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This is an application of contemporary multilevel regression modeling to the

prediction of academic performances of 1st-year college students. At a first level

of analysis, the data come from N > 16,000 students who were college freshman

in 1994–1995 and who were also participants in high-level college athletics. At a

second level of analysis, the student data were related to the different characteristics

of the C D 267 colleges in Division I of the NCAA. The analyses presented here

initially focus on the prediction of freshman GPA from a variety of high school

academic variables. The models used are standard multilevel regression models,

but we examine nonlinear prediction within these multilevel models, and additional

outcome variables are considered. The multilevel results show that (a) high school

grades are the best available predictors of freshman college grades, (b) the ACT

and SAT test scores are the next best predictors available, (c) the number of high

school core units taken does not add to this prediction but does predict credits

attained, (d) college graduation rate has a second-level effect of a small negative
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outcome on the average grades, and (e) nonlinear models indicate stronger effects

for students at higher levels of the academic variables. These results show that

standard multilevel models are practically useful for standard validation studies.

Some difficulties were found with more advanced uses and interpretations of these

techniques, and these problems lead to suggestions for further research.

Over the past few decades, there have been many research studies on the

predictive validity of high school academic performance on college academic

performances (for prior reviews, see Astin, 1971; Crouse & Trusheim, 1988;

Pascarella & Terenzini, 1991; Willingham, Lewis, Morgan, & Ramist, 1990).

This is practically important multivariate research because many persons, many

schools, many educational systems, and many societies have used these vali-

dation studies to create and justify policies for entrance into higher education.

Although the important policy issues are far reaching and well beyond the scope

of the current study, these prior validation studies have proven to be an essential

first step in providing a rational basis for policy debates going at the current time.

The current statistical study, even though it was largely completed more than 10

years ago, extends these prior validation studies by using a few contemporary

statistical models using national transcript data with the hope to better understand

the 1st-year academic performance of college students who also participate in

high-level athletic competition.

In most prior research studies, multiple linear regression analyses have been

used for prediction purposes, and these results are widely known, discussed,

and criticized (Aitkin & Longford, 1986; Beatty, Greenwood, & Linn, 1999;

Crouse & Trusheim, 1988; Willingham et al., 1990). In many studies of college

grades the natural first set of predictors is based on high school grades, and the

second predictor set is based on some nationally standardized measurement, such

as the American College Testing Program (ACT; 1995) or the SAT (Scholastic

Aptitude Test; see College Entrance Examination Board [CEEB], 1995). Because

these two predictors are often correlated, a multiple linear regression model is

used to separate the prediction of college grade point average (GPA) into two

independent components. The costs and benefits of including these additional

test scores into this predictive model equation, especially the consequences for

selection of minority groups, were studied in many ways by many researchers

(e.g., Beatty et al., 1999; Bowen & Bok, 1998; Crouse & Trusheim, 1988; McAr-

dle, 1998; National Collegiate Athletic Association [NCAA], 1992; Willingham

et al., 1990).

One key methodological aspect of these critiques comes from the fact that

the high school students and the college students are “nested” within a particular

high school or college. Many research studies using data collected from a wide

variety of different colleges are often thought to lead to a more repeatable,

robust, and generalizable prediction equation (e.g., Willingham et al., 1990). It
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is not that the high school level is unimportant, but a more thorough examination

of the college level is possible here. That is, although it is possible to examine

both effects at the same time, we certainly can use the college-level data we

have more effectively.

The nesting of “students within schools” was a key reason for the development

of the recent class of models termed multilevel models (Wilks & Kempthorne,

1955, as reported by Kreft & de Leeuw, 1998; see also Aitkin & Longford,

1986; Bock, 1989; Bryk & Raudenbush, 1992; Cronbach & Webb, 1975; Laird

& Ware, 1982; McArdle & Hamagami, 1996; Wong & Mason, 1985, 1991).

Previous research has shown how the use of multilevel modeling analyses,

using previously developed software (e.g., HLM, MLn, Mplus, VARCL, SAS-

MIXED, SAS-NLMIXED, etc.; see Longford, 1990), should be informative in

the context of classical regression analyses and should increase the accuracy of

the prediction of the student-level academic achievements.

In a previous study we used multilevel models for the prediction of graduation

from college for students who were also high-profile athletes (e.g., McArdle &

Hamagami, 1994, 1996). In that study we examined N > 3,000 students in

C > 65 colleges, and the observed graduation rate of students was predicted

from both individual-level high school academic variables (e.g., student core

GPA and ACT or SAT scores) as well as college-level characteristics (e.g.,

college graduation rate and overall student body ACT or SAT scores). The key

results included moderate and equal-size effects for both high school GPA and

ACT/SAT, and this prediction was improved substantially by the inclusion of the

college graduation rate (but not the overall test scores). Other studies using the

same data examined the potential selection and measurement biases apparent

in these data (McArdle, 1998). In a related methodological presentation we

showed how standard multilevel models could be directly merged together with

multiple group structural equation concepts (using software such as LISREL or

Mx) to accurately display multilevel results as path diagrams (later see Figure 2)

and allow for unusual multivariate options (e.g., latent growth models, common

factor models; McArdle & Hamagami, 1996). More up-to-date work on the

statistical basis of multilevel models is presented by both Hox (2002) and

Snijders & Bosker (2012) and it is seems quite consistent with the analyses

summarized here.

We expand upon this multicollege strategy in the current research using new

data. The data used here include more than 16,000 high school students who

entered colleges during the years 1994 and 1995 obtained from more than 260

colleges who currently participate in the highest level of athletic competition

of the National Collegiate Athletic Association (i.e., NCAA Division I). We

focus on methodological issues expanding the classical prediction models of the

academic performances of 1st-year college students. We outline the new multi-

level models to be used (i.e., college-level clustering) using a common structural
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FIGURE 1 Individual and college level data for 1994–1995 NCAA freshman student-

athletes.

equation notation (see Littell, Miliken, Stoup, & Wolfinger, 1996, p. 492; see also

Laird & Ware, 1982), and we use these new models to make predictions that take

into account the differences between colleges attended. The modeling results are

presented in a sequence where we try to build up information about the student-

level and college-level variables, apply the equations to several outcomes, and

examine potential nonlinear relations. We summarize the results obtained and

we make suggestions for future research on this topic.

METHODS

Participants

Starting in the 1993–1994 academic year, all high school students who wished

to participate in an NCAA college sports program were evaluated for academic

eligibility by the NCAA Initial Eligibility Clearinghouse (IEC). The same basic

process continues in place today. The eligibility certification process at that

time included (a) the student submission of a “Student Release Form”; (b) the

IEC collection of a complete high school transcript for the student as well as

national test score information from administrations of the SAT or ACT; and
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(c) the IEC evaluation of minimum grades (2.0), minimum test scores (SAT D

820 or ACT D 17 in current 2012 units), and the minimum number of credit

units of predefined high school “core courses” (11–13 courses with an approved

curriculum in English, Math, Science, Social Studies, etc.). Students who met

these minimum academic requirements were allowed to play in any NCAA sport

in the 1st year of college. The same basic process is used today although the

specifics of the required standards has changed somewhat (see Paskus, 2012;

Petr & McArdle, 2012).

Starting in 1994 the Academic Performance Census (APC) survey was sent

to NCAA representatives at 285 Division I colleges. Soon afterward, in 1995,

this contact person was asked to fill out information on “all freshmen receiving

any form of athletically related aid.” These survey data on all student-athletes

were then merged with high school information previously obtained from the

IEC. Additional information was obtained by collating this individual-level

information with a set of college characteristics obtained from the College

Board (CEEB, 1995) computerized files and from the NCAA Graduation Rates

Disclosure Data (NCAA, 1998). These publicly available files were then merged

with the student-level information to create a multilevel data structure.

To create a sample that was comparable to our previous research (e.g.,

McArdle & Hamagami, 1994, 1996), we limited our analyses to the study of

those student-athletes who attended college as freshmen starting in 1994 and

who were either Black (African American) or White (Caucasian Non-Hispanic).

Some Division I schools did not offer athletically related aid (e.g., the Ivy

League, the Patriot League, and the military academies) so data on these students

were not available. Also, 13 colleges reported having fewer than 10 student-

athletes enrolled, and these data were not used. In sum, the focal data set used

here includes N D 16,348 student-athletes at C D 267 different colleges; 43%

reported they were female and 23% reported they were Black (see Figure 1).

Variables Measured

The NCAA longitudinal records include information about each student’s (a) high

school academic profile (e.g., in HS attended, the NCAA measured HS GPA,

classes taken, ACT and/or SAT scores, and a variety of other indices), (b) mul-

tiple outcomes in 1st year of college (e.g., GPA, credit hours, athletic eligibility,

etc.), (c) numerous demographic features of both the student (e.g., gender,

ethnicity, family income, etc.) and (d) the schools they attended (high school and

college). These IEC high school data appear to show both grades and test scores

for prospective student-athletes are well above the national averages at that time

(cf. ACT, 1995; CEEB, 1995). However, because the IEC deals with eligibility

decisions, the scores available are the “highest scores” obtained from multiple

repeated measurements of the national test scores, the ACT, or the SAT. These
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scores will necessarily have a different distribution than traditional scores—they

will be higher than the “averages” typically used in other validation research,

and the available test score data may also be restricted in range due to the use of

a test score minimum in the initial eligibility process (i.e., for these persons, test

scores of 820 approximately represented a national z score D �1; see McArdle,

1998).

From this multivariate array of data, only a few variables were selected for

presentation. Table 1a presents a description of three college academic outcome

variables: Freshman Grade Point Average (F-GPA with mean of 2.62), the

number of Freshman Credit Hours taken (F-CREDITS with a mean of 28.5),

and the number of Freshman Quality Points achieved (F-QUALPTS defined as

the product of F-GPA and F-CREDITS, with a mean of 76.3). Table 1b describes

three high school variables used in eligibility decisions: the high school GPA in

core courses (optimal HS-CGPA with mean of 3.12), the highest ACT and/or

SAT score as reported and converted to a common scale (HS-TEST with mean

1015 in SAT units), and the number of high school core course units taken

(HS-UNITS with a mean of 16.3). Table 1c describes three selected college

characteristics that have been used in prior research: the college’s graduation

rate in 1995 (COL-GRAT); the designation of a college type as a Public (�1) or

Private (1) school (COL-PUPR); and the annual costs of tuition, fees, room, and

board for the college (COL-COST) as estimated by the College Board (CEEB,

1995).

TABLE 1

A Brief Description of the Available Data on NCAA Freshman College Student-Athletes

(N � 16,500 Student-Athletes in 1994–1995, and N(c) � 280 Division I Colleges)

Label Description Scaling

Mean

(Stan. Dev.)

1a: College Outcome Variables (Source D NCAA Academic Performance Survey of College Freshman)
F-GPA Freshman Grade Point Average 0–4 2.62 0.64
F-CREDIT Freshman Course Credits 3–50 28.5 5.9
F-QUALITY Freshman Quality Points 0–200 76.3 27.4

1b: High School Academic Variables (Source D NCAA Initial Eligibility Clearinghouse Data)
HS-CGPA High School Core GPA 1.3–5.0 3.12 0.59
HS-ASAT High School ACT or SAT 490–1,520 1,015 143
HS-UNITS High School Carnegie Units 4.0–25.5 16.3 2.1

1c: College Characteristics (Source D NCAA Graduation Rates Disclosure Survey and College Board Annual
Data)

COL-GRAT College Graduation Rate 12–94 55.9% Grad D 17.5%
COL-PUNP Public versus Private �1 or 1 73.7% Public D 26.3%
COL-COST Ann Tuition, Fees, Room & Board $4.5–33.5 K $13,900 $6,800

1d: Student Level Demographic Variables (Source D NCAA Initial Eligibility Clearinghouse Data)
DEM_Sex Male versus Female Student 43.3% Female 56.7% Male
DEM_Ethnic Black versus White Non-Hispanic 22.7% Black 77.3% White NH
DEM-Sport Male Revenue vs Non Revenue 25.6% MalRev 74.4% Other
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Data Description

Several features of the college-level data are illustrated in the plots of Figure 1.

The first plot (labeled 1a) is a histogram of a well-known outcome variable-

freshman grade point average (F-GPA)—but here we plot averages of the fresh-

man class within each college. Although there is no doubt that GPA represents

limited information (range 0–4), we do find some spread of scores, with the great

TABLE 2

Descriptive Statistics for 1994–1995 NCAA Academic Census Data

2a: Summary Statistics for All Student-Athletes (N � 16,500)

Freshman High School College

F-GPA F-Credits F-QualPts CGPA TEST UNITS GRAT PUPR COST

Means 2.62 28.3 75.76 3.12 1,015 16.26 0.559 �0.471 13,911
Stan.Devs. 0.641 6.27 29.33 0.576 142.7 2.11 0.175 0.882 6,831

Minimum 0 0 0 1.32 490 4 0.12 �1 4,464
Maximum 4 50 200 4 1,520 25.5 0.939 C1 33,386
Correlations
F-GPA 1

F-Credits 0.429 1
F-QualPts 0.884 0.764 1
HS-CGPA 0.551 0.300 0.533 1

HS-TEST 0.433 0.237 0.428 0.581 1
HS-UNITS 0.220 0.163 0.212 0.364 0.372 1
COL-GRAT 0.051 0.127 0.090 0.179 0.311 0.166 1
COL-PUPR 0.057 0.076 0.081 0.084 0.171 0.101 0.334 1

COL-COST 0.062 0.095 0.090 0.120 0.238 0.131 0.523 0.847 1
2b: Summary Statistics for All Colleges (N(c) � 268) Weighted by Sample Size

Freshman High School College

F-GPA F-Credits F-QualPts CGPA TEST UNITS GRAT PUPR COST

Means 2.62 28.5 75.45 3.1 1,010 16.21 0.531 �0.392 13,911
Stan.Devs. 0.126 5.5 9.6 0.214 59.7 0.70 0.175 0.89 6,831

Minimum 2.18 21.2 56.4 2.31 857 13.98 0.135 �1 4,464
Maximum 3.14 36.9 104.8 3.66 1,231.5 18.23 0.935 C1 33,386
Correlations

F-GPA 1
F-Credits 0.257 1
F-QualPts 0.755 0.813 1
HS-CGPA 0.416 0.207 0.367 1

HS-TEST 0.299 0.246 0.324 0.768 1
HS-UNITS 0.094 0.274 0.237 0.303 0.672 1
COL-GRAT 0.189 0.370 0.320 0.567 0.769 0.557 1

COL-PUPR 0.229 0.262 0.295 0.262 0.441 0.358 0.333 1
COL-COST 0.243 0.374 0.325 0.355 0.591 0.442 0.523 0.874 1

Note. The mean sample size per college is 61.2 Student-Athletes, with a range of 10 to 202; please
see text for description of all acronyms.
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majority between 2.0 (i.e., a “C” average) and a 3.0 (i.e., a “B” average). Figure

1b is a histogram of high school core GPA averages for the freshmen at each

college, and here we find more spread at the upper levels. Figure 1c illustrates

the positive relationship (rgg D :26) between the college grades (Y) and the

high school grades (X). For simplicity, these scores were averaged within each

college, so there are only C D 267 scores plotted in Figure 1c. Figure 1d is

a histogram of the graduation rates within each college, and a wide spread of

scores is evident here (between 12% and 95%). Other relationships among these

variables are described in later analyses.

More detailed statistical information on the variables used here is presented

in Table 2. In Table 2a we present means, standard deviations, and correlations

for nine variables using the student-level data (i.e., N > 16,000 students over all

colleges). The three outcome variables have interpretable means (F-GPA mg D

2:62, F-CREDITS mc D 28:3, F-QUALPTS mq D 75:8), standard deviations

(sg D 0:64, sc D 6:3, sq D 29:3), and moderate to high positive correlations

(rgc D :43, rgq D :88, rcq D :76). Because the third outcome variable is a

direct product of the first two, some of this information is redundant. In Table

2b the second-level between-college means are weighted by the within-college

sample size (with a mean of 61 students per college, ranging from 10 to 202).

Here the same three outcome variables have a similar set of means (mg D 2:62,

mc D 28:5, mq D 75:5), a smaller set of deviations (sg D 0:16, sc D 5:5,

sq D 9:6), and a slightly different set of moderate to high positive correlations

(rgc D :26, rgq D :76, rcq D :81).

Multiple Linear Regression Models

The basic methodological issues of our analyses can be summarized in a series of

equations. First, we used a multiple linear regression equation typically written

for individual n as

Yn D “0 C “1X1n C “2X2n C en; (1)

where Y is any set of outcomes (e.g., F-GPA, F-CREDITS, F-QUALPTS),

the X variables are any pairs of predictors (e.g., HS-CGPA, HS-TEST, HS-

UNITS), and we estimate an intercept .“0/ and regression coefficients (“1 and

“2) and unobserved residual error scores (e). Typically we assume these errors

are independently sampled, are independent of any other predictor scores, and

normally distributed with mean zero and constant variance (symbolized as ¥2
e

here). Under these standard regression assumptions we can estimate the linear

and additive effects of high school characteristics on the prediction of freshman

outcomes.
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It is well known that one of the threats to the validity and stability of

regression equations comes from the use of samples of participants aggregated

over different units or subgroups (i.e., colleges). A common approach for dealing

with these issues is to create variables that characterize the different groups or

persons and include these new variables in the prediction equation. For example,

we might include variables representing different colleges in z-score form (e.g.,

either COL-GRAT, COL-COST, COL-PUPR) to adjust the predicted score for

the mean differences in college graduation rates across colleges. Using similar

multiple regression strategy, we can examine models where we include a product

term as a third variable

Yn D “0 C “1Xn C “2Zn C “3.XnZn/ C en (2)

so the additional regression coefficient .“3/ reflects the differences among the

slopes of the X (high school) relationship over groups (colleges) with different

scores on z. The aforementioned equations can be interpreted in the traditional

regression fashion (e.g., the partial product represents the interaction; see Cohen

& Cohen, 1983) as long as the model variables and relationships meet the

traditional assumptions of regression analysis (and see Aiken & West, 1991).

This common approach for dealing with group differences in a regression model

with interaction is depicted in symbolic form in the path diagram of Figure 2a

(using the notation detailed in McArdle & Prescott, 1992; see also McArdle &

Hamagami, 1996).

But there is a formal difference between the two sets of predictor variables

used here. In Equations (1) and (2) each individual (n D 1 to N ) has the

possibility of a unique score on the X variables but the Z variable is a group

score so the same score is assigned to each individual within the group (e.g.,

college). In Equation (2) we have assumed a subscript for each individual

student even though the college-level variable should be understood to have

been measured only on a specific group .C < N /. This implies the standard

errors of the coefficients will be understated and, correspondingly, our confidence

in the point estimates .“/ may be overstated. This statistical problem becomes

more complicated when we include products of variables at different levels of

aggregation (e.g., the product term in Equation (2)). There may be different

relationships between the variables for subsets of groups, and this may alter the

size or sign of the standard regression estimates (see Kish & Frankel, 1974; Lee,

Forthofer, & Lorimor, 1989).

Variance Component and Random Coefficients Models

There are many ways to examine this fundamental problem of “nesting,” “clus-

tering,” or “aggregation.” A regression coefficient that ignores the group-level
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variation can be written as

“total D “within group.1 � ˜2/ C “between group˜
2; where

˜2
D ¥2

between group=.¥2
between group C ¥2

within group/;
(3)

with regression coefficients .“/, variance terms .¥2/, and the well-known in-

traclass correlation (˜2; e.g., Kreft & de Leeuw, 1998; McArdle & Goldsmith,

1990). In this equation the total regression coefficient .“total/ is decomposed

into a within-group regression (“within group, e.g., for persons within a college)

and a between-group regression (“between group, e.g., between the mean scores of

colleges) both weighted by the intraclass correlation .˜2/. In this expression, the

total regression coefficient is equivalent to the within-group regression coeffi-

cient when the intraclass coefficient is zero. In other cases the total regression

coefficients (i.e., Equation (1)) will be a function of both (a) the size of the

intraclass correlation and (b) any difference in the regression coefficients for

between and within groups.

After identifying the between and within group regression differences there

are many possible methods to correct for potential biases. One fundamental way

to deal with this problem is to initially assume a separate regression model for

each group and rewrite Equation (1) or (2) as

Y .g/
n D “

.g/

0 C “
.g/

1 X .g/
n C e.g/

n ; for g D 1 to G; (4)

where the superscript “(g)” designates the individual groups (G), in this case we

assume the specific college is a specific group, and the regression coefficients

for the prediction of Y from X are allowed to vary between one group and

another (i.e., over the Z variable). The parameters of an unrestricted model with

many groups can be estimated using multiple runs of multiple regression. To

estimate structural models with some restrictions on the across-group parameters

(e.g., “
.1/
1 D “

.2/
1 D “

.G/
1 ), we can use standard structural equation modeling

software with multiple group solutions (e.g., LISREL, Mx, RAMONA, AMOS,

etc.; see McArdle, 2007; McArdle & Hamagami, 1996). The kind and number

of invariance restrictions to be imposed is a general theoretical question, and

this approach can prove to be quite practical if the number of groups is rela-

tively small (e.g., G < 10). This well-known multiple group SEM approach to

regression is depicted in the path diagram of Figure 2b.

Often, however, the number of groups is relatively large and the desired

structural restrictions are of a relatively simple form. In these common cases,

we can use an approach commonly referred to as a “variance components”

or “random coefficients” model. Here we can rewrite the simple regression

of Equation (4) so the regression coefficients for the prediction of grades are
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(a)

(b)

FIGURE 2 Alternative path diagrams of multilevel models (from McArdle & Hamagami,

1996). (a) Path diagram of standard regression model with interaction. (b) Groups separated in

the MG-SEM regression. (c) Variance components in MG-SEM for one group. (d) Multilevel

constraints in MG-SEM for one group. (continued )
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(c)

(d)

FIGURE 2 (Continued ).
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assumed to vary between one college and another by stating

Y .g/
n D “

.g/

0 C “
.g/

1 X .g/
n C en; with

“
.g/

0 D “0 C d
.g/

0 and

“
.g/
1 D “1 C d

.g/
1 ;

(5)

where the group variation is parameterized by a set of fixed means (“0 and “1) and

random deviations or disturbances (d0 and d1) at a second level of aggregation.

In standard variance components models we estimate all fixed terms as well as

the variance of these second-level variance terms (¥2
0 and ¥2

1). In the standard

random coefficients model we additionally estimate the covariance of the second-

level terms .¥01/. These multilevel equations can be accurately described by

the multiple group structural model where the standard regression model is

presented for each separate group but the model allows some sources of variation.

A summary path diagram of the kind presented in Figure 2c can be used to

generate statistical expectations (e.g., means, variances, and covariances) for any

one group from the parameters estimated (for details, see Bryk & Raudenbush,

1992; McArdle & Hamagami, 1996).

The extent of potential bias due to nesting can be seen by rewriting Equation

(5) as

Y .g/
n D .“0 C d

.g/
0 / C .“1 C d

.g/
1 /X .g/

n C en;

D Œ“0 C “1X .g/
n C en� C d

.g/
0 C d

.g/
1 X .g/

n ;

(6)

where, by substitution, the first (bracketed) part of this equation is seen as being

identical to a standard regression model (e.g., Equation (1)]) but the remainder

now includes two additional unobserved deviation terms (d0 and d1X). If these

latent second-level deviations are all zero, or if they are independent of all other

variables, they can be subsumed into the first-level unobserved error term .en/

and the coefficients of Equation (1) will be unbiased. However, to the degree

these new terms reflect a lack of independence within the original residuals, the

standard regression assumptions will fail, and a new set of estimates will be

necessary. Furthermore, this inclusion of intraclass clustering does not seem to

create any further biases even when clustering is not present, so we can routinely

use this form of a nested regression model (Equation (5)) in all analyses.

Multilevel Linear Models

In analyses presented here additional group-specific information (e.g., college

graduation rate) is used from a variety of different colleges. In order to examine
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these interactions in the context of the intraclass effects, we use a regression

equation referred to as a multilevel (or hierarchical model) written in the form

of

Y .g/
n D “

.g/

0 C “
.g/

1 X .g/
n C en; with

“
.g/

0 D ”00 C ”01Z
.g/

C d
.g/

0 and

“
.g/
1 D ”10 C ”11Z

.g/
C d

.g/
1 ;

(7)

where the individual groups have regression coefficients .“
.g/
j / that are allowed

to vary between one school and another, and this variation is related to another

set of fixed coefficients .”jk/ and disturbances .dj / for variable Z at the second

level of aggregation (e.g., COL-GRAT, COL-COST, COL-PUPR). The intercepts

in these equations are interpreted as means only when we force the Z variables

to have zero means (and we could rewrite ”00 D “0/. In this form (i.e., when all

Z variables have zero means) it is easier to see the potential bias by rewriting

Equation (7) as

Y .g/
n D .”00 C ”01Z

.g/
C d

.g/

0 / C .”10 C ”11Z.g/
C d

.g/

1 /X .g/
n C en;

D “0 C ”01Z
.g/

C d
.g/
0 C “1X

.g/
n C ”11.Z

.g/X .g/
n / C d

.g/
1 X .g/

n C en;

D Œ“0 C “1X .g/
n C ”01Z

.g/
C ”11.Z

.g/X .g/
n / C en� C Œd

.g/
0 C d

.g/
1 X .g/

n �;

(8)

where we have reorganized (by brackets) the first five terms to distinguish

the standard interaction model components (Equation (2)) from the two new

unobserved variance components .dj /. Although the first five coefficients could

be estimated using product variables in a standard regression model of Equation

(2), ignoring the last two components can lead to biased estimates. The extent

of this bias is typically a matter of empirical observation, is related to the intr-

aclass correlation (Equation (3)), and can be directly estimated using available

multilevel analysis software. In practice, there seems little reason not to try. A

path diagram of this algebraic expression of the more complete multilevel model

is presented for a single group (of many) in Figure 2d.

Multivariate Multilevel Models

The models fitted in the next section include different academic outcomes and

more predictors at each level. One system of equations we examine has a form



ANALYSIS OF ACADEMIC PERFORMANCES 71

written as

Y .g/
n D “

.g/
0 C “

.g/
1 X

.g/
1n C “

.g/
2 X

.g/
2n C “

.g/
3 X

.g/
3n C en; with

“
.g/
0 D ”00 C ”01Z

.g/
1 C ”02Z

.g/
2 C d

.g/
0 ;

“
.g/

1 D ”10 C ”11Z
.g/

1 C ”12Z
.g/

2 C d
.g/

1 ;

“
.g/
2 D ”20 C ”21Z

.g/
1 C ”22Z

.g/
2 C d

.g/
2 ;

(9a)

which, in matrix terms, can be expressed more simply as

Y
.g/

D .”Z
.g/

C d .g// C e; (9b)

where Y
.g/ is the .N � 1/ data score matrix of all people for all groups; e is

the .N � 1/ error or residual score matrix of all people for all groups; ” D

Œ”00”01”02; ”10”11”12; ”20”21”22; ”30”31”32�, the .4 � 3/ second-level coefficient

matrix; Z
.g/

D Œ1.g/; Z
.g/

1 ; Z
.g/

2 �, the .3 � N / second-level score matrix; and

d D Œd0; d1; d2�, the .N � 3/ second-level disturbance or residual matrix. In

this case we assume there are three measured variables at the first level and

two measured variables at the second level. In this more complex system, the

general multilevel interpretations are the same as described earlier: all first-level

regression coefficients .“
.g/
i / can be interpreted to vary between groups, and

these differences may be decomposed into direct effects by the second-level

regression coefficients .”j k/ in matrix ”.

It is also possible to create several alternative SEMs for the comparison

of the prediction equations that use the available information from multiple

outcome variables (see Goldstein, 1995; Hox, 2002; McArdle & Hamagami,

1996; McDonald, 1993, 1994; McDonald & Goldstein, 1988; Muthén, 1994).

One SEM considered here is a classical linear measurement-structural model in

the multilevel form of

Y
.g/

1n D �
.g/
1 C œ

.g/
1 F .g/

n C u1n;

Y
.g/

2n D �
.g/

2 C œ
.g/

2 F .g/
n C u2n;

Y
.g/

3n D �
.g/

3 C œ
.g/

3 F .g/
n C u3n;

Y
.g/

4n D �
.g/
4 C œ

.g/
4 F .g/

n C u4n;

(10a)
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with

F .g/
n D “

.g/

0 C “
.g/

1 X
.g/

1n C “
.g/

2 X
.g/

2n C en and

“
.g/

0 D ”00 C ”01Z
.g/

1 C ”02Z
.g/

2 C d
.g/

0 ;

“
.g/
1 D ”10 C ”11Z

.g/
1 C ”12Z

.g/
2 C d

.g/
1 ;

“
.g/

2 D ”20 C ”21Z
.g/

1 C ”22Z
.g/

2 C d
.g/

2 ;

(10b)

which, in matrix terms, can be expressed more simply as two expressions,

Y
.g/

D �.g/
C ƒ.g/F .g/

C u.g/; with

F .g/
D .”Z

.g/
C d .g// C e;

(10c)

where Y
.g/ is the .N � 4/ data score matrix of all people for all groups; e is

the .N � 4/ error or residual score matrix of all people for all groups; F .g/

is an .N � 1/ set of unobserved common factor scores for the observations;

ƒ is a .4 � 1/ matrix of factor loadings; u D Œu1; u2; u3; u4�, the .N � 4/

matrix of residual scores; and the multilevel structure is a decomposition of

the common factor score with ”, (a 3 � 3) second-level coefficient matrix,

multiplied by Z
.g/, a .3 � 3/ second-level score matrix, with disturbances d

and factor score residuals e. In this way, the measured Y variables are related

(within each group) to a single latent variable F by a common factor model

with variable intercepts .�i /, factor loadings .œi /, and uniqueness .ui / as well

as multilevel parameters (“, ”, ¥2) and disturbances .d / for the common factor

scores. In this kind of a multivariate model there are three different sources of

random error (uniqueness, errors, and disturbances) and they are all assumed

to be uncorrelated. Appropriate identification constraints follow from common

factor theory (McDonald, 1993, 1994). In the analysis used here, the common

factor score F is considered as a broad academic achievement, and this factor

is assumed to carry the full multilevel structure of all high school X and

second-level Z effects. We note that this model is similar to but not identical to

the popular multilevel factor models where factor loadings .œi / are compared

for a “between-within” multilevel structure (i.e., as in McDonald, 1993, 1994;

Muthén, 1994).

Multilevel Computer Software

The computer software for multilevel regression analyses is widely available (for

review, see Goldstein, 1995; Hox, 2002; Hox & Kreft, 1994; Kreft, de Leeuw,
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& van der Leeden, 1995). The programs that can deal with these problems

now include HLM (Bryk & Raudenbush, 1992); LIMDEP (Greene, 1998); MLn

(Goldstein, 1995); MIXREG (Hedecker & Gibbons, 1994); VARCL (Longford,

1990); and the newest versions of PROC MIXED and PROC NLMIXED (Littell

et al., 1996; Singer, 1998), LISREL 8.30 (Joreskog, Sorbom, du Toit, & du Toit,

1999), S-Plus (S-Plus, 1999), and Mplus (Muthén & Muthén, 2007). Each of

these computer programs provides maximum likelihood estimates (MLE) and

standard likelihood-based statistical information on goodness of fit—this can

be indexed by the function .f D �2LL/, or as the difference between two

nested models .L2/, or as the ratio of the difference compared with its degrees

of freedom .LRR D L2=�df / for a variety of multilevel models. Although

there are some practical differences among these computer programs (e.g., MLn

allows more than two levels, MIXREG is free, etc.), these computer programs

are treated here as interchangeable. Results from the PROC MIXED and PROC

NLMIXED algorithms (e.g., Littell et al., 1996; Singer, 1998) are presented

here, and any further differences in computer programs are only discussed as

needed.

The modeling approach we present here is similar to the approach we have

used in other latent variable analyses (e.g., McArdle, 1994). However, there are

numerous controversies specific to the statistical features of multilevel models,

including (a) the lack of true nested models with Restricted MLE (REML but

not MLE), (b) the downward biases of MLE estimates of variance components

(but not with REML), (c) the appropriate choice of metric for the predictors,

(d) the interpretation of explained variance, and (e) the appropriate strategy

for model selection (e.g., Goldstein, 1995; Kreft, de Leeuw, & Aiken, 1995;

Pinherio & Bates, 2000). In all models reported here we only present MLE

solutions but we did not find any notable differences in REML. The outcome

variables were retained in their original metric, but the predictor variables were

all fitted in rescaled z-score form to eliminate some potential problems due to

scaling, centering, and programming (e.g., Kreft, de Leeuw, & Aiken, 1995).

We report the statistical significance or accuracy of each model parameter using

a t value constructed from the simple ratio of the model parameter divided by

the estimated standard error.

We also examine the fit of a model of interest (vs. a baseline model) by

calculating two indices of percent reduction in error (PRE) documented by

Snijders & Bosker (1994, 2012). Several explained variance-like indices can

be written here as the ratios of the first-level error variance .¥2
e/, the intercept

variance .¥2
0/, and the associated sample sizes .n.g//. Additional parameters

may also be needed in higher order model (e.g., ¥2
1; ¥01). These percentages are

considered unbiased estimates of the “modeled variance” at the first level .PRE1/

and at the second level .PRE2/ for a correctly specified population, so we use

these as one indicator of the impact of specific predictor variables. Similarly,
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we assume any negative values of these ratios, possible in any latent variable

model, are a warning sign of an improperly specified model in some way or the

other (for examples, see Kreft & de Leeuw, 1998; Snijders & Bosker, 1994).

In recent multilevel statistical theory, it is worthwhile to add that any mul-

tivariate model (Equation (10)) can also be reparameterized and fit using the

available mixed-model software (Goldstein, 1995). The observed outcome data

can be lined up into an augmented single vector Y
0

D ŒY 0

1 W Y 0

2 W Y 0

3 W : : : Y 0

M �

and, by making appropriate provisions for the expectations of the model for each

variable (using dummy variables and nested levels), the standard single outcome

optimization can treat this multiple variable model as a single equation. This

theory is a bit cumbersome to implement, but it makes it possible to construct a

simultaneous test of proportionality of multiple .M � 2/ variables, estimating

the proportions (œj , œk , etc.) as factor loadings and obtaining an overall fit to test

the hypothesis of a general common factor (e.g., Equation (10); see McArdle &

Woodcock, 1997). In practice, however, these kinds of multiple outcome variable

models can lead to new complications and new computer software or modeling

techniques may be required.

RESULTS

Several related multilevel models have been fit to the data described in Table 2,

and only a selected set of models is presented here. This presentation of re-

sults begins with some initial models for freshman grades (Table 3), includes

additional predictor variables (Table 4), moves to multiple outcome and college-

level variables (Table 5), examines potential nonlinearity in these relationships

(Table 6), and concludes with some comments on our modeling strategy.

Preliminary ‘‘Two-Stage’’ Results

To begin we first calculated a simple regression model with HS-CGPA as a

predictor of F-GPA in the total sample (Table 1) and also using the sample-size

weighted means of the colleges (Table 2). These simple analyses yielded model

parameters that were similar for the intercept (“0 D 2:616 vs. 2.623) but different

for slopes (“1 D :379 vs. .191) and for the explained variance (R2
D :350 vs.

.175). This total regression exhibits relatively high prediction accuracy for these

validation models (cf. Crouse & Trusheim, 1988; Willingham et al., 1990).

However, these slope differences make it complex to judge the impact of the

omission of the intraclass college differences, and this initially suggests that a

more complete multilevel analysis may be useful.

Some expected results from the general multilevel approach are first described

using a simple “two-stage” regression approach based on a model with HS-CGPA
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FIGURE 3 College level parameters from C D 267 linear regression models of freshman

GPA.

as a predictor of F-GPA (as in Equation (4)). In a first stage we fitted a separate

regression equation to each of the C D 267 colleges and examined the data for

outliers. In a second stage we extracted the parameters from these models and

examined their distribution characteristics. Although these standard Ordinary

Least Squares (OLS) models have limited statistical features (e.g., they are not

“Bayes” corrected estimates; see Braun, 1989), they are fairly easy to calculate

and useful in initial assessments of the models and data.

Figure 3a is a histogram showing the samples sizes used within each col-

lege (ranging from 10 to 202). The other plots are displays of the frequency

distributions of parameters obtained from fitting separate OLS regressions of

HS-CGPA to data within college. In Figure 3b we plot the OLS intercept terms

.“
.c/

0 / obtained, in Figure 3c we plot the OLS slope terms .“
.c/

1 /, and in Figure

3d we plot the OLS explained variances .R2.c//. It appears that there is notable

variation in each distribution, there is at least one outlier in all cases, but each

distribution is also symmetric and nearly normally distributed (Q-Q plots may

be more informative about the latter concern).

Figure 4 is a display of the predicted value equation for each separate college

using these estimates with all predictions in the original units. In these models

the regression was fitted so that it would be centered at the average score of the

entire distribution (i.e., at HS-CGPA D 3.12) and the resulting intercept is the
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FIGURE 4 Separate college OLS regression functions using a simple linear model.

predicted score for an average student (i.e., “0 D 2:62). (Each regression line in

this plot is displayed for a two-standard-deviation range around the college mean

score.) As this picture shows, this collection of lines has a notable difference

in the intercepts across colleges but remarkably similar slopes of increasing

high school grades predicting increasing college grades. This intercept variation

can be studied in more detail in the multilevel models to follow, but the slope

variation is expected to be small in these analyses.

Initial Multilevel Models of Freshman GPA

The numerical results of six initial multilevel models fitted to the data for

freshman grades (F-GPA) are presented in Table 3. The first model .M1/ is

a baseline model with three parameters: an intercept mean .“0 D 2:62/, an

intercept variance .¥2
0 D :020/, and an error variance .¥2

e D :391/. This model

was fitted with MLE and yields a baseline likelihood (of �2LL D 31401) to be

used in further model comparisons. The resulting explained variance of the raw

scores here depends only on the intracollege variance, so here the ˜2
D :049.

Although this intraclass correlation is relatively small, it is not thought of as zero

(e.g., the Wald-Ratio D 8), so we expect some reduction in bias by taking college

differences in average freshman grades into account in additional equations.
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The second model .M2/ is a variance components model (see Equation (5))

where we add the high school core grades (HS-CGPA) as a predictor of the

freshman college grades (F-GPA). This model yields a similar intercept .“0 D

2:62/, a strong positive slope .“1 D :399/ reflecting a shift in freshman grades for

each standard deviation of high school core grades (or .58 in raw score HS-CGPA

terms), a slightly larger variance component for the intercept .¥2
0 D :022/, and a

small but nonzero variance component for the college-level slopes .¥2
1 D :004/.

The third model .M3/ adds a covariance .¥01 D �:004/ between the two second-

order residual components, and the result remains same.

The fourth model .M4/ is a multilevel model (e.g., Equation (8)) with high

school grades at the first-level prediction and college graduation rate at the

second-level prediction, and the resulting model can be written in full multilevel

form as

F-GPA.c/
n D “

.c/

0 C “
.c/

1 HS-CGPA.c/
n C :492en

“
.c/

0 D 2:62 C �:034 COL-GRAT.c/
C :148d

.c/

0 and

“
.c/
1 D :400 C �:003 COL-GRAT.c/

C :063d
.c/
1 ;

(11)

with the accurate coefficients underlined (i.e., those that are significantly dif-

ferent from zero). In this expression the residual terms are rewritten in a stan-

dardized form .e/ so the variance components can all be expressed as standard

deviations (e.g., ¥2
e D :242, so ¥e D :492) and included directly in the systems

of equations. The results yield a similar intercept .“0 D 2:62/, a strong positive

slope for high school grades .“1 D :400/, a small but negative effect for

the second-level regression of the intercept on the college graduation .”01 D

�:034/, and a nonsignificant second-level regression of the slope on the college

graduation .”11 D �:003/. Compared with the baseline model, the first-level

error variance has become smaller .¥2
e D :242/, resulting in an increased model

variance (PRE1 > :36), with no second-level variance gain .PRE2 < �:02/.

This initial multilevel model is depicted in a path diagram in Figure 5 using the

techniques described earlier (from McArdle & Hamagami, 1996).

In the fifth model .M5/ we examine the possibility of nonlinear relationships

by adding a squared term (HS-CGPA*HS-CGPA) and a second coefficient .“2/

to the first-level prediction (as in Equation (2)). This model permits a quadratic

polynomial for high school grades with variation in both components. The

inclusion of these terms leads to a notable increase in the goodness of fit (L2
D

215 on �df D 6) and only a small increase in the model variance (PRE1 > :36

but PRE2 < �:05). The second-level prediction of these components from the

college graduation rate is similar to the previous linear model .M4/. The fixed

parameters of this quadratic model are all nonzero (i.e., t > 2) and the predicted

average function is concave upward with a minimum at approximately HS-
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FIGURE 5 Initial multilevel results (Eq. [11]) as a path diagram.

CGPA D 2.85. For descriptive purpose, two-stage OLS estimates of the quadratic

model .M5/ are presented for separate colleges in Figure 6a. Although there

may be some outliers in this plot, the general tendency shows prediction models

with stronger effects of high school grades on freshman college grades after the

minimum point.

In the sixth model .M6/ we approach this problem of nonlinearity in a

different way: we fit a nonlinear model as two linear segments joined at the

average score (or knot point) of HS-CGPA D 3.12 (see Cudeck, 1996; Draper

& Smith, 1981; Smith, 1979). Although we could choose this knot point in any

way (i.e., at the minimum of the parabola), we choose the mean as the knot and

code the predictors so that there is a segment before the average z score .“1.b//

and after the z average score .“1.a//. The results can be written as

F-GPA.c/
n D “

.c/
0 C “

.c/

1.b/
HS-CGPA(b).c/

n C “
.c/

1.a/
HS-CGPA(a).c/

n C :489en

“
.c/

0 D 2:53 C �:021 COL-GRAT.c/
C :158d

.c/

0 and

“
.c/

1.b/
D :288 C �:006 COL_GRAT.c/

C :084d
.c/

1.b/
and

“
.c/

1.a/ D :514 C �:032 COL_GRAT.c/
C :003d

.c/

1.a/

(12)
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(a)

(b)

FIGURE 6 (a) Separate college OLS regression functions from a quadratic polynomial

model. (b) Separate college OLS regression functions from a bilinear segments model.
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with the subscript “(b)” for “below” and “(a)” for “above” the average score.

One potentially new effect is apparent: the prediction at the average score is

the intercept .“0 D 2:53/, but the “below average” segment seems to have a

lower slope .“1.b/ D :288/ than the “above average” segment .“1.a/ D :514/.

This implies that the prediction model would be more linear if we stretched the

HS-CGPA score so the interval 2.0 to 3.0 was considered equivalent to 3.0 to

3.5 and 3.5 to 4.0. In addition, the impact of college graduation rate is now

larger in the above average segment. These slope differences obtain a nontrivial

improvement in fit (L2
D 227 on �df D 6) over the nested baseline model

but this model not as accurate as the quadratic model (PRE D :36, �.10).

The two-stage OLS estimates of this segmented model .M6/ are presented for

separate colleges in Figure 6b. Here, again, it is clear that the prediction model

suggests a stronger effect of high school grades after the minimum point. We

return to this nonlinear possibility in the final series of multilevel models (in

Table 6).

Adding Additional Predictor Variables

Table 4 includes a listing of results for a sequence of random components

models where we examine three potentially important high school predictors.

The first model .M3/ is repeated from Table 3 and shows the random components

prediction of the freshman grades from high school grades (with “1 D :399

and PRE D :36, �.02). The model M7 is a random components prediction

of freshman grades only from high school SAT or ACT scores (HS-TEST),

and the results (“2 D :323 and PRE D :22, �.06) lead to a slightly lower

prediction than in the grades-only model .M3/. The next model .M8/ is a

random components prediction of freshman grades only from the number of high

school core courses (HS-UNITS), and the results (“3 D :154 and PRE D :06,

�.02) show much lower prediction than the other two univariate models. Among

these variables, high school grades seem to be the strongest single predictor of

freshman grades, with the test scores next best, and the core units with relatively

low prediction.

The last four models include multiple predictors. A random components

prediction from the combination of high school grades and tests is given first

.M9/. In this prediction the independent grade slope .“1 D :327/ is largest,

but the independent ACT/SAT test-score slope .“2 D :135/ is also positive

and accurate. In contrast to either univariate model (M3 or M7) the good-

ness of fit is increased substantially, the first-level modeled variance increases

.PRE1 D :38/, but there is a decrease in the second level .PRE2 D �:13/.

This combination of both grades and test variables yields a more accurate

prediction than either variable alone, but the second-level model is probably

not yet appropriate.
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Model M10 combines grades and core units and shows a strong effect of

grades and only a minor net effect for the addition of core units. Model M11

combines tests and units and shows a strong effect of tests and a slightly positive

effect of core units. The final model M12 combines all three variables and

shows the same basic result as found in grades and tests alone .M9/—there

is no net impact of the number of core units on the prediction of freshman

grades. Here the number of core units .“3 D �:004/ is not accurately different

from zero (and it would be interpreted as a case of classic suppression in any

case; see Table 1). The estimated model variance for these three predictors

.PRE1 D :38/ is similar to the estimated model variance of M9 with just

two predictors .PRE1 D :38/, probably indicating some model misspecification.

Also, several covariance parameters were estimated at zero and this probably

reflects a numerical boundary condition. In general, the results of M12 generally

indicate numerical instability in the estimates from the inclusion of all three

individual-level variables with all random components.

To avoid further convergence problems (using SAS PROC MIXED) in these

more complex models we restricted our estimation to variance terms only .¥xy D

0/. In models not presented in detail here, we added college graduation to this

prediction and found positive average slopes for grades .“1 D :327/ and for

tests .“2 D :140/ and again no independent effect for core units. At the second

level we found a small but accurate negative effect of college graduation rate

on the average score .”01 D �:061/, but we do not find any additional effect of

the college graduation rate on the slopes of grades, tests, or units. The variance

components of first-order grades and tests were nonzero, but the core units do

not add systematic variance here either. In sum, these new models yield basically

the same results as the less complex models fitted earlier (M9 and M12).

Additional College-Level Characteristics and
College Outcomes

The next set of multilevel models are listed in Table 5. These models all include a

second-level prediction with three college characteristics: college graduation rate

(COL-GRAT), a contrast of the public versus private colleges (COL-PUPR), and

the cost of attending the college (COL-COST). These models are fitted separately

for three college outcomes: freshman grades (F-GPA), freshman credit hours

attained (F-CREDITS), and freshman quality points (F-QUALPTS).

In the first model .M13/ the previous prediction model for freshman grades

(F-GPA) is expanded to include college-level variables. The results obtained

with all three college-level variables yield only a small increase in first-level

model variance .PRE1 D :38/ and no new independent effects beyond those
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TABLE 5

Multilevel Models for the Prediction of Three Freshman Academic College Outcomes

Parameters

(Symbol) M13 M14 M15

Outcome F_GPA F_CREDITS F_QUALPTS

Fixed Terms

Intercept .”00/ 2.63 (>99) 28.5 (>99) 76.6 (>99)

HS_CGPA .”10/ 0.333 (39) 1.46 (15) 12.8 (34)

HS_TEST .”20/ 0.143 (18) 0.607 (6) 6.31 (17)

HS_UNITS .”30/ �0.005 (1) 0.173 (2) 0.16 (1)

COL_GRAT>Intercept .”01/ �0.067 (5) 0.262 (2) �1.6 (3)

COL_GRAT>HS_CGPA .”11/ �0.005 (1) �0.245 (3) �0.53 (2)

COL_GRAT>HS_TEST .”20/ �0.009 (1) �0.054 (1) �0.33 (1)

COL_GRAT>HS_UNITS .”30/ 0.003 (0) �0.046 (1) 0.009 (0)

COL_PUNP>Intercept .”02/ 0.010 (1) �0.131 (1) 0.22 (0)

COL_PUNP>HS_CGPA .”12/ 0.014 (1) 0.061 (0) 0.50 (1)

COL_PUNP>HS_TEST .”22/ 0.007 (1) 0.101 (1) 0.45 (1)

COL_PUNP>HS_UNITS .”32/ 0.003 (0) 0.040 (0) �0.05 (0)

COL_COST>Intercept .”02/ 0.004 (1) 0.267 (1) 0.58 (1)

COL_COST>HS_CGPA .”13/ �0.010 (1) 0.044 (1) 0.01 (0)

COL_COST>HS_TEST .”23/ �0.004 (0) �0.128 (1) �0.40 (1)

COL_COST>HS_UNITS .”33/ 0.004 (0) 0.015 (1) 0.15 (0)

Random Terms

Variance{Error} .¥2
e / 0.230 (88) 27.4 (88) 443 (88)

Variance{Intercept} .¥2
0/ 0.023 (9) 2.93 (9) 49.5 (9)

Variance{HS_CGPA} .¥2
1/ 0.003 (4) 0.470 (5) 5.9 (4)

Variance{HS_TEST} .¥2
2/ 0.002 (3) 0.433 (5) 5.50 (4)

Variance{HS_UNITS} .¥2
2/ �0 (0) 0.056 (1) 0.48 (1)

Goodness-of-Fit

Nesteded{Outcome} .˜2/ .047 .100 .064

Explained{Outcome} .R2/ .440 .214 .412

Log Likelihood (�2LL) 23,134 101,219 146,593

Diff. �2LL/Diff. dfs (LRR) 8,267/20 2,036/20 7,445/20

Note. (1) All models were fitted here using SAS PROC MIXED with N D 16,348, and

C D 267; (2) MLE parameter estimates and approximate t D p=se.p/ values in parentheses; (3)

�0 indicates parameter estimated at zero; (4) For F_GPA Observed Mean D 2.617 with Variance D

.411; (5) All predictor variables scaled to Z-scores.

found in previous models. It appears that once the overall college graduation

rate is taken into account, the independent effects of college type and college

cost do not add much to the prediction of college grades of freshman students.

The next model .M14/ uses the same multilevel structure but makes a pre-

diction of a new dependent variable of freshman credit hours (F-CREDITS).

This model yields accurate first-level estimates for the intercept .“0 D 28:5/,
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for the slope of core grades .“1 D 1:46/, for the slope of tests .“2 D :607/,

and also for the slope of core units .“3 D :173/. At the second level, accurate

estimates include a positive effect of college graduation on average credits hours

.”01 D :262/ and a negative effect of college graduation on the slope of the high

school grades on the credit hours .”11 D �:245/. All other effects are either

the same as before or not accurate. In contrast to the prior freshman grade

predictions, the multilevel model of freshman credits attained shows (a) a higher

degree of college-level nesting .˜2
D :100/, (b) a much lower first-level model

variance .PRE1 D :13/, but (c) a much higher second-level model variance

.PRE2 D :16/. These larger second-level effects of freshman credit hours are

related only to the college graduation rate.

The next model .M15/ is the first model presented here for freshman quality

points (F-QUALPTS). This variable is a product of the freshman grades and

credit hours attained (i.e., grades weighted by credits), and these results are

most similar to the previous model for freshman grades. This model yields

accurate first-level estimates for the intercept .“0 D 76:6/, for the slope of

grades .“1 D 12:8/, for the slope of tests .“2 D 6:31/, but no significant slope

for core units. At the second level, accurate estimates include a small negative

effect of college graduation on average quality points .”01 D �1:6/ and a small

negative effect of college graduation on the slope of the high school grades on

the credit hours .”11 D �:53/. All other effects are either the same as before or

not accurate. As in the prior freshman grade predictions, the model of quality

points attained (a) a comparable degree of college-level nesting .˜2
D :064/,

(b) similar first-level model variance .PRE1 D :35/, and (c) a small but positive

second-level model variance .PRE2 D :05/.

Segmented Multilevel Models

In another set of models, we now explore the possibility of nonlinearity in

the prior multilevel prediction models. Table 6 is a list of results for each of

the three freshman academic outcomes: grades, credits, and quality points. In

each of the three models we have used two first-level variables (high school

grades and tests) and one second-level variable (college graduation rate). The

distinguishing feature of these models is the inclusion of two “linear segments

around the average” for each predictor variable. These segments were formed for

each of the z scores using the same simple method described earlier (see model

M6 in Table 3). These models are estimated as a single multilevel prediction

equation with connected segments and with variance components to permit a

closer look at some segments of predictability in these models.

The first model .M16/ is a multilevel prediction of freshman grades (F-GPA)

using the three segmented variables, and the results can be written as
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F-GPA.c/
n D “

.c/

0 C “
.c/

1.b/HS-CGPA(b).c/
n C “

.c/

1.a/HS-CGPA(a).c/
n

C “
.c/

2.b/HS-TEST(b).c/
n C “

.c/

1.a/HS-TEST(a).c/
n C :476en

“
.c/

0 D 2:57 C �:010COL-GRAT(b) C �:108COL-GRAT(a).c/
C :138d

.c/

0

“
.c/

1.b/ D :290 C :036COL-GRAT(b) C �:070COL-GRAT(a).c/
C :089d

.c/

1.b/

“
.c/

1.a/ D :434 C :000COL-GRAT(b) C �:058COL-GRAT(a).c/
C :000d

.c/

1.a/

“
.c/

2.b/
D :076 C �:028COL-GRAT(b) C �:005COL-GRAT(a).c/

C :084d
.c/

2.b/

“
.c/

2.a/
D :178 C :001COL-GRAT(b) C �:019COL-GRAT(a).c/

C :000d
.c/

2.a/

(13)

with the accurate effects underlined. This model yields accurate first-level esti-

mates for the intercept .“0 D 2:57/, some differences in grades for the “below

average” slope .“1.b/ D :290/ and the “above average” slope .“1.a/ D :434/, and

similar differences in tests for the “below average” slope .“2.b/ D :076/ and the

“above average” slope .“2.a/ D :178/. At the second level, accurate estimates

are found only for the “above average” graduation rate colleges. These include a

small negative effect of college graduation on average grades .”01.b/ D �:108/

and small negative effects of college graduation on the slope of the high school

grades .”11.b/ D �:070/ and tests .”12.b/ D �:058/. This final F-GPA model

yields the highest first-level model variance .PRE1 D :40/ and a smaller but

positive second-level model variance .PRE2 D :14/.

The last two models (M17 and M18) include the same structure of predictors

for freshman credit hours and for quality points. The model for credit hours

shows a different pattern of results, and the “below versus above” average GPA

result does not seem to apply. Here the “below average” slope .“1.b/ D 2:01/

is greater than the “above average” slope .“1.a/ D 1:36/. However, as before,

the test score parameters yielded a zero “below average” slope .“2.b/ D �0:2/

with a positive “above average” slope .“2.b/ D 1:4/. This final F-CREDITS

model yields a nontrivial first-level model variance .PRE1 D :15/ and the largest

second-level model variance .PRE2 D :28/ of any model presented here.

The first-level model for freshman quality points follows the pattern of the

freshman grades model described earlier, but the second-level model seems to
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enhance the credit hour effects. Strong negative effects are found at the “above

average” slopes for the college graduation on the average quality points .”02 D

�3:62/ and on the high school grades slope .”11.b/ D �3:37/. This final F-

QUALPTS model yields positive model variance .PRE D :37, .18).

This general pattern of stronger effects at the “above average” levels seems

notable among all variables. The goodness of fit of these models is slightly

improved over other models not presented here, including simple single segment

models (e.g., for F-GPA, L2
D 184 on �df D 8/. Furthermore, the positive first-

level and second-level model variances suggest the models are more properly

specified than before. These kinds of nonlinear results are provocative and seem

worthy of further study.

Additional Multivariate Multilevel Models

Various attempts were made to fit more elaborate multivariate models where the

interrelationships among the outcomes included some common features (i.e.,

common factors as in Equation (10)). By comparing the fit of these combined

outcome models to the separate outcome models we hoped to obtain a formal

test of the fit of a single “academic factor” hypothesis (see McArdle, 1998).

Unfortunately, most of our multiple outcome models failed to converge for one

reason or another using the standard software.

To minimize this problem we examined a bivariate representation of this

common factor model of Equation (10) where the two outcomes were assumed

to be proportional .œ/ to one another except for constants representing the

differences in origin .�1) and scale .¥2
u/. We fit these bivariate models with

restrictions of proportionality of the parameters of the model for grades .M13/

and credits .M14/. Numerical boundary conditions were quickly located and

convergence was not achieved. The results did yield multilevel equations with

proportional estimates .œ D 3:5/ but the parameters were unstable and yielded

extremely poor fit (L2 > twice the sum of the prior fits).

These generally poor numerical results we obtained could be because the

multiple outcome models fitted were too complex for the available programs.

However, we also fit a standard SEM latent variable path model (as in McArdle,

1994, 1998) to the between-group (i.e., Table 2) and within-group matrices

(i.e., Table 2a minus Table 2b), and a single common factor model also fit

poorly for these data. This SEM is not the model of interest (Equation (10)),

but this analysis points out that the poor numerical results could also be because

a simple common factor with multilevel structure (as in Equation (10)) was a

seriously misspecified model for these data. For one or more of these reasons, the

potentially useful multivariate hypotheses about broad academic achievements

have not been fully examined here.
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TABLE 6

Multilevel Segmented Prediction Models for High School Academic Variables

Parameter M16 M17 M18

(Symbol) F_GPA F_CREDITS F_QUALITY

Fixed Effects

Intercept .”00/ 2.57* 28.3* 72.6*

HS_CGPA1 .”1.b// 0.290* 2.01* 11.02*

HS_CGPA2 .”1.a// 0.434* 1.36* 17.37*

HS_TEST1 .”2.b// 0.076* �0.18 1.49

HS_TEST2 .”2.a// 0.178* 1.4* 9.98*

COL_GRAD1>Intercept .”01/ �0.010 0.40 0.36

COL_GRAD1>HS_CGPA1 .”11.b// 0.036 0.15 1.02

COL_GRAD1>HS_CGPA2 .”12.b// �0 �0.15 0.26

COL_GRAD1>HS_TEST1 .”21.b// �0.028 �0.43 �1.69

COL_GRAD1>HS_TEST2 .”22.b// 0.001 0.25 0.78

COL_GRAD2>Intercept .”02/ �0.108* �0.19 �3.62*

COL_GRAD2>HS_CGPA1 .”11.a// �0.070 �1.03* �3.37*

COL_GRAD2>HS_CGPA2 .”12.a// �0.058* 0.02 �1.75

COL_GRAD2>HS_TEST1 .”21.a// �0.005 �0.48 �1.37

COL_GRAD2>HS_TEST2 .”22.a// �0.019 �0.28 �1.54

Random Effects

Variance{Error} .¥2
e / 0.227* 27.1* 434*

Variance{Intercept} .¥2
0/ 0.019* 2.46* 42.3*

Variance{HS_CGPA1} .¥2
11/ 0.008* 1.17* 6.96*

Variance{HS_CGPA2} .¥2
12/ �0 0.32 10.59*

Variance(HS_TEST1) .¥2
11/ 0.007* 1.28* 7.55*

Variance(HS_TEST2) .¥2
22/ �0 0.43* 9.19*

Goodness-of-Fit

Explained{Outcome} (R2) .448 .223 .424

Log Likelihood (�2LL) 22,891 101,134 146,309

Diff. �2LL/Diff. dfs (LRR) 8,510/19 2,121/19 7,729/19

Note. (1) Same data as listed in Tables 3 and 4; (2) Asterisk indicates a t-value > 2.58; (3)

Predictor variable are all segments; (4) Each predictor variable is separated into two segments:

X1 D XiffX < 0 and X2 D XiffX > 0.

DISCUSSION

This study was an application of contemporary multilevel regression modeling

to the prediction of 1st-year academic performances in college. The data used

here were collected as the first cohorts of a 5-year longitudinal study of student-

athletes. Although this study was initiated in 1993–1994, this data collection

data marked the first step toward a national census of student-athlete academic

performance that is now used for numerous purposes including penalizing col-

leges when their teams substantially underperform academically. The primary
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goal of the study was to gather information about the academic successes and

failures of student-athletes in all NCAA sports activities. A secondary goal

was to provide an improved empirical base for examining the potential impacts

of NCAA legislation related to academic issues, including initial eligibility,

mandatory degree progress benchmarks, and team-level academic expectations.

It is possible that the results of these multilevel models can add to the literature

and be of some practical use in future decisions, and we summarize a few of

these issues now.

Substantive Findings

Our multilevel analyses initially focused on the prediction of freshman GPA

from a variety of high school academic variables. The models used were mainly

standard multilevel regression models, but we also examined nonlinear prediction

within multilevel models. The basic pattern of results obtained shows the high

school grades are the best available predictors of freshman college grades, but

the ACT and SAT test scores are the next best available. The number of high

school core units taken does not add to this freshman grade prediction, but

it was useful in understanding differences in freshman credits taken, and this

included college-level differences. One key second-level impact found here was

that the college graduation rate, which may serve as a proxy for the student

body academic profile and institutional educational resources, has a small but

significant negative relationship to the average freshman grades. This result

requires further elaboration. We also found some interesting nonlinear effects of

higher prediction for students at higher levels of the academic variables.

Some aspects of these results have further substantive interpretation. First, the

well-known and widely cited results of freshman grades predicted by high school

grades and SAT or ACT test scores were not altered very much by the inclusion

of a multilevel structure to the model even though this was quite likely (e.g.,

Wainer & Brown, 2004). The clustering of student-athletes within colleges was

apparent, but this was relatively small .˜2
D 5%/, and this led to only minor

alterations in the traditional regression estimates of fixed effects. Of course,

this form of clustering might be different for college students who do not play

college sports. Nevertheless, under the restrictive assumption of a homogeneous

residual variance across colleges, this representation affords correct estimates of

the confidence boundaries (i.e., standard errors).

One interesting result was the finding that college graduation rate had a

small but significant negative relationship as a second-level predictor (see model

M4, Table 3, ”01 D �:034). This small value implies that, if all else could be

held constant, the higher the graduation rate of the school, the lower the 1st-

year grades. Of course, because we find that more highly selective schools
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seem to have higher graduation rates (e.g., McArdle, 1998; McArdle & Ham-

agami, 1994), this result seems counterintuitive. However, this new result can

be interpreted to mean that more selective colleges have more difficult 1st-year

grading practices, and major programs may be altered after college matriculation.

These college-level parameters can also be interpreted relative to the change in

individual z scores—that is, if we estimated the net effect of the differences

in high school grades and college graduation rates (i.e., z scores for HS-CGPA

minus COL-GRAT), the coefficient would yield a positive difference .:400 �

:034 D :366/. Thus, for a student whose high school grades are “above the

average,” going to a college where the other students are “at the average”

yields predicted freshman grades higher than for those students “at the average.”

Conversely, this also means that students with grades “below the average”

will have lower predicted scores at the specific colleges (cf. Bowen & Bok,

1998).

We generally found some differences between the models for freshman grades

and freshman credit hours, and these results may be interpreted in several

different ways. The first-level results show a positive effect of all high school

academic variables on the credit hours. The new result here is an independent

effect of course units, but the fact that the number of high school core courses is

positively related to number of college credit hours attained is not so surprising.

The new second-level results may be interpreted for colleges with different

graduation rates: in those colleges with higher graduation rates the students attain

more credits hours as freshmen, but these increased credit hours are highest for

students with lower high school grades. Other patterns of college and students

can be described in a similar fashion.

In analyses not presented here, we have used multilevel models to examine a

variety of other aspects of these data. Multilevel logit (and probit) models were

examined for binary variables, including freshman persistence and academic

eligibility, and these models are far less predictive and efficient than the ones

described here (cf. Hedecker & Mermelstein, 1999; McArdle & Hamagami,

1994; Pascaralla & Terenzini, 1991). Other ethnic and sport group differences

have been found before, and these will no doubt arise in these models (e.g.,

McArdle, 1998; Sawyer, 1986). We have also examined new models where

the high school location (state and area) was used as the nested effect, and

the intraclass correlations are much larger .˜2 > :15/ than those reported

for college groupings .˜2 < :05/ here. This last result raises the possibility

that 1st-year college students are more efficiently grouped by the high school

context they were a part of (for many years) than the new college context

(of 1 year). Combinations of these groupings and contexts may be of further

importance because the most important context for any one person—of one

ethnic background in one high school going to one college participating in one

sport—may be quite different from another person going to the same college.
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Continuing Challenges

The multilevel models can be routinely used for these and other kinds of

validation studies. In fact, these multilevel multivariate models may eventually

be useful as a standard against which we judge all other results. However,

multilevel analyses raise more general research challenges.

A key challenge raised here is the general question of exactly “what context

is most important” (see Brooks-Gunn, Duncan, & Aber, 1998; Diez-Roux, 1998;

Hox & Kreft, 1994), and further methodological and substantive work on this

question is needed. The multilevel models used here afford one useful statistical

tool for unconfounding the complex issues of “college selectivity” and “college

choice” (e.g., Beatty et al., 1999; Manski & Wise, 1983). But, as we have

found, parametric interpretations are only one way to deal with the model-

based interpretations of comparisons within a manifest group (i.e., the “Frog

Pond effect”; e.g., Aitkin & Longford, 1986; Burstein et al., 1989; Cronbach &

Webb, 1975; Kreft, 1993; Kreft et al., 1995). The most appropriate clustering

of groups of persons may even be considered another kind of latent factor to be

found by empirical study (e.g., Muthén, 1994).

Prior research has shown how it is possible to create several alternative

SEMs for the comparison of multiple variable equations (see Goldstein, 1995;

McArdle & Hamagami, 1996; McDonald & Goldstein, 1988; B. Muthén, 1994).

Our efforts to fit a common factor model here proved impractical given the

limited outcomes we studied. In practice, this common factor model may be

more appropriate at other levels of observation (i.e., separate grades, multiple

tests or interest areas, etc.). But this kind of multilevel SEM is important on

a theoretical basis. That is, this model is restrictive in the sense that only the

common factor scores, and not the specific factor scores, can carry the multilevel

structural information. Even using only a bivariate model, this can lead to a

formal rejection of the fit of the “same factor” hypothesis. In a general sense,

this kind of multivariate multilevel model can help provide a more rigorous test

of the validity of any construct in question and, hence, can be a useful scientific

tool (as in McArdle & Goldsmith, 1990; McArdle & Prescott, 1992; McArdle

& Woodcock, 1997; Nesselroade & McArdle, 1996).

In this sense, we can utilize the lessons learned from several decades of

structural equation modeling and add any useful feature of any modeling con-

cepts to improve our research tools. There have been several recent attempts at

expanding the possibilities for multivariate multilevel analyses (e.g., see Gold-

stein & McDonald, 1988; Kaplan & Elliot, 1997; McArdle & Hamagami, 1996;

McDonald, 1993, 1994; cf. Hox, 2002; B. Muthén, 1994; Thum, 1997). The

inclusion of more explicit measurement and structural models for the outcomes

and inputs is a natural extension of multilevel concepts. The current multilevel

programs are already fairly complicated but they are easy to use and understand.
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Nevertheless, the challenge of finding out exactly how multilevel models can

improve multivariate model building may take the time, energy, and patience of

the next generation of research and researchers.
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