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ABSTRACT
This article reviews the causal implications of latent variable and psychometric network models for the validation of personality trait
questionnaires. These models imply different data generating mechanisms that have important consequences for the validity and
validation of questionnaires. From this review, we formalize a framework for assessing the evidence for the validity of questionnaires
from the psychometric network perspective. We focus specifically on the structural phase of validation where items are assessed for
redundancy, dimensionality, and internal structure. In this discussion, we underline the importance of identifying unique personality
components (i.e., an item or set of items that share a unique common cause) and representing the breadth of each trait’s domain
in personality networks. After, we argue that psychometric network models have measures that are statistically equivalent to factor
models, but suggest that their substantive interpretations differ. Finally, we provide a novel measure of structural consistency,
which provides complementary information to internal consistency measures. We close with future directions for how external
validation can be executed using psychometric network models.
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Introduction
What are personality traits? Your answer likely implies
certain hypotheses about the existence of traits and their
underlying data generating mechanisms. These hypotheses
are usually supported by your choice of psychometric model
(Borsboom, 2006). Psychometric models come with a
number of assumptions such as how traits cause variation in
your measures and the meaning of scores derived from these
measures (Borsboom, Cramer, Kievit, Scholten, & Franic,
2009; Cramer, 2012). These models also come with a
number of other consequences such as considerations about
how scales should be developed and validated.

For many researchers, personality traits are complex
systems—that is, traits are systems in that they are
comprised of many components which interact with one
another and complex in that their interactions with other
systems are difficult to derive because of their dependencies
and properties. Despite this view, personality traits are
usually not modeled this way. Most psychometric models
provide parsimonious perspectives on personality traits,
which may arbitrarily carve joints into the fuzzy nature
of personality. In addition, these models have causal
implications that some researchers might not agree with.
Therefore, there is a need for models that better align with
how researchers think about personality.

One promising model comes from the emerging field
of network psychometrics (Epskamp et al., 2018a).
Psychometric network models have a simple representation:
nodes (circles) represent variables (e.g., questionnaire
items), and edges (lines) represent the unique associations
(e.g., partial correlations) between nodes (Epskamp &

Fried, 2018; Epskamp et al., 2018b). This representation
supports the theoretical perspective, often referred to
as the network approach (Borsboom, 2008, 2017), that
psychological attributes are complex systems of observable
behaviors that dynamically and mutually reinforce one
another (Schmittmann et al., 2013).

From this perspective, personality traits resemble an
emergent property of the interactions that occur between
unique behavioral components—that is, traits are not any
single component of the system but rather a feature of the
system as a whole (Baumert et al., 2017; Cramer et al.,
2012a). This suggests that traits emerge because some
characteristics and processes within individual people tend
to covary more than others (M~ottus & Allerhand, 2017), and
when these relevant processes are aggregated, they reflect
meaningful differences between people in the population
(e.g., trait domains; Borkenau & Ostendorf, 1998; Cramer
et al., 2012a).

Such an explanation of traits affords a novel context for how
they should be assessed. First, it implies that behaviors that
are associated with one trait may directly influence behaviors
of another trait—the lines separating traits are more fuzzy
than they are distinct (e.g., comorbidity in psychopathology;
Cramer, Waldrop, van der Maas, & Borsboom, 2010).
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Second, there is an emphasis on a trait’s components as
much as the trait itself—a trait’s observable components
do not measure the trait but are instead part of the trait
(Schmittmann et al., 2013). This suggests that a behavior
such as liking to go to parties is only one part of a causal
collection of behaviors that we call extraversion (Borsboom,
2008; Cramer, 2012). This represents a re-focusing on
what parts of a trait are being measured rather than the
premise that the trait itself is being measured. Finally, this
explanation proposes that the behavioral components of a
trait are unique, meaning they have distinct causes (Cramer
et al., 2012a). This suggests that there should be a shift in
how we model existing questionnaires where many related
items are often used to measure a single attribute.

The intent of this paper is to elaborate on what the
novel perspective provided by the network approach
means for personality measurement and assessment.
We focus specifically on the validity and validation
of personality trait questionnaires with the goal of
demonstrating how psychometric network models relate
to modern psychometric perspectives. We place a
particular emphasis on the structural analysis of validation
(e.g., item analysis, dimension analysis, internal structure;
Flake, Pek, & Hehman, 2017; Loevinger, 1957). Before
discussing validation, we first consider what it means for a
questionnaire to be valid—a topic that has a defining role in
the substantive interpretation of personality measures.

(Test) Validity of Personality Trait Question-
naires
The trait approach has a long tradition in personality,
significantly shaping the last 30 years of research. Many
contemporary theories of personality are inclined to accept
traits as phenomena that exist in some form (e.g., concrete
biological entities, abstract population summaries). Across
theories, traits seek to provide parsimonious descriptions
of broad between-person patterns of covariation at the
population-level (Baumert et al., 2017). Five or six higher-
order traits are commonly thought to represent the majority
of these between-person differences, which are typically
assessed using questionnaires (Lee & Ashton, 2004; McCrae
& Costa, 1987). The validation of these questionnaires is a
critical part of the research agenda (Flake et al., 2017).

There are many views on what validity means with the
most common perspectives involving the interpretation of
test scores (e.g., Cronbach & Meehl, 1955; Kane, 2013;
Messick, 1995). This is not how we view validity; instead,
we adopt the definition that validity refers to whether a test
measures what it intends to measure (Borsboom et al., 2009;
Cattell, 1946; Kelley, 1927). Borsboom and colleagues
(2004) refer to this as test validity, which states that “a test is
valid for measuring an attribute if and only if (a) the attribute
exists and (b) variations in the attribute causally produce
variations in the outcomes of the measurement procedure”
(p. 1061). An attribute refers to a property that exists prior
to and independent of measurement (Loevinger, 1957). This
definition of validity involves connecting the structure of an
attribute to the response processes of a measure.

In this section, we provide an overview of what this definition
means for the validity of personality trait questionnaires.
Most of the heavy lifting for the relation between a

personality trait and questionnaire is done by a researcher’s
choice of psychometric model (Borsboom, 2006). The
most common model used for validation in the personality
literature is the latent variable model (Flake et al., 2017).
Therefore, we begin our discussion of validity by briefly
reviewing how latent variable models make sense of the
test validity criteria (for a more through treatment, see
Borsboom, Mellenbergh, & van Heerden, 2003). We
then move to psychometric network models, which have
emerged as an alternative explanation for the coherence
of traits. In terms of validity, much less has been put
forward for psychometric network models and personality
questionnaires; therefore, we spend most of this section
reviewing its current state and discussing its meaning
in the context of personality measurement. Throughout
this section, we refer to a hypothetical questionnaire of
extraversion to contextualize our points.

Latent Variable Perspective
In personality (and most of psychology), reflective latent
variable models, where the indicators are regressed
on the latent variable (i.e., causal arrows point from
the latent variable to the indicators), are the standard
conceptualization of measurement (Borsboom et al., 2003).
A reflective latent variable model holds that the items in our
questionnaire are a function of the latent variable, meaning
that people’s responses to our questionnaire are caused
by their position on the latent variable (e.g., extraversion).
Using this causal explanation, we can evaluate the criteria
for test validity.

First, does the attribute extraversion exist? That is,
does extraversion exist prior to and independently of our
questionnaire? Many researchers would consider this
question trivial; however, to maintain that extraversion is
indeed an attribute that exists, then the latent variable
must be causally responsible for the responses to our
questionnaire (Borsboom et al., 2003). Indeed, this is
how many researchers think about the relationship between
personality traits and their questionnaires as well as what
some theories of personality suggest (McCrae & Costa,
2008; McCrae et al., 2000).

The second criterion is the crux of test validity which,
as Borsboom and colleagues (2004) point out, is not so
straightforward. This is because it requires a theory for
how extraversion can be linked to the response processes
of our questionnaire. Difficulties arise because it’s plausible
(and even likely) that the processes that lead one person to
respond with “agree” to an item (e.g., “I like to go to parties”)
and another person to respond “agree” to the same item are
different (Borsboom & Mellenbergh, 2007). An idealistic
perspective is that people have different response processes
but they select “agree” on the same item because they are
positioned similarly on extraversion. With this perspective,
a common and implicit interpretation is that people possess
some quantity of extraversion and it’s the difference in these
quantities that cause the variation in how people respond to
our questionnaire. More simply, Alice scores higher on our
questionnaire than Bob because Alice is positioned higher
on the extraversion continuum than Bob.

From a causal perspective, a defensible account for how
extraversion causes variation in our questionnaire would be
that “population differences in position on [extraversion]
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cause population differences in the expectation of item
responses” (Borsboom et al., 2003, p. 211). This implies
that people in the population which occupy the same
position on extraversion will typically respond similarly to
the same items in our questionnaire. This brings us back
to the first criterion: Does extraversion exist? Or rather, to
what extent does extraversion exist? One claim would be
that extraversion exists as a between-person attribute—that
is, it is a population attribute. A population attribute is not
necessarily possessed by any one person in the population
but rather represents between-person differences at the
population-level (Baumert et al., 2017; Cervone, 2005). This
notion aligns well with the Allportian view that “[a] common
trait is a category for classifying functionally equivalent forms
of behavior in a general population of people” (Allport, 1961,
p. 347).

From a non-causal perspective, this means that extraversion
could exist as a useful descriptor for comparing people
rather than explaining their behaviors (Hogan & Foster,
2016; Pervin, 1994). Many personality researchers hold
this view of reflective latent variables (e.g., Ashton & Lee,
2005; Goldberg, 1993). Therefore, researchers need not
view a reflective latent variable as causal but rather as a
summary statistic of the shared variance between items in
our questionnaire. This leaves our questionnaire’s validity
as a subject of substantive interpretation—that is, it depends
upon what researchers think they are measuring: traits as
population-level positions or traits as descriptive summaries
of between-person differences in the population.

Psychometric Network Perspective
Psychometric network models have been proposed as an
alternative explanation for the emergence of personality
traits. From a psychometric network perspective, traits
arise not because of a latent common cause but rather from
the causal (bi)directional relationships between observed
variables (Cramer et al., 2012a). This explanation suggests
that latent traits are not necessary to explain how items in our
questionnaire covary (Borsboom et al., 2009). Moreover,
it implies that traits do not exist or at least they do not
exist in a classical sense of measurement (i.e., causing
variation in our questionnaire; Cramer, 2012). Instead, the
relationship between extraversion and our questionnaire is
a mereological one—that is, the items in our questionnaire
do not measure extraversion but are part of it (Borsboom,
2008; Cramer et al., 2012a).

Extraversion is therefore a summary statistic for how
personality components are influenced by one another (e.g.,
liking to talk to people → liking to go to parties ←→
liking to meet new people; Cramer, 2012). In this sense,
extraversion exists as a state of the network or the stable
organization of dynamic personality components that are
mutually activating one another (Cramer et al., 2012a;
Schmittmann et al., 2013). Our questionnaire thus refers
to the state of a specific set of personality components that
are causally dependent on one another and form a network
(Cramer, 2012). The state of the network is determined
by the total activation of these components and is what
we refer to as extraversion—that is, the more personality
components that are active, the more the network is pushed
towards an extraverted state (Cramer, 2012).

In the context of a between-person network model, our
questionnaire’s network represents the aggregation of the
average activation of each component across within-person
networks (i.e., each individual person’s network across
several time points; Cramer et al., 2012a; Epskamp et
al., 2018b). Both theory and empirical evidence appear to
support this claim. From a Whole Trait Theory perspective
(Fleeson & Jayawickreme, 2015), people’s responses to
items in self-report questionnaires correspond to their
locations and maximums of their density distributions for
the respective within-person states (Fleeson, 2001; Fleeson
& Gallagher, 2009). When aggregated, these states tend to
correspond to self-reported traits (Rauthmann, Horstmann,
& Sherman, 2019), and when compared across people,
these states typically produce the between-person traits
(Borkenau & Ostendorf, 1998; Hamaker, Nesselroade,
& Molenaar, 2007). This interpretation leaves open an
important question: What then do personality components
refer to?

Personality components

Cramer and colleagues (2012a) define personality
components as “every feeling, thought, or act” that is
associated with a “unique causal system” (p. 415). In
most instances, these components refer to items of a
questionnaire. A key point of emphasis in their definition
is that these components are unique in that they are
causally autonomous (i.e., distinct causal processes). For
many existing personality questionnaires, items are often
not unique. Instead, facets or narrower characteristics
of a trait (e.g., gregariousness, warmth, assertiveness)
are comprised of many closely related and sometimes
redundant items. In this sense, personality components
that comprise extraversion may be items but they also may
be facets (Costantini & Perugini, 2012).

In our view, this represents a key difference between facets
and components: Facets are a collection of related items (not
necessarily sharing a common cause), while components
are an item or set of items that share a unique common
cause. This distinction is important because some facets in
existing questionnaires reflect a homogeneous cause (and
are therefore considered a component), while other facets
reflect heterogeneous causes, which must be separated
into unique components.1 Therefore, a facet from the
network perspective would be a set of unique components
that coalesce into a meaningful sub-organization of a trait’s
domain. From this perspective, it becomes imperative
that researchers determine whether items and facets of
an existing questionnaire are distinct autonomous causal
components or if they reflect a common cause (Hallquist,
Wright, & Molenaar, 2019).

Based on this definition, personality components appear
to closely resemble attributes. In this way, extraversion
may exist as a composite attribute or an attribute that
is comprised of many other attributes (Borsboom &
Mellenbergh, 2007). The number of attributes that
constitute extraversion then becomes a function of the
sampling properties from its domain of representative
attributes (McDonald, 2003). Importantly, the selection
of attributes will change the composition of the network,

1The use of “reflect” in our language is on purpose and implies a
common cause that can be associated with a reflective latent variable.
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meaning that different questionnaires will have different
compositions despite still plausibly refering to extraversion
(Markus & Borsboom, 2013). Extraversion should then be
viewed as a finite universe of attributes where there are a
limited number of unique attributes that can comprise it
(McDonald, 2003). Therefore, there is a particular need to
identify and validate the content of each personality trait’s
domain (Markus & Borsboom, 2013).

It’s tempting to say that researchers should only measure
attributes that represent one domain; however, it’s unlikely
that attributes of a personality trait will exist independently
of other trait domains (Schmittmann et al., 2013; Schwaba,
Rhemtulla, Hopwood, & Bleidorn, 2020; Socan, 2000).
An item like “enjoys talking to people,” for example,
certainly represents the domain of extraversion but it may
also represent the domain of agreeableness. Common
examples of this cross-domain entanglement often occur
in psychopathological comorbidity (Cramer et al., 2010).
Thus, distinctions between what attributes constitute the
extraversion domain become rather fuzzy and a matter of
degree because of the overlap representative attributes can
have with other domains (Schmittmann et al., 2013). Such
fuzziness is likely common in personality where attributes
may not clearly delineate between where one trait begins
and another ends (Connelly, Ones, Davies, & Birkland,
2014). Indeed, this is exactly what functionalist and complex
system theories of personality suggest (Cramer et al., 2012a;
Perugini, Costantini, Hughes, & De Houwer, 2016; Read
et al., 2010; Wood, Gardner, & Harms, 2015) and what
recent psychometric network analyses of personality traits
find (Schwaba et al., 2020).

Validity from the network perspective

This leads to the question of how extraversion (as
a composite attribute) can cause variation in our
questionnaire. Quite simply, it does not: There is no link
between the (composite) attribute and the questionnaire’s
response processes because it does not exist (Schmittmann
et al., 2013). This is because no single attribute that
extraversion is comprised of will directly assess extraversion;
instead, each attribute assesses parts of the extraversion
domain (Borsboom, 2008; Borsboom & Mellenbergh, 2007;
Cramer et al., 2012b). With this perspective, we can say that
the variation in our questionnaire arises from the sampling
of attributes in the representative domain (Borsboom &
Mellenbergh, 2007), which is clear from studies that have
examined several different questionnaires (e.g., Christensen
et al., 2019; Schwaba et al., 2020).

When evaluating whether our questionnaire is a valid
measure of extraversion from the network perspective, we
must shift the evaluation from the validity of extraversion
as an attribute to the validity of its components. This
does not rule out the validity of the questionnaire but
rather shifts the perspective such that our questionnaire
is measuring the state of the network comprised of causal
connected components that we refer to as extraversion. The
explanation for the variation of our measurement thus comes
from the reciprocal cause and effect of other attributes in the
network.

This explanation does not come without consequence. The
issue of connecting the attribute to response processes is
merely side stepped from personality traits to personality

components. The response processes in network models
are assumed to lie in the reciprocal cause and effect of other
components. Indirectly, this suggests that the responses
processes of one component has reciprocal causes and
effects on processes of other components. This point,
however, is circular in that it still does not specify what
the response processes are.

Although the network perspective avoids introducing latent
variables to account for these response processes, it does
not avoid the question of how they occur. To this end, it
is important for personality researchers from the network
perspective to connect response processes to personality
components. More specifically, researchers must seek to
specify how response processes of one component can
cause and effect processes of another component. We
do not claim to have a definitive answer to this issue, but
highlight it as one that is particularly perplexing and requires
sophisticated research designs (e.g., Costantini, Richetin, et
al., 2015).

Validation of Trait Questionnaires from a
Psychometric Network Perspective
Our discussion of validity to this point has been about
whether a questionnaire possesses the property of being
valid. This discussion sets up how psychometric evaluations
of a questionnaire should be substantively interpreted
during validation. Validation differs from validity in
that it is an ongoing activity which seeks to describe,
classify, and evaluate the degree that empirical evidence
and theoretical rationales support the validity of the
questionnaire (Borsboom et al., 2004; Messick, 1989).
Validation usually entails three phases: substantive,
structural, and external (Flake et al., 2017). Our main focus
will be on the structural phase, which primarily consists of
establishing evidence that our questionnaire measures what
we intend it to through redundancy (e.g., item analysis),
dimension, and internal structure (e.g., internal consistency)
analyses.

Validation from a psychometric network perspective has
received relatively little attention. To date, psychometric
network models have mainly been used as a novel
measurement tool, which has led to an alternative account
for the formation of traits (Costantini, Epskamp, et al., 2015;
Cramer et al., 2012a). When it comes to psychometric
assessment, the scope of psychometric networks has been
far more limited (e.g., dimension reduction methods; Golino
& Epskamp, 2017; Golino et al., in press). There does,
however, appear to be some potential because networks
have been shown to be mathematically equivalent to latent
variable models (Guttman, 1953; Kruis & Maris, 2016;
Marsman et al., 2018).

The key to distinguishing network psychometrics models
from latent variable models is to establish how the measures
of these models differ in their substantive interpretations
(i.e., hypothesized data generating mechanisms; van Bork
et al., 2019). We will draw on several points from
the previous section on validity to elaborate on these
interpretations. In the end, the aim of this section is to
take the initial steps toward a formalized framework for the
use of psychometric network models in the validation of
personality questionnaires.
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Overview
To achieve this aim, we divide this section into three parts,
which represent the order in which researchers should
proceed with structural validation from the psychometric
network perspective. First, we cover the initial phase of
redundancy analysis for reducing redundancy in personality
questionnaires. Next, we discuss dimension analyses.
Within this section, we connect communities and node
strength of network models to factors and factor loadings
of latent variable models, respectively. Finally, we present a
novel measure of internal structure that can be used to assess
the extent to which a scale (or dimension) is comprised
of a set items that are homogeneous and interrelated in a
multidimensional context.2

In our discussion, it’s important that we make clear that we
view network models as complementary to latent variable
models and therefore suggest that they can be synergistically
leveraged. The main difference between them, as we
discussed in our section on validity, is the proposed data
generating mechanisms. From a statistical point of view,
network models offer additional information about the
relationship between variables that are not possible in
latent variable models since in the latter the relationship
between items are accounted by the factor. Analyses
about the structure of the system (e.g., topological analysis),
for example, can be implemented in network models,
helping researchers uncover important aspects of the system
(Borsboom, Cramer, Schmittmann, Epskamp, & Waldorp,
2011). Because of this, we connect network models to
latent variable models (where applicable) and highlight the
substantive differences that these models imply. As a
general point, we recommend at least 500 cases when
performing these analyses, which is based on previous
simulation studies (Christensen, 2020; Golino et al., in
press).

Redundancy Analysis
In scale development, a researcher must establish what
items to include, which involves determining the desired
specificity and breadth of the trait(s) the researcher is trying
to measure. Greater specificity leads to scales that have
higher internal consistency, which increases the likelihood
that the researcher is measuring the same attribute while
reducing idiosyncrasies specific to each item (DeVellis,
2017). Greater breadth leads to scales that have higher
item-specific variance, which increases the coverage of the
representative domain (McCrae, 2015). In many existing
trait questionnaires, researchers have focused on achieving
a balance of both—that is, some facets reflect a single
narrow attribute, while other facets are composites of
several attributes.

One recent suggestion for questionnaires aimed at trait
domains is to favor breadth in order to maximize information
and efficiency (McCrae & M~ottus, 2019). Based on what
we’ve outlined in our section on validity, psychometric
network models align well with this suggestion. Indeed, a
key notion of network psychometrics is that personality traits
are comprised of unique causal components, meaning the
components are not exchangeable with other components
of the system (Cramer et al., 2012a). As a consequence,
these components should be unique rather than redundant
to reduce latent confounding (Hallquist et al., 2019). This

implication perhaps marks the biggest validation difference
between network and latent variable models.

Because most existing personality scales have been
developed from a latent variable perspective, researchers
must make careful considerations about using psychometric
network models with existing scales because they are likely
to have homogeneous facets (Costantini & Perugini, 2012).
Take, for example, the SAPA Personality Inventory (Condon,
2018) where items “Hate being the center of attention,”
“Make myself the center of attention,” “Like to attract
attention,” and “Dislike being the center of attention”
clearly have a common underlying attribute: attention-
seeking. From the psychometric networks perspective,
these items are not unique components themselves but
comprise a single unique component. This makes the
first step of questionnaire validation from a psychometric
network perspective to identify and handle redundancy in
scales.

An approach to statistically identify redundancy

In the network literature, the network measure, clustering
coefficient, has been considered as a measure of redundancy
in personality networks (Costantini et al., 2019; Dinic,
Wertag, Tomasevic, & Sokolovska, 2020). A node’s
clustering coefficient is the extent to which its neighbors are
connected to each other, forming a triangle. Although this
measure is useful for describing whether a node is locally
redundant, it does not provide information about which
nodes in particular a target node is redundant with. Here,
we conceptually describe an approach to identify whether a
node is statistically redundant with other nodes in a network.

Our approach begins by first computing a similarity measure
between nodes. One method for doing so is called
weighted topological overlap (Zhang & Horvath, 2005),
which quantifies how similar two nodes’ connections to
other nodes are. More specifically, it quantifies the
similarity between the magnitude and direction of two
nodes’ connections to all other nodes in the network. In
biological networks, these measures have been used to
identify genes or proteins that may have a similar biological
pathway or function (Nowick, Gernat, Almaas, & Stubbs,
2009). Thus, greater topological overlap suggests that two
genes may belong to the same functional class compared
to those with less overlap. In the context of a personality
network, nodes that have large topological overlap are likely
to have shared functional or latent influence. From a more
traditional psychometrics perspective, one method would
be to identify items that have high residual correlations after
the variance of facets and factors have been removed.3

Although the weighted topological overlap measure provides
numerical values, from no overlap (0) to perfect overlap (1),
for each node pair in the network, it does not include a
test for significance. In order to determine which node
pairs overlap significantly with one another, we apply the
following approach. First, we obtain only the values that
are greater than zero—node pairs that have a topological

2We provide a full walkthrough example of these analyses in the
Supplementary Information using R (R Core Team, 2020). Our example
uses data that is freely available in the psychTools package (Revelle,
2019) and assesses the five-factor model using the SAPA inventory
(Condon, 2018).
3We thank the anonymous reviewer who pointed out this possibility.
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overlap of zero are not connected in the network and are
therefore not informative for determining significance of
overlap. Next, we fit a distribution to these non-zero values
using the fitdistrplus package (Delignette-Muller & Dutang,
2015) in R. The parameters (e.g., µ and σ from a normal
distribution) from the best fitting distribution (based on
Akaike information criterion) are then used as our probability
distribution.

For each node pair with a non-zero topological overlap value,
we compute the probability of achieving its corresponding
value from this distribution. These probabilities correspond
to p-values. Using a multiple comparison method, node
pairs whose p-values are less than the corrected alpha
are considered to be significantly redundant. We’ve
implemented this approach in the EGAnet package (Golino &
Christensen, 2020) in R under the function node.redundant
(see the Node Redundancy section in the Supplementary
Information). Results from one simulation study found that
the adaptive alpha multiple comparison correction method
(Perez & Pericchi, 2014) had the fewest false positives and
negatives and highest accuracy of all the methods tested
(Christensen, 2020).

Options for handling redundant nodes

This approach provides quantitative evidence for whether
certain items are redundant. We recommend, however,
that researchers verify these redundancies and use theory
to determine whether two or more items represent a
single attribute (i.e., a common cause). There are two
options that researchers can take when deciding how
to handle redundancy in their questionnaire. The more
involved option is to remove all but one item from the
questionnaire. When taking this option, there are a few
considerations researchers must make. Qualitatively, which
item represents the most general case of the attribute?
Often items are written with certain situations attached
to them (e.g., “I often express my opinions in group
meetings”; Lee & Ashton, 2018), which may not apply
to all people taking the questionnaire. Therefore, more
general items may be better because they do not represent
a situation-specific component of an attribute (e.g., “I often
express my opinions”). Quantitatively, which item has the
most variance? This is a common criterion in traditional
psychometrics because greater variation suggests that this
item better discriminates between people on the specific
attribute (DeVellis, 2017).

The more straightforward option is to combine items into a
single variable. This can be done by estimating a reflective
latent variable consisting of the redundant items and using
the latent scores. We strongly recommend this latter
approach because it retains all possible information from
available data. We’ve implemented an interface to manage
this second option using the node.redundant.combine
function in the EGAnet package in R. We describe how
to apply this approach in the Supplementary Information,
including heuristics to use when deciding which items are
redundant.

Dimension Analysis
Dimensionality

Dimensionality assessment is an integral step for validating
the structure of a questionnaire. The general consensus
among researchers is that personality traits are hierarchically
organized at different levels of breadth and depth (John &
Srivastava, 1999; McCrae & Costa, 2008). Usually, trait
domains are decomposed into facets, which are further
broken down into items (McCrae & Costa, 1987, 2008).
More recently, aspects (between traits and facets) were
added to the hierarchy (DeYoung, Quilty, & Peterson, 2007).
Personality questionnaires tend to follow this structure with
most assessing multiple domains and facets—there typically
are five or six trait domains and for every domain, there are
several facets (ranging from two to nine).

In traditional psychometrics, factor models (e.g., EFA) are the
most common method used to assess the dimensionality
of a trait domain (Flake et al., 2017). In psychometric
networks, the main methods used to assess dimensionality
of the network are called community detection algorithms
(Fortunato, 2010). These algorithms identify the number
of communities (i.e., dimensions) in the network by
maximizing the connections within a set of nodes, while
minimizing the connections from the same set of nodes
to other sets of nodes in the network. Rather than
these communities forming because of a common cause,
psychometric network models suggest that dimensions
emerge from densely connected sets of nodes that form
coherent sub-networks within the overall network.

Despite these frameworks proposing different data
generating mechanisms, the data structures do not
necessarily differ (van Bork et al., 2019). Indeed, a
researcher can fit a factor model to a data structure generated
from a network model with good model fit (van der Maas
et al., 2006). Similarly, a network model with a community
detection algorithm can be fit to a data structure generated
from a factor model and identify factors (Golino & Epskamp,
2017; Golino et al., in press). This underlying equivalence
follows from the fact that any covariance matrix can be
represented as a latent variable and network model (van
Bork et al., 2019). The statistical equivalence between these
models has been well documented (e.g., Epskamp et al.,
2018a; Guttman, 1953; Kruis & Maris, 2016; Marsman et
al., 2018). Therefore, factors of a latent variable model and
communities of a network model are statistically equivalent
(Golino & Epskamp, 2017).

Indeed, Guttman (1953) demonstrates that there is a
direct equivalence between network and factor models.
Although network models were not yet specified in the
area of psychology, Guttman (1953) proposed a new
factor analytic approach termed image structural analysis,
which is essentially a network model with node-wise
estimation using multiple regression (e.g, Haslbeck &
Waldorp, 2015). Guttman mathematically demonstrated
how image structural analysis relates to factor models, and
suggested that factor models were a special case of the node-
wise network model where the errors of the variables are
made to be orthogonal.4 Therefore, the difference between

4We thank Denny Borsboom for pointing us to the Guttman (1953)
paper.
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the models is their suggested data generating mechanisms,
which is provided by their visual representations.

It’s important that we acknowledge that in some cases,
factors of a factor model may represent causally dependent
interactions between components (rather than a common
cause); in other cases, communities of a network model
may represent a common cause (rather than causally
dependent interactions between components). Moreover,
other explanations could be that external causes such as
situational factors (Cramer et al., 2012a; Rauthmann &
Sherman, 2018) or goals and motivations (Read et al., 2010)
could lead to personality dimensions.

Exploratory Graph Analysis

The most extensive work on dimensionality in the
psychometric network literature has been with a technique
called Exploratory Graph Analysis (EGA; Golino & Epskamp,
2017; Golino et al., in press). The EGA algorithm works
by first estimating a Gaussian Graphical Model (Lauritzen,
1996), using the graphical least absolute shrinkage
and selection operator (GLASSO; Friedman, Hastie, &
Tibshirani, 2008), where edges represent (regularized)
partial correlations between nodes after conditioning on
all other nodes in the network. Then, EGA applies the
Walktrap community detection algorithm (Pons & Latapy,
2006), which uses random walks to determine the number
and content of communities in the network (see Golino
et al., in press for a more detailed explanation).5 Several
simulation studies have shown that EGA has comparable or
better accuracy for identifying the number of dimensions
than the most accurate factor analytic techniques (e.g.,
parallel analysis; Christensen, 2020; Golino & Demetriou,
2017; Golino & Epskamp, 2017; Golino et al., in press).

Beyond performance, EGA has several advantages over
more traditional methods. First, EGA does not require
a rotation method. Rotations are rarely discussed in the
validation literature but can have significant consequences
for validation (e.g., estimation of factor loadings; Browne,
2001; Sass & Schmitt, 2010). For EGA, orthogonal
dimensions are depicted with few or no connections
between items of one dimension and items of another
dimension. Second, researchers do not need to decide on
item allocation—the algorithm places items into dimensions
without the researcher’s direction. For EFA, in contrast,
researchers must decipher a factor loading matrix. Third,
the network plot depicts some dimensions as more central
than others in the network (see Dimensionality section in
the Supplementary Information). Thus, EGA can be used
as a tool for researchers to evaluate whether the items
of their questionnaire are coalescing into the dimensions
they intended and whether the organization of the trait’s
structure is what they intended. Finally, the network plot
also depicts levels of a trait’s hierarchy as continuous—that
is, items can connect between different facets and traits.
This supports a fuzzy interpretation of the trait hierarchy
where the boundaries between items, facets, and traits are
blurred.

With these advantages, it’s important to note their
similarities to factor analytic methods. For instance, most
community detection algorithms used in the literature
(including the Walktrap) sort items into single dimensions.
This creates a structure that is akin to a typical confirmatory

factor analysis (CFA; i.e., items belonging to a single
dimension), which constrains the interpretation of a
continuous hierarchy. There are, however, algorithms in
the broader network literature that allow for overlapping
community membership (e.g., Blanken et al., 2018), which
may better represent these fuzzy boundaries and how
researchers think about personality. Another limitation
is that the factor loading matrix of an EFA model can
equivalently represent the complexity of items relating to
other items and loading onto other dimensions. Network
models, however, provide intuitive depictions of these
interactions (Bringmann & Eronen, 2018). Therefore, even
though EFA loading matrices represent this complexity, it
requires a certain level of psychometric expertise for a
researcher to intuitively view the matrix this way. Moreover,
network plots can reveal exactly which items are responsible
for the cross-domain relationships in a way that an EFA
loading matrix cannot.

Loadings

Recent simulation efforts, however, have demonstrated
that network models can be used to estimate an EFA
loading matrix equivalent. In a series of simulation studies,
Hallquist, Wright, and Molenaar (2019) demonstrated that
the network measure, node strength (i.e., the sum of a
node’s connections), was roughly redundant with CFA factor
loadings. A notable finding in one of their studies was
that a node’s strength could potentially be a blend of
connections within and between dimensions. Based on
this result, they suggested that researchers should reduce
the latent confounding of the network measure to avoid
misrepresenting the relationships between components in
the network.

Heeding this call, Christensen and Golino (under review)
derived a measure called network loadings, which represents
the standardization of node strength split between
dimensions. More specifically, a node’s strength was
computed for only the connections it had to other nodes
in each dimension of the network. They demonstrated
that these network loadings could effectively estimate the
simulated population (or true) loadings. Moreover, they
found that network loadings more closely resembled EFA
loadings, but also had some loadings of zero like CFA
loadings. This suggests that the network loadings represent
a complex structure that is between a saturated (EFA) and
simple structure (CFA). In sum, they suggest that these
network loadings can be used as an equivalent to factor
loadings (for an example, see Table SI3 in the Supplementary
Information).

Although these metrics are statistically redundant, they
arguably differ in a substantive way. Factor loadings suggest
that items “load” onto factors, which is provided by items
being regressed on the factors. If interpreted in a substantive
way, they represent how well one observable indicator is
related to the factor—that is, how well an item represents or
measures the latent factor. The substantive interpretation of

5A recent simulation study used the EGA approach and examined
different community detection algorithms, finding that the Louvain
(Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) and Walktrap
algorithms were the most accurate and least biased of the eight
algorithms tested (including two parallel analysis methods; Christensen,
2020).
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node strength does not suggest this, however, they may be
epistemologically related. From a substantive standpoint,
we argue that these network loadings represent each node’s
contribution to the emergence of a coherent dimension in
the network. In this sense, we can connect the substantive
meanings of network and factor loadings: the more one
item contributes to a dimension’s coherence, the more
the item reflects the underlying dimension. A researcher’s
substantive interpretation will favor one interpretation over
the other but ultimately they statistically resolve to roughly
the same thing (Christensen & Golino, under review;
Guttman, 1953; Hallquist et al., 2019).

Internal Structure Analysis
Internal Consistency

Analyses that quantify the internal structure of question-
naires have been dominated by internal consistency mea-
sures, which are almost always measured with Cronbach’s
α (Cronbach, 1951; Flake et al., 2017; Hubley, Zhu,
Sasaki, & Gadermann, 2014). In a review of 50 validation
studies randomly selected from Psychological Assessment
and European Journal of Personality Assessment during the
years 2011 and 2012, αwas reported in 90% and 100% of the
articles, respectively (Hubley et al., 2014). Similar numbers
were obtained in a review of 35 studies in the Journal of
Personality and Social Psychology during 2014, with 79% of
scales that included two or more items (n = 301) reporting
α (Flake et al., 2017). More often than not, α was the sole
measure of structural validation. In short, the use of α in
validation is pervasive (McNeish, 2018).

Despite α’s prevalence, there are some serious issues
(Dunn, Baguley, & Brunsden, 2014; Sijtsma, 2009). These
issues range from improper assumptions about the data
(e.g., τ-equivalent vs. congeneric models; Dunn et al., 2014;
McNeish, 2018) to misconceptions about what it actually
measures (Schmitt, 1996; Sijtsma, 2009). Although newer
internal consistency measures (e.g., ω; Dunn et al., 2014;
McDonald, 1999; Zinbarg, Yovel, Revelle, & McDonald,
2006) account for improper assumptions about the data,
misconceptions about internal consistency still abound.
One of the more persistent misconceptions is that internal
consistency measures assess unidimensionality (Flake et al.,
2017). This misconception likely stems from confusion over
the difference between internal consistency (the extent to
which items are interrelated) and homogeneity (a set of
items that have a common cause; Green, Lissitz, & Mulaik,
1977). Based on these definitions, internal consistency
is necessary but not sufficient for homogeneity (Schmitt,
1996).

We believe that many misconceptions arise because there
is a mismatch between what researchers intend to measure
and what they are actually measuring. Much like validity,
the psychometric concept of internal consistency seems
divorced from how researchers think about it (Borsboom
et al., 2004). This is because most researchers know that
the items of their scale are interrelated—they were designed
that way. When framed in this light, internal consistency
measures are more of a “sanity check” than an informative
measure. To better understand what researchers intend to
measure, we can look at how they use these measures:
Researchers use them to validate the consistency of the
structure of their scales (Flake et al., 2017). That is,

researchers use them to know whether their scale’s structure
is consistent which implies internal consistency and assumes
homogeneity.

From a latent variable perspective, the solution is
straightforward: test if a unidimensional model fits and
compute an internal consistency measure (Flake et al.,
2017; Green et al., 1977). From a psychometric network
perspective, this is not the case. First, there is an inherent
incompatibility with computing an internal consistency
measure from the network perspective. Internal consistency
measures are typically a variant on the ratio between the
common covariance between items and the variance of
those items (McNeish, 2018). In the estimation of networks,
most of the common covariance is removed, leaving only the
correlations between item-specific variance (Forbes, Wright,
Markon, & Krueger, 2017, 2019).

Second, scales and their items in networks are interrelated,
usually with cross-connections occurring throughout. This
is more than likely to be true for personality scales (Socan,
2000). Therefore, it’s important to know whether a set of
items are causally dependent and form a unidimensional
network, but also whether they remain as a coherent sub-
network nested in the rest of the network. Said differently,
questionnaires often contain scales that are assumed to be
unidimensional but it’s unclear whether these scales remain
unidimensional when other items and scales are added
(i.e., in a “multidimensional context”). Therefore, internal
consistency measures do not capture whether scales (or
dimensions) remain unidimensional within the context of
other items and dimensions. Regardless of psychometric
model, this seems to be a more informative measure of what
most researchers want to know and say about their scales—
that they are unidimensional and internally consistent.

Structural Consistency

We refer to this measure as structural consistency, which
we substantively define as the extent to which causally
coupled components form a coherent sub-network within
a network. Using extant terminology, structural consistency
is the extent to which items in a dimension are homogeneous
and interrelated given the multidimensional structure of the
questionnaire. In other words, it is the combination of
homogeneity and internal consistency in a multidimensional
context. We view the inclusion of other dimensions
as a particularly important conceptual feature because
a dimension could have high homogeneity and internal
consistency but when placed in the context of other
related dimensions it’s structure falls apart (i.e., it is no
longer unidimensional). This renders the interpretation
of that dimension in a multidimensional context relatively
ambiguous even when its interpretation is clear in a
unidimensional context (i.e., examined in isolation).

A recently developed approach called Bootstrap Exploratory
Graph Analysis (bootEGA; Christensen & Golino, 2019)
can be used to estimate this measure. bootEGA applies
a parametric and non-parametric bootstrap approach but
for the structural consistency measure we focus on the
parametric approach. The parametric approach begins by
estimating a GLASSO network from the data and taking the
inverse of the network to derive a covariance matrix. This
covariance matrix is then used to simulate data with the
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same number of cases as the original data from a multivariate
normal distribution.

EGA is then applied to this replicate data, obtaining each
item’s assigned dimension. This procedure is repeated
until the desired number of samples is achieved (e.g., 500
samples).6 The result from this procedure is a sampling
distribution for the total number of dimensions and each
item’s dimension allocation. Although a number of statistics
can be computed, we focus on two: structural consistency
and item stability. To derive both statistics, the original EGA
results (i.e., empirically-derived dimensions) are used.

Structural consistency is derived by computing the
proportion of times that each empirically-derived dimension
is exactly (i.e., identical item composition) recovered from
the replicate bootstrap samples. If a scale is unidimensional,
then structural consistency reduces to the extent that
the items in the scale form a single dimension—that is,
the proportion of replicate samples that also return one
dimension. The range that structural consistency can take
is from 0 to 1. A dimension’s structural consistency can
only be 1 if the items in the a priori dimension conform to
that dimension across all replicate samples. Such a measure
leads to an important question: What’s happening when a
dimension is structurally inconsistent?

To answer this, item stability or the proportion of times
that each item is identified in each empirically-derived
dimension across the replicate samples can be computed.
This relatively simple measure not only provides insight into
which items may be causing structural inconsistency but
also the other dimension(s) these items are being placed in.
On the one hand, two items of our hypothetical dimension
might be at the root of the structural inconsistency; on
the other hand, it might be multiple items are at the root
of the structural inconsistency. In either case, examining
each item’s replication proportions across dimensions can
reveal whether they are forming a new separate dimension
(only replicating in a new dimension), fit better with another
dimension (replicating more with another dimension),
or identify as multidimensional items (replicating equally
across multiple dimensions). The latter two explanations can
be verified using the network loading matrix. An example
of these analyses are provided in the Structural Consistency
section of the Supplementary Information.

In practice, the goal of structural consistency is to determine
the extent in which a dimension is comprised of a set
items that are homogeneous and interrelated in the context
of other dimensions. The importance that a dimension
of a questionnaire has a high structural consistency is
up to the researcher’s intent. For many dimensions in
personality, items may be multidimensional, which will lead
to lower values of structural consistency. Therefore, lower
structural consistency is not a bad thing if it is what the
researcher intends. More importantly, the items that are
leading to the lower structural consistency can be identified
with item stability statistics, which may help researchers
decided whether an item is multidimensional or fits better
with another dimension. At this point, it is too early to
make recommendations for what “high” or “acceptable”
structural consistency means. Ultimately, simulation studies
are necessary to develop such standards.

Discussion
Questionnaires have been and will likely continue to be
a standard format for the measurement of personality
attributes. The validity of what questionnaires claim
to measure, however, has rarely been explicated in the
contemporary personality literature. Instead, psychometric
models have been applied without much consideration of
their causal implications. In this paper, we provided a review
on the validity of personality trait questionnaires from the
latent variable and psychometric network perspectives. The
goal of our review was not to argue for one approach more
than another but to elaborate on how questionnaires can be
viewed as valid measures of personality traits or attributes.
These views imply different substantive interpretations
about the underlying data generating mechanisms, which
are important for understanding the meaning of what’s being
measured and how psychometric measures substantively
inform our measurement.

In our review, we took special interest in elaborating
on the psychometric network perspective because few
articles have focused on their measurement when applied
to personality questionnaires. Much like latent variable
models, psychometric network models have been readily
applied by researchers without much consideration about
their causal implications or how network measures should
be interpreted in a psychological context (Bringmann et al.,
2019). Based on our review, we propose a substantive
interpretation of node strength (network loadings) that is
appropriate in the context of dimensions and the overall
network—that is, a node’s contribution to the emergence of
a coherent sub-network or network. This interpretation is
by no means definite; however, we believe that it is a more
appropriate interpretation than what has been put forward
in the literature.

More specific to personality, we explicated an initial
framework for how psychometric networks can be used
to validate the structure of personality trait questionnaires.
One point of emphasis was on reducing the redundancy of
components in the network. This is because components
of a network are defined as “unique” and “causally
autonomous” (Cramer et al., 2012a). We described a novel
approach to detect an item’s redundancy with other items
in the network, which can aid researchers in this endeavor.
Moreover, we provided some general recommendations for
removing or combining redundant items. Following from
this emphasis, greater exploration of the unique components
that represent the domain of personality traits is necessary so
that a specific set of attributes can be defined. This is unlikely
to be an easy task because personality traits are multifaceted
and interrelated, which suggests that representation of a
domain may be a matter of degree rather than clear cut
definitions (Schmittmann et al., 2013; Schwaba et al., 2020).

This puts determining appropriate coverage of each trait’s
domain at the forefront of the psychometric network
research agenda in personality. Indeed, determining
appropriate coverage of each trait’s domain is still an active
area of research and requires more attention than it’s
been given in the past. In many cases, this will require
sampling from attributes that may lie just outside of a

6500 replicate samples should be an adequate number to achieve an
accurate estimate; however, researchers can increase this number to
obtain greater precision.
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trait’s domain. We recommend that researchers focus more
on the extent to which attributes represent each domain
rather than assuming an existing questionnaire’s domain
coverage is sufficient. One place to start is by examining
the unique items of several personality questionnaires in
a single network domain (e.g., Christensen et al., 2019).
Multiple domains and outcome measures could also be
included to help determine these boundaries (e.g., Afzali,
Stewart, Seguin, & Conrod, in press; Costantini, Richetin, et
al., 2015; Schwaba et al., 2020).

When it comes to item and dimension analyses, many
of the statistics for latent variable models (i.e., factor
loadings and dimensions) are mathematically equivalent to
psychometric network models (Christensen, 2020; Golino
& Epskamp, 2017; Hallquist et al., 2019). We argued
that the key difference between these models is their
substantive interpretations, which suggest very different
data generating mechanisms (van Bork et al., 2019). At
this point, disentangling these models is a nascent area of
research.

Kan, van der Maas, and Levine (2019), for example, show
how fit indices can be applied to network models so that they
can be compared to confirmatory factor analysis models.
They also demonstrated how the comparison of networks
over groups could be achieved (see also Epskamp, 2019).
van Bork et al. (2019) developed an approach to compare
the likelihood that data was generated from a unidimensional
factor model or sparse network model by assessing the
proportion of partial correlations that have a different sign
than the corresponding zero-order correlations and the
proportion of partial correlations that are stronger than the
corresponding zero order correlations (greater proportions
for both increase the likelihood of the sparse network
model). Approaches like these can be used to determine
whether a latent variable or psychometric network model
may be more appropriate for the data. Ultimately, we
believe that the choice of model will not significantly affect
the outcomes of these dimension-related analyses.

Finally, we introduced a novel measure, structural
consistency, to quantify a questionnaire’s internal structure.
Part of the motivation for this measure was the need
to move beyond measures of internal consistency, which
we believe do not necessarily align with what researchers
intend to measure. Notably, we do not view this
measure as incompatible with internal consistency but
rather complementary. As we discussed, a dimension
could be homogeneous (i.e., unidimensional) and internally
consistent (i.e., interrelated) but it may not remain
homogeneous in a multidimensional context. Such a
condition is likely to occur in personality measures where
components of traits tend to be interrelated. In general,
this measure adds to the internal structure methods that
researchers can use for validating the structure of their
questionnaire.

Steps Toward External Validation
To this point, we’ve described our conceptual framework
for the structural validation of personality questionnaires
from the network perspective. This framework leaves
open questions related to external validation. How, for
example, do outcome variables relate to the components
in personality networks? What about covariates? How does

this fit with contemporary trends for evaluating the unique
predictive value of items? Moreover, what if the researcher
is interested in relating the trait itself to outcomes rather
than components? We briefly discuss these questions in
turn.

Personality–outcome relations are a fundamental part of
personality research and the validation of personality
assessment instruments. These relations are just as
fundamental to the network perspective as more traditional
perspectives. Our suggestion for this is relatively simple:
include the outcome(s) of interest in the network. Similarly,
important covariates should also be added to the network.
Indeed, Costantini, Richetin, et al. (2015) used this
approach to evaluate how facets of conscientiousness were
related to measures of self-control, working memory, self-
report behaviors related to conscientiousness, and implicit
attitudes of conscientiousness descriptors. Similarly, Afzali
et al. (in press) longitudinally examined items of the
Substance Use Risk Profile Scale and their relations to
cannabis and alcohol use in adolescences. These studies
not only provide a more complex evaluation of the
relations between personality and outcomes but also provide
more targeted item generation for future measures (e.g.,
including more specific items measuring sensation-seeking
personality indicators in substance use; Afzali et al., in
press).

We propose that because networks are often estimated using
the GLASSO approach, researchers can interpret the partial
correlation coefficients between outcomes and components
in the network as if they were entered into a regularized
regression. Regularized regression has already been
effectively used in the literature to evaluate personality–
outcome relations (M~ottus, Bates, Condon, Mroczek, &
Revelle, 2018; Seeboth & M~ottus, 2018). To achieve a
similar model, researchers could compute beta coefficients
from the partial correlation coefficients for the outcome
variable (see Haslbeck & Waldorp, 2018). More directly,
researchers could square these same partial correlation
coefficients to derive partial R2 values (or the residual
variation explained by adding the variable to the network),
which makes for more interpretable results (Haslbeck &
Waldorp, 2018).

Within our proposed framework, networks would be
comprised of personality components rather than specific
items or facets. On the surface, this seems to clash with
recent articles (including this special issue) demonstrating
the unique predictive value of items in personality–outcome
associations. In our view, this conflict is relatively minimal;
instead, we think that unique personality components
should be tapping into the very same notion. Items should
have unique predictive value if they have distinct causes
beyond other items—just as personality components are
conceptualized.

On the one hand, when considering the example of the
items, “Hate being the center of attention,” “Make myself
the center of attention,” “Like to attract attention,” and
“Dislike being the center of attention,” there is unlikely to
be unique predictive value of one item over another. On the
other hand, unique items that do not have such an obvious
overlap should remain as items and therefore unique
components in the personality network. Therefore, we
view personality components to be completely compatible
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with the unique predictive value of items while reducing
homogeneous sets of items to their unique causes.

Finally, researchers may be interested in the relations
between traits and outcomes. As mentioned in our
section on validity, traits are viewed as a summary of the
network’s state. Based on this definition, a summary statistic
could be computed and used to evaluate the relationship
between traits and outcomes. Using network loadings,
Christensen and Golino (under review) propose multiplying
the loading matrix by the observed data to derive a weighted
composite for each dimension (e.g., facets, traits) in a
personality network. These composites could then be
used in traditional analyses (e.g., zero-order correlation and
regression) or as variables in a “higher-order” network with
the outcome (and covariate) variables included. Following
the same suggestions above, researchers could then square
the outcome’s partial correlation coefficients to derive the
partial R2 for the higher-order personality components in
the network.

Conclusion
So, what are personality traits? At this point, it’s clear
that how researchers answer this question should affect
the psychometric model they choose. In doing so, there
are different considerations that should be made when
developing and selecting items for their scales as well as how
they should interpret the measures used to quantify their
scales. In this article, we take the initial steps towards how
researchers can go about this with psychometric network
models. We by no means suggest that our views represent
the views of all researchers using these models (including
latent variable models); however, we have provided a
foundation for future work and discussion. Undoubtedly,
the successful application of psychometric network models
in personality psychology requires explicit definition and
formalization of their measurement (e.g., components),
which we have provided (Costantini & Perugini, 2012;
Cramer et al., 2012b). We are optimistic that the continued
development of measurement from a psychometric network
perspective can move the theoretical and substantive
assessment of personality traits forward.
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Supplementary Information
Validation Example Using the SAPA Inventory
To begin our example of structural validation from the psychometric network perspecitve, several pacakges need to be
installed. From these packages, the psychTools (Revelle, 2019) and EGAnet (Golino & Christensen, 2020) pacakges must be
loaded.

# Install packages

install.packages("devtools")
install.packages("psychTools")
install.packages("wTO")
install.packages("fitdistrplus")
install.packages("ggpubr")
devtools::install_github("hfgolino/EGAnet")

# Load packages

library(psychTools)
library(EGAnet)

# Set seed for reproducibility

set.seed(6724)

The psychTools package contains the SAPA inventory data that will be used for the example. More details about the sample
can be found using the code ?spi or in Condon’s (2018) SAPA inventory manual. Prior to any analyses, the items that
correspond to the five-factor model (FFM; McCrae & Costa, 1987) should be obtained with the following code:

# Select Five Factor Model personality items only

idx <- na.omit(match(gsub("-", "", unlist(spi.keys[1:5])), colnames(spi)))
items <- spi[,idx]

Node redundancy

These items can now be used in the node.redundant function available in the EGAnet pacakge. For the purposes of
our example, we will use the weighted topological overlap approach—applied using the wTO package (Gysi, Voigt, de
Miranda Fragoso, Almaas, & Nowick, 2018)—and adaptive alpha (Perez & Pericchi, 2014) multiple comparisons correction
to determine which items are redundant.

# Identify redundant nodes

redund <- node.redundant(items, method = "wTO", type = "adapt")

# Change names in redundancy output to each item’s description

key.ind <- match(colnames(items), as.character(spi.dictionary$item_id))
key <- as.character(spi.dictionary$item[key.ind])

# Use key to rename variables

named.nr <- node.redundant.names(redund, key)

The output of the node.redundant function will correspond to the column names of the items in our data. The SAPA data
is labeled with ambiguous names (e.g., q_565), which will need to be converted to item descriptions (e.g., Dislike being
the center of attention.) to be used in the next step. The node.redundant.names function will accept a key that
maps the ambiguous column names to the item descriptions. The input for the argument key should be a vector with item
descriptions that correspond to the order of the column names.

The output from both functions will be a list, $redundant, containing lists of redundant items. Each list nested in the
$redundant list will be named after an item that is redundant with other items. The $redundant list is structured so that
items with the greatest number of redundant items are placed at the top. An example of what one of these item lists look
like is presented below (Table SI1).

The name of this item list, 'Am full of ideas.', is the item that is redundant with the items listed below it. The
$redundant list is structured this way for each item that is redundant with other items. This structure, however, is verbose
and difficult to manage. In order to navigate the process of merging items, the function node.redundant.combine should
be used.
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Table SI1. Example of first element in redundancy list

Am full of ideas.

Am able to come up with new and different ideas.
Am an original thinker.

Love to think up new ways of doing things.
Have a vivid imagination.

# Combining redundant responses

combined.nr <- node.redundant.combine(named.nr, type = "latent")

When entering this code, the R console will output each item list with a selection of possible redundant nodes (see Figure
SI1) and an associated “redundancy chain” plot will appear (see Figure SI2). When examining the possible redundant nodes,
the reader may notice that there were four items identified previously—that is, 'Am able to come up with new and
different ideas.', 'Am an original thinker.', 'Love to think up new ways of doing things.', and 'Have
a vivid imagination.' (Table SI1).

Figure SI1. An example of the menu that appears for each redundant item

The fifth option in Figure SI1, 'Like to get lost in thought.', was not redundant with the target item. It was,
however, redundant with another item in our potential responses (i.e., 'Have a vivid imagination.'). Some items that
are redundant with the original item may also be redundant with other items that are not redundant with the original item,
forming a so-called “redunancy chain.” The redundancy chain plot depicts this chain, which can be useful for deciding how
redundant nodes should be combined by informing researchers about the overlap of near nodes. In these plots (see Figure
SI2), the connections between items represent redundancies that have been determined to be statistically significant and the
thickness of the connections correspond to those items’ connections in the network (i.e., regularized partial correlations).
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Figure SI2. An example of a redundancy chain plot. The red node indicates the target item and the white nodes with numbers correspond to the
numbered options (Figure SI1). A connection represents significant overlap determined by the redundancy analysis and the thickness of the
connection represents the regularized partial correlation between the nodes in the network.

From the redundancy chain plot (Figure SI2), the fifth item is shown to be redundant with the fourth item but not the target
item (shown in red; Figure SI2). The target item should be the focus when considering which items are redundant. This
can be determined by examining which items’ content are redundant with the content of the target item. The redundancy
chain plot can be consulted to determine whether multiple items are redundant with the target item. When consulting the
redundancy chain plot, researchers should pay particular attention to cliques—a fully connected set of nodes. In Figure SI2,
there are two 3-cliques (or triangles) with the target item (i.e., Trg – 1 – 2 and Trg – 1 – 3).

In a psychometric network, these triangles contribute to a measure known as the clustering coefficient or the extent to which
a node’s neighbors are connected to each other. Based on this statistical definition, the clustering coefficient has recently
been considered as a measure of redundancy in networks (Costantini et al., 2019; Dinic, Wertag, Tomasevic, & Sokolovska,
2020). In this same sense, these triangles suggest that these items are likely to have particularly high overlap. Therefore,
triangles in these redundancy chain plots can be used as a heuristic for selecting items. Indeed, when inspecting these items,
they appear to be relatively redundant with one another (Figure SI1).

In our example, we selected these items by inputing their numbers into the R console with commas separating them (i.e.,
1, 2, 3). If the researcher decides that all items are unique with respect to the target item, then they can type 0, which
will not combine any items and move to the next target item. If the user selects items, then they will be prompted to label
the new component, which we labeled Original Ideation (Figure SI1).

The argument type will choose how to handle forming a unique component (i.e., latent variable or sum scores). We’ve
chosen "latent", which will compute a unidimensional reflective latent variable. The function will remove the selected
items from the data and replace them with the new component score. This completes the first target item.
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Figure SI3. An example of items that are reverse keyed and the prompt used to manage labeling.

For the second target item (Figure SI3), 'Trust what people say.', we combined it with the other possible redundant
items. Notably, there was one item that was reverse keyed, 'Feel that most people cant be trusted', which was
negatively correlated with the latent variable. Because there was an item negatively correlated with the latent variable,
a secondary prompt appears asking to reverse key the latent variable so that the label can go in the researcher’s desired
direction. In review of the correlations, we can see that the latent variable is positively keyed already; therefore, we entered
'n' and labeled the component. If, however, the signs of the correlations were the inverse, then the user could enter 'y',
which would reverse the meaning of the latent variable towards a postively keyed orientation. The function will proceed
through the rest of the redundant items until all have been handled.

Upon completing this process, the node.redundant.combine function will output a new data matrix ($data) and a matrix
containing items that were selected to be redundant with one another ($merged). The new data will have the column names
specified in the combination process with values representing either latent variable or sum scores for the combined items
(i.e., components). Items that were not considered to be redundant with other items will be returned with their original
values. The output of $merged is useful for documenting what was done, making the choices in the process transparent.
We have included a .csv file containing our output $merged in our supplementary information for readers to review, assess,
and follow along with this example.

Dimensionality

After the combination process is complete, exploratory graph analysis (EGA; Golino & Epskamp, 2017; Golino et al., in
press) can be applied. The following code can be used:

# New items

new.items <- combined.nr$data

# Examine dimensions

ega <- EGA(new.items, model = "glasso", algorithm = "louvain")
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Figure SI4. Depiction of the dimensions identified using exploratory graph analysis. The color of the nodes represent the dimensions and the
thickness of the lines represent the magnitude of the partial correlations (green = positive; red = negative).

EGA has been recently adapted to include the Louvain community detection algorithm (Blondel, Guillaume, Lambiotte, &
Lefebvre, 2008), which has demonstrated comparable or better performance than the Walktrap algorithm (Pons & Latapy,
2006) in identifying dimensions (Christensen, 2020). For this reason, we estimated the dimensions of the network using the
Louvain algorithm. Based on Figure SI4, there are five dimensions identified for these components. To view the composition
of these dimensions, the following code should be entered:

# View dimensions

View(ega$dim.variables)

When reviewing the component content of these dimensions (Table SI2), these factors directly correspond to the FFM.
Dimensions 1, 2, 3, 4 and 5 reflect conscientiousness, neuroticism, extraversion, openness to experience, and agreeableness,
respectively. Although these components were empirically comprised of FFM items, this finding is an empirical validation
of the effectiveness of the redundancy and dimensionality analyses. Next, we can investigate each node’s contribution to
the coherence of these dimensions using the net.loads function.

# Compute standardized node strength

net.loads(ega)$std

The net.loads function computes each node’s standardized node strength for each dimension in the network. Therefore,
Table SI3 can be interpreted similarly as an exploratory factor analysis loading matrix. When examining the network
loadings matrix, there were a couple things worth noting. First, the network loadings are much smaller than the loadings
of a traditional factor loading matrix. The largest loading is 0.409 for the original ideation component in the openness to
experience dimension. By traditional factor analysis standards, this is a weak factor loading. This difference in the magnitude
of the loadings is due to the association measure underlying the computation of the loading—that is, partial vs. zero-order
correlations. The network loadings thus represent partial correlation loadings, meaning that 0.409 is actually a very large
loading.

A key point moving forward will be to establish norms for what constitutes a small, moderate, and large network loading. It
seems fair to suggest that effect sizes for multiple regression may hold for network loadings; however, the f 2 metric is likely
to be more confusing for practical researchers than not (Cohen, 1992). Instead, using effect sizes that typically translate
from these f 2 might be more interpretable, specifically effect sizes of .10, .30, and .50 corresponding to small, moderate,
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Table SI2. Item identification in EGA dimensions

Items Dimension

Work hard. 1
Neglect my duties. 1
Perfectionist 1
Orderly 1
Motivated 1

Set high standards for myself and others. 1
Worrier 2
Anxious 2
Low self-esteem 2
Irritable (R) 2

Emotional stability 2
People person 3
Attention-seeking 3
Social-efficacy 3
Laugher 3

Express myself easily. 3
Original ideation 4
Fantasy 4
Introspective 4
Self-assessed intelligence 4

Concerned for others 5
Manipulative 5
Sees good in people 5
Am hard to satisfy. 5
Enjoy being thought of as a normal mainstream person. 5

Rule-follower 5

and large effect sizes, respectively. Although this issue requires further examination, we suspect that these guidelines are
reasonable enough for researchers to find them useful.

Second, the network loading matrix has particularly small cross-loadings, including some loadings that are zero. Many of the
small cross-loadings are small not just by traditional factor analysis standards but also partial correlation standards. This is
because of the network estimation where many pairwise correlations are shrunk to zero, leaving many nodes not connected
to other nodes. Therefore, if a node (component) is not connected to any nodes in another dimension, there is no loading
for that node in the dimension. This shrinkage also affects the size of the cross-loadings by making most cross-dimension
connections small, resulting in lower loadings.

One peculiar cross-loading is the component set high standards for myself and others with openness to experience. From
the loading matrix, it’s difficult to discern why this component would be related to openness to experience. The network,
however, provides greater insight into this relation, specifically the set high standards for myself and others (Shsfmao)
component is connected to the self-assessed intelligence (S-i) and introspective (Int) components (Figure SI4).

Structural consistency

In the manuscript, we proposed structural consistency as a complementary measure to internal consistency. To compute
structural consistency, we must first apply the bootEGA function, which will compute the bootstrap analysis. Once this
procedure is completed, the dimStability function can be applied.

# Set seed

set.seed(6724)

# Compute bootstrap

boot <- bootEGA(new.items, n = 500, model = "glasso",
type = "parametric", plot.typicalStructure = FALSE)

# Compute structural consistency

sc <- dimStability(boot, orig.wc = ega$wc)
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Table SI3. Standardized node strength for each node in each dimension identified by EGA

1 2 3 4 5

Work hard. 0.340 -0.011 0.027 0.040 0.063
Neglect my duties. -0.314 0.047 0.003 0.007 -0.115
Perfectionist 0.241 0.045 0.000 0.000 0.052
Orderly 0.222 -0.017 -0.004 -0.024 0.036
Motivated 0.322 -0.050 0.028 0.060 0.003

Set high standards for myself and others. 0.205 0.000 0.003 0.144 -0.064
Worrier 0.040 0.385 0.000 0.000 0.034
Anxious 0.015 0.405 -0.048 -0.076 0.006
Low self-esteem -0.091 0.174 -0.135 -0.015 -0.065
Irritable (R) 0.000 -0.178 0.000 0.012 0.120

Emotional stability 0.015 -0.320 -0.020 -0.049 -0.085
People person 0.000 -0.019 0.326 -0.041 0.088
Attention-seeking -0.007 0.019 0.284 0.003 -0.116
Social-efficacy 0.038 -0.094 0.341 0.048 0.014
Laugher 0.010 -0.017 0.183 0.012 0.096

Express myself easily. 0.005 -0.045 0.240 0.070 0.051
Original ideation 0.037 -0.032 0.074 0.409 -0.066
Fantasy -0.044 0.030 0.020 0.302 -0.048
Introspective 0.040 0.010 0.022 0.194 0.046
Self-assessed intelligence 0.095 -0.053 0.033 0.170 0.000

Concerned for others 0.030 0.119 0.119 0.029 0.248
Manipulative -0.087 0.042 0.066 -0.001 -0.186
Sees good in people 0.000 -0.076 0.088 0.000 0.223
Am hard to satisfy. 0.083 0.069 -0.062 0.000 -0.146
Enjoy being thought of as a normal mainstream person. 0.000 0.001 0.012 -0.115 0.126

Rule-follower 0.123 0.011 -0.042 -0.054 0.230

# Print structural consistency

sc$dimensions

Table SI4. Structural consistency values for each dimension

Dimension Structural Consistency

1 1.000
2 1.000
3 1.000
4 1.000
5 0.832

Based on Table SI4, four of the five dimensions have perfect structural consistency. The fifth dimension, agreeableness,
appears to be less stable than the others. To get a better understanding of this result, we can plot the item stability statistics:

# Item stability statistics plot

sc$items$plot.itemStability
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Figure SI5. Each item’s replication in the original dimension specified by EGA

The item stability plot reveals that most components within the agreeableness dimension are consistently being identified
within their original dimension. To view how these components are positioned across dimensions, the items$item.dim.rep
object can be viewed:

# View item stability across dimensions

View(sc$items$item.dim.rep)

Based on Table SI5, two of the components—Enjoy being thought of as a normal mainstream person. and
Rule-follower—are being identified in the fourth dimension or openness to experience about 20% of the time. This
suggests that these components mainly represent the agreeableness domain but also fall within the openness to experience
domain.
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Table SI5. Item stability within each dimension

1 2 3 4 5

Set high standards for myself and others. 1
Motivated 1
Orderly 1
Perfectionist 1
Neglect my duties. 1

Work hard. 1
Emotional stability 1
Irritable (R) 1
Low self-esteem 1
Anxious 1

Worrier 1
Express myself easily. 1
Laugher 1
Social-efficacy 1
Attention-seeking 1

People person 1
Self-assessed intelligence 1
Introspective 1
Fantasy 1
Original ideation 1

Rule-follower 0.168 0.832
Enjoy being thought of as a normal mainstream person. 0.168 0.832
Am hard to satisfy. 1
Sees good in people 1
Manipulative 1

Concerned for others 1
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