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Abstract

Damped Linear Oscillators estimated by 2nd-order Latent Differential Equation (LDE) have assumed a constant equi-
librium and one oscillatory component. Lower-frequency oscillations may come from seasonal background processes, which
non-randomly contribute to deviation from equilibrium at each occasion and confound estimation of dynamics over shorter
timescales. Boker (2015) proposed a model of individual change on multiple timescales, but implementation, simulation,
and applications to data have not been demonstrated. This study implemented a generalization of the proposed model;
examined robustness to varied timescale ratios, measurement error, and occasions-per-person in simulated data; and tested
for dynamics at multiple timescales in experience sampling affect data. Results show small standard errors and low bias to
dynamic estimates at timescale ratios greater than 3:1. Below 3:1, estimate error was sensitive to noise and total occasions;
rates of non-convergence increased. For affect data, model comparisons showed statistically significant dynamics at both
timescales for both participants.
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Introduction

Background

Many physiological and psychological processes can be described as self-regulating feedback control systems in which a steady
state is maintained through continual adjustments, or negative feedback. For example, in postural control, negative feedback
is provided by vision and proprioception, such that one moderates the force exerted by differential muscle groups via a
sense of absolute position in space. Negative feedback that moderates a person’s behavior comes from a variety of sources
including negative social consequences, impacts to the person’s health, and unpleasant states of affect. The trajectories of
self-regulating processes can be modeled by a variety of methods, including time and frequency domain models (e.g., Wei,
2006). Dynamical Systems Analysis (DSA) has been advocated to provide parameterizations of change that better represent
feedback control as it is found in living systems (Barton, 1994; Boker, 2002). DSA has seen a growing variety of applications
to time series data in the life sciences and medical research where they have been used, for example, to model cognitive
response patterns (Smith, 2000), postural control (Oie et al., 2002), regulation of emotions in non-clinical populations (Chow
et al., 2005; Oravecz et al., 2011) as well as in borderline personality disorder (Ebner-Priemer et al., 2015), patterns of
nicotine and alcohol use (Boker and Graham, 1998), ovarian hormone cycles (Boker et al., 2014), and to link hormone cycles
to negative affect and eating behavior (Hu et al., 2014).

Dynamical systems can be modeled by fitting a stochastic differential equation (SDE) to data. SDEs differ from ordinary
differential equations and other deterministic systems in that their solutions, called diffusion processes, may include random
components as well as superposed, random error variation (Tuma and Hannan, 1984). Some SDEs may not have unique
or any solutions. Latent Differential Equations (LDE) (Boker et al., 2004) present one possible method for handling these
cases by using structural equation modeling (SEM) with latent variables (e.g., Bollen, 1989) to estimate parameters from
the covariance structure of the derivatives without requiring a solution to the SDE. For the current study, we focused on a
special case of the LDE, the 2nd-order damped linear oscillator (DLO) (Chow et al., 2005). The DLO describes patterns
of variation as a function of deviation from equilibrium, and so is a suitable choice for modeling the behavior of feedback
control systems.

Most applications of the damped linear oscillator have assumed a static or linearly changing equilibrium, but for complex,
living systems, the assumption becomes less tenable as data are collected over longer spans of time. Taking for instance, affect
in individuals suffering Bipolar or Seasonal Affective Disorder (Rosenthal et al., 1984), in which the mean level of negative
affect varies according to prolonged episodes or seasonal conditions. The short-term dynamics of affect within a season are of
a different nature and timescale from those which determine the mean level of each season. For processes such as these where
equilibrium exhibits complex patterns of non-stationarity, the basic specification of the DLO is insufficient. Unmodeled,
long-term background processes will non-randomly contribute to the overall deviation from equilibrium at each occasion and
confound the estimation of dynamics over shorter timescales. To accurately estimate the parameters of damped oscillation
at one particular timescale, a higher-order system that accounts for seasonality at longer timescales must be specified. Boker
(2015) proposed an extension of the LDE to include a dynamic equilibrium, titled Adaptive Equilibrium Regulation (AER),
but SEM implementation, simulations, and applications have not yet been demonstrated.

We propose a generalization of the AER model to estimate dynamics at multiple, nested timescales to account for
gradual change in equilibrium. We hypothesized: 1) That the model would be able to estimate multiple frequency and
damping parameters within a univariate series, given the presence of sufficiently distinct timescales as oscillation frequencies;
2) Additional timescales would play a statistically significant role in intra-individual affect variability and influence the
estimation of short-term affect dynamics. Simulations were used to evaluate the precision and accuracy of model estimates
for various long-to-short timescale ratios, signal-to-noise1 ratios, and number of measurement occasions per person. Second,
the model was applied to experience sampling affect data for two individuals to determine the significance of the additional
dynamics.

Modeling Approaches

To describe a damped linear oscillator, we can use a 2nd-order differential equation of the following form:

ẍ(t) = ηx(t) + ζẋ(t) (1)

This equation is suitable for describing a simple relationship whereby acceleration (ẍ) is linearly related to velocity (ẋ) and
position (x). Coefficient η is the primary determinant of the frequency of oscillation. Because η is the proportion relating
deviation from equilibrium to acceleration, it must necessarily be negative for the equilibrium to behave as an attractor
toward which x will always accelerate. For discrete time, η can be calculated as a function of intervals per cycle, λ, as

1In all occurrences, we use the term ’noise’ to refer to superposed, i.i.d., random variation such as measurement error, as distinct from stochastic
variation in the signal, otherwise known as dynamic error.
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follows2:

λ = 2π
√
−1/η + ζ2/4 η = −

(
2π

λ

)2

− ζ2/4 (2)

The velocity coefficient ζ determines the magnitude and sign of feedback. If ζ is negative, then the system will exhibit
damped behavior. That is, wave amplitudes will diminish as time passes from the initial conditions. If ζ is positive, the
oscillations will amplify over time. For low enough negative values of ζ, the system will not exhibit oscillation at all, instead
returning to equilibrium monotonically. We can calculate ζ as a function of η and ∆, the natural log of the ratio between
any two consecutive peaks x0 and x1 in a series of oscillations:

∆ = ln(x1/x0) =
πζ√
−η

ζ =
∆
√
−η
π

(3)

To model a series of data according to this form, derivatives must be estimated. In the next sections, we review Generalized
Local Linear Approximation (GLLA) (Boker et al., 2010) as the basis for constructing the LDE.

Generalized Local Linear Approximation

GLLA estimates the derivatives of a discrete series by assuming each observed datum represents a point along some underlying,
continuously differentiable function, x(t). The derivatives of x(t) are estimated from neighborhoods of observed data in Y.
To do this, a time-embedded matrix of the data is constructed in which each row contains D equally-spaced3 occasions over
the index intervals τ . The neighborhood of D points is referred to as the time-embedding window. To clarify, let us define i
as the global index for each of N measurement occasions in Y:

yi ∈ Y, i ∈ {0...N − 1} (4)

The time-embedded matrix Y(D) is then defined as:

Y(D) =


y0 yτ y2τ . . . yτ(D−1)

y1 y1+τ y1+2τ . . . y1+τ(D−1)

y2 y2+τ y2+2τ . . . y2+τ(D−1)

...
...

...
. . .

...
yN−τ(D−1) . . . yn−2τ yn−τ yN

 (5)

D and τ can be chosen such that the dependence of yi upon preceding lags is encapsulated within each row of the data. If
an even value of D is chosen, no single measurement occasion provides a value for exactly the same time as the estimated
xt. The window, and hence the derivative estimates, will be centered between occasions. If occasions are equally spaced in
time, then given an initial time value for the series t0 and the time interval ∆t:

yt ∈ Y, t = t0 + i∆t (6)

We can then define the local, symmetrical time lags and leads l(j) as a function of the local index j of each occasion
within the embedding window:

l(j) = τ∆t(j − E[J]), j ∈ J = {1, 2, ..., D} (7)

Here, the difference of each index in the time-embedding window from their mean value is taken and scaled by the index
and time intervals. This gives us a definition of the time-embedding window at time t with its associated lags and leads as
yt+l(j). The first half of l(j) will produce negative time offsets (lags) and the second half will produce positive time offsets
(leads). The convenience of this definition becomes clearer when we have to relate the indices of each occasion to their places
in real time. Furthermore, derivatives of the underlying trajectory X are estimated to occur at the center of the embedding
window, time t, not at each occasion i. This way, the time-embedding window is generalized to allow for both even and odd
values of D while retaining time symmetry.

To estimate the derivatives of X up to the 2nd order, each row of Y (D) can be projected onto a D × 3 matrix L of basis
vectors approximating an 2nd order polynomial over the window yt+l(j):

L =


x ẋ ẍ

yt+l(1) 1 l(1) l(1)2/2
yt+l(2) 1 l(2) l(2)2/2
...

...
...

...
yt+l(D) 1 l(D) l(D)2/2

 (8)

2For the simulations in this study, values of ζ were sufficiently small, and timescale ratios were approximate and randomly varied, such that
both terms ±ζ2/4 were excluded from calculations.

3Compatible techniques for data with irregular intervals have been developed (See: Tiberio, 2008).
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The first column represents a constant value, and each subsequent column contains the indefinite integral of the preceding.
Following the algebra for ordinary least squares, we take W, the pseudoinverse of L, and post-multiply Y (D) to obtain the
matrix of estimated derivatives X:

Y(D) = XLT (9)

Y(D)L(LTL)−1 = XLTL(LTL)−1 (10)

Y(D)L(LTL)−1 = X (11)

W = L(LTL)−1 (12)

Y(D)W = X (13)

For simple feedback control systems, we would be interested in fitting a 2nd-order differential equation to the series Y .
Following the steps for GLLA, we would then have the matrix X of derivatives up to order 2, and could then model a linear
dependence of the 2nd derivative on the 0th and 1st.

Latent Differential Equations

Unlike GLLA, LDEs do not estimate derivatives directly. Instead, the covariance structure of the embedded data Y (D) is
described by the linear interrelations between the latent variances of the derivatives. This model is shown as a path diagram
in Figure 1, with the latent derivatives as circles and the time-embedded data as squares. The curved, two-headed arrows
represent the estimated variances and covariances of each component, while single-headed arrows represent linear regression
coefficients. Bolded, labeled arrows are the freely estimated parameters. Latent variables can be specified to estimate the
variance of linear approximations by fixing their paths (the narrow, single-headed arrows) to each occasion in the time
embedding window to the approximations used by GLLA. The matrix L of these fixed factor loading values is specified
exactly according to equation (8).

x

yt+l(1) yt+l(2) yt+l(3) yt+l(4)

η
ζ

V

V
C 

U  

ε ε= ε ε==

x,
x

Figure 1: Damped Linear Oscillator as a 2nd-order Latent Differential Equation

The expected covariance of the time-embedded data computed from the model shown in Figure 1 can be specified with
algebra generalizing factor analysis, such as RAM notation (McArdle and McDonald, 1984). We used a modification of RAM
for faster matrix inversion:

Σ̂(θ) = L(I−A)−1S(I−A)−1TLT + E (14)

For D time-embedded columns of the manifest variable and q latent variables, Σ̂(θ) is a D × D estimated autocovariance
matrix of the observed variable as a function of θ, a vector of estimated parameters. S is a q × q covariance matrix of the
latent variables, with variances along the diagonal.

S =

 Vx Cx,ẋ 0
Cx,ẋ Vẋ 0

0 0 Uẍ

 (15)

Here, Vx and Vẋ are the latent variances of the 0th and 1st derivatives. Because the 2nd derivative is modeled to be a linear
combination of the first two, Uẍ is any additional, unexplained variance attributable to stochastic variation in the signal.

The q × q matrix A contains regression coefficients between latent variables, with each located along the row of the
dependent variable and the column of the independent variable. I is a q × q identity matrix, and E is the D ×D diagonal
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matrix of estimated residual variance or measurement error. The residual variance is assumed to remain stationary, so the
same variance is estimated for all columns of the time-embedded variable.

A =


x ẋ ẍ

x 0 0 0
ẋ 0 0 0
ẍ η ζ 0

 E =


yt+l(1) . . . yt+l(D)

yt+l(1) ε 0 0
... 0

. . . 0
yt+l(D) 0 0 ε

 (16)

We will return to the specification of these models in more detail in the methods section. For more general information
about specifying LDEs and choosing an embedding dimension, see (Boker, 2012).

Adaptive Equilibrium Regulation

An extension of the Latent Differential Equation model was proposed by Boker (2015) to model variability across multiple
timescales. Named Adaptive Equilibrium Regulation (AER), this model allows equilibrium to exhibit its own regulatory
patterns on a higher-order timescale. To do this, it uses a large enough embedding window to describe gradual change while
fitting a second model at equally sized, smaller subset windows to describe short-term change. In other words, the long-term
model describes the non-stationary equilibrium of the short-term model, and the short-term model describes time-dependence
in residuals from the long-term model. This model represents a 4th-order oscillating system parameterized for convenient
interpretation as two nested 2nd-order systems.

A general version of AER is shown in Figure 2. Figure 2a shows the fixed regression paths specified by the L matrix
with linear approximations that can be calculated according to equation 8. Figure 2b shows the freely estimated parameters
including variances, covariances, frequencies η, and damping coefficients ζ. In this model, y(t) is a combination of two damped
linear oscillators described in equations (17) & (18), allowing for stochastic variation u(t), overall affine slope and intercept
µ and β (not pictured), and measurement error ε(t). In 2b, it can be seen that variance due to acceleration of the long-term
oscillator is subtracted from the variance due to acceleration of the short-term oscillator in accordance with equation 18. In
principle, more timescales may be included to describe successively longer periods of regulatory response, but the width of
the data embedding window becomes multiplicatively larger for each additional scale.

ẍL(t) = ηL[xL(t)− µ] + ζLẋL(t) (17)

ẍS(t) = ηS [xS(t)− ẍL(t)] + ζS ẋS(t) + u(t) (18)

y(t) = µ+ βt+ xS(t) + xL(t) + ε(t) (19)

For this example model with two timescales, italicized subscripts L and S denote the long and short timescales, defined
over two embedding dimensions DL and DS . The L matrix for this model differs from the basic LDE in that it includes
the basic L matrix (8) as K = DL/DS consecutive block submatrices LS,k, k ∈ {1, 2, ...,K} organized along its diagonal.
These submatrices model K equivalent subsets of the total embedding window. Parameters in the corresponding Sk and
Ak submatrices are constrained to be invariant across subsets. The fixed paths for the long-term dynamics are determined
by the same algebra but span the entire time-embedding window. For instance, the matrix LL for a total time-embedding
dimension DL = 12 on unit time and occasion intervals τ = ∆t = 1 is shown in equation (21), and incorporated into the L
matrix for AER as shown in (20):

L =



LS,1
. . .

0
LS,k

. . .
LL0

LS,K

 (20)

LL =



xL ẋL ẍL

yt+l(1) 1 l(1) l(1)2/2
yt+l(2) 1 l(2) l(2)2/2
yt+l(3) 1 l(3) l(3)2/2
yt+l(4) 1 l(4) l(4)2/2
yt+l(5) 1 l(5) l(5)2/2
yt+l(6) 1 l(6) l(6)2/2
yt+l(7) 1 l(7) l(7)2/2
yt+l(8) 1 l(8) l(8)2/2
yt+l(9) 1 l(9) l(9)2/2
yt+l(10) 1 l(10) l(10)2/2
yt+l(11) 1 l(11) l(11)2/2
yt+l(12) 1 l(12) l(12)2/2



=



1 −5.5 15.125
1 −4.5 10.125
1 −3.5 6.125
1 −2.5 3.125
1 −1.5 1.125
1 −0.5 0.125
1 0.5 0.125
1 1.5 1.125
1 2.5 3.125
1 3.5 6.125
1 4.5 10.125
1 5.5 15.125



(21)
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(a) Fixed derivative estimation paths specified by the L matrix (equation 20)
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(b) Freely estimated parameters specified by the A matrix (equation 22)
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Figure 2: Adaptive Equilibrium Regulation as two nested 2nd-order models at different timescales.
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Similarly, the A matrix for AER includes submatrix (16) organized along the diagonal, with the last submatrix containing
the long-term dynamic coefficients. According to equation (18), we estimate the paths from the long to short-term acceleration
as −ηS .

A =



AS,1

. . .
0

AS,k

. . .
AL

AS,K0


AL =



xL ẋL ẍL

xS,1 0 0 0
ẋS,1 0 0 0
ẍS,1 0 0 −ηS
...

...
...

...
xS,k 0 0 0
ẋS,k 0 0 0
ẍS,k 0 0 −ηS
...

...
...

...
xS,K 0 0 0
ẋS,K 0 0 0
ẍS,K 0 0 −ηS
xL 0 0 0
ẋL 0 0 0
ẍL ηL ζL 0



(22)

The S matrix again follows the same structure with a unique block matrix for the long-term derivative variances and
covariance. Uẍ is excluded from this matrix because stochastic variation is accounted for in the short-term model.

S =



SS,1
. . .

0
SS,k

. . .

SS,K0
SL


SL =

 VxL CxL,ẋL 0
CxL,ẋL VẋL 0

0 0 0

 (23)

To date, no simulations or applications have been carried out to test the viability of models in which time-embedding
windows are nested in this way. Specifically, it is unclear how the model will perform given different ratios of two timescales.
For ratios close to 1:1, the respective dynamic parameters of each may confound one another. Simulations were carried
out to examine parameter recovery for four timescale ratios. Second, the impact of each timescale ratio on robustness to
measurement error was tested for four variances of superposed measurement noise.

Methods

Software

All scripts were written in R software environment, version 3.4.2 (R Core Team, 2017). Data series were simulated using R
package deSolve (Soetaert et al., 2010), version 1.2. The R package OpenMx, version 2.7.16 (Neale et al., 2016), was used
to specify and fit all models, with the default gradient descent optimizer set to NPSOL (Philip et al., 2001). OpenMx was
chosen because it provides a transparent, open-source platform for structural equation modeling. To fit each model, mxRun()
was used with two additional re-runs in case of non-convergence. OpenMx optimizer status codes indicating final model
convergence were logged with simulation outputs.

Simulation Design

We aimed to examine the precision and accuracy of parameter estimates for four possible timescale ratios and long-to-short
oscillation periods: 2:1, 3:1, 4:1, and 5:1; three signal-to-noise ratios: low (16:1), moderate (4:1), and high (1:1), and three
sample sizes as occasions-per-person: 75, 150, and 300, altogether comprising a 4 × 3 × 3 design. Data were generated and
models fit for 250 iterations per condition.

Several unknown factors influence the statistical power to model differential equations, and no method of determining
and incorporating all of these factors a priori has yet been developed. Important factors include: 1) Chosen embedding
dimensions, 2) sample size, 3) signal-to-noise ratio, 4) number of complete cycles within the sample, 5) the percentage of
informative variance as a consequence of the damping ratio and innovational outliers (IO).4 For a sufficiently long series with

4Innovational outliers often go by other names including events, dynamic error outliers, jump discontinuities, or disturbances.
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Figure 3: Simulated multi-timescale series with measurement error for two timescale ratios.

no IOs, a damped system will eventually sit at equilibrium and exhibit only as much variability as there is measurement
error. IOs provide the necessary initial condition for a regulatory response pattern. Without the IO, additional data will not
provide information about the dynamics under examination.

In reality, the occurrance of IOs may be theoretically important, related to measured covariates, or unknown. Algorithms
have been developed to correct for outliers (Ih et al., 1988). Their application has yet to be shown with LDEs and data
structured in a time-embedded format, though estimate biases due to such random processes have been demonstrated (De-
boeck and Boker, 2010). For this reason, IOs were not included in the simulation process. Furthermore, dynamic error was
not simulated and Uẍ was constrained to 0. Instead, each component of the signal began with initial level = 1, and values of
ζ were computed as a function of N so that the last peak of each simulated series would be half the amplitude of the first.

Timescale was defined as a function of corresponding values for DL, ηL, ζL, and total occasions N . An explanation for
how values for each of these conditions were chosen is subsequently described.

DS First, a base value of DS = 4 was chosen to balance minimal bias and robustness to measurement error when modeling
relatively high frequency oscillations.

DL The ratio of timescales was varied by confining the short-term frequency to a small range appropriate for DS = 4, and
simulating incrementally slower long-term oscillations. DL was varied as multiples 2DS through 5DS . It is also possible with
overlapping DS subsets to specify the model for non-integer timescale ratios.

ηS Boker et al. (2010) recommends choosing a value for D spanning at least half of the occasions per period, as time
dependence tends to diminish for further lags. Selecting a dimension too large may bias η estimates toward slower frequencies
due to excessive smoothing of the latent level x. If our simulation represents ideal specification of the model with respect to
the natural frequency of the series, then DS = λS/2, where λS is the number of occasions per period of short-term oscillation.
Hence, η is calculated as follows:

λS = 2DS = 8 ηS ≈ −
(

2π

λS

)2

≈ −0.6168503 (24)

According to this procedure, each value of ηL would represent a harmonic frequency of ηS . For small timescale ratios,
harmonic frequencies will have unusually correlated derivatives which may not be representative of the general case. To avoid
only testing harmonic ratios between ηS and ηL, uniform random variation U(−.1, .1) was added to ηS at each iteration,
giving a default range of U(−0.5168,−0.7168). This range of values allows between approximately 7.42 to 8.74 occasions per
short term cycle and is not expected to have a large impact on the variance or bias of estimates divided by their true values,
as will be discussed later.

ηL Similarly to ηS , ηL was calculated as a function of λL = 2DL using equation (2), but no random variation was added.

ζS, ζL To ensure that each simulated series ends with half of its initial amplitude, we computed ζS and ζL as functions of
the total occasions N , ηS , and ηL. This was done according to equations (3), with peak amplitude ratio x1/x0 derived as:

∆ =
1

2
λ
N

(25)
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N We chose total number of occasions 75, 150, and 300 to: 1) Allow a sufficient number of oscillatory periods up to the
maximum timescale tested; 2) Reflect common, realistic, and attainable sample sizes in current psychological research; 3)
Provide reasonable statistical power to test for model misspecification.

Each simulated series was generated using the following steps: 1) A differential equation with the simulation parameters
and initial conditions was numerically integrated over time for each component of the signal. Initial conditions were both
fixed to levels of 1 and slopes of 0. 2) The two resulting vectors were then summed to give a series with two oscillatory
components, seen as the dashed and solid curves in Figure 3. Subfigures 3a and 3b illustrate how timescale was defined by
different values of long-term frequency, ηL (dashed curve). 3) The summed series was then standardized to z-scores and a
vector of normal, independent, and identically distributed random noise was added. An example of the final simulated values
are shown by the points along each series in Figure 3.

The models were specified as described above and shown in Figure 2, according to a two-timescale, nested 2nd-order Latent
Differential Equation, then fit to data using maximum likelihood estimation with the OpenMx commands mxExpectationNormal()
and mxFitFunctionML(), assuming multivariate residual normality. Both η parameters were constrained to be negative, non-
zero, and greater than the Nyquist frequency, (−π2 < η < 0), that is, the maximum frequency that can be correctly estimated
given the sampling rate. Frequencies above this boundary would be aliased as lower frequencies. Because data were generated
to be mean stationary with no stochastic variation, the overall slope and short-term stochastic variation UẍS were constrained
to zero, substantially improving model runtime and convergence. No constraints were placed on the estimation of either ζ.

Analyses

All values of η were converted to occasions-per-period according to equation (2), and values of ζ were converted to rates
of amplitude decrement, i.e. the ratios of consecutive peaks x0/x1 as calculated in equation (3). Converted estimates were
divided by true values, and the ratio medians and standard deviations were computed. This way, each result in Table 2 can
be interpreted as the median error of estimated period and amplitude decrement. OpenMx status codes 5 or 6 indicated
iterations with a non-positive definite Hessian or failure of convergence. Iterations with these results were excluded from the
analysis because they were likely to contain extreme parameter and standard error estimate outliers, particularly for each ζ
where no upper or lower boundaries were used.

Affect Data

Measures

To demonstrate how the multi-timescale LDE can be applied to real data, two individuals were selected from an experience
sampling data set of positive affect. Adult participants drawn from the community rated current positive affect for twenty
days on four indicators: happy, pleased, joyful, and enjoyment. Each scale ranged from 0 (none) to 6 (extreme) (Diener et al.,
1985). Person A provided from 6 to 10 ratings per day, 7.6 on average (total NA = 151). Person B provided between 2 and
9 ratings per day, with 6.1 on average (total NB = 103). Sampling intervals were treated as uniform. For more information
about this data set, see (Moskowitz and Zuroff, 2004).

Indicators of positive affect were designed to reflect a single underlying axis. It is common practice to sum the scores
across indicators for each occasion into a unified measure. For this study, we use an alternative approach, Singular-Value
Decomposition (SVD), in which each indicator is weighted by importance to the common, underlying factor. SVD can be
stated as Y=UΣVT , where U is an m × n matrix of the eigenvectors of YYT , V is an n × n matrix of the eigenvectors of
YTY, and Σ contains the eigenvalues of both U and V ranking the magnitude of each component dimension. By performing
this operation on the raw positive affect indicators, the first column of U can be used as principal component scores along
the underlying dimension of positive affect.

The use of principal component scoring accords with the theoretical dimensions for which the indicators were designed,
and confers four main advantages over sum scores. 1) Indicators are weighted according to their representativeness of the
underlying construct; 2) Scores can be weighted for each participant to adjust for variation in principal component structure.
3) Measurement error and related sources of variance unique to each indicator are relegated to the lower-ranked components
and discarded. 4) For time series data, underlying factors may result in time-dependence within and between indicators.
Time dependence can be included by time-embedding the indicators before computing the SVD. For the present study, 2
consecutive lags (Yt−1, Yt−2) were included for each indicator. Eigenvalues estimated for each individual consistently showed
only a single major underlying component for positive affect; only the first column of U was used in subsequent analyses.

Preliminary Analyses

Descriptive measures were used to determine the time-dependent structure of each series to inform the specification of each
embedding dimension for each individual. Spectral analysis provides one simple method, using a Fast Fourier Transform
to decompose the series into its most prominent component frequencies. This was done for all participants in the study.
Two individuals were selected for having two prominent oscillation periods with a ratio of at least 3:1. The Periodograms in
Figure 4 show the coefficients of each frequency, for each individual’s series. The two frequencies with the largest coefficients
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Figure 4: Periodograms for two individuals

are marked with the dotted line. Occasions-per-period λ are calculated from the frequency values and shown below the axis,
with participant A showing slightly more than a 4:1 timescale ratio, and participant B at 5:1.

Model Specification

In accordance with the period (λ) of each major frequency, a model for participant A was specified at DS = 4, DL = 16,
and for participant B, DS = 5, DL = 25. Stochastic variation Uẍ and overall slope and intercept were all freely estimated.
Final model comparisons examined the significance and impact upon estimates of excluding short term dynamics, long term
dynamics, and stochastic variation using the likelihood-ratio test.

Results

Simulation

Rates of model non-convergence for each condition are shown in Table 1. The greatest contributor to non-convergence was
timescale ratio, with the smallest, 2:1 consistently failing for approximately 20-50% of iterations. With high measurement
error, timescale ratio 3:1 also showed minor rates of failure. All timescales exhibited some non-convergence or non-convexity
due to the combination of high measurement error and low sample size. For the remainder of conditions, generally 100% of
the iterations converged when oscillation periods were sufficiently distinct.

Table 1: Non-Convergence Rates by timescale ratio (TSR), number of occasions (N), and measurement error (ε)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.29 0.37 0.63 0.24 0.26 0.46 0.20 0.19 0.28
3:1 0.00 0.00 0.00 0.01 0.00 0.00 0.11 0.03 0.02
4:1 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00
5:1 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00

Ratios of estimated to true oscillation period and amplitude decrement for short-term and long timescales are shown in
Figures 5 through 7, with medians in Table 2 and standard deviations in Table 3. The dotted line in each plot represents
equality of the estimate with its true value, and plots are subset by timescale ratio and total occasions.

For conditions with good model convergence rates, the estimates of short term period showed consistent, upward bias,
averaging around 1.1× the true period, with long-term period only slightly higher at 1.12× the true values. Standard
deviations for each were also small, around .01 to .02 and roughly the same for both short and long-term frequency. Short-
term damping exhibited almost no appreciable bias and greater precision than long-term damping. All estimates reduced
precision by half per each four-fold increase in measurement error and doubled in precision per each doubling of sample size.

For conditions with high rates of non-convergence, results tended toward uninterpretable extremes. Cells marked > 1e3
in Tables 2 and 3 contained extreme values on the order of > 103 even after non-convergent iterations were excluded.5 For

5See Appendix 1.2 for unconverted estimate ratios
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Table 2: Median period and amplitude decrement estimate/true ratios by timescale ratio (TSR), number of occasions (N),
and measurement error (ε)

(a) η̂L/ηL (as oscillation period)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.845 0.854 0.857 0.801 0.803 0.806 0.753 0.759 0.762
3:1 1.131 1.128 1.128 1.147 1.142 1.144 1.023 1.076 1.104
4:1 1.100 1.099 1.096 1.094 1.089 1.089 1.056 1.060 1.071
5:1 1.086 1.091 1.092 1.078 1.088 1.091 1.054 1.067 1.076

(b) ζ̂L/ζL (as amplitude decrement)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.671 0.839 0.940 0.631 0.829 0.915 0.787 0.888 0.952
3:1 1.011 1.005 1.003 1.005 1.002 1.006 1.036 0.988 1.001
4:1 0.938 0.962 0.985 0.888 0.944 0.977 0.937 0.949 0.967
5:1 0.959 0.995 1.002 0.931 0.992 0.998 0.911 0.967 0.998

(c) η̂S/ηS (as oscillation period)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.321 1.195 1.214 1.169 1.178 1.185 1.149 1.229 1.258
3:1 1.126 1.126 1.124 1.168 1.172 1.166 1.235 1.250 1.256
4:1 1.103 1.102 1.100 1.120 1.120 1.119 1.129 1.141 1.139
5:1 1.103 1.104 1.102 1.117 1.120 1.120 1.118 1.133 1.137

(d) ζ̂S/ζS (as amplitude decrement)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 > 1e3 0.609 0.795 14.638 0.802 0.837 1.401 1.312 1.167
3:1 0.990 0.998 0.999 0.977 0.995 0.997 0.955 0.986 0.991
4:1 1.000 1.000 1.001 0.992 0.997 0.999 0.989 1.000 0.997
5:1 0.987 0.996 0.998 0.989 0.995 0.998 0.992 0.999 0.999
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Table 3: Standard deviations of period and amplitude decrement estimate/true ratios by timescale ratio (TSR), number of
occasions (N), and measurement error (ε)

(a) ŝηL (as oscillation period)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.017 0.009 0.005 0.064 0.014 0.008 0.240 0.030 0.020
3:1 0.045 0.018 0.014 0.085 0.037 0.024 0.759 0.164 0.085
4:1 0.041 0.010 0.007 0.034 0.021 0.011 0.133 0.052 0.034
5:1 0.024 0.009 0.006 0.046 0.019 0.012 0.146 0.066 0.036

(b) ŝζL (as amplitude decrement)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.125 0.075 0.030 0.201 0.128 0.075 0.296 0.161 0.076
3:1 1.192 0.044 0.021 0.186 0.079 0.037 > 1e3 > 1e3 0.092
4:1 0.277 0.044 0.021 0.179 0.087 0.040 113.581 0.165 0.080
5:1 0.124 0.048 0.025 0.215 0.101 0.050 0.713 0.197 0.100

(c) ŝηS (as oscillation period)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.406 0.396 0.122 0.662 0.614 0.429 0.490 0.462 0.289
3:1 0.028 0.013 0.008 0.053 0.037 0.022 0.180 0.086 0.060
4:1 0.026 0.010 0.007 0.045 0.031 0.018 0.189 0.093 0.055
5:1 0.015 0.009 0.006 0.041 0.025 0.020 1.952 0.092 0.047

(d) ŝζS (as amplitude decrement)

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 > 1e3 > 1e3 > 1e3 > 1e3 > 1e3 > 1e3 > 1e3 > 1e3 > 1e3
3:1 0.028 0.013 0.006 0.065 0.027 0.013 0.251 0.094 0.043
4:1 0.028 0.013 0.006 0.064 0.027 0.011 0.237 0.089 0.036
5:1 0.027 0.012 0.005 0.056 0.025 0.012 0.234 0.086 0.032
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(b) η̂L/ηL (as oscillation period)
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(c) ζ̂S/ζS (as amplitude decrement)
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(d) ζ̂L/ζL (as amplitude decrement)
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Figure 5: Ratios of converted parameter estimates to true values for low measurement error variance: ε=.00625

(a) η̂S/ηS (as oscillation period)
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(b) η̂L/ηL (as oscillation period)
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(c) ζ̂S/ζS (as amplitude decrement)
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(d) ζ̂L/ζL (as amplitude decrement)
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Figure 6: Ratios of converted parameter estimates to true values for moderate measurement error variance: ε=.25

a timescale ratio of 2:1, long-term period tended to bias toward fewer occasions per cycle with η̂L closer to η̂S . Short-term
damping showed irregular patterns of bias, while long-term amplitude decrement tended toward .6 to .8 of the true rate.
Long-term damping also exhibited unpredictable and extreme error at combinations of high measurement error, low timescale
ratio, and low sample size.

Tables 7, 8, and 9 in Appendix 1.2 show the medians of unconverted parameter estimate bias ratios, standard deviations,
and parametric standard errors estimated by maximum likelihood. For conditions with good convergence rates, estimated
parametric standard errors tended to be higher than the standard deviations by a factor of 2 or more. This relationship held
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(b) η̂L/ηL (as oscillation period)
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(c) ζ̂S/ζS (as amplitude decrement)
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(d) ζ̂L/ζL (as amplitude decrement)
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Figure 7: Ratios of converted parameter estimates to true values for high measurement error variance: ε=1

true even for the extreme variances produced by problematic conditions such as the smallest timescale ratio.

Affect

Base models converged without error for both individuals tested. Fit statistics are shown in Tables 4a and 5a. Fit comparisons
between the base and submodel are given by the -2Log-Likelihood (-2LL) and Akaike Information Criterion (AIC) (Akaike,
1974), with lower values of either indicating better fit. Significance was defined at α = .05, and likelihood-ratio tests were
used to compare each submodel. The total number of estimated parameters (ep) is listed as well. Parameter estimates are
shown in Tables 4b and 5b. For participant A, dynamic error, or stochastic variation, could be constrained to 0 without loss
of the goodness of fit estimate or change in parameter estimates. Participant B showed significant dynamic error; constraining
dynamic error to 0 resulted in slight changes to dynamic estimates and increased the estimated measurement error variance.
For both individuals, both long and short term dynamics were statistically significant. Tables 4a and 5a show how the
estimates for either timescale differed when the other timescale was excluded from the model.

Table 4: Results for participant A

(a) Model Fit

Model ep minus2LL df AIC diffLL diffdf p
14 4408.43 2130 148.43

No Dyn.Err. 13 4408.90 2131 146.90 0.47 1 0.49
No Long 9 4576.19 2135 306.19 167.76 5 < 10−3

No Short 8 5587.70 2136 1315.70 1179.26 6 < 10−3

(b) Dynamic Estimates

η̂S ζ̂S η̂L ζ̂L ε̂
Base -0.5062 -0.0015 -0.0181 0.0032 0.1025

No Dyn.Err. -0.5046 -0.0016 -0.0180 0.0032 0.1051
No Long -0.3514 0.0021 0.1025
No Short -0.0206 0.0000 0.1025
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Table 5: Results for participant B

(a) Model Fit

Model ep minus2LL df AIC diffLL diffdf p
14 4023.61 1911 201.61

No Dyn.Err. 13 4086.46 1912 262.46 62.85 1 < 10−3

No Long 9 4101.33 1916 269.33 77.72 5 < 10−3

No Short 8 4938.53 1917 1104.53 914.92 6 < 10−3

(b) Dynamic Estimates

η̂S ζ̂S η̂L ζ̂L ε̂
Base -0.2980 -0.0241 -0.0132 -0.0228 0.1454

No Dyn.Err. -0.2849 -0.0291 -0.0130 -0.0215 0.1839
No Long -0.1980 -0.0295 0.1454
No Short -0.0134 -0.0275 0.1454

Discussion

Simulations

The simulations demonstrate that the model is capable of reliable and precise estimation of frequency and damping dynamics
on two timescales as long as they are characterized by sufficiently distinct oscillatory periods. Frequencies were somewhat
recoverable even at the smallest ratios tested. In these cases, both frequency estimates were biased toward an intermediate
value, but damping was entirely irretrievable. If measurement error is low, both damping and frequency could be recovered
at ratios as low as 3:1.

The model also exhibited reasonable robustness to measurement error, with better results for more distinct oscillation
periods and higher sample sizes. Because each signal was a standardized combination of two component signals, the maximum
ratio of measurement error added with regard to each component separately was 2:1. The simulations also demonstrate a
proportional increase in precision with sample size. Higher precision of short-term estimates, especially damping, corresponded
with greater numbers of complete cycles across the sample. This is also evidenced by the slight increase in the standard
deviation of long-term damping at timescale ratio 5:1 with only 75 total occasions, a condition reflecting the smallest number
of complete long-term cycles within the sample.

The small, consistent bias toward lower frequencies in both long and short term estimates reflects an underlying limitation
to estimating derivatives via discrete, 2nd-order polynomial approximations. Boker et al. (2010) demonstrated that increasing
the embedding dimension results in lower estimates of frequency, while increasing the order of derivatives to be estimated
partly mitigates the bias. Deboeck and Boker (2011) provide an analysis of parameter bias in Local Linear Approximation
and a model-based method of correction using time-embedding windows of multiple widths per model fit. With OpenMx,
the command mxSE() can be used obtain standard error estimates for the corrected parameter estimates. For comparing
individuals within a random effects, multilevel framework, consistent parameter bias may only have a small impact on the
between-persons covariance structure of individual parameters. If the intent is to forecast using model estimates, biased
frequency estimates will result in a much quicker decay in the accuracy of a prediction over time, and it is advisable to use
a method of correction such as Deboeck’s.

Affect Data

The application of the model to positive affect demonstrates individual differences in dynamics and stochastic variation.
Model fit comparisons demonstrate oscillations in affect at multiple timescales; failing to account for either impacted model
fit and resulting parameter estimates. Long-term estimates incurred less bias when excluding short-term oscillations than
vice versa. The periodograms in Figures 4a and 4b suggest that this is because the long-term amplitudes were much higher
for both individuals.

To graphically examine the results of each model, ordinary differential equations with model estimates as coefficients
were numerically integrated and fit via optimization to the data series. The solutions are compared in Figure 8. These
deterministic trajectories align to the data well for short periods of time, but the phase alignment for both long and short
oscillations can be seen to decay further along the series. The misalignment is likely due to dynamic error and innovational
outliers leading to phase drift in the data. Unlike the strictly deterministic trajectories shown, real processes will not oscillate
with perfect regularity. These figures demonstrate the need for compatible methods of accounting for innovational outliers
to improve the accuracy of estimates, particularly if such trajectories will be used to forecast future states. For more general
purposes, the oscillation periods at both timescales give a static description of each individual’s dynamic tendency. With
sufficient data on an individual, it seems likely that these methods will increasingly capture intrinsic traits of interest to
psychology and psychiatry.
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Figure 8: Numerically integrated trajectories (dashed curve) aligned to raw data (solid lines); overall equilibrium nonstation-
arity is shown by the straight lines.

Limitations

An unusual aspect of time-embedding on multiple dimensions is that the short embedding window is nested within the long
embedding window in consecutive repetitions, as can be seen from Figure 2, and each repetition of the model is constrained
to estimate the same parameters as its duplicates, that is, each models exactly the same dynamic behavior but at different
occasions. This means that for DL = 3DS , the influence of each occasion on the short-term model may be triplicated.
Additional simulations were run to test for possible consequences of specifying models this way, and a summary of their
results can be found in Appendix 1.1. In brief, redundant modeling does not appear to bias the estimates but slightly
decreases estimated parametric standard errors. Furthermore, our results confirm the observations by von Oertzen and
Boker (2010) that standard deviations of estimates will be lower than estimated due to the manner in which symmetrical
time-embedding cancels out bias introduced by measurement error. As they have advised, bootstrapping standard errors
should be considered for accurate estimates of precision in real applications. In practice, this would nullify the consequences
of biased standard errors due to multiply embedding the data by simply rejecting the estimated parametric standard errors
altogether.

One limitation of this study was that capacity to account for dynamic error was not tested in the simulations. Real
behavioral or psychological data are likely to exhibit non-systematic random influence from unmeasured sources, the effects
of which would be modeled as additional, normally distributed variance of the short-term second derivative. Innovational
outliers have been demonstrated to bias the estimates of damping to zero or positive values, miserepresenting data as
undamped or even amplifying (Deboeck and Boker, 2010). In modeling affect data for the current study, no method of
detecting innovational outliers was used. Unsurprisingly, the estimates of damping for both individuals were small. Without
a method of modeling or classifying innovations to the signal, the damping parameter ζ will be determined by the average
change in amplitude across the whole series. If the variance of the series is stationary, damping will be estimated close to zero.
It is incumbent upon researchers interested in the accurate estimation of damped systems to adopt a method of handling
outliers either by removal (Ih et al., 1988), by including appropriate time-varying covariates of the second derivative, or
by beginning a series of measures with an intervention of interest and controlling for exogenous influences on the response.
Post-hoc, algorithmic strategies may be used to detect innovational outliers, and will be examined in future work.

We also did not simulate cases where the amplitudes of each component differed, though it is a likely that for many
applications, long-term oscillations would represent only minor seasonal fluctuations in equilibrium relative to more volatile
short term variation. For instance, if we are modeling affect, only severely disordered individuals would be expected to occupy
the extremes of the emotional intensity scale for prolonged and invariant phases, whereas healthy individuals experience
extremes commonly but briefly as the result of transient events. If a combination of seasonal patterns is suspected to
contribute unequally to the total variability, the researcher must choose a sampling frequency and total number of occasions
suitable to overcome the potential ratio of the faintest component signal to noise. Our simulations show that for an expected
1:2 ratio of signal-to-noise, it is advisable to measure at least 150 occasions with at least 8 occasions per shortest expected
oscillation period and at least 24 occasions per long-term oscillation period. Below these, parameters may be recoverable but
with increasing risk of confounding between frequencies and sensitivity to measurement error.
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Further Extensions

It is possible to expand the model to include additional, higher scales of time by extending the same algebraic structure used
here to relate only two. If more timescales are nested, the data resolution requirements and expectations of measurement
error become stricter proportional to each additional timescale. This model may also be expanded to the multivariate
case outlined by Hu et al. (2014) by cross-regressing derivatives between observed series on one or both timescales. This
would allow variables, whether within or between persons, to exhibit influence on each other specific to timescale. Further
simulations are warranted to determine how the increased complexity of multivariate linking would change the sensitivity to
timescale ratio and the impact of timescale differences on the recovery of derivative coupling parameters.

While the proposed model represents a linear dynamical system, certain non-linear systems may be approximated through
piecewise linear modeling (Storace and De Feo, 2004) or with moderated linear coefficients. For instance, neurons exhibit
short bursts of action potentials, where high-amplitude, high-frequency oscillations occur at the peaks of slower, shallower
fluctuations in membrane potential (Hindmarsh and Rose, 1984). Such non-linear dynamics could be approximated by
moderating the parameters of a high-frequency oscillator by the derivatives of a gradual oscillation representing accumulated
membrane potential.

The overlaid solution for Person A shown in Figure 8a depicts a damped, short-term system nested within an amplify-
ing long-term system. Varying amplitudes of equilibrium oscillations between individuals may suggest that an underlying
bifurcation occurs in this process. Furthermore, a damped or amplifying oscillation in equilibrium may give insight into the
time frame over which such bifurcations occur in natural systems. While the analysis of non-linear systems is beyond the
scope of this study, the approximation of non-linear systems by linear models remains an important possibility worth further
development.

Conclusion

The proposed multi-timescale model of intra-individual dynamics has been demonstrated to recover frequency and damping
parameters for multiple timescales with the caveat that for a ratio of frequencies below 3:1, damping behavior becomes
more difficult to accurately discern, and frequency estimates will bias toward an intermediate value. For real data, the
model showed individual differences in dynamic error and statistically significant dynamics at both timescales, supporting
the hypothesis that such processes exist and must be modeled. Estimated dynamics were shown to accurately approximate
patterns of individual change. For best results, the authors recommend additional steps to account for predictable biases due
to derivative estimation and a strategy for accounting for outliers of dynamic error. The study outlines a general method of
nesting latent differential equations at multiple scales of time that is suitable for the relatively sparse and noisy data typical
of psychological studies.
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1 Appendix

1.1 Multiple Embedding Simulation

A simulation was run on a modification of the AER model in which the long-term dynamics were excluded, leaving only
a multiply-embedded short-term model. 1000 iterations of data generation and model fit were performed with η and ζ
parameters fixed to -.5 and -.3 respectively, signal-to-noise ratio to 8:1, initial conditions to a level of 1 and slope of 0,
series length to 100 occasions, and mean slopes and intercepts both to 0. In this simulation, the number of repeated
embeddings of the short-term model was tested for a biasing effect on the standard errors by using total embedding dimensions
DL ∈ {4, 8, 12, 16, 20}.

Table 6 shows that duplicating the short-term model alone has no impact on estimate bias or the standard error of the
estimates obtained through simulation. The standard errors obtained by the Hessian through maximum likelihood estimation,
however, appear to bias downward for both η and ζ as a result of any model duplication at all. The change is not linear, as
this effect diminishes with repeated embeddings on larger dimensions DL. It is also notable that the Hessian-based standard
errors were approximately double the standard deviation of the estimates from simulation.

Table 6: Simulation Results: η, ζ recovery for multiply embedding DS .

η ζ
DL/DS X̄ ŝX̄ HŝX̄ X̄ ŝX̄ HŝX̄

1 -0.4475 0.0128 0.0232 -0.2878 0.0124 0.0317
2 -0.4479 0.0106 0.0199 -0.2871 0.0116 0.0280
3 -0.4488 0.0110 0.0190 -0.2873 0.0113 0.0271
4 -0.4485 0.0118 0.0189 -0.2884 0.0115 0.0271
5 -0.4493 0.0120 0.0189 -0.2877 0.0112 0.0270
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1.2 Unconverted Simulation Results

Table 7: Median unconverted η and ζ estimate/true ratios, by timescale ratio (TSR), total occasions (N), and measurement
error (ε)

(a) η̂L/ηL

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 1.4167 1.3747 1.3625 1.5762 1.5547 1.5424 1.7803 1.7462 1.7226
3:1 0.7835 0.7858 0.7864 0.7590 0.7665 0.7637 0.9527 0.8661 0.8212
4:1 0.8277 0.8294 0.8324 0.8416 0.8436 0.8432 0.8990 0.8912 0.8721
5:1 0.8485 0.8405 0.8385 0.8613 0.8450 0.8403 0.9035 0.8781 0.8637

(b) ζ̂L/ζL

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 2.7935 2.5695 2.1480 3.2614 2.8179 2.7140 2.4050 2.3788 2.1443
3:1 0.8610 0.8645 0.8607 0.8746 0.8680 0.8303 0.8820 0.9524 0.9307
4:1 1.0039 1.0286 1.0052 1.0923 1.0988 1.0627 1.0316 1.0986 1.1410
5:1 0.9709 0.9277 0.9035 1.0072 0.9489 0.9289 1.0814 1.0330 0.9336

(c) η̂S/ηS

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.8593 0.7101 0.6793 0.7634 0.7229 0.7112 0.7052 0.6635 0.6375
3:1 0.7892 0.7883 0.7908 0.7334 0.7276 0.7352 0.6522 0.6405 0.6335
4:1 0.8212 0.8230 0.8259 0.7979 0.7973 0.7985 0.7839 0.7681 0.7712
5:1 0.8222 0.8207 0.8231 0.8009 0.7977 0.7974 0.8016 0.7790 0.7740

(d) ζ̂S/ζS

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 -138.58 6.3448 5.9021 -14.724 3.3630 5.0072 -1.0294 -2.1436 -2.6408
3:1 0.9537 0.9197 0.9198 0.9774 0.9247 0.9258 1.0553 0.9580 1.0248
4:1 0.9103 0.9008 0.8897 0.9335 0.9328 0.9131 0.9094 0.8790 0.9308
5:1 0.9854 0.9525 0.9489 0.9473 0.9498 0.9483 0.9829 0.8969 0.8876
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Table 8: Standard deviations of unconverted η and ζ estimate/true ratios, by timescale ratio (TSR), total occasions (N), and
measurement error (ε)

(a) ŝ of ηL

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.0062 0.0045 0.0026 0.0187 0.0079 0.0047 0.0480 0.0202 0.0136
3:1 0.0112 0.0017 0.0013 0.0267 0.0033 0.0022 0.1017 0.1326 0.0108
4:1 0.0070 0.0006 0.0004 0.0020 0.0012 0.0006 0.0117 0.0034 0.0021
5:1 0.0009 0.0003 0.0002 0.0018 0.0007 0.0004 0.0173 0.0031 0.0015

(b) ŝ of ζL

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.0342 0.0137 0.0047 0.0730 0.0314 0.0144 0.0947 0.0336 0.0137
3:1 0.0271 0.0032 0.0015 0.0233 0.0058 0.0027 0.2866 0.1738 0.0078
4:1 0.0118 0.0026 0.0012 0.0121 0.0053 0.0024 0.0552 0.0111 0.0050
5:1 0.0059 0.0022 0.0011 0.0108 0.0047 0.0023 0.0343 0.0103 0.0049

(c) ŝ of ηS

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.0885 0.0621 0.0461 0.1407 0.0901 0.0450 0.2615 0.1277 0.0672
3:1 0.0247 0.0168 0.0137 0.0440 0.0315 0.0199 0.1603 0.0621 0.0371
4:1 0.0229 0.0167 0.0152 0.0414 0.0308 0.0219 0.1753 0.0802 0.0482
5:1 0.0184 0.0145 0.0142 0.0390 0.0251 0.0234 0.6476 0.0762 0.0416

(d) ŝ of ζS

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 3.4059 4.0684 1.8926 4.6965 5.1164 3.9750 5.8324 5.2429 3.6741
3:1 0.0060 0.0028 0.0014 0.0141 0.0058 0.0029 0.6863 0.0194 0.0088
4:1 0.0062 0.0029 0.0013 0.0143 0.0061 0.0025 0.3213 0.0223 0.0081
5:1 0.0062 0.0028 0.0011 0.0125 0.0055 0.0026 1.3766 0.0211 0.0071
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Table 9: Estimated parametric standard errors by timescale ratio (TSR), total occasions (N), and measurement error (ε)

(a) ηL

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.0109 0.0058 0.0039 0.0183 0.0104 0.0068 0.0336 0.0200 0.0137
3:1 0.0063 0.0040 0.0027 0.0121 0.0076 0.0051 0.0276 0.0173 0.0107
4:1 0.0028 0.0017 0.0012 0.0047 0.0029 0.0020 0.0076 0.0048 0.0032
5:1 0.0017 0.0010 0.0007 0.0028 0.0017 0.0011 0.0046 0.0029 0.0019

(b) ζL

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.0959 0.0538 0.0345 0.1384 0.0809 0.0541 0.1653 0.1220 0.0845
3:1 0.0288 0.0193 0.0136 0.0505 0.0351 0.0239 0.0967 0.0719 0.0489
4:1 0.0170 0.0110 0.0076 0.0270 0.0177 0.0123 0.0402 0.0273 0.0190
5:1 0.0123 0.0077 0.0053 0.0195 0.0131 0.0088 0.0302 0.0211 0.0147

(c) ηS

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 0.2531 0.0369 0.0213 0.2266 0.1014 0.0499 0.2503 0.0982 0.0626
3:1 0.0225 0.0147 0.0100 0.0476 0.0314 0.0210 0.1126 0.0712 0.0488
4:1 0.0209 0.0134 0.0089 0.0432 0.0275 0.0185 0.1062 0.0658 0.0443
5:1 0.0187 0.0115 0.0077 0.0379 0.0238 0.0155 0.0911 0.0587 0.0376

(d) ζS

ε .00625 .25 1
N 75 150 300 75 150 300 75 150 300

TSR

2:1 9.6780 2.8344 3.9357 6.6568 7.3476 6.2110 3.4799 1.6611 1.6127
3:1 0.0336 0.0218 0.0149 0.0739 0.0491 0.0330 0.1987 0.1288 0.0876
4:1 0.0319 0.0206 0.0138 0.0674 0.0434 0.0294 0.1699 0.1096 0.0744
5:1 0.0285 0.0177 0.0119 0.0607 0.0386 0.0254 0.1538 0.1015 0.0654
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