1:1.

True Damped Linear Oscillator

w Estimates ¢ Estimates
True value  97.5%1€  25%1€  MSE  Truevalue 97.5%1c 259 MSE
2.828 3.108 2529  0.060 —0.100 0.239 —0.589 0.049
1.414 1.621 1.200  0.033 —0.050 0.280 —0.447 0.027
0.707 1.158 0.490  0.068 0.000 0.326 —0.343 0.022
0.354 1.073 0.099  0.093 0.050 0.436 —0.300 0.028
0.177 1.262 0.047  0.130 0.100 0.602 —0.221 0.039

Damped Linear Oscillator with Phase Resets (p(reset) = 0.2)

w Estimates ¢ Estimates
True value  97.5%%¢  25%1€  MSE  Truevalue 97.5%1c 2594 MSE
2.828 3.122 0.907 0.250 —0.100 0.420 —0.485 0.063
1.414 2.886 0.334  0.250 —0.050 0.414 —0.455 0.048
0.707 2.593 0.134  0.243 0.000 0.422 —0.405 0.044
0.354 2.247 0.079 0.250 0.050 0.398 —0.390 0.038
0.177 2.122 0.065 0.268 0.100 0.417 —0.350 0.044

Damped Linear Oscillator with Small Perturbations (perturbations ~ N (1, .2))

w Estimates ¢ Estimates
True value  97.5%1€  25%1¢  MSE  Truevalue 97.5%1¢ 259 MSE
2.828 3.107 2.201 0.094 —0.100 0.257 —0.713 0.060
1.414 1.984 0.886  0.066 —0.050 0.263 —0.519 0.042
0.707 1.364 0.389 0.070 0.000 0.336 —0.392 0.028
0.354 1.324 0.086  0.103 0.050 0.399 —0.287 0.028
0.177 1.559 0.049 0.170 0.100 0.594 —0.242 0.045

Notes: Estimates for w average over all values of ¢, and estimates for ¢ average over all @ values. Estimates
are based on time series of 50 observations with unequally spaced observations.

for variations in the damping parameter; this model would represent a system that differs signif-
icantly from a damped linear oscillator. Expanding the present example to allow model-specific
parameters to change with some polynomial scheme is relatively straightforward to implement;
such a change would allow relatively simple models such as the damped linear oscillator to
be used for relatively complicated first-order approximations of intraindividual change. (4) To
produce more efficient estimates low measurement error and longer time series are obviously
advantageous, but equally spaced observations can also convey an advantage. (5) Researchers
interested in the ¢ parameter would be well advised to try to collect data without too many poor
characteristics, as otherwise estimates will be very inefficient and subsequently power to test
differences in ¢ will be dramatically reduced. (6) The examples presented consider the exami-
nation of individual time series, but this is not required as the individual rows of Xgpserved could
correspond to unique individuals.

2. Applied Example

This example considers the modeling of the motions of a dyad as they dance to simple
rhythms. As a person dances, the rhythmic back-and-forth movements he/she produces might
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TABLE 5.
Confidence intervals & MSE, equally spaced intervals and signal to noise ratio of 4:1.

True Damped Linear Oscillator

w Estimates ¢ Estimates
True value  97.5%'1€ 2.5%41e MSE True value  97.5%'1€ 2.5%"1e MSE
2.828 2.874 2.783 0.001 —0.100 —0.006 —0.257 0.004
1.414 1.450 1.381 < 0.0005 —0.050 0.028 —0.15 0.002
0.707 0.739 0.674 < 0.0005 0.000 0.067 —0.076  0.002
0.354 0.393 0.311 < 0.0005 0.050 0.140 —0.023 0.002
0.177 0.241 0.043 0.002 0.100 0.217 0.012 0.003

Damped Linear Oscillator with Phase Resets (p(reset) = 0.2)

w Estimates ¢ Estimates
True value  97.5%1¢ 2.5%4e MSE True value  97.5%1€  2.5%fle MSE
2.828 2.917 2.566 0.013 —0.100 0.11 —0.159 0.012
1.414 1.658 1.183 0.016 —0.050 0.119 —0.141 0.006
0.707 0.909 0.465 0.014 0.000 0.121 —0.106 0.004
0.354 0.594 0.253 0.010 0.050 0.112 —0.09 0.004
0.177 0.515 0.135 0.029 0.100 0.105 —0.076 0.010

Damped Linear Oscillator with Small Perturbations (perturbations ~ N (1, .2))

w Estimates ¢ Estimates
True value  97.5%!1€ 2.5%41e MSE True value  97.5%'1€ 2.5%"1e MSE
2.828 2.896 2.758 0.001 —0.100 —0.003 —0.362 0.012
1.414 1.463 1.367 0.001 —0.050 0.037 —0.248 0.006
0.707 0.765 0.662 0.001 0.000 0.099 —0.142 0.004
0.354 0.423 0.293 0.001 0.050 0.183 —0.063 0.005
0.177 0.289 0.041 0.004 0.100 0.313 —0.013 0.008

Notes: Confidence intervals (95%) and mean squared error (MSE) of w and ¢. Estimates for w average over
all values of ¢, and estimates for ¢ average over all w values. Estimates are based on time series of 50
observations with equally spaced observations.

be well described using a model that allows for oscillations. It should be expected, however,
that even if an oscillator model is appropriate, individuals will not literally produce oscillatory
movements; there will be variations in the frequency of their movements due to factors such as
efforts to align their movements with each other, desire to stay synchronized with the rhythm
of the music, and the difficulty of producing perfectly rhythmic movement (Boker et al., 2005).
Modeling such data could be accomplished using a differential equation model with changing
parameters; this can, however, be problematic to implement as such changes can alter a stationary
system into one that is nonstationary consequently leading to the breakdown of methods that
assume stationarity.

Dancer’s movements, however, appear to occur with a relatively constant frequency if ex-
amined over a short period of time. Therefore, it should be possible to model dancer movement
using a stationary model, such as the damped linear oscillator model, if it is applied to short
windows of time. We have chosen an example of motion to capture data from a dyad dancing
to a stationary repeating rhythm as a way to demonstrate the statistical approach to differential
equations presented above. By applying the damped linear oscillator model to many short win-
dows of time, we track the time-varying frequency changes for each dancer; that is, rather than
just focusing on the stable aspects of a dynamical system as was done previously, we now focus
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on variation in the frequency and damping parameters by fitting the model to many small pieces
of the time series. This is an important step toward understanding the time-varying nature of the
synchronization between the two dancers, and by extension might inform the understanding of
how and why individuals synchronize movements during conversation.

2.1. Methods

2.1.1. Data Participants consisted of a female-male undergraduate dyad from a Midwest-
ern University. Movements of participants were collected using an Ascension Technologies Mo-
tionstar magnetic tracking system. Each individual wore eight sensors, one of which was posi-
tioned on the back of the head using a baseball cap. Participants were instructed to dance to the
rhythms presented while staying within a 1 m by 1 m square that had been marked on the floor
and without touching each other. Participants wore headphones during the experiment, which
provided the rhythms as well as instructions as to whether to “lead” or “follow.” In addition
to lead-follow configurations, the experiment also considered configurations where both partic-
ipants were instructed to lead, or both were instructed to follow. Rhythms were synthesized to
consist of either 7 or 8 beats, with intervals of 200 ms per beat. Rhythms were selected such
that some consisted of patterns with clear segmentation (nonambiguous) and others where the
segmentation was ambiguous as described by Boker & Kubovy (1998). There were a total of 26
trials, each consisting of a different rhythm presented for 40 seconds.

2.1.2. Analysis Movement of the head was recorded as a series of X, Y, Z coordinates
at a rate of 80 measurements per second. The root mean square, Xpms = v X2 + Y2 + Z2, of
each person’s head movement was calculated for each trial, at each measurement observation.
A single trial consisted of a times series of 3,200 observations, which were downsampled to
160 observations by retaining every 20th observation. Downsampling should not alter the re-
sults substantially, since the motion capture sampling rate was very high relative to the expected
oscillation frequency of the dancers (around 0.2 Hz to 0.4 Hz). Furthermore, the downsampled
time series better reflect the situations for which the method presented is intended. The 160-
observation times series for each individual was divided into overlapping windows 5 seconds
(20 observations) in length, with the distance between the initial observations for a window and
a subsequent window separated by 1/4 second. The first 5 seconds of each time series were
discarded, as it took some time for dyads to become accustomed to rthythms. Consequently, the
damped linear oscillator model was fit to each individual’s time series using 121 overlapping
windows for each trial. Model parameters were not constrained in any manner between different
windows.

For each window (121 per trial) for each trial (26 trials) for each dancer the damped linear
oscillator model was applied using the method presented in the simulated example. This pro-
duced an estimate of frequency and damping for each individual, for every 5-second span of
time, within each of the 26 trials. There were three minor changes made to the estimation pro-
cedure, so as to better match the analysis to this particular application. First, the random starting
values for the w parameter were drawn from a uniform distribution bounded by w values equiva-
lent to a half-second and a five-second oscillation. These values seemed reasonable based on the
rhythms used. Second, the equilibrium was set to zero by removing the mean within each window
of analysis. Third, estimated results where there was large amounts of damping (|Z|/2w > 0.75)>
or unusually long frequency estimates (greater than 10 seconds) were considered situations where
the movement may not have been well described by a damped linear oscillator; these results were
marked as “not available.”

2This is very close to the value at which the damping is so large that oscillations do not occur (i.e., |{]/2w > 1).
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Two figures were produced to examine the results produced by this analysis. These figures
highlight the multiple estimates produced for each individual for each trial, how the estimated
frequency of movement changes over the course of the trial, and how the individuals in the dyad
may be moving relative to each other. In addition, it was anticipated that each of the dancers
would move at a frequency equivalent to the frequency of the rhythm, or some harmonic of this
frequency. To examine this, the estimates of w were converted into wavelength, measured in
seconds; this metric was selected for its ease of interpretation. For each estimate, the absolute
deviation from the nearest harmonic was calculated. The absolute deviations were then predicted,
within individual, using who led in each trial (male, female, both, or neither) and whether the
rhythm was ambiguous or not (1 or 0, respectively); a random intercept was included for each
trial, as changes in performance were expected across trials. These models address what charac-
teristics led each individual in the dyad to remain closer to a harmonic of the rhythm presented.
For both models bootstrapped confidence intervals were generated, due to the possible violation
of regression assumptions; confidence intervals were calculated using 5,000 bootstrap replicates
and were bias corrected and accelerated using the “boot” library in the statistical program R
(2007).

2.2. Results

A sample of results are shown in Figures 2 and 3. Figure 2 shows the estimated w for each
of the dancers across 6 different trials. The horizontal and vertical lines correspond to harmonics
of the beat frequency, while the diagonal line corresponds to equal @ estimates. In trials 3, 6,
and 7 (plots b, e, and f, respectively) the dancers’ head movements occur at similar frequencies
and at approximately the same frequency of the rhythm. When neither are instructed to lead,
as in trial 4 (plot c), there is a breakdown of this coordination. This is also true with trial 5
(plot d), where both are instructed to lead; the male dancer seems to stubbornly stick to the
frequency of the rhythm, while the female dancer attempts to lead the male to a variety of other
frequencies. Subtle difference in coordination are also evident, such as in trials 6 and 7 (plots
e and f respectively). In one case dancers dance at similar frequencies but show a very low
correlation (trial 6, R? = 0.033) and, in the other, the change in one dancer’s head movement
frequency seems to be more related to that of the other dancer (trial 7, R? = 0.233).

Figure 3 shows plots of how the estimated frequencies for each of the dancers are changing
over the course of a trial. When the estimates are close dancers are moving at similar frequencies,
while estimates that are further apart indicate a difference in the frequency of head movements.
These plots correspond to trials 2, 5, and 6. In trial 2 (plot a) the dancers seem to move in and out
of periods where they are more synchronous. This is in stark contrast to trial 5 (plot b), where
each dancer seems to ignore the other, and trial 6 (plot c) where the two dancers are very similar
in their movements.

Table 6 shows the results for the models fit to the absolute difference between the female’s
or male’s wavelength at any moment and the closest harmonic wavelength. As the wavelength
of the rhythms are 1.4 and 1.6 seconds, the magnitudes of the estimates suggest both dancers
stay relatively close to harmonic wavelengths, although the female dancer did a better job of
moving at a harmonic of the frequency of the rhythm. Both dancers tend to dance closer to a
harmonic wavelength when the female is leading. But when the male led, the dancers both tend
to move at rates that differ more from the harmonics of the rhythm length. The differences further
increase in the other leading conditions. Ambiguous rhythms tend to also increase the female’s
mean departure from a harmonic wavelength. The effect for the male was not significant. The
most common harmonic was equivalent to a wavelength twice that of the rhythm, which occurred
65% of the time.
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FIGURE 2.

Plot of estimated @ values for each dancer. The points along the diagonal grey line indicate dancers were moving at
the same frequency. The horizontal and vertical grey lines indicate different harmonics of the beat frequency. The fig-
ures represent the following trial conditions: (a) Trial 2: Ambiguous Rhythm, Female Leads, 8 beats; (b) Trial 3: Am-
biguous Rhythm, Female Leads, 7 beats; (c) Trial 4: Non-Ambiguous Rhythm, Neither Leads, 7 beats; (d) Trial 5:
Non-Ambiguous Rhythm, Both Lead, 8 beats; (e) Trial 6: Non-Ambiguous Rhythm, Male Leads, 8 beats; (f) Trial 7:
Non-Ambiguous Rhythm, Male Leads, 7 beats. Note that Trials 2 and 4 are on a different scale than the other trials.
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FIGURE 3.
Plot of estimated w values for Female (black) and Male (grey) dancers. Closer points indicate more similarity in the rate of
head movements during the period sampled. The figures represent the following trial conditions: (a) Trial 2: Ambiguous
Rhythm, Female Leads, 8 beats; (b) Trial 5: Non-Ambiguous Rhythm, Both Lead, 8 beats; (c) Trial 6: Non-Ambiguous
Rhythm, Male Leads, 8 beats.

2.3. Discussion

This example demonstrates one way that the methods presented in this article could be ap-
plied to data. In this example, damped linear oscillator parameter estimates were produced for
relatively short time series (20 observations). By applying the method to such short time series,
we could consider how these parameters were changing over the course of time series, with-
out having to specify a model with intricate changes in parameters over time. The results also
helped to confirm that the method produces reasonable values, as estimates were related to the
harmonics of the rhythm length.

By examining the estimated parameter on a moment-to-moment basis, it may be possible to
understand how individuals synchronize movements with each other over the course of a dance,
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TABLE 6.
Models of estimated wavelengths.

(b) Female Absolute Deviations from Harmonic Wavelengths

Predictor Estimate 95% C.I. 99% C.I. p-value
Lower Upper Lower Upper

Intercept 0.118 0.097 0.141 0.090 0.150 p <0.01

Male Leads = 1 0.034 0.020 0.048 0.015 0.053 p <0.01

Both Lead = 1 0.053 0.037 0.067 0.032 0.072 p <0.01

Neither Leads = 1 0.218 0.198 0.237 0.192 0.243 p <0.01

Ambiguous = 1 0.026 0.014 0.039 0.010 0.042 p <0.01

(c) Male Absolute Deviations from Harmonic Wavelengths

Predictor Estimate 95% C.1. 99% C.1. p-value
Lower Upper Lower Upper

Intercept 0.411 0.37 0.453 0.357 0.466 p <0.01

Male Leads =1 0.075 0.061 0.090 0.057 0.095 p <0.01

Both Lead = 1 0.116 0.101 0.130 0.096 0.135 p <0.01

Neither Leads = 1 0.197 0.178 0.217 0.173 0.223 p <0.01

Ambiguous = 1 —0.012 —0.024 0.001 —0.027 0.005 n.s.

or in other situations such as conversation. The results from the models already demonstrate
a synchrony between individuals with the rhythms being presented. Unfortunately, building a
model of the frequencies as they change over time is not as straightforward as one would hope,
as evidenced by comparing trials 2 and 3 in Figure 2a and 2b. These trials occur in succession
in the study, and despite the similar circumstances the dancers show remarkable differences in
synchrony. It still is left to try to describe these movements using a coherent model, however
the results produced are certainly an important first step. Furthermore, if periods of synchrony
can be understood in a situation such as dyads dancing, perhaps principles and methods will be
extendable to the study of other structures that show periods of synchrony, or lack thereof.

3. Conclusions

The simulation suggested that comparing observed embedded matrices with expected em-
bedded matrices is likely to be a valuable approach for the modeling of differential equations in
psychology, as the method works well across a wide range of data conditions. The applied exam-
ple provided a proof-of-concept and furthermore demonstrated how short windows of analysis
could be used to allow for changing parameters over the course of a time series. The primary
limitation in both applications was the use of a model with a known analytic solution. It seems
likely that numerical methods such as Runge—Kutta integration could be used to produce esti-
mates of x,, in which case these methods would be universally applicable.’

The present paper only discussed the model-specific parameters, ignoring the observation-
specific parameters. The observation-specific parameters are based on very few observations,
resulting in more variability in these estimates. Through these estimates, however, it is possible
to create estimates of x;. Figure 4 gives an example of the estimated time series that are produced

3Due to numerous local minima, estimation of x; using numerical methods may not be as robust as models with
analytic solutions, even when time series are of better quality than examined here (Esposito & Floudas, 2000; Ramsay
et al., 2007). Different minimization routines or different minimization/maximization criteria may be required to use
numerical integration with the method presented here.
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FIGURE 4.

Examples of the time series generated with dynamic error (top row), generated time series plus measurement error (mid-
dle row), and recovered time series based on estimated parameters (bottom row). The left and right columns correspond
to examples for the two types of dynamic error examined: phase & amplitude resetting and small perturbations at each
observation.

using the method presented. These estimates may be potentially useful for several purposes in-
cluding: (1) creating ways to estimate and compare model fit, and (2) allowing one to identify
observations where a significant amount of dynamic error occurred; thereby allowing one to
probe further into the understanding as to what may cause disturbances to a particular system.
Psychological time series are likely to possess a complexity and variety of assumption viola-
tions unheard of in many of the areas in which differential equation modeling has been developed.
Despite these challenges, differential equation modeling is likely to be integral to understanding
intraindividual time series. The current paper demonstrates that despite the conditions that may
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occur in many time series, methods using differential equation modeling are available that will
allow for robust, statistical consideration of intraindividual time series. If it were not for the diffi-
culties associated with measurement error and the dynamic changes constantly imposed by both
internal and external events of daily life, methods such as those presented here would not be
required. But the work presented adapts methods typically reserved for time series measured on
physical or biological attributes to time series common to a wide range of psychological studies
so that discussion will no longer be limited to the dynamics of variables such as brain waves, but
rather branch out to include constructs such as affect, stress and personality.

Appendix

EstValues <- function(omega, time, zeta,A,delta) {
wprimeSQD <- as.complex((omega*omega) - (zeta*zeta/4))
out <- A*exp(zeta*time/2)*cos((Re(sqgrt (wprimeSQD) ) *time)
+delta)
return (out)

}

FunctionToMinimize <- function(x, xobs, time, len) {
Estimates <- EstValues (x[1l],time,x[2],x[3:(len+2)],
x[(len+3): ((2*1len)+2) 1)
SSR <- sum( (xobs-Estimates) "2)
return (SSR)
}

EstimationFunction <- function(data,time) {
cat ("Reminder: Did you set the equilibrium of x to zero?
\nProcessing...\n")
Repetitions <- 30 #Increase this if results don’t appear
#to be stable
LowestSSR <- Inf
BestFit <- NA
len <- dim(data) [1]
for(i in l:Repetitions) {
startvalues <- c¢(runif(1,0,pi), rnorm(1l,0,.1),
runif (len,min (data)/2,max(data)) /2,
runif (len,0,2*pi))
fit <- optim(startvalues, FunctionToMinimize, xobs=data,
time=time, len=dim(data)[l], method="BFGS",
control=list (maxit=500))
if (fitSvalue<LowestSSR) {
LowestSSR <- fit$value
BestFit <- fit
13
return (BestFit)

}

Embed <- function(x,E) {
out <- x[1l:(length(x)-E+1)]
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for(i in 2:E) { out <- cbind(out,x[i:(length(x)-E+i)]) }
return (out)

}

PROGRAM TO CALL FUNCTIONS

Requires: 1) observed score time series (x) with equilibrium
equal to zero,

2)vector of measurement occasions (time)

Returns best fitting results from optim()

Consider running twice. If results are not stable,
increase repetitions in EstimationFunction

HE ot 3 3 I

NumberOfEmbeddings <- 5

x.embedded <- Embed(x, NumberOfEmbeddings)
time.embedded <- Embed(time, NumberOfEmbeddings)
EstimationFunction (x.embedded, time.embedded)
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