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ABSTRACT 

Non-verbal visual cues accompany speech to supplement the meaning of spoken 

words, signify emotional state, indicate position in discourse, and provide back-

channel feedback.  This visual information includes head movements, facial 

expressions and body gestures. In this paper we describe techniques for manipulating 

both verbal and non-verbal facial gestures in video sequences of people engaged in 

conversation. We are developing a system for use in psychological experiments, 

where the effects of manipulating individual components of non-verbal visual 

behaviour during live face-to-face conversation can be studied. In particular, the 

techniques we describe operate in real-time at video frame-rate and the manipulation 

can be applied so both participants in a conversation are kept blind to the 

experimental conditions. 

 

 

 

This manuscript has been submitted for the special issue on Audiovisual 

Prosody. 
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MAPPING AND MANIPULATING FACIAL EXPRESSION 

 Audiovisual conversation is information rich, comprised of both the linguistic 

message content and non-linguistic information. This non-linguistic information 

might include facial expressions to convey emotional state, head nods to indicate 

emphatic stress, and posture and eye-gaze to signal turn-taking in discourse. There is 

increasing interest in understanding the relationship between verbal and non-verbal 

conversational cues. In large part, this interest comes from the entertainment industry, 

which requires life-like animation of embodied characters. If interactive dialogue 

between animated characters is to be believable, it must seem realistic and lifelike. 

 In psychology and speech perception, the ability to generate experimental 

stimuli using computer-generated characters is attractive as individual aspects of 

verbal and non-verbal cues can be manipulated to arbitrary precision and in complete 

isolation from each other (Massaro, 1998). In this paper, we describe the development 

of a system for automatically capturing, encoding and manipulating facial expressions 

and global head movements, and transferring this information from video sequences 

of one person to video sequences of another. In particular, we describe techniques that 

allow these manipulations to be accomplished in real-time at video frame-rate during 

face-to-face conversations and with both participants in the conversation being kept 

blind to the processing and manipulation of the visual cues accompanying the speech.  

This system is being developed to provide experimenters with the means for 

controlled investigation to better understand the mechanisms of communication and 

social interaction. 

BACKGROUND AND RELATED WORK 

 Computer generated models of faces are useful in studying speech perception 

because the experimenter has precise control over the stimuli.  For example, the use 
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of a model allows the amplitudes of expressive face movements to be exaggerated or 

attenuated. Likewise the timing of facial expressions can be manipulated to create 

arbitrary durations. Many of these effects would be impossible even for highly 

accomplished actors. An effective face model can make them possible. 

 In some ways the freedom of manipulation provided by face models presents a 

problem for researchers; models can extrapolate beyond what is plausible or 

acceptable. For experimental validity, it is important that the stimuli presented to the 

viewer be acceptably realistic.  Constraining the appearance of generated facial 

expressions is a non-trivial challenge.  The changes in the appearance of a face that 

we interpret as a facial expression are the product of the complex interaction of 

neuromuscular signals, anatomical structures (including bone, muscle, subcutaneous 

fat, and skin), and light (Terzopoulos & Waters, 1993). The difficulty of ensuring that 

only plausible facial expressions are generated is compounded by the fact that people 

are expert at detecting and recognising facial expressions and are acutely sensitive to 

even minute discrepancies from normal behaviour. As the realism of computer 

generated models increases, the viewer generally becomes more reactive to subtle 

errors in dynamic sequences – errors are more readily detected and the face may 

appear “zombie-like”. This occurrence often is referred to as the Uncanny Valley 

effect (Mori, 1970).  

 Generally, the most pleasing, natural, and life-like facial animation is achieved 

using performance-driven techniques. To implement this approach, feature points are 

located on the face of an actor and the displacement of these feature points over time 

is used either to update the vertex locations of a polygonal model (Guenter, Grimm, 

Wood, Malvar & Pighin, 1998; Noh & Neumann, 2001; Williams, 1990), or are 

mapped to an underlying muscle-based model (Choe, Lee & Ko, 2001).  
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Performance-driven facial animation enables subtle facial movements to be captured 

and transferred to the animated face model, but there are several inherent limitations 

that make this approach unsuitable in many applications. Extensive time is required to 

setup the capture environment. The motion capture markers (e.g., LEDs or reflective 

tape or ink) must be applied to the actor, and they may inhibit ease or naturalness of 

movement.  Finally, consistent placement of these markers must be maintained 

between capture sessions.   

 An alternative is image-based animation, in which changes in the position of the 

facial features observed in images or video sequences of one person are used to warp 

images of another person (Chang and Ezzat, 2005; Chuang & Bregler, 2002; Liu, 

Shan & Zhang, 2001; Zhang, Liu, Quo, Terzopoulos & Shum, 2006). In this way, 

there is no longer need for motion capture, which considerably reduces setup time.  

On the down side, the range of convincing facial expressions that can be transferred is 

limited to those that actually occurred. It also is difficult to manipulate facial 

expressions, such as exaggerate their intensity or qualitative appearance, as the face is 

represented only as raw pixel values. There is no underlying parametric model 

available to provide quantitative guidance in constructing realistic image 

manipulation. 

 A hybrid approach based on Blanz and Vetter’s (1999) three-dimensional 

morphable model (3DMM) transfers facial expressions from images of one person’s 

face to images of another person. This expression transfer is achieved by copying to 

the new face the changes in facial geometry and facial appearance that result from 

displaying a facial expression (Blanz, Basso, Poggio & Vetter, 2003). 3DMMs have 

the advantage of a parameterised face model that provides control over the 

deformation of the facial geometry, and an image-based texture-map that provides 
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near-photorealistic rendering of the facial appearance. 3DMMs are capable of 

producing highly convincing results, but there are several practical limitations that 

restrict their use.  Firstly, this approach requires a collection of 3D laser range scan 

images to build the face model.  Secondly, changes in face shape and appearance that 

result from movements of the facial features as measured in images of one person are 

copied directly to images of another person. This makes it difficult to model and 

apply person-specific characteristics of facial expressions.  Thirdly, because the inside 

of the mouth is difficult to model, the same generic inner mouth must be used for all 

subjects. And fourthly, the algorithms are computationally expensive, which currently 

rules out real-time applications. Approaches that address these limitations are needed. 

 The lack of facial expression mapping in the system proposed by Blanz, Basso, 

Poggio and Vetter (2003) was addressed recently in Vlasic, Brand, Pfister and 

Popovic (2005) using multi-linear face models to represent changes in images that are 

due to identity, age, and facial expression. The learned multi-linear model can be used 

to predict the appearance of common facial expressions in images of new, unseen 

faces. However, to construct the multi-linear model, a 3D laser range scanner is 

required to capture facial images of a number of people displaying the same pre-

specified facial expressions (e.g., smile, frown, surprise, and so on). While this 

approach remains computationally expensive, it can be approximated efficiently in 2D 

(Macedo, Vital Brazil & Velho, 2006) using Active Appearance Models (AAMs) 

(Cootes, Edwards & Taylor, 2001), but this approximation still requires the used of a 

common set of posed facial expressions from which the multi-linear model is learned.   

 We have developed an AAM-based system that captures, manipulates, and 

transfers facial expressions, visual speech gestures, and changes in head pose, from 

video sequences, all in real-time at video frame-rates. Our approach requires no 
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marker-based tracking, offline processing, or high-level semantic descriptors.  The 

full face, including the eyes and inside of the mouth, can also be transferred.  This 

makes it possible for this approach to be used for analysing and manipulating real-

time conversation in an interactive two-way videoconference experimental paradigm. 

LINEAR DEFORMABLE FACE MODELS 

 The key to our approach is a linear deformable model that both can analyze and 

synthesize images of faces. The idea of representing an ensemble of images of faces 

as a compact statistical model was first proposed by Sirovich and Kirby (1987). They 

noted that humans store and recognize a large number of faces almost 

instantaneously, which suggests the information required to encode faces may be 

represented in only a few tens of parameters (Kirby & Sirovich, 1990). They proposed 

a compact linear face model of the form, 

 

� 

F = F0 + Fi pi
i=1

m

� , (1) 

where 

� 

F  is an instance of a face, 

� 

F0  is a reference face, 

� 

Fi are basis faces that 

characterise the allowed deformation from the reference face, and each 

� 

pi  defines the 

contribution of the corresponding basis face in representing 

� 

F . Thus, faces are not 

coded directly, but rather indirectly as displacements from the reference.  

 Turk and Pentland (1991) developed the idea proposed by Sirovich and Kirby 

(1987) into a system for recognising faces in images. Thus, 

� 

F  is a (vectorized) face 

image, 

� 

F0  is the mean (vectorised) image computed from a training set of face 

images, and each 

� 

Fi is referred to as an Eigenface. The model is usually obtained by 

applying principal components analysis (PCA) to a set of training images containing 

faces. Linear models have since become one of the most popular techniques for 

modelling flexible objects, such as faces, and they have a wide range of applications, 
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which include: Low-bandwidth transmission of face images (Koufakis & Buxton, 

1999; Mogghaddam & Pentland, 1995; Theobald, Kruse, Bangham, & Cawley, 2003), 

face recognition and verification (Blanz & Vetter, 2003; Edwards, Cootes, & Taylor, 

1998; Shackleton & Welsh, 1991; Yang, Zhang, Frangi, & Yang, 2004), automated 

lip-reading (Luettin, Thacker, & Beet, 1996; Matthews, Cootes, Bangham, Harvey, & 

Cox, 2002), and face synthesis (Cosker, Marshall, Rosin, Paddock, & Rushton, 2004; 

Fagel, Bailly, & Elisei, 2007; Govokhina, Bailly, Bretin, & Bagshaw, 2006; Hong, 

Wen, Huang, & Shum, 2002; Theobald, Bangham, Matthews & Cawley, 2004; 

Theobald & Wilkinson, 2007). 

Active Appearance Models: AAMs 

 Perhaps the most common form of linear deformable face model is the AAM 

(Cootes, Edwards & Taylor, 2001), which provides a compact statistical 

representation of the shape and appearance variation of the face as measured in 2D 

images. A recent extension, the so called 2D+3D AAM (Xiao, Baker, Matthews, & 

Kanade, 2004), provides a convenient method for constructing models of 3D shape 

variation from 2D images, overcoming the need for an expensive 3D laser range 

scanner required for a 3DMM. 

 The shape of an AAM is defined by a 2D triangulated mesh and in particular the 

vertex locations of the mesh. Mathematically, the shape, s, of an AAM is defined as 

the concatenation of the x and y-coordinates of n vertices that make up the mesh:  

     

� 

s = x1,y1,x2,y2...,xn ,yn( )T . 

For face models, vertices typically are defined to delineate the eyes, eyebrows, nose, 

mouth and the outline of the face. A compact model that allows a linear variation in 

the shape is given by, 



Mapping Facial Expression 
Page 9 of 37  

 

� 

s = s0 + si pi
i=1

m

� , (2) 

where the coefficients

� 

pi  are the shape parameters that allow the mesh to undergo both 

rigid (head pose) and non-rigid (expression) variation. Such a model is usually 

computed by applying PCA to a set of meshes that have been aligned with a 

corresponding set of training images. Typically this alignment is done manually, 

although automated approaches have shown some success (Wang, Lucey & Cohn, 

2008). The base shape 

� 

s0 is the mean shape, and the vectors 

� 

si are the (reshaped) 

eigenvectors corresponding to the 

� 

m  largest eigenvalues. Care is required when hand-

labelling images to ensure that all example shapes have the same number of vertices, 

and vertices are labelled in the same order in all images. Hand-labelling errors can 

result in significant sources of variation in the shape component of the AAM. 

 The appearance,

� 

A x( ) , of an AAM is an image that exhibits variation under the 

control of the model parameters and is defined as the pixels, 

� 

x = x,y( )T , that lie 

within the base mesh,

� 

x � s0 . AAMs allow linear appearance variation. That is, the 

appearance can be expressed as a base appearance, 

� 

A0 x( ), plus a linear combination 

of 

� 

l appearance images, 

� 

Ai x( ) : 

 

� 

A x( ) = A0 x( ) + Ai x( )� i
i=1

l

� � x � s0 , (3) 

where the coefficients 

� 

� i  are the appearance parameters. The appearance component 

of the AAM is usually computed by first warping the manually annotated training 

images to the base shape, then applying PCA to the shape-normalised images (Cootes, 

Edwards & Taylor, 2001). The base appearance 

� 

A0 x( )  is the mean shape normalised 

image, and the vectors 

� 

Ai x( )  are the (reshaped) eigenvectors corresponding to the 

� 

l 

largest eigenvalues. The advantage of this two-stage approach to modelling the face is 
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that the resulting modes of variation are more compact and cleaner, in the sense that 

they model changes in the facial features rather than change in the images, as is the 

case with Eigenfaces. An example AAM is shown in Figure 1. 

[INSERT FIGURE 1 ABOUT HERE] 

Facial image synthesis. Near-photorealistic images of faces are synthesised using an 

AAM by first applying the shape parameters, Equation (2), to generate the shape of 

the AAM, then applying the appearance parameters, Equation (3), to generate the 

AAM image, 

� 

A x( ) . The synthesised image is created by warping 

� 

A x( )  from the base 

shape,

� 

s0 , to the model-synthesised shape using a piece-wise affine warp. Example 

images synthesised using an AAM are shown in Figure 2. We note here that the 

AAMs used in this work require a common structure.  Each person-specific model 

requires the equivalent number of landmarks and pixels and the ordering of the 

landmarks must be consistent across all models. The shape of the model is 

constrained to include information in the region of the face only to the eyebrows.  The 

forehead region is not included in our current work as there are no identifying features 

that can consistently be located across all individuals. Occlusion of the forehead by 

hair, for instance, is a problem. Solutions have been proposed (e.g., Gross, Matthews 

and Baker, 2006), however these solutions significantly increase the computational 

expense.  

[INSERT FIGURE 2 ABOUT HERE] 

Multi-segment Active Appearance Models. The standard approach to constructing the 

appearance component of the AAM is to warp the images onto 

� 

s0  and concatenate all 

pixels bound by the mesh before applying PCA. The assumption is that the 

probability distribution of the pixel intensities is Gaussian. However, this assumption 

often is not met for face images. Consequently, some important information might be 
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considered noise and discarded. In addition, if the distribution of the data is 

multimodal or non-linear, then linearly interpolating the basis vectors to re-synthesize 

face images can result in parameters that appear valid, in that they are within the 

limits of the training examples, but lie in invalid regions of the global parameter space 

(Bregler & Omohundro, 1995). When assumptions about the distribution of the data 

are not met, some blurring in the rendered images may occur. This consequence is 

most striking in the eyes and inner mouth, in particular the teeth.  These are important 

areas of the face as they are ones on which viewers tend to focus their attention.  

 To address this issue, we apply a relatively straightforward extension to 

improve the quality of rendering by constructing a piece-wise PCA model. 

Independent appearance models are constructed for each region of the face (skin, 

eyes, nose, and inner-mouth). This can be done in the coordinate frame of 

� 

s0 , so the 

pixel indices for the different regions of the face are constant across all images. The 

appearance for individual segments then can be regenerated and copied into the 

appearance vector 

� 

A x( )  before warping to the shape s. This notion could be taken 

further by clustering the regions of the face according to the shape parameters, for 

example building separate models of appearance to account for an open and closed 

mouth. This also allows different model segments to be encoded with more or less 

resolution, giving more significance to regions of the face to which a viewer is likely 

to pay particular attention. 

MANIPULATING FACIAL EXPRESSIONS 

 In this section we illustrate the usefulness of AAMs for studies of social 

interaction. Individual verbal and non-verbal conversational cues obtained from the 

face in a video sequence can be manipulated independently so that their separate and 

combined effects can be studied. For example, one might wish to decouple the 
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apparent sex of an individual from his/her behaviour to determine each factor’s 

influence during conversation. Or, one might wish to attenuate or exaggerate the 

degree of expressiveness to examine its influence on perceived personality traits.  

Exaggerated expressions and head movements are believed to increase a sense of 

liveliness and lead to greater rapport (Grahe & Bernieri, 1999).  Attenuating 

expressiveness and head movement may create a sense of disinterest, sadness, or 

depressed affect (Gehricke & Shapiro, 2000; Schwartz, Fair, Salt, Mandel & 

Klerman, 1976). Using AAMs, the behavior and identity of each person can be 

manipulated during actual conversation without the individual’s awareness that a 

change has occurred.   

 The following descriptions of mapping and manipulating facial expressions 

consider only the intensity of those expressions. Focus to date has been on developing 

techniques that operate in real-time at video frame-rate, allowing conversational cues 

to be manipulated during live face-to-face interaction in a videoconferencing 

environment. Manipulating other factors, such as the frequency of occurrence of 

expressions, and the temporal properties of facial expressions will be the focus of 

future work. This is difficult to achieve during live conversation, as a priori 

knowledge of the temporal properties of the facial expressions over the conversation 

is required. 

Manipulating the Intensity of Facial Gestures 

 Facial expressions can be represented in terms of the parameters of an AAM, 

which in turn represent displacements from the origin in the space spanned by the 

model. It follows that multiplying the parameters by a scalar greater than unity 

increases the distance from the mean, thereby exaggerating the facial expression 

represented by the parameters. Conversely, scaling by a value less than unity 
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decreases the distance from the origin, thereby attenuating the intensity of the facial 

expression. Equations (2) and (3) can easily be extended to allow the intensity of 

facial expressions to be manipulated, as follows: 

� 

s = s0 + si pi
i=1

m

� � , (4) 

 

� 

A x( ) = A0 x( ) + Ai x( )� i
i=1

l

� � � x � s0 . (5) 

To illustrate the effect of manipulating the intensity of facial expressions in 

this way, an AAM was constructed and used to track a face during a conversation in a 

video sequence. The tracking algorithm used is the inverse compositional algorithm 

described by Matthews and Baker (2004), which runs far in excess of video frame-

rate (>200 fps). The goal is to minimize the sum of squares difference between a 

model instance 

� 

A(x) = A0(x) + � iAi(x)i=1

m�  and the input image warped back onto the 

base mesh 

� 

I(W(x;p)) . Following (Gross, Matthews and Baker, 2006), this is 

achieved as follows: 

Pre-compute: 

• Compute the gradient of base appearance 

� 

� A0(x) . 

• Compute the Jacobian of the warp at 

� 

(x;0), 

� 

∂W
∂p

. 

• Compute steepest descent images 

� 

S(x) = � A0(x)
∂W
∂p

. 

• Project out appearance variation 

� 

Sp (x) = S(x) � Ai(x)S(x)
x � s 0

�
� 

� 
� 
� 

� 

� 
� 
� i=1

m

� Ai(x) . 

• Compute the Hessian 

� 

H = � A0
∂W
∂p

� 
� � 

� 
� � 
T

� A0
∂W
∂p

� 
� � 

� 
� � x� . 

Iterate: 
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• Warp the image onto the base shape

� 

I(W(x;p)) . 

• Compute the error image 

� 

E(x) = I(W(x;p)) � A 0(x). 

• Compute the warp update 

� 

� p = � H � 1 � A0
∂W
∂p

� 
� � 

� 
� � 
T

E(x). 

• Update the warp   

� 

W(x;p) � W(x;p) W(x;� p)� 1. 

 

The fitting algorithm iterates until convergence, i.e., until the change in the 

parameters between iterations falls below some threshold. The key to the efficiency is 

error is computed in the coordinate frame of model and not the image. Thus the 

Hessian matrix required to minimize the error function is constant and can be pre-

computed. Also, since the appearance variation is projected-out from the steepest-

descent images, the appearance parameters can be ignored during the fitting process. 

The AAM search is local and so requires a reasonable starting estimate for the 

parameters 

� 

p. To track the face throughout a video sequence, the first frame can be 

manually hand-labelled, and then each subsequent frame can use the fit from the 

previous frame as the starting estimate. The parameters measured from the video can 

then be scaled using Equations (4) and (5), and the resultant facial expressions re-

synthesized by applying the parameters to the model. Figure 3 shows example frames 

from a video sequence re-rendered using the AAM both with and without adjustment 

to the intensity of the facial expressions. 

[INSERT FIGURE 3 ABOUT HERE] 

Varying degrees of exaggeration/attenuation can be applied to the different 

parameters of the AAM. However, to ensure the resultant facial expressions are valid, 

we generally apply the same degree of scaling to all parameters. The scaling 

parameter in Equations (4) and (5) is different to indicate the shape and appearance 
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components of the model can be manipulated independently. To ensure any 

manipulated facial expression is valid, in the sense that it appears genuine, constraints 

are placed on the parameter values to ensure that they lie within chosen limits of the 

original training data. Typically the parameters are constrained to lie within 

� 

±3  

standard deviations from the mean (Cootes, Edwards & Taylor, 2001). This prevents 

artifacts such as the mouth opening abnormally wide, or other violations of facial 

topology, for example the upper and lower lips intersecting when the mouth closes. 

 An advantage of using an AAM for this task is that it takes only in the order of 

150ms to capture a video frame, extract the AAM parameters automatically, apply the 

manipulation, re-render the face, and display the resultant image. Thus, AAMs allow 

face images to be manipulated during face-to-face interaction within a 

videoconferencing environment. Thus two people can communicate with one another 

over the videoconference, but the face(s) displayed are re-rendered using the AAM, 

and not the image captured directly from the camera. The manipulation of the 

parameters can be applied prior to re-synthesis, thus both interlocutors are free to 

converse naturally and are kept blind to any manipulation of the facial expression. A 

further advantage is the scaling of the parameters allows facial expressions to be 

manipulated precisely (e.g., smile exactly half as much), which is impossible using an 

actor. 

Copying Facial Expressions between Faces 

 The previous section described how the intensity of facial expressions can be 

manipulated using AAMs. However, it might also be useful to present facial 

expressions independently of identity. This would be particularly beneficial in 

experiments contrasting the influence of social expectation and behaviour on natural 

conversations. This could be achieved using an actor, whereby the actor behaves 
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differently in different conversations, thereby effectively dissociating identity from 

behaviour. However, the conversations are no longer natural, and the reliability is 

largely dependent on the skill of the actor. 

 Alternatively, this can be achieved by transferring facial expressions from 

images of the face of one person (the source) to images of the face of another (the 

target). This is achieved by measuring the difference between an image containing a 

reference facial expression (say, neutral) and an expressive image, then imposing this 

difference onto an image of the same reference facial expression for the target 

identity. This difference can be measured in terms of shape and appearance 

information (Blanz, Basso, Poggio & Vetter, 2003) or in terms of raw pixel intensity 

changes (Liu, Shan & Zhang, 2001). 

 This form of facial expression mimicry fits naturally within our AAM 

framework. The parameters of an AAM are, by definition, offsets from the mean. 

Provided that the base shape and appearance for two models represent approximately 

the same facial expression, then swapping the mean shape and appearance from one 

AAM into another will effectively recreate the same facial expression (behaviour) on 

a different face (identity). Equation (2) for reconstructing the shape can be easily 

modified to take this transfer into account as follows: 

� 

pi = si
T s0 � s( ) � t = t0 + si pi

i=1

m

� �  (6) 

where the left hand side of Equation (6) uses the source model to compute the 

parameters from a known shape, and the right hand side applies the parameters to the 

source modes of variation and the target mean shape. The structure of the equation for 

transferring appearance is exactly the same. Thus facial expressions can be 

simultaneously copied to an image of the target face and manipulated in terms of the 

intensity. The computational cost of this mimicry is exactly as outlined in the 
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previous sections, so it again can be used to manipulate live face-to-face 

conversations over a videoconference without either conversant being aware of the 

manipulation. Example facial expressions rendered using AAMs both before and after 

substituting the mean shape and appearance from a target model into a source model 

are shown in Figure 4, where the case for both within-gender and between-gender 

mimicry are shown. 

[INSERT FIGURE 4 ABOUT HERE] 

The requirement that the mean shape and appearance for both the source and 

the target AAM represent similar facial expressions is generally not a problem. The 

mean shape and appearance are computed from a number of images displaying a 

range of facial expressions, so averaging over many examples usually results in the 

means converging to approximately the same facial expression, even for different 

identities and gender – see Figure 5.  

[INSERT FIGURE 5 ABOUT HERE] 

Mapping Facial Expressions between Faces 

 The method for copying facial expressions between faces described previously 

substitutes the mean (shape and appearance) from one AAM to another. The modes of 

variation (the basis shape and appearance vectors) of the source model still are used to 

generate the expression itself. Hence the cloned expression appears as the source 

expression imposed onto the target identity. See, for example, the teeth in Figure 4. 

Whilst this is useful for presenting facial expressions independently of identity, we 

might wish to map gestures from facial images of one person to facial images of 

another such that the characteristics of the target person are retained. 

 If the basis vectors between two AAM spaces could be interpreted to have the 

same meaning, say the first vector opens and closes the mouth, the second the eyes, 
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and so on, the entire model for the target person could be substituted for the source, 

rather than substituting only the mean shape/appearance. The source model could be 

used to analyse the video and determine the AAM parameters, which could then be 

applied directly to the target model. However, basis vectors computed using PCA 

simply maximise the projected variance of the input data – the source and target basis 

vectors do not correspond in any physically meaningful way. Simply applying the 

parameters directly from one model to another will produce incorrect facial 

expressions. The problem is illustrated in Figure 6. 

[INSERT FIGURE 6 ABOUT HERE] 

 The manner in which the features of the face can vary is highly constrained. 

Individual features generally do not move independently of one another (in a global 

sense), and features generally move in the same way between faces – the mouth can 

open and close, the lips can round, the eyes can blink, and so on. It follows therefore 

that the information contained within one AAM space should be embedded in some 

way within another. The question is: How does one map the meaning of a basis vector 

of one AAM to the space spanned by another? One approach to solving this problem 

is to capture many individuals displaying the same facial expressions, then use multi-

linear models to separate expression from identity (and any other source of variation 

of interest). Expressions can then be predicted and synthesised on new faces (Vlasic, 

Brand, Pfister & Popovic, 2005; Macedo, Vital Brazil & Velho, 2006). Our approach 

to mapping between AAM spaces avoids the need for this complex, controlled, data 

capture. 

 The basis of our approach is not to think about the problem as mapping facial 

expressions between images of different people, but rather to consider it a geometric 

problem. A change in the facial features captured by a basis vector in one model-
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space ought to be captured by a combination of the basis vectors in another model-

space (because the movement of the facial features is highly constrained, as stated). 

The basis vectors themselves are computed when the model is trained and remain 

constant thereafter, so we can pre-compute the alignment of a basis vector from one 

model (the source model) with the basis vectors of another model (the target model) 

by computing the inner products  

  

� 

si, t j j =1…m . 

 These inner products are then used to weight the parameter values computed 

using the source model so they correctly represent, as far as possible, the same 

deformation on the target face. Thus, Equation 2 rewritten in matrix form and 

extended to incorporate the mapping can be written as:  

 

� 

t = t0 + T Rps( ), (7) 

where the columns of 

� 

T are the basis vectors spanning the target space, 

� 

R is a 

� 

q � r  

matrix of inner products (the target space is of dimension 

� 

q and the source of 

dimension 

� 

r ), and 

� 

ps are the parameters representing the expression in the source 

space. Note: because 

� 

R does not depend on expression and can be pre-computed, the 

cost of mapping an expression is only a matrix-vector product. Equation (3), which is 

used to generate the appearance images, takes exactly the same form as Equation (7). 

Cloning facial expressions in this way has the advantage that we do not explicitly 

need to define anything about the facial expressions. This information is implicit from 

the basis vectors in the source and target spaces. Also, we are not concerned with the 

direction of the eigenvectors. For example, an increasingly positive value for a source 

parameter might, say, open the mouth, while the same action could be defined by an 

increasingly negative value in the target space. In this instance the inner product for 

that combination of vectors is negative (the displacements from the mean are largely 
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in opposite directions), so the sign of the parameter value is flipped when the 

parameter is mapped. The parameters are also constrained to lie within the chosen 

� 

±3  

standard deviation limits of the target model, so the appearance of the resulting 

synthesised faces are valid given the original training data of the target person. This 

ensures the characteristics of the target face are preserved after mapping. The 

parameters can also be scaled after mapping to manipulate the intensity of the facial 

expression, as described previously. 

 Example images illustrating the mapping between various facial expressions are 

shown in Figure 7. Although there is some degradation in image quality, images can 

be generated at video frame-rate. If greater image quality is desired, multi-segment 

modelling can be used to improve the rendering and reduce the effects of blurring (see 

Figure 8) at the additional cost of a pre-computed look up from pixels within a 

segment to pixels within the face image. Further effort can be applied to improve the 

quality of static images: however this would increase the computational cost and 

rendering time. In a previous study (Theobald, Kruse, Bangham, & Cawley, 2003) we 

found that the image degradation such as that introduced by an AAM was not 

statistically significant in terms of the perceived naturalness of the speech dynamics in 

comparison with, say, temporally distorted video. The temporal properties of facial 

gestures are unaffected by the manipulation we have described in this paper. 

[INSERT FIGURE 7 ABOUT HERE] 

[INSERT FIGURE 8 ABOUT HERE] 

SUMMARY AND DISCUSSION 

 In this paper we have described techniques for manipulating and transferring 

facial expressions from video sequences containing one face to video sequences 

containing other faces. AAMs are constructed for a source face and one or more target 
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faces. The source face is tracked in a video sequence using the inverse compositional 

AAM fitting algorithm and the model parameters representing the facial expressions 

are mapped to the target face(s) and re-rendered, all in real-time at video frame-rate. 

The advantages of using AAMs are: 1) the mapping is simple and intuitive and 

requires no manual specification of the type or degree of facial gestures. 2) The model 

can account for a high degree of variability in the images, which offers more 

flexibility than purely image-based approaches. 3) Near-videorealistic avatars for new 

subjects can be created without the cost of recording and processing a complete 

training corpus for each – visual speech and expression information can be 

synthesized for one face and transferred to another. 4) The model allows the mapped 

expressions to be constrained, so that they best match the appearance of the target 

producing the expression. 5) The model parameters can be manipulated easily to 

exaggerate or attenuate the mapped expression, which would be difficult using 

comparable image-based approaches. 

 The methods described here will be used in perceptual studies of dyadic 

conversation in a videoconferencing environment. The facial expressions of one 

conversant will be manipulated as described and the effect of these adjustments on 

behaviour during real-time natural conversations will be investigated. The advantage 

of this approach is both interlocutors are blind to any manipulation, either in terms of 

the expressiveness of their actions, or the identity or apparent gender of the person 

they appear to be. 
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FIGURE CAPTIONS 
 

Figure 1. An example AAM derived from fifteen hand-labelled images from a longer 

sequence of a single individual. Shown are the mean shape and appearance (A and D 

respectively), and the first two modes of variation of the shape (B-C) and appearance 

(E-F) components of the model. Note the AAM includes the region of the face only to 

the eyebrows. There are no defining features that are easily identifiable on the 

forehead that can consistently be placed manually across individuals. Work is 

ongoing to overcome this limitation. 

 

Figure 2.  Example face images synthesised using AAMs trained on three different 

individuals. 

 

Figure 3. Facial expressions of varying intensity rendered using an AAM. Left 

column shows the expressions scaled to 25% intensity, the middle column shows the 

expressions as measured in original video, and the right column shows expressions 

exaggerated to 150% of the intensity measured in the video. The effect of scaling the 

parameters is much more pronounced in more extreme expressions. 

 

Figure 4.  Dissociating expression and identity by copying changes in the features of 

the face that characterise expressions. Here expressions on (A) a reference face are 

copied to other faces of (B) the same gender and (C) the opposite gender. As 

expressions are copied, the characteristics of the expression are the same on all faces. 

For example, the nasiolabial furrows, the shape of the smile, the mole on the cheek 

and the teeth are all characteristic of the person in (A). 
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Figure 5.  The base appearance of three AAMs each trained on twenty images of the 

respective individual. The mean appearances converge to approximately the same 

expression. 

 

Figure 6.  Illustration of the mismatch in alignment between model-spaces. The 

parameters (A) in the source space representing the expression to be mapped can be 

copied directly to (B) the same location on the 2D plane. However the resulting 

misalignment means that this point is not in the same location relative to the target 

basis vectors. Thus, the expression generated does not match the original. Instead, the 

parameters should be mapped by considering the rotation of the basis vectors between 

the model-spaces such that (A) is mapped to the point (C) in the same relative 

location between model-spaces. 

 

Figure 7.  Dissociating expression and identity by mapping changes in the features of 

the face that characterise expressions. Here expressions on (A) a reference face are 

mapped to another face (B) of the same gender and (C) of the opposite gender. As 

expressions are mapped the characteristics of the expression are, as far as possible, 

consistent with expression changes on the respective people. These are the same 

expressions as those shown in Figure 5. Notice the mole on the cheek no longer 

appears on the cloned faces, and the teeth for each person appear as their own. In 

Figure 5, the same teeth as is visible in (A) are copied into the inner mouth for each 

cloned person. 

 

Figure 8.  Multi-segment modelling and re-rendering. (A) An expression on a source 

confederate as measured in a video sequence and re-rendered on their model, and the 
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expression mapped to a target face and rendered using (B) a standard AAM and (C) a 

multi-segment AAM. The multi-segment model reduces some of the blurring artefacts 

apparent in the standard AAM rendered image. 
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