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ABSTRACT
The past few years were marked by increased online offensive strategies perpetrated by state and non-state actors to promote their
political agenda, sow discord and question the legitimacy of democratic institutions in the US and Western Europe. In 2016 the US
congress identified a list of Russian state-sponsored Twitter accounts that were used to try to divide voters on a wide range of issues.
Previous research used Latent Dirichlet Allocation (LDA) to estimate latent topics in data extracted from these accounts. Howerver,
LDA is has characteristics that may pose significant limitations to be used in data from social media: the number of latent topics
must be specified by the user, interpretability can be difficult to achieve, and it doesn’t model short-term temporal dynamics. In the
current paper we propose a new method to estimate latent topics in texts from social media termed Dynamic Exploratory Graph
Analysis (DynEGA). We compare DynEGA and LDA in a Monte-Carlo simulation in terms of their capacity to estimate the number of
simulated latent topics. Finally, we apply the DynEGA method to a large dataset with Twitter posts from state-sponsored right- and
left-wing trolls during the 2016 US presidential election. The results show that DynEGA is substantially more accurate to estimate
the number of simulated topics than several different LDA algorithms. Our empirical example shows that DynEGA revealed topics
that were pertinent to several consequential events in the election cycle, demonstrating the coordinated effort of trolls capitalizing
on current events in the U.S. This demonstrates the potential power of our approach for revealing temporally relevant information
from qualitative text data.
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Introduction
The past few years were marked by increased online
offensive strategies perpetrated by state and non-state
actors to promote discord and question the legitimacy
of democratic institutions in the US and Western Europe
(Taddeo, 2017; Ziegler, 2018). These offensive strategies
ranged from traditional cyber-attacks (e.g. denial-of-service,
data leaking, and application compromising; Hernandez-
Suarez et al., 2018) to information warfare—a set of tactics
and operations involving the protection, manipulation,
degradation, and denial of information (Libicki, 1995).
The goals of information warfare are to attack adversary
knowledge or beliefs (Szafranski, 1995), fabricate false
or distorted stories, generate opposition movements, and
destabilize adversaries (Ziegler, 2018). In the past decade,
the increase in the number of people using social media
platforms (such as Twitter) and sharing content online (over
1 billion posts per month around the world; Hernandez-
Suarez et al., 2018) has led to increased gains from
information operations on both scale and impact.

A recent notable information operation was the covert online
activities in social media to influence the public opinion
and voters in the U.S. during the 2016 campaign, with
attacks occurring before and during the electoral process
(Linvill & Warren, 2018). Social media accounts linked
to the Internet Research Agency (IRA), based in Russia,

were used to sow discord in the U.S. political system,
using trolls and robots that masqueraded as American
citizens to try to divide voters on a wide range of issues
(Linvill & Warren, 2018). Qualitative analysis of the
content published by IRA-linked Twitter accounts have been
conducted elsewhere (see: Linvill, Boatwright, Grant, &
Warren, 2019), providing relatively little insight despite the
large amount of information posted by the trolls (almost 3
million tweets from 2,848 Twitter handles).

Quantitative analysis of texts, however, can be very useful
in understanding the strategies used in online intelligence
operations. Llewellyn, Cram, Favero, and Hill (2018) used
topic modeling to understand the content disseminated
by IRA trolls in Twitter related to the UK-EU Referendum
debate (Brexit), and found that the topics revolved around
the economy, European Union affairs, voting and external
politics, and various other topics. Ghanem, Buscaldi, and
Rosso (2019) used a combination of latent topic modeling
and stylistic text analysis (i.e., the use of textual features
to differentiate authorship) to predict IRA-linked Twitter
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accounts. The results of Ghanem et al. (2019) show that
modeling latent topics combined with surface text features
(stylistic analysis) can improve the performance of predictive
models.

In another study focused on IRA-linked accounts, Zannettou,
Caulfield, De Cristofaro, et al. (2019) compared IRA-
linked troll tweets with a random set of Twitter users and
investigated their ability to spread and make news content
viral. The authors discovered that while the IRA-linked trolls
are active for long periods of time and reach a substantial
number of Twitter users, their effect on making content go
viral was limited, with the exception of news published by a
Russian state-sponsored news outlet (Zannettou, Caulfield,
De Cristofaro, et al., 2019). In a separate study, Zannettou,
Caulfield, Setzer, et al. (2019) compared Twitter and Reddit
users identified as Russian and Iranian trolls and found,
among other things, that Russian trolls were spreading pro-
Trump content while Iranian trolls were spreading anti-
Trump content.

In all of the papers mentioned above (Ghanem et al., 2019;
Llewellyn et al., 2018; Zannettou, Caulfield, De Cristofaro,
et al., 2019; Zannettou, Caulfield, Setzer, et al., 2019),
Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordan, 2003)
was used to estimate latent topics from posts on social
media platforms. LDA is one of the most well-known
and widely used topic modeling techniques, yet it has
several limitations: (1) the number of latent estimated topics
must be specified by the user, (2) interpretability can be
difficult to achieve (e.g., probabilities for each topic must
be interpreted), (3) assumes the topics are uncorrelated,
and (4) doesn’t model short-term temporal dynamics. The
estimation of the number of latent topics is a problem akin to
the dimensionality assessment problem in psychometrics.
Although some algorithms were developed to check the
optimal number of latent topics estimated via LDA (Arun,
Suresh, Veni Madhavan, & Narasimha Murthy, 2010; Cao,
Xia, Li, Zhang, & Tang, 2009; Deveaud, SanJuan, & Bellot,
2014), their implementation involves multiple steps and was
not widely available in software until very recently (Nikita,
2019), which may help explain why researchers choose the
number of topics in LDA arbitrarily.

In terms of interpretability, topic modeling methods are
statistical tools in which numerical distributions must be
explored to generate a meaningful interpretation of the
results (Chaney & Blei, 2012). In LDA and most topic
modeling techniques, the output of the models do not
provide enough information to generate a straight-forward
interpretation of the latent topics (Chaney & Blei, 2012),
and the researchers must check the distribution of word
probabilities per topic in order to make sense of them.
In real-world data, interpreting the distribution of word
probabilities per latent topic is not just cumbersome, but
sometimes the words with the highest probabilities in each
topic are very similar, making the interpretation of the
content of the topics in LDA (and other topic modeling
methods) a challenge.

Some of the limitations of LDA, such as assuming the topics
are uncorrelated and not modeling temporal dynamics, were
addressed previously. For example, Blei and Lafferty (2007)
developed a topic modeling technique that allows the topics
to be correlated, Blei and Lafferty (2006) proposed a new
topic modeling technique to model temporal dynamics,

and Glynn, Tokdar, Howard, and Banks (2019) proposed
a Bayesian extension of the dynamic topic model (Glynn
et al., 2019). Despite the usefulness of these correlated
and dynamic topic models, they share the above mentioned
limitations of LDA: the need to specify the number of
topics a priori and the difficulty to interpret the results.
Furthermore, the computation time can be very expensive
and the availability of R (R Core Team, 2018) packages
implementing these techniques are limited (if existent at
all). The Bayesian dynamic topic model proposed by Glynn
et al. (2019), for example, takes several hours to run a single
topicmodel estimation on a personal computer and although
the correlated topic model of Blei and Lafferty (2007) is
implemented in R (see Hornik & Grun, 2011), the dynamic
topic model of Blei and Lafferty (2006) is not.

In the current paper we propose a new (and fast) method
to estimate latent dimensions (e.g., factors, topics) in
multivariate time series termed Dynamic Exploratory Graph
Analysis (DynEGA). The DynEGA technique can be used to
estimate the latent structure of topics published in social
media (using time series of word frequencies), improving
our capacity to understand the strategy used by accounts
created as tools of information warfare. The DynEGA
approach uses time delay embedding to pre-process each
variable (e.g., time series of words counts), and estimates
the derivatives from each variable using Generalized Local
Linear Approximation (GLLA; Boker, Deboek, Edler, &
Keel, 2010). Finally, a network psychometrics approach
for dimensionality assessment termed Exploratory Graph
Analysis (EGA; Golino & Epskamp, 2017; Golino et al., 2020)
is used to identify clusters of variables that are changing
together (i.e., dynamic latent factors or dynamic latent
topics in the case of text data). The DynEGA approach
automatically estimates the number of latent factors or
topics and their short-term temporal dynamics with the
results displayed as a network plot, which facilitates their
interpretation. Importantly, the DynEGA approach does not
assume the factors or topics are uncorrelated (e.g., LDA and
other commonly applied topic modeling techniques), and
it can accommodate different time scales and estimate the
latent structure at different levels of analysis (i.e., population,
groups, and individuals).

After describing the DynEGA method, we compare it
to LDA in a brief simulation study where the latent
topics are simulated using the direct autoregressive factor
score model (DAFS; Engle & Watson, 1981; Nesselroade,
McArdle, Aggen, & Meyers, 2002), which is characterized
by the autoregressive structure of the latent dimensions
(Nesselroade et al., 2002). In the simulation, LDA is
implemented using different estimation methods via the
topicmodels package (Hornik & Grun, 2011) and the
number of latent topics is verified using AIC, BIC and the
algorithms developed by Arun et al. (2010), Cao et al.
(2009) and Deveaud et al. (2014).

Finally, we apply the DynEGA method to the Twitter data
published by Linvill and Warren (2018), which contains
posts from IRA-linked accounts that were identified as
right- and left-wing trolls. The goals of the current paper
are to introduce the new dynamic EGA model, verify its
suitability to estimate latent topics in a brief simulation study,
and investigate the strategies used by right- and left-wing
trolls to sow discord in the U.S. political system. Being
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able to identify the communication strategies used by the
IRA can potentially enhance our capacity to understand
online intelligence operations, which are likely part of
information warfare efforts perpetrated by both state and
non-state actors. We’ve implemented the DynEGA method
into the EGAnet package for the R software environment
(Golino & Christensen, 2019; Golino et al., 2020). All
code used in the current paper are available in an online
repository at the Open Science Framework platform for
reproducibility purposes (see: https://osf.io/4ya6x/?view_
only=b6078b404e3049818b359ae0d514f966).

Exploratory Graph Analysis: a (very) brief
overview
The origins of network models in psychology can be
traced back to the seminal work of Cattell in the mid-
60’s (Boker, 2018; Cattell, 1965) and less explicitly to the
proposition of image structural analysis by Guttman (1953).
It gained more traction, however, after the publication of
the mutualism model of intelligence (Van Der Maas et al.,
2006) and the proposition of the network perspective of
psychopathological constructs (Borsboom, 2008; Borsboom
& Cramer, 2013; Cramer, Waldorp, Van Der Maas, &
Borsboom, 2010; Fried et al., 2017) as well as being
employed in clinical (Bork, Borkulo, Waldorp, Cramer, &
Borsboom, 2018), cognitive (Golino & Demetriou, 2017;
Van Der Maas, Kan, Marsman, & Stevenson, 2017), social
(Dalege, Borsboom, Harreveld, Waldorp, & Maas, 2017),
and many other areas of psychology (Epskamp, Rhemtulla,
& Borsboom, 2017).

The rapid developments of network modeling in psychology
spawned a new subfield of quantitative psychology termed
network psychometrics (Epskamp, 2018). In these models,
nodes (e.g., circles) represent variables and edges (e.g.,
lines) represent associations between the nodes. Under this
framework, Golino and Epskamp (2017) proposed the use
of network psychometrics as a method for dimensionality
assessment and termed this novel approach EGA. Unlike
other methods, EGA produces a visual guide—network
plot—that not only indicates the number of dimensions to
retain, but also which nodes (e.g., items) cluster together
and their level of association. Simulation studies have shown
that EGA presents comparable or better accuracy than the
state-of-the-art parallel analysis technique when estimating
the number of simulated factors (Christensen, 2020; Golino
& Epskamp, 2017; Golino et al., 2020).

The EGA approach currently uses two network estimation
methods (for a review, see Golino et al., 2020): graphical
lasso (Friedman, Hastie, & Tibshirani, 2008) and triangulated
maximally filtered graph (TMFG; Massara, Di Matteo, &
Aste, 2016). After the network is estimated, an algorithm
for community (cluster) detection in weighted networks is
used (Walktrap; Pons & Latapy, 2006). The next sections
will briefly introduce the network estimation methods and
the community detection algorithm used in EGA.

Graphical lasso
The graphical lasso (glasso; Friedman et al., 2008) is the
most commonly applied network estimation method in
the psychometric network literature. Networks estimated
using the glasso are a Gaussian Graphical Model (GGM;

Lauritzen, 1996), where edges represent partial correlations
between variables after conditioning on all other variables in
the network. The least absolute shrinkage and selection
operator (lasso; Tibshirani, 1996) is used to control for
spurious relationships and shrink coefficients to zero,
generating a sparse network and preventing over-fitting of
the data. The glasso procedure can be controlled in a
way to generate multiple networks, with different levels
of regularization (i.e., from a fully connected network to
a fully unconnected network). This approach is termed the
glasso path, in which glasso is run for n values of the tuning
parameter λ. For each estimated network, the extended
Bayesian information criterion (EBIC; Chen & Chen, 2008)
is computed and the graph with the best EBIC is selected
(Epskamp et al., 2018; Epskamp & Fried, 2018; Foygel &
Drton, 2010). The EBIC has a hyperparameter (γ) that
controls the severity of the model selection (i.e. that controls
how much the EBIC prefers simpler models; Epskamp &
Fried, 2018). Most commonly, γ is set to 0.5 (Foygel
& Drton, 2010), although greater sensitivity (true positive
proportion) can be gained from lower γ values (e.g., γ = 0)
at the cost of specificity (true negative proportion; Williams
& Rast, 2019). In EGA, the network estimation starts with γ
= 0.5, but if the resulting network has disconnected nodes,
then γ is set to 0.25, and then to 0 if the issue persists. When
γ is zero, EBIC equals the Bayesian information criterion
(Foygel & Drton, 2010).

Triangulated Maximally Filtered Graph
The triangulated maximally filtered graph (TMFG; Massara
et al., 2016) is another network construction method that
has been used in the psychometric network literature (e.g.,
Christensen, Kenett, Aste, Silvia, & Kwapil, 2018; Golino
et al., 2020). The TMFG algorithm constructs the network
using a structural constraint on the number of zero-order
correlations that can be included in the network (i.e., 3n−6;
where n is the number of variables). Construction begins by
identifying the four variables with largest sum of correlations
to all other variables and connects them to each other. Then,
variables are iteratively added to the network based on the
largest sum of three correlations to nodes already in the
network. The result is a fully connected network of 3-
and 4-node cliques (i.e., sets of connected nodes). This 3-
and 4-node clique structure can be directly associated with
the inverse covariance matrix, resulting in a GGM (Barfuss,
Massara, Di Matteo, & Aste, 2016).

Walktrap Algorithm
EGA uses the Walktrap community detection algorithm
(Pons & Latapy, 2006) to determine the number of
communities (factors or topics) in the network (Golino &
Epskamp, 2017). The Walktrap algorithm uses a process
known as random walks (or a stochastic number of edges
from a certain node), which tend to get “trapped” in densely
connected parts of the network. The number of steps
can be specified by the user; however, EGA uses the
default of 4, which has been shown to be optimal for the
number of variables typically used in psychological research
(Christensen, 2020; Gates, Henry, Steinley, & Fair, 2016). In
the random walk process, the likelihood of a step to another
node is determined by the structural similarity between
the nodes and communities, which defines a distance.
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These distances are used in an agglomerative hierarchical
clustering algorithm approach, which is then subjected to
merging (i.e., merging two clusters that minimize the mean
of the squared distances). During the merging process, the
adjacent clusters’ distances are updated to reflect the new
distances between the clusters. Throughout this process, a
metric to assess the quality of the partitions is used to help
capture community structures at different scales.

Dynamic Exploratory Graph Analysis
Dimensionality assessment is common in psychology, but
also has a significant use in data mining, especially in
the subfield of text mining. Text mining is a data-driven,
exploratory method used to find patterns and trends in
large data sets of texts, enabling the transformation of
unorganized text into succinct knowledge (Ananiadou &
McNaught, 2006). It is epistemologically compatible with
content analysis, making it possible to collect, maintain,
interpret, and discover relevant information hidden in texts
in a systematic and efficient way (Singh, Hu, & Roehl, 2007).
Recently, EGA was used in combination with text mining to
estimate latent topics in texts, showing promising results
(Kjellstrom & Golino, 2019).

The current implementation of EGA, however, limits its
application to data collected to a single time-point (i.e.,
cross-sectional data). Kjellstrom and Golino (2019), for
example, used text data from single interviews made with
multiple adults about their conceptions of health. To
enable the identification of latent structures in texts from
social media, the EGA technique needs to be expanded to
accommodate short-term temporal dynamics. This, in our
view, would provide a more valid way to estimate topics in
texts that are produced in series (such as posts in Twitter).
People use words to communicate their ideas and feelings
and thoughts, with groups of words indicating the underlying
content of the text (i.e., the topic). If the text data comes
from a single time point, the topics can be estimated using
the variance-covariance matrix of the words (or the inverse
of the variance-covariance matrix, as in the glasso version
of EGA; Kjellstrom & Golino, 2019). However, in the case
of texts that are written on several different occasions, the
temporal dynamics should be accounted for by the topic
model, otherwise it may generate significant bias in the
estimation of the underlying latent topics.

In texts published on Twitter, people may use several words,
for example, to talk about the topic “violence” on one
occasion (time or t). In the next occasion (t + 1), the
same person may use a different set of words to express
their feelings about “gun control,” and yet in a subsequent
occasion may use different words to communicate their
views about the “mainstream media.” Across time, one
person can write about several different topics, using words
that may or may not be the same on each occasion. Instead
of modeling the covariance of words without taking time
into consideration (a cross-sectional approach), a more
ecologically valid way to understand topics published on
Twitter is to model how words are varying together across
time, capturing the short-term dynamics of the texts.

One way to address this problem is proposed as follows:
A collection of texts (corpus) from one single individual
(e.g., a Twitter account) over N discrete time points can

be represented as a document-term matrix (DTM) in which
each unique word is a column and each observation (e.g., a
post on Twitter) is a row in the document-term matrix. The
DTM is, therefore, a N × U matrix, where N is the number
of time points and U is the number of unique words used
in the entire collection of texts (corpus). The values of the
DTM cells are the frequency of the words.

Since each column of the document-term matrix represents
a time series of the word frequency, W = {w1,w2, ...,wN},
each time series can be transformed into a time delay
embedding matrix X(n), where n is the number of embedding
dimensions. A time delay embedding matrix is used to
reconstruct the attractor of a dynamical system using a
single sequence of observations (Takens, 1981; Whitney,
1936). An attractor contains useful information about the
dynamical system such as a series of values to which a
system tends toward based on a set of starting conditions.
In many empirical situations, however, the collection of
possible system states (phase-space) and the equations
governing the system are unknown. In such situations,
attractor reconstruction techniques can be used as a means
to reconstruct the phase-space dynamics using, for example,
only a single time series with observable values.

In the time delay embedding matrix, each row is a phase-
space vector (Rosenstein, Collins, & De Luca, 1993):

X = [X1 X2 ... XM]′ (1)

Where Xi is the state of the system at discrete time i and is
given by:

Xi =
[
xi xi+τ ... xi+(n−1)τ

]
(2)

where τ is the number of observations to offset successive
embeddings (i.e., lag or reconstruction delay) and n is the
embedding dimension. The time-delay embedding matrix is
a M×n matrix, where M = N− (n−1)τ and N is the number
of observations.

Suppose that W1 is a column in a given document-term
matrix representing the time series (of the frequency) of
the word gun, from time t = 1 to t = 10, so that
W1 = {5, 6, 7, ..., 14}. The frequencies of the word gun in
this example are way beyond what one finds in textual
data, especially from social media platforms, but the goal
of the example is to help the reader understand how time
delay embedding works. Transforming the time series W1
into a time delay embedding matrix with five embedding
dimensions and τ = 1 generates in the following matrix:

X(5) =



5 6 7 8 9
6 7 8 9 10
7 8 9 10 11
8 9 10 11 12
9 10 11 12 13
10 11 12 13 14


(3)

Once every time series of word frequency (columns) of
the document-term matrix is transformed into a time-delay
embedding matrix X(n), derivatives can be estimated using
GLLA (Boker et al., 2010; Deboeck, Montpetit, Bergeman,
& Boker, 2009).
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GLLA is a technique that can be used to estimate how
a variable (e.g., the frequency of the word gun—word
count per time point) changes as a function of time. The
instantaneous change in one variable with respect to another
variable is known as a derivative. The derivative can
represent different aspects of change. The first derivative
of a word frequency’s time series, for example, estimates
the rate of change of the word or the velocity at which a
word’s frequency is changing over time. A negative first
order derivative indicates that a word is being used less
and less, while a positive first order derivative indicates that
a word is being used more often as a function of time.
The second derivative indicates the speed of the rate of
change or the speed of how quickly a word’s frequency
is changing (i.e., acceleration). A positive second order
derivative indicates an “acceleration” in the rate of change of
a word’s frequency, while a negative second order derivative
indicates a deceleration.

In the GLLA framework (Boker et al., 2010; Deboeck et al.,
2009), the derivatives are estimated as:

Y = XL(L′L)−1 (4)

where Y is a matrix of derivative estimates, X is a time
delay embedding matrix (with n embedding dimensions; to
simplify the notation, X = X(n)), and L is a matrix with the
weights expressing the relationship between the embedding
matrix and the derivative estimates. The weight matrix L
is a n × α matrix, where n is the number of embedding
dimensions and α is the (maximum) order of the derivative.
Each column of the weight matrix is estimated as follows,
considering the order of the derivatives going from zero to
k, α = [0, 1, ..., k]:

Lα =
[∆t(v − v̄)]α

α!
(5)

where ∆t is the time between successive observations in
the time series, v is a vector from one to the number of
embedded dimensions (i.e., v = [1, 2, ...n]), v̄ is the mean of
v, α is the order of the derivative of interest, and α! is the
factorial of α.

Continuing our example in which W1 is a time series of the
word gun’s frequency from time t = 1 to t = 10, considering
a time delay embedding matrix with five dimensions,
derivatives up to the second order (i.e., α = [0, 1, 2]), and a
∆t of one, the weight matrix L is:

L =
[

[1(v−v̄)]0

0! , [1(v−v̄)]1

1! , [1(v−v̄)]2

2!

]
=


1 −2 2.0
1 −1 0.5
1 0 0.0
1 1 0.5
1 2 2.0

 (6)

Applying Equation 4 to estimate the derivatives, Y is:

Y =



6.5 1 0
7.5 1 0
8.5 1 0
9.5 1 0
10.5 1 0
11.5 1 0
12.5 1 0


(7)

where the first, second and third column represents the
zeroth (observed values), first (rate of change), and second
derivative (speed of the rate of change), respectively.

The process described above is repeated for each variable
(e.g., each time series of word counts), and then the resulting
derivatives can be column bound to form a matrix D for each
individual (e.g. each Twitter account). By following this
process, both linear and nonlinear dynamics are preserved
for each individual. Different levels of analysis can then be
implemented. If the goal is to investigate the population
structure, then the D matrices can be stacked and EGA can
be used to estimate the number of underlying dimensions
using data from all individuals. If the data contains multiple
groups of individuals, for example right- and left-leaning
trolls, then the the D matrices can be stacked by group, and
EGA is applied separately in each resulting stacked matrix,
generating one dimensionality estimation per group. Finally,
if the goal of the analysis is in the intraindividual structure,
then EGA can be used in each D. The result, in this case, will
be a structure for each individual, separately. Irrespective of
the level of analysis (population, group, or individual), the
resulting clusters in the network corresponds to variables
(words) that are changing together. This is, in summary, the
general idea behind our Dynamic Exploratory Graph Analysis
(DynEGA) approach.

HowDynEGA can be used to extract the latent trends
(or topic/factor scores) for each topic/factor
Network Loadings

In these topics, certain terms contribute more information
to topical trends than others. Measures to quantify the
contribution of information at the nodal-level (i.e., term-
level) are called centrality measures. Centrality measures
quantify the relative position of terms based on their
connections to other nodes in the network. One of the
most common measures is called node strength, which
corresponds to the sum of a term’s connections in the
network. In a series of simulation studies, Hallquist, Wright,
and Molenaar (2019) demonstrated that node strength was
roughly redundant with confirmatory factor analysis (CFA)
loadings. They found, however, that a node’s strength
represents a combination of dominant and cross-factor
loadings.

Considering this limitation of node strength, a more recent
simulation study evaluated node strength when it’s split
by dimensions (or topics) in the network (Christensen &
Golino, 2020). In this study, Christensen and Golino (2020)
mathematically defined a measure called network loadings
by splitting a node’s strength based on its connections within
and between dimensions identified by EGA. This measure
was then standardized to derive an equivalent measure to
factor loadings. Their simulation study demonstrated that
network loadings can effectively estimate the population (or
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true) loadings and are roughly equivalent with exploratory
factor analysis (EFA) loadings. Notably, like CFA loadings,
network loadings had zeros in the loading matrix from nodes
in the network that were not connected. This places network
loadings on a middle ground between a saturated (EFA) and
simple structure (CFA). Below, we provide mathematical
notation for how network loadings are computed.

Let W represent a symmetric m × m matrix where m is the
number of terms. Node strength is then defined as:

NSi =

m∑
j

wi j, (8)

where wi j is the weight (e.g., partial correlation) between
node i and node j, and NSi is the sum of the weights between
node i and all other nodes. Using the definition of node
strength (8), we can define node strength split between the
communities, C, identified by EGA:

NLic =

C∑
j∈c

wi j, (9)

where wi j is the weight of node i with the subset of nodes j
that belong to community c (i.e., j ∈ c), and NLic is the sum
of the weights for node i in community c (or unstandardized
network loading for node i in community c). From the
unstandardized network loadings (9), standardized network
loadings follow with:

zNLic =
NLic√
C∑
c

NLc

, (10)

where NLc is the sum of network loadings in community
c and zNLic is the standardized network loading of node
i in community c. It’s important to emphasize that
network loadings are in the unit of association—that is,
if the network consists of partial correlations, then the
standardized network loadings are the partial correlation
between each node and dimension.

Network Scores

Importantly, these network loadings form the foundation
for computing network scores, which can be used to
extract information about the topics in the network.
Because the network loadings represent the middle ground
between a saturated (EFA) and simple (CFA) structure, the
network scores accommodate the inclusion of only the
most important cross-loadings in their computation. This
capitalizes on information often lost in typical CFA structures
but reduces the cross-loadings of EFA structures to only the
most important loadings. Below we detail the mathematical
notation for computing network scores.

First, we take each community and identify items that do
not have loadings on that community equal to zero:

ztc = zNLi∈c , 0, (11)

where zNLc is the standardized network loadings for
community c, and ztc is the network loadings in community

c,that are not equal to zero. Next, ztc is divided by the
standard deviation of the corresponding items in the data,
X:

weitc =
ztc√∑t∈c

i=1(Xi−X̄)2

n−1

, (12)

where the denominator,
√∑t∈c

i=1(Xi−X̄t)2

n−1 , corresponds to the
standard deviation of the items with non-zero network
loadings in community c, and weitc is the weight for the
non-zero loadings in community c. These can be further
transformed into relative weights for each non-zero loading:

relWeitc =
weit∈c∑C
c weit∈c

, (13)

where
∑C

c weit∈c is the sum of the weights in community
c, and relWeitc is the relative weights for non-zero loadings
in community c. We then take these relative weights and
multiply them to the corresponding items in the data, Xt∈c,
to obtain the community (i.e., topic) score:

θ̂c =

C∑
c

Xt∈c × relWeit∈c, (14)

where θ̂c is the network score for community c.

It is interesting to point that one of the first researchers
to discover the equivalence between network models and
factor models was Guttman (1953). Although network
was not yet a specific area of research, especially in
Psychology, Guttman (1953) proposed a new psychometric
technique termed “image structural analysis” which is
basically a network model with node-wise estimation using
multiple regression. Guttman demonstrated how his
new psychometric technique relates to factor models, and
pointed that the former is a special case of the node-
wise network model where the errors of the variables are
orthogonalized. Therefore, it should be expected that the
network scores we define should be directly related to
traditional factor scores.

Checking the feasibility of Dynamic Ex-
ploratory Graph Analysis to estimate the
number of underlying factors/topics
Now that the DynEGA technique was described in detail,
an important question must be addressed: how accurate is
DynEGA to estimate the number of latent topics (or latent
factors). This section will briefly address this question.

A plausible underlying mechanism of latent topics can be
represented as a direct autoregressive factor score model
(DAFS; Engle & Watson, 1981), which is characterized
by the autoregressive structure of the latent dimensions
(Nesselroade et al., 2002). Since our paper focuses
on modeling text data, we will adjust the nomenclature
accordingly. In the DAFS framework, the observed variables
wt at time t (t = 1, 2, ...,N) are given by:

wt = Λft + et (15)
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where Λ is the topic (factor) loading matrix (a p × q matrix),
ft is a q× 1 vector of topics at time t, and et is a p× 1 vector
with measurement errors following a multivariate normal
distribution with mean zeros and covariance matrix Q
(Nesselroade et al., 2002; Zhang, Hamaker, & Nesselroade,
2008).

The topic scores, ft, are given by:

ft =

L∑
l=1

Blft−l + vt (16)

where Bl is a q × q matrix of autoregressive and cross-
regressive coefficients, ft−l is a vector of topic score l
occasions prior to occasion t and vt is a random shock
vector (or innovation vector) following a multivariate normal
distribution with mean zeros and q × q covariance matrix D
(Nesselroade et al., 2002; Zhang et al., 2008). In the DAFS
model, Λ, Bl, Q and D are invariant over time.

Data following the DAFS model can be simulated using
the simDFM function of the EGAnet package (Golino &
Christensen, 2019). Below we present a brief simulation
investigating how accurate is DynEGA to recover the number
of simulated topics. We also investigate the distribution
of variables per topic and the correlation between the
simulated and the estimated topic scores. Accuracy can
be calculated as follows:

Acc =
ΣC

N
, for C =

{
1 if θ̂ = θ
0 if θ̂ , θ (17)

Where θ̂ is the estimated number of latent topics, θ is
the true number of latent topics used to simulate the data
(i.e. ground truth), and N is the number of sample data
simulated.

The distribution of the variables per topic can be checked
using normalized mutual information (NMI; Horibe, 1985).
NMI is used to compare the similarity between two vectors
(of discrete variables) and assigns a value of zero where
the two vectors are totally dissimilar, and a value of
one where they are identical in an information theoretic
perspective. For example, consider two vectors (v1 and
v2) representing the partition of a multidimensional space
into two groups, so that v1 = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2) and
v2 = (2, 2, 2, 2, 2, 1, 1, 1, 1, 1). The NMI of the two vectors
equals one, since both vectors are presenting the same
information (i.e., that the multidimensional space is grouped
in two dimensions composed by the first three elements and
the last three elements, respectively). If v1 or v2 were to be
compared to a third vector v3 = (1, 1, 1, 2, 2, 2, 2, 3, 3, 3), the
NMI between v1 or v2 and v3 equals 0.38. Clearly, v1 and
v2 exhibits the same partitioning of the multidimensional
space, different from the partitioning of v3.

The two vectors used to compute NMI are the vector of
the assigned variables per topic—that generates the block
diagonal matrix Λ—equation 15, and the vector containing
the estimated topic number per variable.

Simulation Design
In this brief simulation, five relevant variables were
systematically manipulated using Monte Carlo methods:

the number of time points (i.e., the length of the time
series), topic (factor) loadings, number of variables per topic,
measurement error and type of observed data. For each of
these, their levels were chosen to represent conditions that
are encountered in dimensionality assessment simulation
studies (e.g., Garrido, Abad, & Ponsoda, 2013; Golino et al.,
2020; Zhang et al., 2008) and that could produce differential
levels of accuracy for DynEGA and the LDA techniques. It
is important to point that most studies in the area of topic
modeling do not implement Monte-Carlo simulations to test
the techniques and algorithms developed to estimate the
number of latent topics (see: Arun et al., 2010; Blei et al.,
2003; Deveaud et al., 2014), using what is called empirical
evaluation of LDA. In other words, the authors develop a
new topic modeling technique (or an algorithm to decide
the optimal n number of topics to be extracted by LDA)
and apply it to real-world text data. In the present paper,
we decided to implement a brief simulation, so we could
investigate how reliable is DynEGA to estimate the number
of latent topics, and also to compare this new technique to
the widely used LDA. Therefore, the levels of the variables
systematically manipulated in the current simulation were
decided based on studied from the area of dimensionality
assessment rather then from the topic modeling literature.

For the length of the time series, three conditions were used:
50, 100, and 200. The number of time points were selected
based on the conditions tested by Zhang et al. (2008).

Topic (factor) loadings were simulated with the levels of
.40, .55, .70, and 1. According to Comrey and Lee (2016),
loadings of .40, .55, and .70 can be considered as poor,
good, and excellent, respectively, thus representing a wide
range of factor saturations. In addition, loadings of 1 were
also simulated to allow for the evaluation of the DynEGA
technique under ideal conditions.

Number of variables per topic were composed of 5 and
10 indicators. In the dimensionality assessment literature
there is a consensus that three variables are the minimum
required for factor identification (Anderson, 1958). In the
present simulation 5 items per topic represents a slightly
overidentified model, while latent structures composed of
10 variables may be considered as highly overidentified
(Velicer, 1976; Widaman, 1993).

The measurement error covariance matrix had two
conditions (i.e. two diagonal matrices), one with 0.152 and
the other with 0.252 in the diagonal. The choice to use small
measurement errors was to verify how the methods perform
under minimum error conditions, so the impact of the other
variables systematically manipulated in our simulation could
be better understood.

Two types of observed data, normal continuous and ordered
categorical, generated. For the ordered categorical data,
a function to categorize the data based on Garrido et al.
(2013) and Golino et al. (2020) was used. First, the
normal continuous data was simulated, and then the values
of the simulated observed variables were discretized to four
categories. The LDA techniques were applied only to the
ordered categorical data, since they cannot handle normal
continuous variables.

Three variables were held constant: (a) the number of topics
(three), (b) the matrix with autoregressive (0.8) and cross-
regressive coefficients (0), and (c) the covariance matrix
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for the random shock (off-diagonal = 0.18; diagonal =
0.36). The values of the autoregressive and cross-regressive
coefficients and the random shock matrix were selected
following Zhang et al. (2008), to ensure the topics were
stationary time series (although the DynEGA model can also
model non-stationary time series).

Data Generation
For each combination of variables systematically controlled
in the Monte-Carlo simulation, 500 data matrices were
generated according to the DAFS model (equation 15).
Given the predefined parameter values, each data matrix
was generated as follows. First, the matrix of random
shock vectors vt is generated following a multivariate normal
distribution with mean zeros and 3 × 3 covariance matrix D
(off-diagonal values = 0.18; diagonal values = 0.36), where
t is the number of time points plus 1,000 (used as the burn-in
estimates for the chain). Second, the topic (factor) scores are
calculated using equation 16 and the first 1,000 estimates
are removed (burn-in phase). Third, the measurement
error matrix is estimated following a multivariate normal
distribution with mean zeros and p× p covariance matrix Q,
where p is the total number of variables (number of variables
per topic times three). Finally, the observed variables are
calculated using equation 15. Each data matrix represents
data from single individuals.

Data Analysis
The DynEGA technique was implemented using the EGAnet
package (Golino & Christensen, 2019), and the following
arguments of the dynEGA function were used. The number
of embedding dimensions was set to five, τ (time-lag) was
one and the time between successive observations for each
time series was one (delta). Two network methods (glasso
and TMFG) were used to construct the networks of the first
derivatives computed using the GLLA model. The correlation
between the first order derivatives was computed using
Pearson’s coefficient and were used as the input to estimate
the networks.

The LDA technique was implemented via the topicmodels
package (Hornik & Grun, 2011) using a Gibbs sampling
estimator (Phan, Nguyen, & Horiguchi, 2008). Readers
interested in specific details of the LDA estimation methods
are referred to Hornik and Grun (2011). Since LDA requires
the number of topics to be specified by the user, five
approaches to estimate the optimal number of latent topics
were used. The first two estimate from two to six topics
and calculate the AIC and BIC of the resulting LDA solution.
The remaining four approaches estimate from two to six
topics and select the number of topics using the algorithms
developed by Arun et al. (2010) (Arun), Cao et al. (2009)
(Cao) and Deveaud et al. (2014) (Deveaud) using the
ldatuning package (Nikita, 2016).

The algorithm developed by Arun et al. (2010) selects
the number of latent topics that minimize the Kullback-
Liebler divergence between the matrix representing word
probabilities for each topic and the topic distribution within
the corpus (Hou-Liu, 2018). The algorithm developed by
Cao et al. (2009) selects the number of topics based
on topic density, searching for the number of topics that
minimizes the average cosine similarity between topic
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Figure 1. Mean accuracy per network method used in the DynEGA
technique, magnitude of the loadings (x-axis), number of time points
(vertical facets) and magnitude of measurement error (horizontal
facets).

distributions, while Deveaud et al. (2014) developed an
algorithm that selects the optimum number of topics by
maximizing the average Jensen-Shannon distance between
all pairs of topic distributions (Hou-Liu, 2018). LDA
was applied in the ordered categorical data condition
only, since it cannot handle continuous variables. All
code used in the current paper are available in an online
repository at the Open Science Framework platform for
reproducibility purposes (see: https://osf.io/4ya6x/?view_
only=b6078b404e3049818b359ae0d514f966).

Results
Continuous data

In the continuous data condition, the mean accuracy of
DynEGA using glasso (ACCglasso = 93.17%) and TMFG
(ACCTMFG = 95.78%) were very similar, as were the
mean normalized mutual information (NMIglasso = 96.62%,
NMITMFG = 95.38%). Figures 1 and 2 show that the
mean accuracy and normalized mutual information increase
with the magnitude of the loadings, but decrease with
the increase in the measurement error. It is interesting
to note that although the TMFG network method is more
accurate (see Figure 1), the glasso approach gives the higher
normalized mutual information, suggesting that the latter
method more accurately allocate the variables into the
correct latent topics. Both figures also show that the mean
accuracy and normalized mutual information decreases with
the increase in the measurement error.

Figure 3 shows the mean correlation between simulated
and estimated topic scores per network method used in
the DynEGA technique, magnitude of the loadings, number
of time points and magnitude of the measurement error.
The DynEGA technique with the glasso network method
presented a higher mean correlation (GLASSO) than the
TMFG network method (TMFG). The differences are higher
for factor loadings of 0.40 (see Figure 3).

Ordered categorical data

In the ordered categorical data condition, the scenario is
slightly different. The mean accuracy of DynEGA using
the TMFG network method (ACCTMFG = 85.70%) was
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Figure 2. Mean normalized mutual information per network method
used in the DynEGA technique, magnitude of the loadings (x-axis),
number of time points (vertical facets) and magnitude of measurement
error (horizontal facets).
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Figure 3. Mean correlation between simulated and estimated topic
scores per network method used in the DynEGA technique, magnitude
of the loadings (x-axis), number of time points (vertical facets) and
magnitude of measurement error (horizontal facets).
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higher than the mean accuracy of glasso (ACCglasso =
73.43%). As with the continuous data type, DynEGA with the
glasso network method presented a higher mean normalized
mutual information than DynEGA with TMFG (NMIglasso =
88.20%, NMITMFG = 85.67%).

The strategies used to select the optimal number of topics via
LDA all presented a very low accuracy. The Arun algorithm
(Arun et al., 2010) had an accuracy of zero, since it selected
the maximum number of topics compared (six) as the
optimal number of topics all the time. AIC and BIC presented
a mean accuracy of 14.62% and 16.84%, respectively. Cao’s
(Cao et al., 2009) and Deveaud’s algorithm (Deveaud et
al., 2014) presented the best mean accuracy: 28.60% and
31.24%, respectively. Figure 3 shows the mean accuracy
per method in the ordered categorical data condition, per
loadings (x-axis), number of time points (vertical facets)
and magnitude of measurement error (horizontal facets).
The DynEGA technique with the TMFG network method
has the highest accuracy, followed by DynEGA with the
glasso network method, the Deveaud’s algorithm and Cao’s
algorithm for LDA.

Figure 5 shows that the DynEGA with the glasso network
method presented a slightly higher mean normalized mutual
information than the DynEGA with the TMFG network
method, specially with loadings of 0.40, 0.55 and 0.70.

Figure 6 shows the mean correlation between simulated
and estimated topic scores per network method used in
the DynEGA technique, magnitude of the loadings, number
of time points and magnitude of the measurement error.
The DynEGA technique with the glasso network method
presented a higher mean correlation between the simulated
and estimated topic scores (GLASSO) than the TMFG
network method (TMFG). The differences are higher for
loadings of 0.40 (see Figure 6).

Applying the dynamic exploratory graph
analysis in the IRA-linked Twitter data.
The substantive problem this paper addresses is related to
the use of social media, especially Twitter, by agencies
or groups of people devoted to exploit social divisions in
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used in the DynEGA technique, magnitude of the loadings (x-axis),
number of time points (vertical facets) and magnitude of measurement
error (horizontal facets).
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Figure 6. Mean correlation between simulated and estimated topic
scores for the ordered categorical data condition per network method
used in the DynEGA technique, magnitude of the loadings (x-axis),
number of time points (vertical facets) and magnitude of measurement
error (horizontal facets).

a society for political reasons. People are increasingly
using online social platforms to communicate their ideas
and politicians and government bodies are taking advantage
of these platforms to leverage their interaction with
voters/citizens. Social media platforms are becoming more
and more central in debates about relevant issues such
as abortion, gun control, and other controversial topics
(Rajadesingan & Liu, 2014), sometimes leading to strongly
polarized positions (Yardi & Boyd, 2010).

In the U.S., online activities were used to influence public
opinion and voters during the 2016 campaign, with attacks
occurring before and during the electoral process (Linvill
& Warren, 2018). Twitter accounts linked to the Internet
Research Agency (IRA), based in Russia, were used to
try to divide voters in a wide range of issues (Linvill &
Warren, 2018), and their information was released by
the US congress after an investigation to discover Russian
state-sponsored trolls (Zannettou, Caulfield, De Cristofaro,
et al., 2019). In this section the DynEGA technique is
applied to a large database of IRA-linked Twitter accounts
extracted by Linvill and Warren (2018), and posted online
by the FiveThirtyEight team (Roeder, 2018). The goal is to
investigate the strategies used by right- and left-wing Twitter
accounts.

The original data contains almost 3 million Twitter posts,
by 2843 unique accounts, starting in January, 2013 to May,
2018. Linvill and Warren (2018) classified the accounts
into five groups: right troll, left troll, news feed, hashtag
gamer, and fearmonger. The first two types of accounts
mimic right or left-leaning people. The news feed accounts
present themselves as local news aggregators, the hashtag
gamer accounts specialize in playing hashtag games, and
the fearmonger accounts spread news about a fake crisis
(Roeder, 2018). In the current analysis, only accounts
identified as right- and left-leaning trolls are used, with posts
(not including retweets) from January 2016 to January 2017.
Accounts with less than 50 posts were excluded, resulting in
276,752 posts and 236 accounts. The 236 accounts included
in the analysis can be considered influential, since they have
a non-negligible number of followers (2,014 on average).
The high number of followers can help the trolls in pushing
specific narratives to a much greater number of Twitter users
(Zannettou, Caulfield, De Cristofaro, et al., 2019).

The twitter posts were split by account type (i.e. right and
left trolls) and pre-processed using the tm package from R
(Feinerer, Hornik, & Meyer, 2008). URLs were removed
from the text data as well as punctuation, numbers, and
stop words. All characters were converted to lowercase and
the words were stemmed (i.e., reduced to their stem, base
or root, using Porter’s algorithm; Porter, 1980). The sparsity
of the resulting document term matrix (i.e. a data frame
where the columns are unique words and rows are different
documents or posts) was decreased using a threshold of
0.99 for the right trolls and 0.993 for the left trolls, so
that words with a sparsity above the threshold is removed
from the document term matrix, resulting in 108 unique
words for the right and 113 words for the left trolls. In
text mining, deciding the number of words to use is done
arbitrarily. In the current analysis, we decided to use around
100 words per account type, so the final document term
matrix would have enough words to capture different types
of topics, but not very specific topics (or niche content),
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which could happen if the number of words used increases
(since the number of words used depends on the sparsity
threshold, using more words means using words that are
less frequently used).

To estimate the topics per account type, the DynEGA
technique was used via the dynEGA function from the EGAnet
package (Golino & Christensen, 2019). Since the TMFG
network method presented the highest accuracy in the
estimation of the number of topics in the ordered categorical
data, it was the network construction method used in the
current analysis. The dynEGA arguments were set as follows:
the number of embedding dimensions was set to five, τ
(time-lag) was set to one and the time between successive
observations for each time series was one (delta). The
correlation between the first order derivatives was computed
using Pearson’s coefficient and were used as the input to
estimate the network. The level of analysis used in this
section was set to population, meaning that the derivatives
are estimated per Twitter account and then row binded,
creating a long data frame that is used to compute the
correlation matrix. The estimated topics are, then, the
“mean” structure of population.

Figure 7 shows the network structure of the right-leaning
trolls. The nodes represent the words and the edges are
the Pearson correlation of the words’ first order derivatives.
Eight topics were estimated. The first topic (red nodes)
referred to issues related to job/work in America, and
contain words such as make, need, work, and america. The
second topic (orange nodes) involved words as Trump, win,
trumpforpresident, maga (the short for make america great
again, Trump’s campaign motto), and is clearly related to
supporting Trump for president of the US. The third topic
(green nodes) referred to the liberal media (in particular
the CNN news network), and contain words such as show,
video, liber (root of liberal), and cnn. The fourth topic
focused on terrorism and anti-Islam content, with words
such as terrorist, stopislam, attack, and isi (a reference
to the ISIS terrorist group). The fifth topic (light blue
nodes) focused on support for police and the white people
movement in the US, with words such as live, support, polic
(root of police), and white. The sixth topic (dark blue nodes)
was the most difficult to interpret, since it contain words
related to time (e.g. time, day, one, year). The seventh
topic (purple nodes) focused on attacking Hillary Clinton
and her campaign, with words as campaign, clinton, lie,
hillaryclinton, and email. Finally, the eight topic (pink nodes)
was related to gun control, the Wake up America movement
(a movement against the suppression of individual rights
such as gun ownership), and Ted Cruz (the US Senator from
Texas).

To understand how each topic changes over time, the
topic scores were estimated using equation 14. Figure 8
shows the mean topic score per date for the right trolls.
Some trends are interesting to mention. For example,
Topic 2 (supporting Trump for president of the US) peaked
twice, once in April 27th (day that Trump won in five
states in the primary election for the republican party,
and day he gave a controversial speech on foreign policy)
and once in November 8th, 2016 (election day). Topic 4
(Terrorism/Attacking Islamism) also presented two peaks, on
March 22nd (day of the bombings at Brussels airport and a
metro station that killed 32 people) and on November 28th

(day of the Ohio State University terrorist attack). Topic 7
(Attacking Hillary Clinton) presented clear peak on August
22 and 27, 2016, when it was released by the media that
the FBI found that the Democratic candidate had received or
sent 15,000 e-mails from her personal e-mail account while
acting as a secretary of state. The examples for topics two,
four and seven are presented in Figure 9.

The left-leaning trolls presented a different story. Figure
10 shows the network structure of the left trolls, with
nine topics. The first topic (red nodes) probably referred
to an online movement generally called life comes back,
supporting the return of Lamar Odom to the basketball
courts after years treating for substance abuse, and include
words such as first, day, life, come, and back. The second
topic (orange nodes) involved words as blacklivesmatter,
racist, make, america, racism, and is clearly related to the
Black Lives Matter movement, anti-racism activities and
against themagamovement supporting Trump for president.
The third topic (light green nodes) included words such as
really, say, think, like, people, and seems to be encouraging
people to say and think what they want. The fourth topic
(green) focused live streaming of music and video content
related to hip-hop, with words such as hiphop, music,
nowplaying, and watch. The fifth topic (green/blue-ish
nodes) focused the use of Twitter, with words such as
twitter, love, and media. The sixth topic (light blue nodes)
was related to the police actions, with words aswhite, police,
cops, and woman. The seventh topic (dark blue nodes) was
the most difficult to interpret, since it contain only three
words (years, still and today). The eight topic (purple nodes)
was related to the use of Twitter for pro-Black culture, with
words as blacktwitter, good, and god. Finally, the ninth topic
(pink nodes) focused on the elections, with words as hillary,
trump, and vote.

To understand how each topic changes over time, the topic
scores were estimated using equation 14. Figure 11 shows
the mean topic score per date for the left trolls. Some
trends are interesting to mention. For example, Topic 2
(Black Lives Matter movement, anti-racism activities, and
against themagamovement supporting Trump for president)
presented six peaks. Three of them (see Figure 12) coincided
with Donald Trump’s rallies in Tampa (FL, on 2/12), Gaffney
(SC, on 2/18), and St. Louis (MO, 3/11).

Discussion
Quantitative analysis of texts can be very useful for
understanding the strategies used in online information
warfare. In the past few years a number of studies
investigated characteristics of Twitter accounts created to
sow discord and polarization before, during, and after the
2016 presidential election in the U.S. (Ghanem et al., 2019;
Llewellyn et al., 2018; Zannettou, Caulfield, De Cristofaro,
et al., 2019; Zannettou, Caulfield, Setzer, et al., 2019). A
common denominator in these studies has been the use
of Latent Dirichlet Allocation (LDA; Blei et al., 2003) to
estimate latent topics from posts on social media platforms.
As pointed out earlier, despite the usefulness of LDA, it has
several limitations that make its use in text data from social
media platforms doubtful.

In the current paper we introduced a new (and fast) method
to estimate latent dimensions (e.g., factors, topics) in
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Figure 7. Network structure estimated using DynEGA of the right trolls document term matrix showing eight topics (clusters). The nodes
represent the words and the edges are the Pearson correlation of the words’ first order derivatives.
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multivariate time series data termed Dynamic Exploratory
Graph Analysis. The DynEGA technique can be used
to estimate the latent structure of topics published in
social media (using the time series of word frequencies),
improving our capacity to understand the strategy used by
accounts created as tools of information warfare. Unlike
LDA, DynEGA automatically identifies the number of topics
and the distribution of variables (words) per topic and
can model temporal dynamics in both stationary and non-
stationary time series (although the simulation only focused
on stationary time series). A brief Monte-Carlo simulation
study was implemented to check the capacity of DynEGA
to recover the parameters (i.e. number of topics and
topic scores) used to simulate the data using the direct
autoregressive factor score model (Engle & Watson, 1981;
Nesselroade et al., 2002).

The results showed that the DynEGA technique presented
a very high performance in recovering the number of
simulated topics, especially when the variables have
moderate and high loadings (for both the continuous and
ordered categorical data conditions). DynEGA with the
TMFG network method presented a higher accuracy in
estimating the number of simulated topics compared to
the glasso network method for both types of variables
(continuous and ordered categorical), and is the technique
we recomend for topic modeling. However, it is important
to point that DynEGA with glasso presented a slightly higher
normalized mutual information and correlation between the
simulated and the estimated topic scores.

DynEGA presented an accuracy considerable higher than
LDA in the ordered categorical data condition. Of the
LDA techniques, Cao’s (Cao et al., 2009) and Deveaud’s
algorithms (Deveaud et al., 2014) presented the best mean
accuracy among the other LDA techniques, but never
exceeded the 75% accuracy threshold (Figure 4). By
comparison, DynEGA with the TMFG network method was
at or above the 75% accuracy threshold in most of the
conditions tested (Figure 4). The results of our Monte-
Carlo simulation present strong evidence that LDA should
be used with caution when applied in data from social media
platforms, such as Twitter, if used at all. On the other side,
the new technique presented in this paper shows a high
accuracy in estimating the number of simulated topics and
a high normalized mutual information for the moderate and
high loadings condition. Moreover, the DynEGA methods
had a very high correlation between the simulated and the
estimated topic (factor) scores (Figure 6), irrespective of the
condition tested.

The application of DynEGA to a large database of IRA-
linked Twitter accounts containing right- and left-leaning
trolls (Linvill & Warren, 2018), revealed a very interesting
set of online information warfare strategies. The right-
leaning trolls were posting content supporting Donald
Trump’s presidential campaign, defending a political agenda
aligned with Trump’s make america great again movement,
posting pro-gun, pro-police, anti-terrorism and anti-Islam
content, as well as attacking the Democratic candidate
Hillary Clinton. The left-leaning trolls were posting content
supporting the Black Lives Matter movement, activism
against police brutality, black culture and music, and general
terms associated with the election (i.e., Hillary, Trump,
vote). Notably, the trolls associated to the Internet Research

Agency seemed to follow very closely the news coverage of
the 2016 electoral race, and any event that could be used to
promote their political agenda.

Using the DynEGA topic score methodology, we discovered
that the right-wing trolls were posting more topic-related
content than usual in important dates, coninciding with: 1)
the day Trump gave a controversial speech on foreign policy,
2) the day of bombings at Brussels airport and a metro
station, 3) the day of the Ohio State University terrorist
attack, and 4) the day the media released the news that the
FBI found that the Democratic candidate had received and
sent a huge number of e-mails using her personal account
while acting secretary of state.

Rather than only spreading content to advance their political
agenda, the right-leaning trolls were following a strategy to
amplify important events in the US. This strategy may serve
two different goals: disguise themselves as regular citizens
and to use daily news events to promote a pre-defined,
state-sponsored agenda (Linvill & Warren, 2018; Zannettou,
Caulfield, De Cristofaro, et al., 2019). Along the same line,
the left-leaning trolls displayed pattern of tweeting spikes
that coincided with topic-relevant events specifically related
to the Black Lives Matter movement during three of six of
Donald Trump’s presidential rallies.

It is interesting to point that the type of content pushed
by the right- and left-wing trolls differed substantially, in
line with previous research (Ghanem et al., 2019; Stewart,
Arif, & Starbird, 2018). This indicates that the minds
behind the online intelligence (or information warfare)
operation targeted contents that could potentially maximize
the activation (in terms of online interactions) of a network
of Twitter users that shared similar political views, and that
could be more prone to engage in more extreme political
activities online and offline (Fenton, 2016).

Our application of DynEGA reveals the temporal trends
of topics solicited by right- and left-wing trolls before,
during, and after the 2016 presidential election in the U.S.
This analysis revealed topics that were pertinent to several
consequential events in the election cycle, demonstrating
the coordinated effort of trolls capitalizing on current events
in the U.S. This demonstrates the potential power of our
approach for revealing temporally relevant information from
qualitative text data. Such an approach has applications
that extend far beyond the election cycle. Twitter, for
example, contains all sorts of information related to people’s
preferences and patterns of behavior that may be relevant
for other data mining endeavors such as advancing our
understanding of idiographic personality (e.g., Bleidorn &
Hopwood, 2019). Outside of Twitter, DynEGA opens
up opportunities for quantifying daily diaries and essays
in a meaningfully and concise way. One example might
be extracting the underlying affective information in daily
diaries of clinical samples to determine whether certain
people are responding to treatment or prone to remission.
DynEGA further supports analyses across levels—from
individuals to groups to population—which opens up
avenues for evaluating the connections between within-
and between-person structures, which is a timely topic of
interest in a number of areas in psychology (e.g., personality;
Baumert et al., 2017).

The dynamic modeling of texts is an increasingly important
topic in psychology because of the amount of information
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that’s stored in qualitative data. Whether its over
social media or qualitative coding of ecological behaviors,
effectively extracting quantitative information that can be
leveraged to make predictions about people’s behavior is
underdeveloped area in research. Here, we provide a tool
that can quantify this information in a meaningful way so
that researchers can complementary identify manifestions
of behavior. DynEGA opens the door for researchers
to understand their samples from an idiosyncratic to
population level, which enables a holistic perspective of the
phenomena they’re investigating. The richness of qualitative
data has always been appreciated but undervalued in many
scientific arenas including psychology. Our approach takes
one step towards providing researchers with a tool that can
reclaim the utility of text data.
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