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Abstract State-space models have been increasingly used to study macroeconomic
and financial problems. A state-space representation consists of two equations, a
measurement equation which links the observed variables to unobserved state vari-
ables and a transition equation describing the dynamics of the state variables. In this
paper, we show that a classic linear-quadratic macroeconomic framework which in-
corporates two new assumptions can be analytically solved and explicitly mapped
to a state-space representation. The two assumptions we consider are the model
uncertainty due to concerns for model misspecification (robustness) and the state
uncertainty due to limited information constraints (rational inattention). We show
that the state-space representation of the observable and unobservable can be used
to quantify the key parameters on the degree of model uncertainty. We provide ex-
amples on how this framework can be used to study a range of interesting questions
in macroeconomics and international economics.

1 Introduction

State-space models have been broadly applied to study macroeconomic and finan-
cial problems. For example, they have been applied to model unobserved trends, to
model transition from one economic structure to another, to forecasting models, to
study wage-rate behaviors, to estimate expected inflation, and to model time-varying
monetary reaction functions.
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A state-space model typically consists of two equations, a measurement equa-
tion which links the observed variables to unobserved state variables and a tran-
sition equation which describes the dynamics of the state variables. The Kalman
filter, which provides a recursive way to compute the estimator of the unobserved
component based on the observed variables, is a useful tool to analyze state-space
models.

In this paper, we show that a classic linear-quadratic-Gaussian (LQG) macroeco-
nomic framework which incorporates two new assumptions can still be analytically
solved and explicitly mapped to a state-space representation.1 The two assump-
tions we consider are model uncertainty due to concerns for model misspecification
(robustness) and state uncertainty due to limited information constraints (rational
inattention). We show that the state-space representation of the observable and un-
observable can be used to quantify the key parameters by simulating the model. We
provide examples on how this framework can be used to study a range of interesting
questions in macroeconomics and international economics.

The remainder of the paper is organized as follows. Section 2 presents the gen-
eral framework. Section 3 shows how to introduce the model uncertainty and state
uncertainty to this framework. Section 4 provide several applications how to apply
this framework to address a range of macroeconomic and international questions.
In addition, it shows how this framework has a state-space representation. And this
state-space representation can be used to quantify the key parameters in different
models. Section 5 concludes.

2 Linear-quadratic-Gaussian State-space Models

The linear-quadratic-Gaussian framework has been widely used in macroeconomics.
This specification leads to the optimal linear regulator problem, for which the Bell-
man equation can be solved easily using matrix algebra. The general setup is as
follows. The objective function has a quadratic form,

max
{xt}

E0

[
∞

∑
t=0

β
t f (xt)

]
(1)

and the maximization is subjected to a linear constraint

g(xt ,yt ,yt+1) = 0, for all t (2)

where g(·) is a linear function, xt is the vector of control variables and yt is the
vector of state variables.

1 Note that here “linear” means that the state transition equation is linear, “quadratic” means that
the objective function is quadratic, and “Gaussian” means that the exogenous innovation is Gaus-
sian.
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Example 1 (A small-open economy version of Hall’s permanent income model).
Let xt = {ct ,bt+1}, yt = {bt ,yt}, f (xt) = − 1

2 (c− ct)
2, g(xt ,yt ,yt+1) = Rbt + yt −

ct − bt+1, where c is the bliss point, ct is consumption, R is the exogenous and
constant gross world interest rate, bt is the amount of the risk-free foreign bond
held at the beginning of period t, and yt is net income in period t and is defined
as output minus investment and government spending. Then this becomes a small-
open economy version of Hall’s permanent income model in which a representative
agent chooses the consumption to maximize his utility subject to the exogenous
endowments. As the representative agent can borrow from the rest of the world
at a risk-free interest rate, the resource constraint need not bind every period. If
we remove this assumption, the model goes back to the permanent income model
studied in Hall (1978).2

Example 2 (Barro’s tax-smoothing model). Barro (1979) proposed a simple
rational expectations (RE) tax-smoothing model with only noncontingent debt in
which the government spreads the burden of raising distortionary income taxes
over time in order to minimize their welfare losses to address these questions.3

This tax-smoothing hypothesis has been widely used (to address various fiscal
policies) and tested. The model also falls well into this linear-quadratic frame-
work.4 Specifically, let xt = {τt ,Bt+1}, yt = {Yt ,Gt}, f (xt) =− 1

2 τ2
t , g(xt ,yt ,yt+1) =

RBt +Gt − τtYt −Bt+1, where E0 [·] is the government’s expectation conditional on
its available and processed information set at time 0, β is the government’s sub-
jective discount factor, τt is the tax rate, Bt is the amount of government debt, Gt
is government spending, Yt is real GDP, and R is the gross interest rate. Here we
assume that the welfare costs of taxation are proportional to the square of the tax
rate.5

In general, the number of the state variables in these models can be more than
one. But in order to facilitate the introduction of robustness we reduce the above
multivariate model with a general exogeneous process to a univariate model with
iid innovations that can be solved in closed-form. Specifically, following Luo and
Young (2010) and Luo, Nie, and Young (2011a), we rewrite the model described by
(1) and (2) as

max
{zt ,st+1}∞t=0

{
E0

[
∞

∑
t=0

β
t f (zt)

]}
(3)

subject to
st+1 = Rst − zt +ζt+1, (4)

2 We take a small-open economy version of Hall’s model as we’ll use it to address some small-open
economy issues in later sectors.
3 It is worth noting that the tax-smoothing hypothesis (TSH) model is an analogy with the perma-
nent income hypothesis (PIH) model in which consumers smooth consumption over time; tax rates
respond to permanent changes in the public budgetary burden rather than transitory ones.
4 For example, see Huang and Lin (1993), Ghosh (1995), and Cashin et al (2001).
5 Following Barro (1979), Sargent (1987), Bohn (1989), and Huang and Lin (1993), we only need
to impose the restriction, f ′ (τ)> 0 and f ′′ (τ)> 0, on the loss function, f (τ).
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where both zt and st are single variables, and ζt+1 is the Gaussian innovation to the
state transition equation with mean 0 and variance ω2

ζ
.

For instance, for Example 1, the mapping is

zt = ct ,

st = bt +
1
R

∞

∑
j=0

R− jEt [yt+ j] ,

ζt+1 =
1
R

∞

∑
j=t+1

(
1
R

) j−(t+1)

(Et+1−Et) [y j] .

And for Example 2, the mapping is

zt = τt ,

st = Et

[
bt +

1

(1+n) R̃

∞

∑
j=0

(
1

R̃

) j

gt+ j

]
,

ζt+1 =
∞

∑
j=0

(
1

R̃

) j+1

(Et+1−Et)
[
gt+1+ j

]
,

where R̃ = R/(1+n) is the effective interest rate faced by the government, n is the
GDP growth rate, bt and gt are government debt and government spending as a ratio
of GDP.6

Finally, the recursive representation of the above problem is as follows.

v(st) = max
zt
{ f (zt)+βEt [v(st+1)]} (5)

subject to:
st+1 = Rst − zt +ζt+1, (6)

given s0.

3 Incorporating Model Uncertainty and State Uncertainty

In this section we show how to incorporate model uncertainty and state uncertainty
into the framework presented in the previous section.

6 n is assumed to be constant.
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3.1 Introducing Model Uncertainty

We focus on the model uncertainty due to a concern for model misspecification
(robustness). Hansen and Sargent (1995, 2007a) first introduce robustness (a con-
cern for model misspecification) into economic models. In robust control problems,
agents are concerned about the possibility that their model is misspecified in a man-
ner that is difficult to detect statistically; consequently, they choose their decisions
as if the subjective distribution over shocks was chosen by a malevolent nature in
order to minimize their expected utility (that is, the solution to a robust decision-
maker’s problem is the equilibrium of a max-min game between the decision-maker
and nature). Specifically, a robustness version of the model represented by (5) and
(6) are

v(st) = max
zt

min
νt

{
f (zt)+β

[
ϑν

2
t +Et [v(st+1)]

]}
(7)

subject to the distorted transition equation (i.e., the worst-case model):

st+1 = Rst − zt +ζt+1 +ωζ νt , (8)

where νt distorts the mean of the innovation and ϑ > 0 controls how bad the error
can be.7

3.2 Introducing State Uncertainty

In this section we introduce state uncertainty into the model we see in the previous
section. It will be seen that state uncertainty will further amplify the effect due to
model uncertainty.8 We consider the model with imperfect state observation (state
uncertainty) due to finite information-processing capacity (rational inattention or
RI). Sims (2003) first introduced RI into economics and argued that it is a plausible
method for introducing sluggishness, randomness, and delay into economic models.
In his formulation agents have finite Shannon channel capacity, limiting their ability
to process signals about the true state of the world. As a result, an impulse to the
economy induces only gradual responses by individuals, as their limited capacity
requires many periods to discover just how much the state has moved.

Under RI, consumers in the economy face both the usual flow budget constraint
and information-processing constraint due to finite Shannon capacity first intro-
duced by Sims (2003). As argued by Sims (2003, 2006), individuals with finite

7 Formally, this setup is a game between the decision-maker and a malevolent nature that chooses
the distortion process νt . ϑ ≥ 0 is a penalty parameter that restricts attention to a limited class of
distortion processes; it can be mapped into an entropy condition that implies agents choose rules
that are robust against processes which are close to the trusted one. In a later section we will apply
an error detection approach to calibrate ϑ .
8 This will be clearer when we go to the applications in later sections.
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channel capacity cannot observe the state variables perfectly; consequently, they
react to exogenous shocks incompletely and gradually. They need to choose the
posterior distribution of the true state after observing the corresponding signal. This
choice is in addition to the usual consumption choice that agents make in their utility
maximization problem.9

Following Sims (2003), the consumer’s information-processing constraint can be
characterized by the following inequality:

H (st+1|It)−H (st+1|It+1)≤ κ, (9)

where κ is the consumer’s channel capacity, H (st+1|It) denotes the entropy of the
state prior to observing the new signal at t + 1, and H (st+1|It+1) is the entropy
after observing the new signal.10 The concept of entropy is from information theory,
and it characterizes the uncertainty in a random variable. The right-hand side of (9),
being the reduction in entropy, measures the amount of information in the new signal
received at t +1. Hence, as a whole, (9) means that the reduction in the uncertainty
about the state variable gained from observing a new signal is bounded from above
by κ . Since the ex post distribution of st is a normal distribution, N

(
ŝt ,σ

2
t
)
, (9) can

be reduced to
log |ψ2

t |− log |σ2
t+1| ≤ 2κ (10)

where ŝt is the conditional mean of the true state, and σ2
t+1 = var [st+1|It+1] and

ψ2
t = var [st+1|It ] are the posterior variance and prior variance of the state variable,

respectively. To obtain (10), we use the fact that the entropy of a Gaussian random
variable is equal to half of its logarithm variance plus a constant term.

It is straightforward to show that in the univariate case (10) has a unique steady
state σ2.11 In that steady state the consumer behaves as if observing a noisy mea-
surement which is s∗t+1 = st+1 + ξt+1, where ξt+1 is the endogenous noise and its
variance α2

t = var [ξt+1|It ] is determined by the usual updating formula of the vari-
ance of a Gaussian distribution based on a linear observation:

σ
2
t+1 = ψ

2
t −ψ

2
t
(
ψ

2
t +α

2
t
)−1

ψ
2
t . (11)

Note that in the steady state σ2 = ψ2−ψ2
(
ψ2 +α2

)−1
ψ2, which can be solved

as α2 =
[(

σ2
)−1−

(
ψ2
)−1
]−1

. Note that (11) implies that in the steady state σ2 =

ω2
ζ

exp(2κ)−R2 and α2 = var [ξt+1] =

[
ω2

ζ
+R2σ2

]
σ2

ω2
ζ
+(R2−1)σ2 .

9 More generally, agents choose the joint distribution of consumption and current permanent in-
come subject to restrictions about the transition from prior (the distribution before the current
signal) to posterior (the distribution after the current signal). The budget constraint implies a link
between the distribution of consumption and the distribution of next period permanent income.
10 We regard κ as a technological parameter. If the base for logarithms is 2, the unit used to
measure information flow is a ‘bit’, and for the natural logarithm e the unit is a ‘nat’. 1 nat is equal
to log2 e≈ 1.433 bits.
11 Convergence requires that κ > log(R)≈ R−1; see Luo and Young (2010) for a discussion.
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We now incorporate state uncertainty due to RI into the RB model proposed in
the last section. There two different ways to do it. The simpler way is to assume that
the consumer only has doubts about the process for the shock to permanent income
ζt+1, but trusts his regular Kalman filter hitting the endogenous noise (ξt+1) and
updating the estimated state. In the next subsection, we will relax the assumption
that the consumer trusts the Kalman filter equation which generates an additional
dimension along which the agents in the economy desire robustness.

The RB-RI model is formulated as

v̂(ŝt) = max
zt

min
νt

{
f (zt)+βEt

[
ϑν

2
t + v̂(ŝt+1)

]}
, (12)

subject to the (budget) constraint

st+1 = Rst − zt +ωζ νt +ζt+1 (13)

and the regular Kalman filter equation

ŝt+1 = (1−θ)
(
Rŝt − zt +ωζ νt

)
+θ (st+1 +ξt+1) (14)

Notice that f (zt) is a quadratic function, so the model is in a linear-quadratic
form. As to be shown in the next section, we can explicitly solve the optimal choice
for control variable zt and the worst case shock νt . After substituting these two
solutions into the transition equations for st and ŝt , it can easily be shown that the
model has a state-space representation.

3.2.1 Robust filtering under RI

It is clear that the Kalman filter under RI, (13), is not only affected by the funda-
mental shock (ζt+1), but also affected by the endogenous noise (ξt+1) induced by
finite capacity; these noise shocks could be another source of the demand for robust-
ness. We therefore need to consider this demand for robustness in the RB-RI model.
By adding the additional concern for robustness developed here, we are able to
strengthen the effects of robustness on decisions.12 Specifically, we assume that the
agent thinks that (14) is the approximating model. Following Hansen and Sargent
(2007), we surround (14) with a set of alternative models to represent a preference
for robustness:

ŝt+1 = Rŝt − zt +ωη νt +ηt+1. (15)

where
ηt+1 = ϑR(st − ŝt)+ϑ(ζt+1 +ξt+1) (16)

and Et [ηt+1] = 0 because the expectation is conditional on the perceived signals and
inattentive agents cannot perceive the lagged shocks perfectly.

12 Luo, Nie, and Young (2011a) use this approach to study the joint dynamics of consumption,
income, and the current account.
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Under RI the innovation ηt+1, (16), that the agent distrusts is composed of two
MA(∞) processes and includes the entire history of the exogenous income shock
and the endogenous noise, {ζt+1,ζt , · · ·,ζ0;ξt+1,ξt , · · ·,ξ0}. The difference between
(13)) and (15) is the third term; in (13) the coefficient on νt is ωζ while in (15) the
coefficient is ωη ; note that with θ < 1 and R > 1 it holds that ωζ < ωη .

The optimizing problem for this RB-RI model can be formulated as follows:

v̂(ŝt) = max
ct

min
νt

{
f (zt)+βEt

[
ϑν

2
t + v̂(ŝt+1)

]}
(17)

subject to (15). (17) is a standard dynamic programming problem and can be easily
solved using the standard procedure.

4 Applications

This section provides several applications of the framework developed in Section
3.13 In each application, the model can be mapped into the general framework pre-
sented in the previous section. Using these examples, we show how this framework
can be analytically solved and can be explicitly mapped to a state-space representa-
tion (Section 4.1). We also show that this state-space representation plays an impor-
tant role in quantifying the model uncertainty and state uncertainty (Section 4.4).
These applications show how model uncertainty (RB) and state uncertainty (RI or
imperfect information) alter the results from the standard framework presented in
Section 2.

4.1 Explaining Current Account Dynamics

Return in to Example 1 in Section 2. The model is a small-open economy version
of the permanent income model. The standard model is represented by (5) and (6),
while the model incorporating model uncertainty and state uncertainty is represented
by (12)-(14). (Notice that zt = ct and f (xt) =− 1

2 (c− ct)
2.)

As shown in Luo et al (2011a), given ϑ and θ , the consumption function under
RB and RI is

ct =
R−1
1−Σ

ŝt −
Σc

1−Σ
, (18)

the mean of the worst-case shock is

ωη νt =
(R−1)Σ

1−Σ
ŝt −

Σ

1−Σ
c, (19)

13 These illustrations are based on the research by Luo and Young (2010) and Luo, Nie and Young
(2011a, 2011b, 2011c).
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where ρs =
1−RΣ

1−Σ
∈ (0,1), Σ = Rω2

η/(2ϑ), ω2
η = var [ηt+1] =

θ

1−(1−θ)R2 ω2
ζ

.
Substituting (19) into (13) and combining with (14), the observed st and unob-

served ŝt are governed by the following two equations

st − ŝt =
(1−θ)ζt

1− (1−θ)R ·L
− θξt

1− (1−θ)R ·L
(20)

ŝt+1 = ρsŝt +ηt+1. (21)

where
ηt+1 = θR(st − ŝt)+θ (ζt+1 +ξt+1) (22)

Thus, it’s clear to see that (20) and (21) form a state-space representation the
model in which (20) is the measurement equation that links the observed variable
st to unobserved variable ŝt and (21) is the transition equation which describes the
dynamics of ŝt .

Notice that Σ measures the effects of both model uncertainty and state uncer-
tainty, which is bounded by 0 and 1.14 As argued in Sims (2003), although the
randomness in an individual’s response to aggregate shocks will be idiosyncratic
because it arises from the individual’s own information-processing constraint, there
is likely a significant common component. The intuition is that people’s needs for
coding macroeconomic information efficiently are similar, so they rely on common
sources of coded information. Therefore, the common term of the idiosyncratic er-
ror, ξ t , lies between 0 and the part of the idiosyncratic error, ξt , caused by the
common shock to permanent income, ζt . Formally, assume that ξt consists of two
independent noises: ξt = ξ t + ξ i

t , where ξ t = E i [ξt ] and ξ i
t are the common and

idiosyncratic components of the error generated by ζt , respectively. A single param-
eter,

λ =
var
[
ξ t

]
var [ξt ]

∈ [0,1],

can be used to measure the common source of coded information on the aggregate
component (or the relative importance of ξ t vs. ξt ).15

Next, we briefly list the facts we focus on (Table 1). First, the correlation between
the current account and net income is positive but small (and insignificant when
detrended with the HP filter). Second, the relative volatility of the current account to
net income is smaller in emerging countries than in developed economies, although
the difference is not statistically significant when the series are detrended with the
HP filter. Third, the persistence of the current account is smaller than that of net
income, and less persistent in emerging economies. And fourth, the volatility of
consumption growth relative to income growth is larger in emerging economies than
in developed economies.

14 See Luo, Nie, and Young (2011a) for the proof.
15 It is worth noting that the special case that λ = 1 can be viewed as a representative-agent model
in which we do not need to discuss the aggregation issue.
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Finally, let’s compare the model implications, as summarized in Table 2. First,
we have seen that in this case (λ = 1 and θ = 50%) the interaction of RB and RI
make the model fit the data quite well along dimensions (3) and (4), while also quan-
titatively improving the model’s predictions along dimensions (1) and (2). Second,
this improvement does not preclude the model from matching the first two dimen-
sions as well (i.e., the contemporaneous correlation between the current account and
net income and the volatility of the current account). For example, holding λ equal
to 1 and further reducing θ can generate a smaller contemporaneous correlation
between the current account and net income which is closer to the data. And hold-
ing θ = 50% and reducing λ to 0.1 can make the relative volatility of the current
account to net income very close to the data.

4.2 Resolving The International Consumption Puzzle

The same framework can be used to address an old puzzle in the international eco-
nomics literature. That is, the cross-country consumption correlations are very low
in the data (lower than the cross-country correlations of outputs) while standard
models imply the opposite.16

To show the flexibility of the general framework summarized by (5) and (6), we
slightly deviate from the assumption we used in the previous subsection (example 1)
to introduce state uncertainty (SU). We assume that consumers in the model econ-
omy cannot observe the true state st perfectly and only observes the noisy signal

s∗t = st +ξt , (23)

when making decisions, where ξt is the iid Gaussian noise due to imperfect obser-
vations. The specification in (23) is standard in the signal extraction literature and
captures the situation where agents happen or choose to have imperfect knowledge
of the underlying shocks.17 Since imperfect observations on the state lead to wel-
fare losses, agents use the processed information to estimate the true state.18 Specif-
ically, we assume that households use the Kalman filter to update the perceived state
ŝt = Et [st ] after observing new signals in the steady state:

ŝt+1 = (1−θ)(Rŝt − ct)+θ (st+1 +ξt+1) , (24)

16 For example, Backus, Kehoe, and Kydland (1992) solve a two-country real business cycles
model and argue that the puzzle that empirical consumption correlations are actually lower than
output correlations is the most striking discrepancy between theory and data.
17 For example, Muth (1960), Lucas (1972), Morris and Shin (2002), and Angeletos and La’O
(2009). It is worth noting that this assumption is also consistent with the rational inattention idea
that ordinary people only devote finite information-processing capacity to processing financial
information and thus cannot observe the states perfectly.
18 See Luo (2008) for details about the welfare losses due to information imperfections within the
partial equilibrium permanent income hypothesis framework.



Model Uncertainty, State Uncertainty, and State-space Models 11

where θ is the Kalman gain (i.e., the observation weight).19

In the signal extraction problem, the Kalman gain can be written as

θ =ϒΛ
−1, (25)

where ϒ is the steady state value of the conditional variance of st+1, vart+1 [st+1],
and is the variance of the noise, Λ = vart [ξt+1]. ϒ and Λ are linked by the following
equation which updates the conditional variance in the steady state:

Λ
−1 =ϒ

−1−Ψ
−1, (26)

where Ψ is the steady state value of the ex ante conditional variance of st+1, Ψt =
var t [st+1].

Multiplying ω2
ζ

on both sides of (26) and using the fact that Ψ = R2ϒ +ω2
ζ

, we
have

ω
2
ζ
Λ
−1 = ω

2
ζ
ϒ
−1−

[
R2
(

ω
2
ζ
ϒ
−1
)−1

+1
]−1

, (27)

where ω2
ζ
ϒ−1 =

(
ω2

ζ
Λ−1

)(
Λϒ−1

)
.

Define SNR as π = ω2
ζ
Λ−1. We obtain the following equality linking SNR (π)

and the Kalman gain (θ):

π = θ

(
1

1−θ
−R2

)
. (28)

Solving for θ from the above equation yields

θ =
−(1+π)+

√
(1+π)2 +4R2 (π +R2)

2R2 , (29)

where we omit the negative values of θ because both ϒ and Λ must be positive.
Note that given π , we can pin down Λ using π = ω2

ζ
Λ−1 and ϒ using (25) and (29).

Combining (4) with (24), we obtain the following equation governing the per-
ceived state ŝt :

ŝt+1 = Rŝt − ct +ηt+1, (30)

where
ηt+1 = θR(st − ŝt)+θ (ζt+1 +ξt+1) (31)

is the innovation to the mean of the distribution of perceived permanent income,

st − ŝt =
(1−θ)ζt

1− (1−θ)R ·L
− θξt

1− (1−θ)R ·L
(32)

19 Note that θ measures how much uncertainty about the state can be removed upon receiving the
new signals about the state.
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is the estimation error where L is the lag operator, and Et [ηt+1] = 0.Note that ηt+1
can be rewritten as

ηt+1 = θ

[(
ζt+1

1− (1−θ)R ·L

)
+

(
ξt+1−

θRξt

1− (1−θ)R ·L

)]
, (33)

where ω2
ξ
= var [ξt+1] =

1
θ

1
1/(1−θ)−R2 ω2

ζ
. Expression (33) clearly shows that the es-

timation error reacts to the fundamental shock positively, while it reacts to the noise
shock negatively. In addition, the importance of the estimation error is decreasing
with θ . More specifically, as θ increases, the first term in (33) becomes less im-
portant because (1−θ)ζt in the numerator decreases, and the second term also
becomes less important because the importance of ξt decreases as θ increases.20

Although the assumption we use to introduce state uncertainty is different, the
general framework is still the same. More importantly, the solution strategy is also
the same. Basically, we can explicitly derive the expressions for consumption and
the worst-case shock and then substitute them into (30). Together with (32), it forms
a state-space representation of the model.

Table 3 reports the implied consumption correlations (between the domestic
country and ROW) between the RE, RB, and RB-SU models. There are two interest-
ing observations in the table. First, given the degrees of RB and SU (θ), corr(ct ,c∗t )
decreases with the aggregation factor (λ ). Second, when λ is positive (even if it
is very small, e.g., 0.1 in the table), corr(ct ,c∗t ) is decreasing with the degree of
inattention (i.e., increasing with θ ). The intuition is that when there are common
noises, the effect of the noises could dominate the effect of gradual consumption
adjustments on cross-country consumption correlations.

As we can see from Table 3, for all the countries we consider here, introduc-
ing SU into the RB model can make the model better fit the data on consump-
tion correlations at many combinations of the parameter values. For example, for
Italy, when θ = 60% (60% of the uncertainty is removed upon receiving a new
signal about the innovation to permanent income) and λ = 1, the RB-SU model
predicts that corr(ct ,c∗t ) = 0.27, which is very close to the empirical counterpart,
0.25.21 For France, when θ = 90% and λ = 0.5, the RB-SU model predicts that
corr(ct ,c∗t ) = 0.46, which exactly matches the empirical counterpart. Note that a
small value of θ can be rationalized by examining the welfare effects of finite chan-
nel capacity.22

20 Note that when θ = 1, var [ξt+1] = 0.
21 For example, Adam (2005) found θ = 40% based on the response of aggregate output to mon-
etary policy shocks. Luo (2008) found that if θ = 50%, the otherwise standard permanent income
model can generate realistic relative volatility of consumption to labor income.
22 See Luo and Young (2010) for details about the welfare losses due to imperfect observations in
the RB model; they are uniformly small.



Model Uncertainty, State Uncertainty, and State-space Models 13

4.3 Other Possible Applications

This linear-quadratic framework which incorporates model uncertainty (due to RB)
and state uncertainty (either due to RI or imperfect information) can be applied to
study other topics as well. We will briefly discuss several more in this subsection.
We will not write down the model equations again as we have shown in Section 2
and 3 that these models can be written in a similar framework.

First, as shown in the previous section, model uncertainty due to RB is partic-
ularly promising and interesting for studying emerging and developed small-open
economies because it has the potential to generate the different joint behaviors of
consumption and current accounts observed across the two groups of economies.
This novel theoretical contribution can also be used to address the observed U.S.
Great Moderation in which the volatility of output changed after 1984. Specifically,
this feature can be used to address different macroeconomic dynamics (e.g., con-
sumption volatility) given that output volatility changed before and after the Great
Moderation.

Second, inventories in the standard production smoothing model can be viewed
as a stabilizing factor. Cost-mininizing firms facing sales fluctuations smooth pro-
duction by adjusting their inventories. As a result, production is less volatile than
sales. However, in the data, real GDP is more volatile than final sales measured
by real GDP minus inventory investment. The existing studies find supportive evi-
dence that real GNP is more volatile than final sales in industry-level data. The key
question is that if cost-minimizing firms use inventories to smooth their production,
why is production more volatile than sales? In the future research, we can examine
whether introducing RB can help improve the prediction of an otherwise standard
production smoothing model with inventories on the joint dynamics of inventories,
production, and sales.

Third, as shown in Luo, Nie, and Young (2011c), the standard tax-smoothing
model proposed by Barro (1979) cannot explain the observed volatility of the tax
rates and the joint behavior of the government spending and deficits. As shown in
Example 2 of Section (2), the tax-smoothing model used in the literature falls well
into the linear-quadratic framework we described. It’s easy to show that the same
mechanisms presented in Section 4.1 and 4.2 will work in the tax-smoothing model
which incorporates model uncertainty and state uncertainty. Specifically, Luo, Nie,
and Young (2011c) shows that it can help the standard model to better explain the
relative volatility of the changes in tax rates to government spending and the co-
movement between government deficits and spending in the data.

Fourth, this framework can also be extended to study optimal monetary policy
under model uncertainty and imperfect state observation. A central bank sets nomi-
nal interest rate to minimize prices fluctuations and the output gap (i.e., the deviation
of the output from the potential maximum output level). Following the literature, the
standard objective function of a central bank can be described by a quadratic func-
tion which is a weighted average of the deviation of the inflation from its target and
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the output gap.23 Therefore, the framework presented in this paper can be used to
study optimal monetary policy when a central bank has concerns that the model is
misspecified and it faces noisy data when making decisions.24

4.4 Quantifying Model Uncertainty

One remaining question from previous sections is how to quantify the incorporated
degree of model uncertainty.25 In this section, we will show how to use the state-
space representation of st and ŝt to simulate the model and calibrate the key param-
eters. For convenience and consistence, we continue to use the small-open economy
model described in Example 1 as the illustration example.

Let model A denote the approximating model and model B be the distorted
model. Define pA as

pA = Prob
(

log
(

LA

LB

)
< 0
∣∣∣∣A) , (34)

where log
(

LA
LB

)
is the log-likelihood ratio. When model A generates the data, pA

measures the probability that a likelihood ratio test selects model B. In this case,
we call pA the probability of the model detection error. Similarly, when model B
generates the data, we can define pB as

pB = Prob
(

log
(

LA

LB

)
> 0
∣∣∣∣B) . (35)

Following Hansen, Sargent, and Wang (2002) and Hansen and Sargent (2007b),
the detection error probability, p, is defined as the average of pA and pB:

p(ϑ) =
1
2
(pA + pB) , (36)

where ϑ is the robustness parameter used to generate model B. Given this definition,
we can see that 1− p measures the probability that econometricians can distinguish
the approximating model from the distorted model.

Now we show how to compute the model detection error probability due to model
uncertainty and state uncertainty.

23 For example, see Svensson (2000), Gali and Monacelli (2005), Walsh (2005), Leitemo and
Soderstrom (2008a,b).
24 For the examples of the model equations describing the inflation and output dynamics in a closed
economy, see Leitemo and Soderstrom (2008a).
25 This includes the two versions of the model presented in previous sections which incorporates
the model uncertainty due to RB: one uses the regular Kalman filter; the other one assumes that
the agent does not trust the Kalman filter either (robust filtering).



Model Uncertainty, State Uncertainty, and State-space Models 15

In the model with both the RB preference and RI, the approximating model can
be written as

st+1 = Rst − ct +ζt+1, (37)
ŝt+1 = (1−θ)(Rŝt − ct)+θ (st+1 +λξt+1) , (38)

and the distorted model is

st+1 = Rst − ct +ζt+1 +ωζ νt , (39)

ŝt+1 = (1−θ)
(
Rŝt − ct +ωζ νt

)
+θ (st+1 +λξt+1) , (40)

where we remind the reader that λ =
var[ξ t ]
var[ξt ]

∈ [0,1] is the parameter measuring the

relative importance of ξ t vs. ξt .
After substituting the consumption function and the worst-case shock expression

into (38) and (40) we can put the equations in the following matrix form:[
st+1
ŝt+1

]
=

[
R − R−1

1−Σ

θR 1−R+R(1−θ)(1−Σ)
1−Σ

][
st
ŝt

]
+

[
ζt+1

θ (ζt+1 +λξt+1)

]
+

[
Σ

1−Σ
c

Σ

1−Σ
c

]
(41)

and [
st+1
ŝt+1

]
=

[
R −(R−1)

θR 1−θR

][
st
ŝt

]
+

[
ζt+1

θ (ζt+1 +λξt+1)

]
. (42)

Given the RB parameter, ϑ , and RI parameter, θ , we can compute pA and pB and
thus the detection error probability as follows.

1. Simulate {st}T
t=0 using (41) and (42) a large number of times. The number of

periods used in the simulation, T , is set to be the actual length of the data for
each individual country.

2. Count the number of times that log
(

LA
LB

)
< 0
∣∣∣A and log

(
LA
LB

)
> 0
∣∣∣B are each

satisfied.
3. Determine pA and pB as the fractions of realizations for which log

(
LA
LB

)
< 0
∣∣∣A

and log
(

LA
LB

)
> 0
∣∣∣B, respectively.

4.5 Discussions: Risk-sensitivity and Robustness under Rational
Inattention

Risk-sensitivity (RS) was first introduced into the LQG framework by Jacobson
(1973) and extended by Whittle (1981, 1990). Exploiting the recursive utility frame-
work of Epstein and Zin (1989), Hansen and Sargent (1995) introduce discount-
ing into the RS specification and show that the resulting decision rules are time-
invariant. In the RS model agents effectively compute expectations through a dis-
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torted lens, increasing their effective risk aversion by overweighting negative out-
comes. The resulting decision rules depend explicitly on the variance of the shocks,
producing precautionary savings, but the value functions are still quadratic func-
tions of the states.26 In HST (1999) and Hansen and Sargent (2007), they interpret
the RS preference in terms of a concern about model uncertainty (robustness or RB)
and argue that RS introduces precautionary savings because RS consumers want to
protect themselves against model specification errors.

Following Luo and Young (2010), we formulate an RI version of risk-sensitive
control based on recursive preferences with an exponential certainty equivalence
function as follows:

v̂(ŝt) = max
ct

{
−1

2
(ct − c)2 +βRt [v̂(ŝt+1)]

}
(43)

subject to the budget constraint (6) and the Kalman filter equation 14. The distorted
expectation operator is now given by

Rt [v̂(ŝt+1)] =−
1
α

logEt [exp(−α v̂(ŝt+1))] ,

where s0| I 0 ∼ N
(
ŝ0,σ

2), ŝt = Et [st ] is the perceived state variable, θ is the opti-
mal weight on the new observation of the state, and ξt+1 is the endogenous noise.
The optimal choice of the weight θ is given by θ (κ) = 1−1/exp(2κ) ∈ [0,1]. The
following proposition summarizes the solution to the RI-RS model when βR = 1:

Proposition 1. Given finite channel capacity κ and the degree of risk-sensitivity α ,
the consumption function of a risk-sensitive consumer under RI

ct =
R−1
1−Π

ŝt −
Πc

1−Π
, (44)

where

Π = Rαω
2
η ∈ (0,1) , (45)

ω
2
η = var [ηt+1] =

θ

1− (1−θ)R2 ω
2
ζ
, (46)

ηt+1 is defined in (16), and θ (κ) = 1−1/exp(2κ).

Comparing (18) and (44), it is straightforward to show that it is impossible to dis-
tinguish between RB and RS under RI using only consumption-savings decisions.

Proposition 2. Let the following expression hold:

α =
1

2ϑ
. (47)

26 Formally, one can view risk-sensitive agents as ones who have non-state-separable preferences,
as in Epstein and Zin (1989), but with a value for the intertemporal elasticity of substitution equal
to one.
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Then consumption and savings are identical in the RS-RI and RB-RI models.

Note that (47) is exactly the same as the observational equivalence condition
obtained in the full-information RE model (see Backus, Routledge, and Zin 2004).
That is, under the assumption that the agent distrusts the Kalman filter equation, the
OE result obtained under full-information RE still holds under RI.27

HST (1999) show that as far as the quantity observations on consumption and
savings are concerned, the robustness version (ϑ > 0 or α > 0, β̃ ) of the PIH model
is observationally equivalent to the standard version (ϑ = ∞ or α = 0,β = 1/R)
of the PIH model for a unique pair of discount factors.28 The intuition is that in-
troducing a preference for risk-sensitivity (RS) or a concern about robustness (RB)
increases savings in the same way as increasing the discount factor, so that the dis-
count factor can be changed to offset the effect of a change in RS or RB on consump-
tion and investment.29 Alternatively, holding all parameters constant except the pair
(α,β ), the RI version of the PIH model with RB consumers (ϑ > 0 and βR = 1)
is observationally equivalent to the standard RI version of the model (ϑ = ∞ and
β̃ > 1/R).

Proposition 3. Let

β̃ =
1
R

1−Rω2
η/(2ϑ)

1−R2ω2
η/(2ϑ)

=
1
R

1−Rαω2
η

1−R2αω2
η

>
1
R
.

Then consumption and savings are identical in the RI, RB-RI, and RS-RI mod-
els.

5 Conclusions

In this paper we show that a state-space representation can be explicitly derived from
a classic macroeconomic framework which has incorporated model uncertainty due
to concerns for model misspecification (robustness or RB) and state uncertainty due
to limited information constraints (rational inattention or RI). We show the state-
space representation can also be used to quantify the key model parameters. Several
applications are also provided to show how this general framework can be used to
address a range of interesting economic questions.

27 Note that the OE becomes
αθ

1− (1−θ)R2 =
1

2ϑ
,

if we assume that the agents distrust the income process hitting the budget constraint, but trust the
RI-induced noise hitting the Kalman filtering equation.
28 HST (1999) derive the observational equivalence result by fixing all parameters, including R,
except for the pair (α,β ).
29 As shown in HST (1999), the two models have different implications for asset prices because
continuation valuations would alter as one alters (α,β ) within the observationally-equivalent set
of parameters.
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Appendix

6 Solving the Current Account Model Explicitly under Model
Uncertainty

To solve the Bellman equation (7), we conjecture that

v(st) =−As2
t −Bst −C,

where A, B, and C are undetermined coefficients. Substituting this guessed
value function into the Bellman equation gives

−As2
t −Bst −C = max

ct
min

νt

{
−1

2
(c− ct)

2 +βEt
[
ϑν

2
t −As2

t+1−Bst+1−C
]}

.

(48)
We can do the min and max operations in any order, so we choose to do the mini-
mization first. The first-order condition for νt is

2ϑνt −2AEt
[
ωζ νt +Rst − ct

]
ωζ −Bωζ = 0,

which means that

νt =
B+2A(Rst − ct)

2
(

ϑ −Aω2
ζ

) ωζ . (49)

Substituting (49) back into (48) gives

−As2
t −Bst−C =max

ct

−1
2
(c− ct)

2 +βEt

ϑ

B+2A(Rst − ct)

2
(

ϑ −Aω2
ζ

) ωζ

2

−As2
t+1−Bst+1−C


 ,

where
st+1 = Rst − ct +ζt+1 +ωζ νt .

The first-order condition for ct is

(c− ct)−2βϑ
Aωζ

ϑ −Aω2
ζ

νt +2βA

(
1+

Aω2
ζ

ϑ −Aω2
ζ

)(
Rst − ct +ωζ νt

)
+βB

(
1+

Aω2
ζ

ϑ −Aω2
ζ

)
= 0.
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Using the solution for νt the solution for consumption is

ct =
2AβR

1−Aω2
ζ
/ϑ +2βA

st +
c
(

1−Aω2
ζ
/ϑ

)
+βB

1−Aω2
ζ
/ϑ +2βA

. (50)

Substituting the above expressions into the Bellman equation gives

−As2
t −Bst −C

=−1
2

(
2AβR

1−Aω2
ζ
/ϑ +2βA

st +
−2βAc+βB

1−Aω2
ζ
/ϑ +2βA

)2

+
βϑω2

ζ(
2
(

ϑ −Aω2
ζ

))2

2AR
(

1−Aω2
ζ
/ϑ

)
1−Aω2

ζ
/ϑ +2βA

st +B−
2c
(

1−Aω2
ζ
/ϑ

)
A+2βAB

1−Aω2
ζ
/ϑ +2βA

2

−βA


 R

1−Aω2
ζ
/ϑ +2βA

st −
−Bω2

ζ
/ϑ +2c+2Bβ

2
(

1−Aω2
ζ
/ϑ +2βA

)
2

+ω
2
ζ


−βB

 R
1−Aω2

ζ
/ϑ +2βA

st −
−Bω2

ζ
/ϑ +2c+2Bβ

2
(

1−Aω2
ζ
/ϑ +2βA

)
−βC.

Given βR = 1, collecting and matching terms, the constant coefficients turn out to
be

A =
R(R−1)

2−Rω2
ζ
/ϑ

, (51)

B =− Rc
1−Rω2

ζ
/(2ϑ)

, (52)

C =
R

2
(

1−Rω2
ζ
/2ϑ

)ω
2
ζ
+

R

2
(

1−Rω2
ζ
/2ϑ

)
(R−1)

c2. (53)

Substituting (51) and (52) into (50) yields the consumption function. Substituting
(53) into the current account identity and using the expression for st yields the ex-
pression for the current account.
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Table 1 Emerging vs. Developed Countries (Averages)

A: Emerging vs. Developed Countries (HP Filter)
σ(y)/µ(y) 4.09(0.23) 1.98(0.09)
σ(∆y)/µ(y) 4.28(0.23) 1.89(0.07)
ρ(yt ,yt−1) 0.53(0.03) 0.66(0.02)
ρ(∆yt ,∆yt−1) 0.28(0.05) 0.46(0.03)
σ(c)/σ(y) 0.74(0.02) 0.59(0.02)
σ(∆c)/σ(∆y) 0.71(0.02) 0.59(0.02)
σ(ca)/σ(y) 0.79(0.03) 0.85(0.04)
ρ(c,y) 0.85(0.02) 0.78(0.02)
ρ(cat ,cat−1) 0.30(0.05) 0.41(0.03)
ρ(ca,y) −0.59(0.05) −0.35(0.04)
ρ

(
ca
y ,y
)

−0.54(0.04) −0.36(0.04)

B: Emerging vs. Developed Countries (Linear Filter)
σ(y)/µ(y) 7.97(0.40) 4.79(0.22)
σ(∆y)/µ(y) 4.28(0.23) 1.89(0.07)
ρ(yt ,yt−1) 0.79(0.02) 0.89(0.01)
ρ(∆yt ,∆yt−1) 0.28(0.05) 0.46(0.03)
σ(c)/σ(y) 0.72(0.02) 0.58(0.02)
σ(∆c)/σ(∆y) 0.71(0.02) 0.59(0.02)
σ(ca)/σ(y) 0.54(0.03) 0.65(0.04)
ρ(c,y) 0.88(0.02) 0.85(0.02)
ρ(cat ,cat−1) 0.53(0.04) 0.71(0.02)
ρ(ca,y) −0.17(0.06) −0.08(0.05)
ρ

(
ca
y ,y
)

−0.32(0.05) −0.20(0.04)
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Table 2 Implications of Different Models (Emerging Countries)

Data RE RB RB+RI RB+RI RB+RI RB+RI
(θ = 0.9) (θ = 0.8) (θ = 0.7) (θ = 0.5)

(λ = 1)
ρ(ca,y) 0.13 1.00 0.62 0.57 0.56 0.56 0.58
ρ(cat ,cat−1) 0.53 0.80 0.74 0.57 0.50 0.45 0.36
σ(ca)/σ(y) 0.80 0.71 0.49 0.52 0.55 0.59 0.79
σ(∆c)/σ(∆y) 1.35 0.28 0.90 0.89 0.89 0.91 1.36

(λ = 0.5)
ρ(ca,y) 0.13 1.00 0.62 0.59 0.58 0.59 0.64
ρ(cat ,cat−1) 0.53 0.80 0.74 0.63 0.59 0.55 0.46
σ(ca)/σ(y) 0.80 0.71 0.49 0.50 0.52 0.53 0.64
σ(∆c)/σ(∆y) 1.35 0.28 0.90 0.85 0.81 0.79 0.99

(λ = 0.1)
ρ(ca,y) 0.13 1.00 0.62 0.61 0.60 0.61 0.67
ρ(cat ,cat−1) 0.53 0.80 0.74 0.67 0.64 0.62 0.56
σ(ca)/σ(y) 0.80 0.71 0.49 0.49 0.50 0.51 0.57
σ(∆c)/σ(∆y) 1.35 0.28 0.90 0.84 0.79 0.75 0.82

Table 3 Theoretical corr(c,c∗) from Different Models

Data RE RB RB+SU RB+SU RB+SU
(θ = 0.9) (θ = 0.6) (θ = 0.3)

Canada
(λ = 1) 0.38 0.41 0.33 0.27 0.17 0.12
(λ = 0.5) 0.38 0.41 0.33 0.31 0.26 0.23
(λ = 0.1) 0.38 0.41 0.33 0.32 0.32 0.32
Italy
(λ = 1) 0.25 0.54 0.50 0.42 0.27 0.19
(λ = 0.5) 0.25 0.54 0.50 0.48 0.41 0.36
(λ = 0.1) 0.25 0.54 0.50 0.50 0.50 0.49
UK
(λ = 1) 0.21 0.69 0.45 0.38 0.25 0.17
(λ = 0.5) 0.21 0.69 0.45 0.44 0.38 0.32
(λ = 0.1) 0.21 0.69 0.45 0.46 0.46 0.45
France
(λ = 1) 0.46 0.51 0.49 0.40 0.26 0.18
(λ = 0.5) 0.46 0.51 0.49 0.46 0.40 0.34
(λ = 0.1) 0.46 0.51 0.49 0.49 0.48 0.48
Germany
(λ = 1) 0.04 0.45 0.40 0.33 0.22 0.15
(λ = 0.5) 0.04 0.45 0.40 0.38 0.33 0.29
(λ = 0.1) 0.04 0.45 0.40 0.40 0.40 0.40


