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In this paper we examine how model uncertainty due to the preference for robustness
(RB) affects optimal taxation and the evolution of debt in the Barro tax-smoothing model
(1979). We first study how the government spending shocks are absorbed in the short run
by varying taxes or through debt under RB. Furthermore, we show that introducing RB
improves the model's predictions by generating (i) the observed relative volatility of the
changes in tax rates to government spending, (ii) the observed comovement between
government deficits and spending, and (iii) more consistent behavior of government
budget deficits in the U.S. economy. Finally, we show that RB can also improve the model's
predictions in the presence of multiple shocks.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Fig. 1 presents the post-war behavior of US government spending, average tax rates, and government debt.1 In this paper
we ask how to rationalize the joint behavior of these fiscal variables; specifically, we ask whether the stochastic properties
of the joint behavior of these fiscal variables are consistent with the idea that governments seek to use debt to smooth the
taxes needed to finance an exogenous stream of government spending.

Barro (1979) proposed a simple full-information rational expectations (FI-RE) tax-smoothing model with only
uncontingent debt in which the government spreads the burden of raising distortionary income taxes over time in order
to minimize their welfare losses to address these questions. Specifically, the model predicts that the government should
issue debt in order to spread the increases in tax rates over longer periods and minimize the welfare losses when facing a
positive government spending shock.2 Furthermore, the model also predicts that changes in the tax rate are unpredictable,
un.nie@kc.frb.org (J. Nie), ey2d@virginia.edu (E.R. Young).
roduct Accounts (NIPA) and The Economic Report of President, 2011. It is worth pointing out that we are
revenues divided by GDP) rather than marginal tax rates. For a detailed description of the data and

literature to address various fiscal policy issues; see Sahasakul (1986), Bohn (1990), Trehan and Walsh
t al. (2005), and Aiyagari et al. (2002). For the tax-smoothing setting with state-contingent debt, see
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Fig. 1. US fiscal policy.
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i.e., the tax rate should follow a random walk.3 It is worth noting that the tax-smoothing hypothesis (TSH) model is
analogous to the permanent income hypothesis (PIH) model in which consumers smooth consumption over time; tax rates
respond to permanent changes in the public budgetary burden rather than transitory changes.4

Huang and Lin (1993) and Ghosh (1995) went beyond the random-walk tests and use the analysis of saving in Campbell
(1987) to test the restrictions on the joint behavior of budget deficits and government spending implied by the tax-
smoothing hypothesis.5 They found mixed empirical evidence for the TSH. For example, Huang and Lin (1993) applied a log-
linearized TSH model to the U.S. data from 1929 to 1988 and found that the TSH is rejected for the full sample period, but it
is not rejected for the sub-sample period from 1947 to 1988. Ghosh (1995) used the US data from 1961 to 1988 and Canadian
data from 1962 to 1988 and found that the TSH model cannot be rejected for either country. Cashin et al. (2003) found that
the TSH is rejected by Pakistan data for the period 1954–1995.6 Adler (2006) tested the TSH using the Swedish central
government data and found that it is not possible to statistically reject the TSH for the full period 1952–1999, but the TSH is
rejected using the sub-sample period from 1970 to 1996. Olekalns (1997) investigated Australian data, and again rejected
the TSH.

However, as shown in Table 3 in the next section, the standard FI-RE TSH model cannot generate two key stochastic
properties of the joint behavior of government deficits, tax rates, and spending: (i) the relative volatility of changes in tax
rates and spending and (ii) the contemporaneous correlation between government deficits and spending, in the U.S.
economy. Specifically, the model generates too low relative volatility and too high contemporaneous correlation. As a result,
we also find that the TSH is rejected in this standard full-information RE framework using the US data.

In this paper, we show that model uncertainty due to the preference for robustness (RB) significantly improves the
model's ability to fit the data discussed above. Hansen et al. (1999) and Hansen and Sargent (2007) introduced the
preference for robustness (a concern for model misspecification) into economic models. In robust control problems, agents
are concerned about the possibility that their true model is misspecified in a manner that is difficult to detect statistically;
consequently, they choose their decisions as if the subjective distribution over shocks was chosen by an evil agent in order
3 Although Barro (1979) and Barro (1981) report that in the US data the prediction that the tax rate is a random walk is difficult to reject statistically,
Sahasakul (1986) is able to reject it.

4 For a statement of this equivalence, see Sargent (2001).
5 It is well known that it is often difficult to reject the null hypothesis of a random walk for many macroeconomic time series given the length of the

data. Moreover, as argued in Ghosh (1995), the TSH might be only one of many potential explanations for unpredictable tax rate changes.
6 More precisely, the tax-smoothing hypothesis is rejected by a Wald test of the parameter restriction at the 5 percent level (as reported in their

Table 3); the statements in the paper that suggest that the TSH is not rejected are not consistent with this test; they also explicitly reject the TSH for Sri
Lankan data. Relatedly, Cashin et al. (1998) do not reject tax-smoothing by the central Indian government but do for regional governments.
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to minimize their utility (that is, the solution to a robust decision-maker's problem is the equilibrium of a max–min game
between the decision-maker and the evil agent).7 In other words, the objective of robust control is to design a policy that
can still work well even if the approximating model (i.e., the best estimate of the true model) does not coincide with the
true model. It is worth noting that the key difference between the RB agent and the Bayesian agent is that the Bayesian
agent can form a weight on each model by combining his priors (over the probability of each model being correctly
specified) with the data, whereas the RB agent does not have the ability to express his beliefs about the models in terms of
well-defined probability distributions.8 In the TSH setting, specifically, the preference for RB interacts with the fundamental
uncertainty (the government spending and output shocks in the TSH model) and gives rise to a type of induced uncertainty:
model uncertainty.9 This type of induced uncertainty can affect the model's dynamics even within the linear-quadratic (LQ)
framework.10 We adopt the LQ-TSH setting in this paper because the main purpose of this paper is to inspect the
mechanisms through which the induced uncertainty affects the joint dynamics of government deficits, tax rates, and
spending, and it is much more difficult to study this informational friction in non-LQ frameworks.11 As argued in Hansen and
Sargent (2007), the government's commitment technology is irrelevant under RB if the state transition equation is
backward-looking. Therefore, we do not specify the commitment technology of the government in the TSH model of this
paper.12 After solving the model explicitly, we then examine how model uncertainty due to RB can improve the model's
predictions on the important dimensions of the joint dynamics of government deficits, tax rates, and spending we
discussed above.

We show that the RB model has the potential to generate the observed joint behavior of government deficits, tax rates,
and spending in the U.S., depending on the parameter governing the concern for model misspecification. Specifically, we
find that incorporating RB enables the model to better match the data along the two key dimensions: generating higher
relative volatility of changes in tax rates to government spending and lower contemporaneous correlation between
government deficits and government spending. The main mechanisms behind these improvements rely on the effects of RB
on the marginal propensity to taxation based on permanent government spending and the persistence of the tax and
government deficit dynamics, with the key driving force being the interactions between RB and fundamental shocks.
Intuitively, as the government bears in mind the possible differences between the model it uses (called the approximating
model) and the true model, it is induced to set lower tax rates (in order to minimize distortions) and make the government
more sensitive to expected changes in spending. After calibrating the RB parameter using the detection error probability, as
advocated by Hansen and Sargent (2007) and used in Luo et al. (2012, 2014), we find that RB can quantitatively help
generate the empirical stochastic properties of the joint dynamics of government deficits, tax rates, and spending.

In addition to improving the basic model's ability to match the unconditional moments of fiscal policy, we are also able to
show that the RB model improves the match of conditional moments; specifically, the RB model can pass the bivariate VAR
test used in Huang and Lin (1993), Ghosh (1995), Adler (2006), and others, provided that the desire for robustness is strong
enough. We discipline this desire using detection error probabilities; the result is that the model passes the VAR test using
U.S. data from 1960 to 2007.

Our benchmark model assumes that there is only a single shock to government spending. In several extensions of the
model, we allow for multiple shocks in the government spending process and a shock to the growth of real GDP; when
introducing multiple shocks to the government spending process, we consider two cases: (i) the complete-information case
in which the government can distinguish multiple components in the spending process and (ii) the incomplete-information
case in which the government cannot distinguish the multiple components. In these extensions, we show that the full-
information RE model still cannot explain the two key unconditional moments and the effects of RB on these moments are
similar to those from the benchmark. Applying the VAR tests to these extensions is complicated by the large standard errors
on the decomposition between permanent and transitory government innovations; since the confidence intervals include
the benchmark case of no transitory shocks, we are confident in asserting that the VAR test would also be satisfied.

Our paper is related to the recent literature on optimal fiscal policy under model uncertainty, e.g., Karantounias (2013)
and Svec (2012). Karantounias (2013) examined optimal fiscal policy in the setting of Lucas and Stokey (1983) in which the
representative consumer distrusts the approximating model, and Svec (2012) studied how different types of government
conduct optimal fiscal policy when the consumer faces model uncertainty. Like Karantounias (2013), we assume that the
7 Note that the assumption that the government has concerns about having the wrong model for its spending or taxation policies is not unusual.
For instance, U.S. government spending can be affected by economic conditions and political pressure that is difficult to model and predict.

8 See Adam (2004) for a discussion on comparing robust and Bayesian decision-making.
9 As shown in Luo and Young (2010, 2014), consumption models can still produce precautionary savings but remain within the class of LQ-Gaussian

models, which leads to analytical simplicity.
10 Note that in the traditional linear-quadratic, linearized, or log-linearized models, uncertainty measured by the variance of the fundamental shock

does not affect the model dynamics.
11 As argued in Hansen and Sargent (2007), if the objective function is not quadratic or the state transition equation is not linear, worst possible

distributions due to RB are generally non-Gaussian, which significantly complicates the computational task. See Hansen and Sargent (2007) for detailed
discussions on the difficulties in solving the non-LQ RB models, and Bidder and Smith (2012) and Young (2012) for nonlinear approaches that characterize
the worst-case distributions.

12 However, in the literature on robust policy, it may be necessary to model commitment technology if the state transition equation involves
expectations. See Kasa (2002) for a discussion on robust policies under commitment and Giordani and Soderlind (2004) for a discussion on discretion and
simple rules under RB.
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model uncertainty is incorporated in the government decision process. Unlike both mentioned papers, the focus of this
paper is not to study the optimal fiscal policy; our focus in this paper is to explore how model uncertainty due to RB helps
reconcile both unconditional and conditional joint behavior of government deficits, tax rates, and spending observed in the
U.S. economy.13

The remainder of the paper is organized as follows. Section 2 reviews a standard FI-RE taxation smoothing model
proposed by Barro (1979). Section 3 introduces robustness into the standard TSH model and examines the implications of
model uncertainty due to RB for the joint dynamics of optimal taxation and government debt. Section 4 discusses how to
use detection error probabilities to calibrate the robustness parameter and presents the calibration results. Section 5 studies
the effects of RB in the extensions with multiple shocks. Section 6 concludes.

2. The model

In this section, we propose a full-information rational expectations (FI-RE) version of Barro (1979)'s tax-smoothing
model and explore the model's implications for optimal taxation and government debt. We assume that the only asset is a
riskfree bond. In choosing the optimal tax rate, the government has perfect information about the model's specification.

2.1. Taxation smoothing hypothesis problem

In this subsection we present optimal paths of the tax rate and the budget surplus when the government chooses to
minimize the present value of excess burden from taxation given the stochastic processes of government spending and real
GDP. In the absence of a first-best system of lump-sum taxes, the government seeks to minimize the welfare losses arising
from its choice of tax rates. These losses are assumed to be an increasing, convex, and time invariant function of the average
tax rate. Specifically, following Barro (1979), Roubini (1988), Bohn (1990), Ghosh (1995), and Lloyd-Ellis et al. (2005), we
assume that the excess burden of taxation is summarized by a quadratic loss function c τtð Þ ¼ 1

2ðτtþφÞ2, which measures the
value of real income “wasted” when taxes are τt.14 The optimization problem of the government can thus be written as

max
fτt ;btþ 1g

E0 �1
2

∑
1

t ¼ 0
βtðτtþφÞ2

� �
; ð1Þ

subject to its flow budget constraint

Btþ1 ¼ RBtþGt�τtYt ; ð2Þ
where E0½�� is the government's expectation conditional on its information set at time 0, β is the government's subjective
discount factor, τt is the tax rate, Bt is the amount of government debt, Gt is the government spending, Yt is the real GDP, and
RZ1 is the gross interest rate.

Suppose that real GDP is growing at a constant rate, n. Then (2) can be rewritten as

ð1þnÞbtþ1 ¼ Rbtþgt�τt ; ð3Þ
where lowercase letters denote corresponding variables expressed as a fraction of real GDP, Yt. Solving the government's
optimization (1) subject to (3) and a no-Ponzi condition yields the following optimal path for the tax rate:

τt ¼ R�ð1þnÞ2
βR

 !
Et btþ

1
R

∑
1

j ¼ 0

1þn
R

� �j

gtþ j

" #
; ð4Þ

which is just the permanent government expenditures theory proposed by Barro (1979).15 Defining ~R ¼ R=ð1þnÞ as the
effective interest rate faced by the government, (4) can be written as

τt ¼ 1þnð Þ ~R� 1
β ~R

 !
ht ;

where

ht ¼ Et btþ
1

ð1þnÞ ~R
∑
1

j ¼ 0

1
~R

� �j

gtþ j

" #
ð5Þ

is the permanent government spending, equal to the sum of government debt and the present discounted value of expected
government expenditure. This expression is analogous to permanent income in a standard consumption-savings problem.
13 There is a vast literature on optimal monetary policy under robustness. See Giannoni (2002), Onatski and Williams (2003), Giordani and Soderlind
(2004), Cogley et al. (2007), Svensson and Williams (2007), Dennis (2010), Ellison and Sargent (2012), and Woodford (2010).

14 Following Barro (1979), Sargent (2001), Bohn (1998), and Huang and Lin (1993), the value of the parameter, φ, in the loss function is set such that the
loss function has the standard properties of c0ðτÞ40 and c″ðτÞ40. Note that the value of φ does not affect the stochastic properties of the joint behavior of
the three key fiscal variables.

15 See Appendix A.1 for the derivation.
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Define γ � ð1�1=ðβ ~R2ÞÞ=ð1�1= ~RÞ. It is clear that γ≶1 iff β ~R≶1. In the literature, the case in which β ~Ro1 (i.e., γo1) is
called the tax tilting.16 In the case in which n¼0 and βR¼ 1, γ ¼ 1. Tax smoothing and tax tilting are two main motivations
for a government to run budget deficits. Note that even if government spending (as a fraction of real GDP) is constant over
business cycles such that there is no need for tax-smoothing, budget deficits may still arise due to the tax-tilting motivation
to shift (tilt) taxes across time. Specifically, if β ~Ro1, i.e., the subjective discount rate of the government is high, the
government will choose to have low tax rates early and increase tax rates over time to finance its accumulated debt. By
contrast, if β ~R41, the government will choose to have relatively high tax rates early and then use accumulated assets
(i.e., negative debts) to reduce tax rates over time. Finally, if β ~R ¼ 1, then there is no tax-tilting motive for budget deficits but
there would be a strong tax-smoothing motive. Following the literature, we will focus only on the tax-smoothing motive
(i.e., the β ~R ¼ 1 case) when we examine the stochastic properties of the joint behavior of government taxes, deficits, and
spending. In this case, the tax function can be written as

τt ¼ ð1þnÞð ~R�1Þht : ð6Þ

Note that if n¼0, τt ¼ ðR�1Þht and ht ¼ Et ½btþ∑1
j ¼ 0R

� j�1gtþ j�.
As shown in Luo (2008), Luo and Young (2010, 2014) and Luo et al. (2012), in order to facilitate the introduction of

robustness we reduce the above multivariate model with a general exogenous process to a univariate model with iid
innovations that can be solved in closed-form solution. Specifically, in the above TSH model, if ht is defined as a new state
variable, combining (5) with the original government budget constraint, we obtain the following new budget constraint:

htþ1 ¼ ~Rht�
1

1þn
τtþ

1
1þn

ζtþ1 ð7Þ

where

ζtþ1 ¼ ∑
1

j ¼ 0

1
~R

� �jþ1

Etþ1�Etð Þ½gtþ1þ j� ð8Þ

is the time ðtþ1Þ innovation to permanent spending. We can thus reformulate the above model as

vðh0Þ ¼ max
fτt g1t ¼ 0

E0 � ∑
1

t ¼ 0
βtcðτtÞ

� �� �
ð9Þ

subject to (7), and vðh0Þ is the government's value function under FI-RE.17

To close the model, we assume that government expenditures evolve according to the following AR(1) process:

gtþ1 ¼ ð1�ρgÞgþρggtþϵtþ1; ð10Þ

where ρgA ½0;1� and ϵtþ1 is an iid shock with mean zero and variance ω2
ϵ . Substituting (10) into (5) and (8) yields

ht ¼ btþ 1
ð1þnÞð ~R�ρgÞ

gtþ
ð1�ρgÞg

ð1þnÞð ~R�ρgÞð ~R�1Þ
;

ζt ¼
1

~R�ρg

ϵt :

Therefore, under the FI-RE hypothesis, the change in optimal taxation can be written as

Δτt ¼
~R�1
~R

Et�Et�1ð Þ ∑
1

j ¼ 0

1
~R

� �j

gtþ j

" #
¼

~R�1
~R�ρg

ϵt ; ð11Þ

which relates the innovation to taxation to government spending shocks. In other words, the optimal tax rate follows a
random walk in the standard rational expectations model. Although the optimal plan here is to smooth tax rates so that
τt ¼ Et ½τtþ1�, it does not mean that τt is unaffected by the government spending shock; rather, the optimal tax behavior is to
make any changes in taxes unpredictable.

The government budget deficit can be written as

def t � btþ1�bt ¼ ~R�1
� 	

btþ
1

1þn
gt�

1
1þn

τt ¼ � ∑
1

j ¼ 1

~R
� j
Et ½Δgtþ j�; ð12Þ

which means that the government sets the budget deficit to be equal to expected changes in government spending. Using
(10), we obtain def t ¼ ð1=ð1þnÞÞð1�ρgÞ=ð ~R�ρgÞðgt�gÞ, that is, the government deficit is positively correlated with
government spending. We now consider two special cases: (i) when the government spending shock is permanent, i.e.,
ρg ¼ 1 (e.g., expenditures on education and health care), and (ii) when the shock is purely transitory, i.e., ρg ¼ 0
16 See Ghosh (1995) for a discussion on this topic.
17 In the next section, we will introduce robustness directly into this “reduced” TSH model; in Appendix A.2 we show that the general robust

multivariate version delivers the same decision rules because debt evolves deterministically, so that the evil nature cannot distort its law of motion.



Table 1
Key moments on relative volatility and correlation.

Linear filter HP filter

sdðΔτÞ
sdðΔgÞ

1.18(0.20) 1.18(0.20)

corrðdef ; gÞ 0.73(0.10) 0.56(0.11)
corrðdef ;ΔgÞ 0.05(0.11) 0.05(0.11)
ρg 0.84(0.03) 0.52(0.09)

Y. Luo et al. / Journal of Economic Dynamics & Control 45 (2014) 289–314294
(e.g., expenditures on unemployment benefit and natural disaster). From (11) and (12), it is clear that for the first case, it is
optimal to absorb a permanent expenditure shock entirely by taxes because

Δτt ¼ ϵt and def t ¼ 0:

In contrast, for the second case,

Δτt ¼
~R�1
~R

ϵt and def t ¼
1

1þn
1
~R
ϵt ;

which means that for a positive government spending shock, τt must increase by ðð ~R�1Þ= ~RÞϵt and the debt must be raised
by ð1=ð1þnÞÞð1= ~RÞϵt to guarantee that the GBC is satisfied. In other words, a proportion of the positive shock, ð ~R�1Þ= ~R, is
absorbed by taxation and the rest 1= ~R is absorbed by debt. Since ~R is close to 1, most of the shock is absorbed by debt.
2.2. Model predictions

Using (11), it is straightforward to compute the relative volatility of the change in tax rates to government spending,
which we denote by

μ� sdðΔτtÞ
sdðΔgtÞ

¼
~R�1
~R�ρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þρg

2

s
; ð13Þ

where sd denotes the standard deviation and we use the fact that Δgt ¼ ðρg�1Þϵt�1=ð1�ρgLÞþϵt , where L is the lag
operator. Using the estimated ρg reported in Table 1 (linear filter) and assuming that ~R ¼ 1:01, the FI-RE model predicts that
μ¼ 0:056. However, in the data as reported in Table 1, μ¼ 1:18, so the model is not even in the ballpark.18 Given the
estimated processes of government spending, the model predicts that changes in tax rates (relative to changes in spending)
should be much smaller than they are in the data.

Using (12), the model predicts that the contemporaneous correlation between government debt and government
spending, corrðdef t ; gtÞ, is 1. This model prediction contradicts the empirical evidence: in the data the empirical correlation
between them is well below 1. As reported in Table 1, corrðdef t ; gtÞ ¼ 0:73 (for linear filter) and 0.56 (for HP filter).

In the literature, there are two other common tests on the time series properties of average tax rates and deficits. The
first is to test whether tax rates follow a random walk. For example, Barro (1981) found that the average tax rate in the U.S.
between 1884 and 1979 follows a random walk.19 However, as is well known, this test is not conclusive for the tax-
smoothing hypothesis (TSH) because tax rates could also follow a random walk if the rates are determined by a random
political process. The second is to test whether the budget balance is informative about future changes in government
spending using the VAR techniques. For example, Huang and Lin (1993) and Ghosh (1995) applied Campbell's (1987) VAR
approach and found that increases in the budget surplus signal future increases in government expenditure, which supports
the tax-smoothing hypothesis.20 This VAR approach is to formulate the TSH as an expression for budget surplus (or deficits)
because it takes into account the entire structure of the TSH model and then use a bivariate VAR for government spending
and the budget surplus to evaluate the restrictions imposed by the TSH model. The basic idea of this approach is that using
the bivariate VAR, it is possible to compute the predicted time path of the budget deficits that is optimal for the government
under the TSH and then compare this optimal path to the actual time path of the budget deficits. Specifically, we compare

the optimal path of deficits, def t ¼ �∑1
j ¼ 1

~R
� j
Et ½Δgtþ j�, to the actual one, def t ¼ ðR�1Þbtþgt�τt , using the following
18 Given the estimated ρg using HP filter reported in Table 1, the RE model predicts that μ¼ 0:018, which is even smaller relative to the data.
19 Other studies include Trehan and Walsh (1990) for the U.S., Ghosh (1995) for the U.S. and Canada, and Strazicich (1997) for the sub-national

governments of Canada and the U.S.
20 Adler (2006) tested the TSH using Swedish data from the period 1952–1999, and found that the tax smoothing behavior of the government can

explain a significant fraction of the variability in the Swedish government budget deficits.
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bivariate VAR21:

Δgtþ1

def tþ1

" #
¼

a11 a12
a21 a22

" #
Δgt
def t

" #
þ

e1;tþ1

e2;tþ1

" #
; ð14Þ

or ztþ1 ¼ Aztþetþ1, where e1;tþ1 and e2;tþ1 are the VAR innovations. Denote etþ1 ¼ ½e1;tþ1 e2;tþ1� and assume that
Σe ¼ E½etþ1e0tþ1� is the 2�2 variance–covariance matrix of the reduced-form VAR innovations.22 The k-step ahead forecast
from the VAR is

Et ½ztþk� ¼ Akzt

and (12), def t ¼ �∑1
j ¼ 1

~R
� j
Et ½Δgtþ j�, can be rewritten as

½0 1�zt ¼ ∑
1

j ¼ 1

~R
� j
Aj½1 0� zt :

Given that both Δgt and deft are stationary, the infinite sum in the above equation converges to

def nt ¼ �½1 0�A ~R
�1ðI�A ~R

�1Þ�1zt �Λzt ¼ λ1Δgtþλ2def t :

Therefore, if the null hypothesis that the government smooths taxes over time is correct, the recovered coefficients from the
estimated VAR, λ1 and λ2, should be 0 and 1, respectively. We will use this test in Section 4; to satisfy the reader's curiosity
for the moment, we note here that a joint test of these restrictions under rational expectations has a Wald statistic of 24.9 on
data from 1960 to 2007, which is about as strong a rejection as one is likely to see (see Table 6).

3. Incorporating robustness

3.1. The RB version of the tax smoothing hypothesis model

Robust control emerged in the engineering literature in the 1970s and was introduced into economics and further
developed by Hansen, Sargent, and others. A simple version of robust optimal control considers the question of how to make
decisions when the agent does not know the probability model that generates the data. Specifically, an agent with a
preference for robustness considers a range of models surrounding the given approximating model, (7):

htþ1 ¼ ~Rht� 1
1þn

τtþ ~ζ tþ1þω ~ζ νt ; ð15Þ

where ~ζ tþ1 ¼ ð1=ð1þnÞÞζtþ1 and ω ~ζ ¼ ð1=ð1þnÞÞωζ , and makes decisions that maximize lifetime expected utility given this
worst possible model (i.e., the distorted model). To make that model (7) is a good approximation when (15) generates the
data, we constrain the approximation errors by an upper bound η0:

E0 ∑
1

t ¼ 0
βtþ1ν2t

� �
rη0; ð16Þ

where E0½�� denotes the conditional expectations evaluated with the model, and the left side of this inequality is a statistical
measure of the discrepancy between the distorted and approximating models. Note that the standard full-information RE
case corresponds to η0 ¼ 0. In the general case in which η040, the evil agent is given an intertemporal entropy budget
η040 which defines the set of models that the agent is considering. Following Hansen and Sargent (2007), we compute
robust decision rules by solving the following two-player zero-sum game: a minimizing decision maker chooses optimal
taxation fτtg and a maximizing evil agent chooses model distortions fνtg. Specifically, the robustness version of the Barro
model proposed in Section 2 can be written as

v htð Þ ¼max
τt

min
νt

�1
2
ðτtþφÞ2þβ ϑν2t þEt v htþ1ð Þ� �� �� �

ð17Þ

subject to the distorted transition equation (i.e., the worst-case model), (15), where νt distorts the mean of the innovation,
and ϑ40 is the Lagrange multiplier on the constraint specified in (16) and controls how bad the error can be.23
21 As argued in Campbell (1987), Huang and Lin (1993), Ghosh (1995), and others, although the information set of an econometrician is only a subset of
the government's information set, the econometrician can still compute the predicted path of the budget deficit because the deficit itself contains all the
information about future changes in government spending. That is, the budget deficit should Granger-cause changes in government spending.

22 See Appendix A.3 for deriving the standard errors for the VAR test.
23 Formally, this setup is a game between the decision-maker and a malevolent nature that chooses the distortion process νt. ϑZ0 is a penalty

parameter that restricts attention to a limited class of distortion processes; it can be mapped into an entropy condition that implies that agents choose
rules that are robust against processes which are close to the trusted one. In a later section we will apply an error detection approach to calibrate ϑ in the
U.S. economy.
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When the ratio of government spending to real GDP follows the AR(1) process, (10), solving this robust control problem
yields the following proposition:

Proposition 1. Under RB, the optimal tax function is

τt ¼
ð1þnÞð ~R�1Þ

1�Σ
htþ

Σφ
1�Σ

; ð18Þ

the mean of the worst-case shock is

νtω ~ζ ¼
ð ~R�1ÞΣ
1�Σ

htþ
1

1þn
Σφ
1�Σ

; ð19Þ

the government deficit can be written as

def t ¼ btþ1�bt ¼
1

1þn
1�ρg

~R�ρg

gt�g
 �� 1�ρh

 �
ht�

1
1þn

Σφ
1�Σ

; ð20Þ

and htð ¼ btþð1=ð1þnÞð ~R�ρgÞÞgtþð1�ρgÞg=ð1þnÞð ~R�ρgÞð ~R�1ÞÞ is governed by

htþ1 ¼ ρhht�
1

1þn
Σφ
1�Σ

þ ~ζ tþ1; ð21Þ

in the approximating model, where ζtþ1 ¼ ð1=ð ~R�ρgÞÞϵtþ1, ~ζ tþ1 ¼ ð1=ð1þnÞÞζtþ1,

Σ ¼ ð1þnÞ2 ~Rω2
~ζ
=ð2ϑÞ ¼ ~Rω2

ζ=ð2ϑÞ40 ð22Þ

measures the degree of the preference of robustness, and ρh ¼ ð1� ~RΣÞ=ð1�ΣÞAð0;1Þ.
Proof. See Appendix A.4.

The univariate RB model with unique state variable h leads to the same taxation function as the corresponding
multivariate RB model in which the state variables are bt and gt. The key difference between these two models is that in the
univariate RB model the evil agent distorts the transition equation of permanent spending ht, whereas in the multivariate RB
model the evil agent distorts the spending-output ratio process gt. Theoretically, introducing RB into the multivariate model
affects both the coefficients attached to bt and gt in the taxation function. That is, in the multivariate model RB may affect the
relative importance of the two state variables in the taxation function, whereas in the univariate model the relative
importance of the two effects is fixed by reducing the ðb; gÞ state space to the univariate state h. However, after solving the
two-state model numerically using the standard procedure proposed in Hansen and Sargent (2007), we can see that the two
models lead to the same decision rule (see Appendix A.2); the intuition is that the debt evolves deterministically from t to
tþ1, so that the evil agent cannot influence it. The main reason that we adopt the univariate RB model here is to obtain the
explicit expressions for optimal taxation and government debts which can be easily used to compute the model's stochastic
properties (e.g., the relative volatility of taxation and debts to government spending and the correlation between
government debts and spending) and form the VAR test conducted in Section 4.4.

The effect of the preference for robustness, Σ, is jointly determined by the RB parameter, ϑ, and the volatility of the
permanent spending shock, ω ~ζ . This interaction provides a novel channel through which the government spending shock
affects optimal taxation and debts. Specifically, optimal taxation under RB, (18), shows that the preference for robustness, ϑ,
affects the optimal response of optimal taxation to the change in permanent government expenditures, ð1þnÞð ~R�1Þ=ð1�ΣÞ.
The smaller the value of ϑ the larger the response of optimal taxation; that is, under RB optimal taxation is more sensitive to
unanticipated government spending shocks. This response is referred to as “making hay while the sun shines” in van der
Ploeg (1993) to explain the overreaction of consumption to unanticipated income shocks, and reflects the precautionary
aspect of these preferences.

Proposition 2. Σo1.

Proof. The second-order condition for a minimization by nature is

A¼ 1
2

ð1þnÞ2 ~Rð ~R�1Þ
1�ð1þnÞ2 ~Rω2

~ζ
=ð2ϑÞ

40;

which can be rearranged into

ϑ4 ð1þnÞ2 ~Rω2
~ζ
:

Using the definition of Σ we obtain

14Σ: □
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It is straightforward to show that the robust policy rule, (18), can also be obtained by solving the following risk-sensitive
TSH model:

v htð Þ ¼max
τt

�1
2
ðτtþφÞ2þβRt v htþ1ð Þ� �� �

ð23Þ

subject to (7), and the distorted expectation operator Rt is defined by

Rt v htþ1ð Þ� �¼ �1
α
log Et exp �αv htþ1ð Þð Þ� �

;

where α40 measures higher risk aversion of the government vis a vis the von Neumann–Morgenstern specification.24 Risk-
sensitivity (RS) was first introduced into the LQG framework by Jacobson (1973) and extended by Whittle (1981). van der
Ploeg (1993) applied this preference to examine its implication for precautionary savings; Hansen and Sargent (1995)
introduced discounting into the RS specification and showed that the resulting decision rules are time-invariant; Hansen
et al. (1999) also explored its implications for precautionary savings and asset prices; and Luo and Young (2010, 2014)
examined its implications for consumption and precautionary savings when consumers are inattentive. In the risk-sensitive
TSH specified in (23), the government is prudent in the sense that they minimize the expected value of an exponential
transformation of a quadratic welfare loss function and adjust optimal taxation policy more aggressively to changes in
government expenditures. Note that as examined in Hansen and Sargent (2007), we can obtain the same Bellman equation
as (23) if using the multiplier preference to model RB:

v htð Þ ¼max
τt

�1
2
ðτtþφÞ2þβmin

mt þ 1
fEt mtþ1v htþ1ð Þ� �þϑEt mtþ1 lnmtþ1

� �g� �
; ð24Þ

where Et ½mtþ1 ln mtþ1� is the relative entropy of the distribution of the distorted model with respect to that of the
approximating model, and ϑ40 is the shadow price of capacity that can reduce the distance between the two distributions,
i.e., the Lagrange multiplier on the constraint: Et ½mtþ1 lnmtþ1�rη. Minimizing with respect to mtþ1 yields mtþ1 ¼
expð�vðhtþ1Þ=ϑÞ=Et ½expð�vðhtþ1Þ=ϑÞ�, and it is straightforward to show that substituting mtþ1 into (24) yields (23).

3.2. Implications of RB for tax smoothing and government debt

Given the expression for optimal taxation (18), the dynamics of taxes can be written as

τtþ1 ¼ ρhτtþ
ð1þnÞð ~R�1Þ

1�Σ
~ζ tþ1�ð ~R�1Þ Σφ

1�Σ
or τtþ1 ¼ ρhτtþ

~R�1
1�Σ

ζtþ1�ð ~R�1Þ Σφ
1�Σ

; ð25Þ

and the government deficit can be rewritten as the AR(1) process:

def tþ1 ¼ ρhdef tþ
1

1þn
ð1�ρgÞðρg�ρhÞ

~R�ρg

gt�g
 �þðρh�ρgÞ ~ζ tþ1: ð26Þ

Note that even if the government's subjective discount factor is assumed to equal the inverse of the effective interest rate
(β ~R ¼ 1), the tax-tilting effect of government budget deficits still operates under RB. The intuition is very simple: the effect
of RB on optimal taxation and deficits are the same as that of the discount factor within the LQ setting.25 We also note that
the tax rate is a stationary process even if g is a random walk, in contrast to the FI-RE model.

Using (25) and (26), the following proposition summarizes the main results on the relative volatility of the change in tax
rates to government spending and the contemporaneous correlation between government debt and spending:

Proposition 3. Under RB, the relative volatility of the change in tax rates to government spending, μ, is

μ� sdðΔτtÞ
sdðΔgtÞ

¼
~R�1

ð1�ΣÞð ~R�ρgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þρg

1þρh

s
; ð27Þ

where we use the fact that Δgt ¼ ðρg�1Þϵt�1=ð1�ρgLÞþϵt . The contemporaneous correlation between the government debt and
government spending, corrðdef t ; gtÞ, is

corr def t ; gt
 �¼ 1

1þρg
� 1�ρh

1�ρgρh

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1�ρ2
g

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρg

1þρg
þ1�ρh

1þρh
�2

ð1�ρhÞð1�ρgÞ
1�ρgρh

s" #
:

,
ð28Þ
24 The detailed proof is available from the authors by request. The observational equivalence between the risk-sensitive and robust LQG models has
been well established in the literature. See Hansen et al. (1999), Backus et al. (2004), and Luo and Young (2010).

25 See Hansen et al. (1999) and Luo and Young (2010) for discussions on the observational equivalence (OE) between RB and the discount factor in the
LQ permanent income models. However, it is worth noting that this OE only holds in the “static” sense. For example, if we allow the value of DEP (p) to
change, the calibrated value of ϑ, the implied value of Σ, and the resulting model dynamics will change accordingly. In addition, when the fundamental
uncertainty changes, the calibrated ϑ, the implied value of Σ, and the resulting model dynamics will also change accordingly. In contrast, the discount
factor can be very stable or constant over time and across states.
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Proof. See Appendix A.5.

It is clear from (27) that RB increases the relative volatility via two channels: first, it increases the marginal propensity to
tax based on permanent government spending ðð ~R�1Þ=ð1�ΣÞÞ; and second, it increases the volatility of the change in the
tax rate by reducing the persistence of the tax dynamics. The latter is because the persistence of tax dynamics is the same as
the persistence of permanent government spending measured by ρh and it is easy to show ∂ρh=∂Σo0. Fig. 2 provides a
graphic view how this relative volatility decreases with the degree of model uncertainty, Σ, for different values of ρg.

From (28), we can see that under RB, the correlation converges to 1 as Σ converges to 0. Fig. 3 illustrates how RB affects
the correlation between the government debt and government spending for different values of ρg. It is clear that
corrðdef t ; gtÞ is decreasing with Σ. If we decompose this correlation into two terms, the covariance between deficit and
spending (the nominator) and the variances (the denominator), we find that the decrease of the correlation between deficit
and spending is mainly driven by the decrease in the covariance term as the degree of model uncertainty (Σ) increases.
Using the explicitly derived expression for this covariance term, covðdef t ; gtÞ, it can be shown that covðdef t ; gtÞ is a
monotonically increasing function of the persistence of the deficit function, measured by ρh. Thus, as an increase in the
degree of model uncertainty (Σ) reduces ρh, covðdef t ; gtÞ falls. Therefore, as FI-RE over-predicts the correlation between debt
and spending, RB aligns the model and the data more closely along this dimension.

3.3. Two special cases

3.3.1. A permanent increase in government spending
Under RB, when ρg ¼ 1, we have

Δτt ¼
ρh�1
1�Σ

1
1�ρhL

ϵt�1þ
1

1�Σ
ϵt ; ð29Þ

def t ¼ � 1
1þn

Σ
1�Σ

1
1�ρhL

ϵt ¼ � 1
1þn

Σ
1�Σ

1
1�ρhL

ϵt�1�
1

1þn
Σ

1�Σ
ϵt : ð30Þ
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It is clear that in this permanent income case, a proportion 1=ð1�ΣÞ of a newly arrived shock ðϵtÞ is absorbed by τt and
�ð1=ð1þnÞÞðΣ=ð1�ΣÞÞ of the shock is absorbed by debt. In other words, taxation is more sensitive to the permanent shock
under RB and thus the government debt can be reduced even if the spending shock is positive. In addition, both taxes and
debts react to the lagged innovations to government spending. This prediction is clearly different fromwhat we obtained in
the RE model: the permanent expenditure shock is absorbed entirely by taxes.

3.3.2. A temporary increase in government spending
Under RB, when ρg ¼ 0, we have

Δτt ¼ ðρh�1Þð ~R�1Þ
ð1�ΣÞ ~R

ϵt�1

1�ρhL
þ

~R�1
ð1�ΣÞ ~R

ϵt ; ð31Þ

def t ¼
1

1þn
1
~R
ϵt�Σð ~R�1Þ

ð1�ΣÞ ~R
ϵt

1�ρhL

" #
¼ 1
1þn

�Σð ~R�1Þ
ð1�ΣÞ ~R

ρh

1�ρhL
ϵt�1þ

1�Σ ~R

ð1�ΣÞ ~R
ϵt

" #
; ð32Þ

which means that for a positive government spending shock ðϵtÞ, τt must increase by ðð ~R�1Þ=ð1�ΣÞ ~RÞϵt and the debt must
be reduced by ðð1�Σ ~RÞ=ð1�ΣÞ ~RÞϵt .26 In other words, a proportion of the positive shock, ð ~R�1Þ=ð1�ΣÞ ~R, is absorbed by
taxation and the rest, ð1�Σ ~RÞ=ð1�ΣÞ ~R, is absorbed by debt. Note that in the RE model a proportion of the shock, ð ~R�1Þ= ~R,
is absorbed by taxation and the rest, 1= ~R, is absorbed by debt. Since Σ40, it is clear that RB strengthens the relative
importance of taxation to government debts in absorbing the government spending shock.

4. Calibration and main findings

In the previous section we have seen that the model uncertainty due to the preference for robustness can help better
explain the observed relative volatility of the tax rate and the correlation between government budget deficit and
government spending. Specifically, we have shown that an increase of Σ (which measures the RB effect) increases the
relative volatility of the tax rate and reduces the correlation between government budget deficit and government spending.
But careful readers may still have questions on how to further interpret this parameter. For example, two very reasonable
questions are the following: What does Σ really measure? How should we link the value of Σ to the degree of model
uncertainty? In this section, we will provide one useful method to quantify the RB parameter, Σ, which intuitively links it to
the degree of model uncertainty.

4.1. Calibrating the RB parameter

We follow Hansen et al. (2002) and Hansen and Sargent (2007) to calibrate the RB parameter ðϑ and ΣÞ. Specifically, we
calibrate the model by using the model detection error probability that is based on a statistical theory of model selection
(the approach will be precisely defined below). We can then infer what values of the RB parameter ϑ imply reasonable fears
of model misspecification for empirically plausible approximating models. In other words, the model detection error
probability is a measure of how far the distorted model can deviate from the approximating model without being discarded;
standard significance levels for testing are then used to determine what reasonable fears entail.

4.1.1. The definition of the model detection error probability
Let us use model A to denote the approximating model and model B to denote the distorted model. Define pA as

pA ¼ Prob log
LA
LB

� �
o0jA

� �
; ð33Þ

where logðLA=LBÞ is the log-likelihood ratio. When model A generates the data, pA measures the probability that a likelihood
ratio test selects model B. In this case, we call pA the probability of the model detection error. Similarly, when model B
generates the data, we can define pB as

pB ¼ Prob log
LA
LB

� �
40jB

� �
: ð34Þ

Following Hansen et al. (2002) and Hansen and Sargent (2007), we can define the detection error probability, p, as the
average of pA and pB:

p ϑ
 �¼ 1

2
pAþpB
 �

; ð35Þ
26 Note that here we need to impose the restriction that Σo1= ~R , which is the breakdown condition discussed in Hansen and Sargent (2007);
for values of Σ that violate this condition, nature can reduce expected utility to �1.
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where ϑ is the robustness parameter used to generate model B. By this definition, 1�p measures the probability that
econometricians can distinguish the approximating model from the distorted model. The next subsection shows how to
compute the model detection error probability in the RB model.

4.1.2. Calibrating the RB parameter in the tax-smoothing model
Under RB, assuming that the approximating model generates the data, the state, ht, evolves according to the transition

law:

htþ1 ¼ ~Rht�
1

1þn
τtþ ~ζ tþ1; ¼

1� ~RΣ
1�Σ

ht�
1

1þn
Σφ
1�Σ

þ ~ζ tþ1: ð36Þ

In contrast, assuming that the distorted model generates the data, ht evolves according to

htþ1 ¼ ~Rht�
1

1þn
τtþ ~ζ tþ1þω ~ζ νt ; ¼ htþ ~ζ tþ1: ð37Þ

Because permanent shocks are both damaging (they imply infinite long-run variances) and difficult to detect in small
samples (unit root tests have low power), the government designs its tax policy to be robust against them.

To compute pA and pB, we use the following procedure:
�

Kor
Simulate fhtgTt ¼ 0 using (36) and (37) a large number of times. The number of periods used in the simulation, T, is set to be
the actual length of the U.S. data.
�
 Count the number of times that logðLA=LBÞo0jA and logðLA=LBÞ40jB are each satisfied.

�
 Determine pA and pB as the fractions of realizations for which logðLA=LBÞo0jA and logðLA=LBÞ40jB, respectively.

In the above simulation, the volatility of ζt is computed using sdðζÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ρ2

g

q
=ðR�ρgÞÞsdðgÞ, where sdðgÞ is the standard

deviation of government spending. φ is set to be �τ where τ is the average tax rate in the data.27 It is worth pointing out
that the detection error probability, p, declines with time. That is, for a given value of the RB parameter (Σ), the value of p
calculated in the above simulation declines as the number of simulation periods increases. Fig. 4 shows how p varies with
the simulation length under three different values of Σ. The solid line uses the calibrated value of Σ (as reported in Table 2).
The dot-dashed and dashed lines use values of 0.9 and 0.8, respectively. The three lines share the same pattern: p declines
with the simulation length. The interpretation is that the probability of being unable to distinguish the approximating
model and the distorted model declines with more available data.

4.2. Data

To implement the calibration described in the previous section, we need to have the measure of GDP, government
spending (Gt), government debt (Bt), government budget deficit (deft), tax rate (τt), and risk-free interest rate. We follow
Huang and Lin (1993) and Lloyd-Ellis et al. (2005) to construct these variables and use the same data sources as described in
their papers. Specifically, government expenditures are constructed by using federal expenditures minus net federal interest
payments. The data on both variables are taken from National Income and Product Accounts (NIPA). Government budget
deficit is defined as total outlays minus total receipts.28 Government debt is defined as the federal debt (end of period) held
by the public. Tax rate is defined as tax revenues divided by GDP. The data on these variables are taken from The Economic
Report of President, 2011. The data covers the period 1960–2007.29 Finally, we need to know the annual growth rate of real
GDP, n, and the risk-free interest rate, R. Using the real GDP data from NIPA, the former is calculated as the average annual
growth rate of real GDP in the period of 1960–2007, which is 3%. We set the risk-free rate to be 1.04 such that the effective
interest rate ~R ¼ 1:01.

For variables as a ratio of GDP, we use either a linear filter or the Hodrick–Prescott (HP) filter (with a smoothing
parameter of 100) to detrend the data.30 For variables expressed in the form of differences (with a symbol Δ) the unfiltered
series are used.

4.3. Main results

The calibration results are reported in Table 2. We set p¼0.1 which means that there exists a 10-percent chance that a
likelihood ratio test fails to separate the approximating model and the distorted model. The resulting value of the RB
parameter Σ is 0.96. In the same table, we also report the persistence of the government spending (as a ratio of GDP), g, and
27 We follow Luo et al. (2012) and use the local coefficient of relative risk aversion for the loss function to calibrate φ.
28 In Lloyd-Ellis et al. (2005), the authors use the government budget surplus, which is defined as total receipts minus total outlays.
29 As US government debt remained at very high levels during and after the Korean War period, here we exclude the high debt years surrounding the
ean War. In addition, we also exclude the 2008–2010 financial crisis period.
30 We report the values of the key moments using both filters in Table 1.
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Fig. 4. Detection error probability (DEP) and the simulation length.

Table 2
Calibration results.

Variable Value

Σ 0.96
p 0.10
ρg 0.84
σðgÞ
μðgÞ

0.07

σðζÞ
μðgÞ

0.22

Y. Luo et al. / Journal of Economic Dynamics & Control 45 (2014) 289–314 301
the measured coefficient of variation for the processes of g and ζ (the innovation to the ht process defined in budget
constraint Eq. (7)).

As shown in the previous section, introducing model uncertainty (concern for robustness) qualitatively improves the
model performance in explaining the two unconditional moments: (1) the relative standard deviation of the tax rate,
sdðΔτÞ=sdðΔgÞ; and (2) the correlation between government budget deficit and government spending, corrðdef ; gÞ.
Specifically, we have shown that an increase of Σ can increase the relative standard deviation of the tax rate while
reducing the correlation of the government budget deficit and the government spending. Since we now have a calibrated
value of Σ, we can quantitatively show these improvements more clearly by comparing the predicted values from the RE
and the RB models. The results are reported in Table 3.

The first column of Table 3 lists the values of the two moments in the data. The second column reports predictions of the
RE model with no model uncertainty. As it shows, the relative volatility of the tax rate predicted by the RE model is only 0.04
while it is 1.18 in the data. On the other hand, the RE model overpredicts the correlation between government budget deficit
and government spending. As a comparison, the RB (at p¼0.1) can predict values that are much closer to the data, as shown
in the third column. These results confirm our theoretical findings in Section 3. In that section, we have shown that as the RB
effect (measured by Σ) increases, the model can predict more reasonable relative volatility of the tax rate and the
correlation between deficit and spending. The results in Table 3 present one numerical example of the magnitude of the
improvements. Of course, the improvements depend on the detection error probability that is used.

As we have explained before, using the model detection error probability (p) is one intuitive way to measure the model
uncertainty. In this example, we set p¼0.1 so that agents are considering a range of models which cannot be distinguished
by a likelihood ratio test up to a probability of 0.1.31 Alternatively speaking, this means that agents suspect that the model is
misspecified to a certain degree that a likelihood ratio test cannot separate the (unknown) true model with other similar
models by a 10-percent chance. To see how the degree of model uncertainty affects the model prediction and provides more
robust check, we vary the detection error probability p (or the degree of model uncertainty) and report the corresponding
results in Table 5. The corresponding calibrated values of Σ are reported in Table 4. Remember that as the detection error
probability (p) increases, it becomes more difficult (using a likelihood-ratio test) to distinguish the set of considered models.
Thus the range of models considered have to be smaller. In other words, there is less model uncertainty or agents have less
concern about the model misspecifications. As Table 5 shows, as the degree of the model uncertainty decreases, the relative
volatility of the tax rate declines and the correlation between deficit and government spending increases. These findings
again confirm the theoretic results in the previous sections.
31 A detection probability of 0.1 is what Hansen and Sargent (2007) propose.



Table 3
Model comparison (p¼0.1).

Data RE RB

sdðΔτÞ
sdðΔgÞ

1.18 0.04 0.94

corrðdef ; gÞ 0.73 1.00 0.72

Table 4
Calibration: varying the detection error probability.

p¼0.10 p¼0.11 p¼0.12 p¼0.13 p¼0.14 p¼0.15

Σ 0.956 0.953 0.950 0.946 0.942 0.940

p¼0.16 p¼0.17 p¼0.18 p¼0.19 p¼0.20 p¼0.21

Σ 0.937 0.933 0.928 0.924 0.918 0.915

Table 5
Robust check: model comparisons.

Data RE RB

(p¼0.10) (p¼0.11) (p¼0.12) (p¼0.13) (p¼0.14) (p¼0.15)

sdðΔτÞ
sdðΔgÞ

1.18 0.04 0.94 0.88 0.82 0.77 0.71 0.68

corrðdef ; gÞ 0.73 1.00 0.72 0.73 0.74 0.76 0.77 0.78

(p¼0.16) (p¼0.17) (p¼0.18) (p¼0.19) (p¼0.20) (p¼0.21)

sdðΔτÞ
sdðΔgÞ

0.65 0.61 0.57 0.54 0.50 0.48

corrðdef ; gÞ 0.78 0.80 0.81 0.81 0.83 0.83
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4.4. Implications of RB for the bivariate VAR test on the TSH

In this subsection, we examine the implications of RB for the bivariate VAR test on the TSH mentioned in Section 2.2.
Using the optimal taxation function under RB, τt ¼ ðð1þnÞð ~R�1Þ=ð1�ΣÞÞhtþΣφ=ð1�ΣÞ, obtained in Section 3.1, the
resulting deficit equation can be written as

def t ¼ � ∑
1

j ¼ 0

~R
� j
Et ½Δgtþ j��Στt or ~def t ¼ � ∑

1

j ¼ 0

~R
� j
Et ½Δgtþ j�

where ~def t ¼ def tþΣτt . Following the same procedure as discussed in Section 2.2, the VAR can be formulated as

Δgtþ1

~def tþ1

" #
¼

a11 a12
a21 a22

" # Δgt
~def t

" #
þ

le1;tþ1

e2;tþ1

" #
:

Table 6 reports the recovered λ1 and λ2 from the full-information RE and RB models using data for the period from 1960 to
2007. To investigate how model uncertainty affects test results, we report nine different RB models in which Σ varies from
0.1 to 0.9. Remember that a larger Σ means more model uncertainty.32 The FI-RE model can be considered as a model with
zero model uncertainty. Thus, in total, Table 6 reports the recovered values for λ1 and λ2 for 10 models differing only in the
degree of model uncertainty, which increases from zero (the FI-RE model) to a significantly large degree (measured by Σ).
The second and third columns show that λ1 decreases with the degree of model uncertainty while λ2 increases with it. More
importantly, the increase of model uncertainty leads λ1 to decrease from a positive level (although not statistically
significant) to a level very close to 0 and λ2 to rise significantly toward 1. In other words, RB can help make the model better
fit the data because the recovered coefficients from the estimated VAR, λ1 and λ2, should be 0 and 1, respectively, if the TSH
32 As explained in the previous section, a larger Σ corresponds to a smaller the detection error probability which means that the difference between
the distorted model and the approximating model is larger. In other words, the range of the models (around the approximating model) is larger, or, there is
more model uncertainty faced by the decision maker.



Table 6
Results of the VAR Test.

Model λ1 λ2 χ2W ð2Þ p-Value

RE 0.06(0.14) 0.42(0.15) 24.90 0.00
Σ ¼ 0:1 0.06(0.13) 0.44(0.15) 23.60 0.00
Σ ¼ 0:2 0.06(0.13) 0.47(0.15) 21.70 0.00
Σ ¼ 0:3 0.06(0.13) 0.51(0.14) 19.25 0.00
Σ ¼ 0:4 0.06(0.13) 0.54(0.14) 16.37 0.00
Σ ¼ 0:5 0.06(0.13) 0.58(0.13) 13.32 0.00
Σ ¼ 0:6 0.05(0.13) 0.62(0.13) 10.33 0.01
Σ ¼ 0:7 0.04(0.13) 0.66(0.13) 7.65 0.02
Σ ¼ 0:8 0.03(0.13) 0.70(0.13) 5.43 0.07
Σ ¼ 0:9 0.02(0.14) 0.73(0.14) 3.74 0.15
Σ ¼ 0:96 0.00(0.14) 0.75(0.14) 3.04 0.22

Note: χ2W ð2Þ refers to the Wald statistics for the joint hypothesis test: λ1 ¼ 0; λ2 ¼ 1.
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holds.33 More formally, the last two columns report the Wald statistics and the associated p-values for the joint hypothesis
of λ1 ¼ 0 and λ2 ¼ 1. The Wald statistic decreases and the associated p-value increases as the degree of model uncertainty
increases. Of particular interest is that the values of Σ consistent with reasonable detection error probabilities – namely,
those above 0.9 – are ones which potentially could pass the VAR test.34

5. Extensions: multiple shocks

In this section we consider some extensions to the benchmark, to demonstrate how robust our results on robustness are.
Specifically, we consider decomposing government spending into a permanent and a transitory component; we study cases
where the government can and cannot distinguish between the two shocks. Finally, we investigate the addition of shocks to
the growth rate of total output. Our results survive each of these extensions.

5.1. Extension 1: multiple government shocks (the complete-information case)

In the benchmark model presented in Section 3, we assume that there is only a single shock to government spending.
In this section, we consider both permanent and transitory shocks to government spending. Specifically, we now assume
that the government spending-real GDP ratio gt can be expressed as the sum of permanent and transitory components:

gtþ1 ¼ gptþ1þgitþ1; ð38Þ

where the superscripts p and i denote the permanent and transitory, respectively. Each of these components follows its own
stochastic process; gt

p
follows a random walk

gptþ1 ¼ gpt þεtþ1; ð39Þ

and the transitory component follows a stationary AR(1) process

gitþ1 ¼ gþρgðgit�gÞþϵtþ1; ð40Þ

where ρgA ½0;1Þ, and all innovations are assumed to have zero mean, be uncorrelated over time and with each other, and the
variances of εt and ϵt are ω2

ε and ω2
ϵ , respectively. We assume that the decomposition of net income, (ω2

ε , ω
2
ϵ , ρg), does not

affect the volatility of the change in observed g ðsdðΔgtÞÞ. For simplicity, we consider the case in which ρg ¼ 0 and ω2
ε ¼mω2

ϵ
(m40); allowing ρg40 does not affect our conclusions but complicates the algebra substantially.

We now derive the expressions for the relative volatility of the change in tax rates to government spending and the
correlation between the deficits and the change in government spending.35 The following proposition summarizes the
results.

Proposition 4. The relative volatility of the change in tax rates to government spending, μ, is

μ� sdðΔτtÞ
sdðΔgtÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð ~R�1Þ2
ð1�ΣÞ½2�Σð1þ ~RÞ�

=
2þm

m=ð ~R�1Þ2þ1= ~R
2

" #vuut ; ð41Þ
33 An alternative interpretation is that incorporating certain degree of model uncertainty makes the TSH be less likely to be rejected in the data.
34 The breakdown condition occurs at Σ ¼ 0:9901, so we could in principle increase the value of λ2 further.
35 Note that here we use corrðdef t ;Δgt Þ instead of corrðdef t ; gt Þ because in this case the government spending process is non-stationary and thus

corrðdef t ; gt Þ is not well-defined.
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Fig. 5. The relative volatility of tax change to government spending.
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Fig. 6. The correlation between the government deficit and government spending.
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where we use the facts that Δgtþ1 ¼ εtþ1þϵtþ1�ϵt , Δτtþ1 ¼ ðρh�1Þτtþðð ~R�1Þ=ð1�ΣÞÞζtþ1�ð ~R�1ÞΣφ=ð1�ΣÞ, and
ζtþ1 ¼ εtþ1=ðR�1Þþϵtþ1=R. The contemporaneous correlation between the government debt and the change in government
spending, corrðdef t ;ΔgtÞ, is

corr def t ;Δgt
 �¼ �mð1�ρhÞ=½ð1þnÞð ~R�1Þ�þρhð2�ρhÞ=Rffiffiffiffiffiffiffiffiffiffiffiffi

2þm
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
R

 �2þ 1
ð1þnÞ2

2
ð ~R�1Þ2 þ

1
~R
2

h i
1�ρh
1þρh

� 	
�2ð1�ρhÞ

R2

r ; ð42Þ

where we use the fact that def t ¼ ð1=ð1þnÞÞð1= ~RÞðgit�gÞ�ð1�ρhÞht�ð1=ð1þnÞÞΣφ=ð1�ΣÞ.

Proof. See Online Appendix.

It is clear from (42) that in the FI-RE model where Σ ¼ 0, μ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½mþðð ~R�1Þ= ~RÞ2�=ðmþ2Þ

q
o1, which is inconsistent with

the empirical counterpart reported in Table 1 where μ¼ 1:18. Fig. 5 illustrates how this relative volatility varies with the
degree of model uncertainty, Σ, for different values of m that measure the relative importance of the permanent shock ðεÞ to
the transitory shock ðϵÞ. It clearly shows that this ratio is consistently increasing with Σ, which means that incorporating RB
into the multiple-shock case has the potential to help improve the model's predictions. For example, when m¼1 and
Σ ¼ 0:52, μ¼ 1:21, which is very close to its empirical counterpart.

It is straightforward to show that (42) reduces to 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
2þm

p
as Σ converges to 0. Fig. 6 illustrates how RB affects the

correlation between the government debt and government spending for different values of m. It is clear that corrðdef t ;ΔgtÞ
is consistently decreasing with Σ in the multiple-shock case, which means that RB can also have the potential to help
explain this dimension. For example, when m¼1 and Σ ¼ 0:1, corrðdef t ;ΔgtÞ ¼ 0:2, which is much closer to its empirical
counterpart, 0.05, reported in Table 1. (Note that in the FI-RE case corrðdef t ;ΔgtÞ ¼ 0:6.)

It is worth noting that when the permanent component becomes more and more important than the transitory
component, i.e., when m is increasing, μ converges to 1 in the FI-RE case, and incorporating Σ40 can help improve the
model's prediction by further increasing μ in this case. To evaluate the relative importance of the permanent component to
the transitory component, we estimate the g process using the U.S. data from the period of 1960–2007, and find that
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ωϵ=ωεffi0:1 or mffi100.36 Clearly, the permanent component dominates the transitory component in the g process. Using
this estimated value of m, it is clear that under FI-RE, μ¼ 0:99 and corrðdef t ;ΔgtÞ ¼ 0:1. When Σ ¼ 0:16, μ increases to 1.18
and corrðdef t ;ΔgtÞ reduced to �0:05, which match the corresponding empirical counterparts (1.18 and 0.05) better.37

5.2. Extension 2: multiple government spending shocks (the incomplete-information case)

In the above complete-information case, we assume that the government can distinguish the two components in the g
process. We now consider another case in which the government cannot distinguish the two components in the spending-
to-output ratio specified in (38)–(40).38 Specifically, following Pischke (1995), given that the change in g is

Δgtþ1 ¼ εtþ1þϵtþ1�ϵt ; ð43Þ
where εtþ1 and ϵtþ1 are assumed to have zero mean, be uncorrelated over time and with each other, and the variances of εt
and ϵt are ω2

ε and ω2
ϵ , respectively. The best forecast is to recognize that gtþ1 is a moving-average process of order one:

Δgtþ1 ¼ ηtþ1�αηt ; ð44Þ
where the innovation, ηt, with mean 0 and variance ω2

η, is not a fundamental driving process – it contains information on
current and lagged permanent and transitory shocks to government spending. Equating the variances and autocorrelation
coefficients of the original and derived processes (43) and (44), we have

ω2
η ¼

ω2
ϵ
α
; α¼ �1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4ϱ2

p
2ϱ

;

where ϱ¼ �ω2
ϵ=ðω2

εþ2ω2
ϵÞ and αA ½0;1� will be large if the variance of the transitory shock ω2

ϵ is large relative to the
variance of the permanent shock ω2

ε and will converge to 0 as ω2
ϵ approaches 0. As in the last subsection, if we assume that

ω2
ε ¼mω2

ϵ (m40), ϱ¼ �1=ð2þmÞ4�0:5.
Following the same state-space reduction procedure used in solving the benchmark model, the new state transition

equation can be written as

htþ1 ¼ ~Rht�
1

1þn
τtþ ~ζ tþ1; ð45Þ

where ht ¼ btþð1=ð1þnÞð ~R�1ÞÞðgpt �ðα= ~RÞηtÞ and ~ζ tþ1 ¼ ðð ~R�αÞ=ð1þnÞð ~R�1Þ ~RÞηtþ1. In this case, an agent with a pre-
ference for robustness considers a range of models surrounding the given approximating model, (45):

htþ1 ¼ ~Rht�
1

1þn
τtþ ~ζ tþ1þω ~ζ νt ;

where ω ~ζ ¼ ðð ~R�αÞ=ð1þnÞð ~R�1ÞÞωη. The dynamics of tax and deficit can thus be written as

τtþ1 ¼ ρhτtþ
1�α
1�Σ

ηtþ1�ð ~R�1Þ Σφ
1�Σ

;

def t ¼ � 1�ρh

 �
ht�

1
1þn

Σφ
1�Σ

þα
R
ηt ;

respectively. The following proposition summarizes the results.

Proposition 5. The relative volatility of the change in tax rates to government spending, μ, is

μ� sdðΔτtÞ
sdðΔgtÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1�ΣÞ½2�Σð1þ ~RÞ�
~R�α
~R

 !2

1þα2
 �

;
�vuut ð46Þ

and the contemporaneous correlation between the government debt and government spending, corrðdef t ; gtÞ, is

corr def t ;Δgt
 �¼ αρh�1

 �
1�ρh

 � ~R�α
~Rð ~R�1Þ

þα
Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α
R2 þ1�ρh

1þρh

~R�α
α ~Rð ~R�1Þ

�2
ð1�ρhÞð ~R�αÞ

~R
2ð ~R�1Þ

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þα2Þα

p : ð47Þ
36 The estimation result is obtained using the Matlab toolbox: SSMMATLAB. Using alternative estimation routines do not change the result.
37 It is important to note that our estimate of m is very imprecise: the one-standard-error confidence interval for m is ½1:2;1Þ. Therefore, the fact that

we use a different value for Σ to illustrate our results here will cause no problems for the benchmark model with Σ ¼ 0:96; there is a defensible value of m
that would be consistent with almost any value of Σ that can match the relevant facts.

38 We are grateful to an anonymous referee for suggesting us to consider this case. As in the first extension, here we also assume that ρg ¼ 0.
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Fig. 7. The relative volatility of tax change to government spending.
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Proof. See Online Appendix.

Using (46), it is straightforward to show that when Σ ¼ 0, μ¼ ðð ~R�αÞ= ~RÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1þα2Þ

p
o1, which is again not consistent

with the empirical value of 1.18. We can also see from (46) that this relative volatility is consistently increasing with Σ,
which means that incorporating RB into the incomplete-information case again helps improve the model's predictions.
Fig. 7 illustrates how this relative volatility varies with the degree of model uncertainty, Σ, for different values of m that
measure the relative importance of the permanent shock ðεÞ to the transitory shock ðϵÞ.

It is clear from (47) that the correlation converges to 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα2

p
as Σ converges to 0. Fig. 8 illustrates how RB affects the

correlation between the government debt and government spending for different values of m. It clearly shows that
corrðdef t ;ΔgtÞ is consistently decreasing with Σ, so as in the benchmark we find that incorporating robustness helps resolve
the differences between the model and the data.

As m increases to 1, both μ and corrðdef t ;ΔgtÞ converge to 1. Permitting Σ40 increases μ and reduces corrðdef t ;ΔgtÞ,
and thus makes the model fit the data better. Using the estimated g process reported in the last subsection (ωϵ=ωεffi0:1 or
mffi100), we can see that the quantitative effect of incomplete information on the key moments is not significant.39

Specifically, when m¼100, α¼ 0:01, which implies that under FI-RE, μ¼ 0:99 and corrðdef t ;ΔgtÞ ¼ 1. When Σ increases
from 0 to 0.16, μ increases to 1.18 and corrðdef t ;ΔgtÞ reduces to �0:05, which match the corresponding empirical
counterparts (1.18 and 0.05) better.
5.3. Extension 3: shock to output growth

In the benchmark model, we assume that output growth is constant. In this section, we consider an extension in which
the growth rate of real GDP follows a stochastic process. The government budget constraint becomes

ð1þntþ1Þbtþ1 ¼ Rbtþgt�τt ;
39 Again, we note that our estimate of m is very imprecise but does not contain any values less than 1.
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where ntþ1 follows an AR(1) process:

ntþ1�n ¼ ρnðnt�nÞþηtþ1; ð48Þ
where ηtþ1 is an iid shock with mean zero and variance ω2

η , and n is the steady state growth rate of real GDP. To maintain
the model within the LQG setting, we approximate the GBC around the steady state as follows:

ð1þnÞbtþ1þbntþ1 ¼ Rbtþgt�τt ; ð49Þ
where b is the steady state debt-to-output ratio.

The relative volatility of the change in tax rates to government spending, μ, can be written as

μ� sdðΔτtÞ
sdðΔgtÞ

¼
~R�1
~R�ρg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þρg

2
1þðb ~RÞ2

~R�ρg

~R�ρn

 !2
ω2
η

ω2
ϵ

2
4

3
5

vuuut :

Using the U.S. data from 1960 to 2007, we estimate that ρn ¼ 0:607, ρg ¼ 0:52, ωη ¼ 0:017, ωϵ ¼ 0:006, and b ¼ 0:363. Given
that ~R ¼ 1:01, the FI-RE model predicts that μ¼ 0:031, which means that the model with a shock to output growth is still
inconsistent with Table 1 where μ¼ 1:18. Furthermore, the contemporaneous correlation between the government debt
and government spending is

corr def t ; gt
 �¼ 1=ð1þρgÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð1�ρ2
g Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩgþΩn

p ;

where Ωg ¼ ð1�ρgÞ=ð1þρgÞ and Ωn ¼ b
2ðð ~R�ρgÞ=ð ~R�ρnÞÞ2½ρ2

nð1�ρnÞ=ð1þρnÞþð ~R�ρnÞ2�ω2
η=ω

2
ϵ . Given these values, we

compute that corrðdef t ; gtÞ ¼ 0:024, which is much lower than the empirical counterpart, 0.56 (computed using the HP
filter).

The following proposition summarizes the key results when we add robustness to the model with output growth shocks.

Proposition 6. The relative volatility of the change in tax rates to government spending, μ, is

μ� sdðΔτtÞ
sdðΔgtÞ

¼
~R�1
1�Σ

 !
1

~R�ρg

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þρg

1þρh
1þðb ~RÞ2

~R�ρg

~R�ρn

 !2
ω2
η

ω2
ϵ

2
4

3
5

vuuut ; ð50Þ

and the contemporaneous correlation between the government debt and government spending, corrðdef t ; gtÞ, is

corr def t ; gt
 �¼ 1=ð1þρgÞ�ð1�ρhÞ=ð1�ρgρhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ð1�ρ2
g Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩgþΩn

p ; ð51Þ

where

Ωg ¼ 1�ρg1þρgþ
1�ρh

1þρh
�2

ð1�ρgÞð1�ρhÞ
1�ρgρh

and

Ωn ¼ b
2 ~R�ρg

~R�ρn

 !2
ρ2
nð1�ρnÞ
1þρn

þð ~R�ρnÞ2þ
1�ρh

1þρh

~R
2�2ρn

~Rð1�ρnÞð1�ρhÞ
1�ρnρh

" #
ω2
η

ω2
ϵ
:

Proof. See Online Appendix.

Expression (50) clearly shows that μ is consistently increasing with Σ since ∂ρh=∂Σo0, which means that incorporating
RB into this multiple-shock case has similar effect on the relative volatility as in the benchmark case. Comparing (51) with
(28), it is clear that the only difference is the additional term, Ωn, in (51), and RB has the same effect on Ωn as on Ωg.
Therefore, incorporating RB into this multiple-shock case can also have the potential to help explain this dimension. Using
the same parameter values provided above, Fig. 9 clearly shows that RB can significantly improve the model's predictions on
the relative volatility and the correlation.

6. Conclusions

This paper has reconsidered the tax-smoothing hypothesis model of Barro (1979) under the assumption that the
government faces model uncertainty regarding the stochastic process for required government spending. Our key finding is
that many of the aspects of the tax-smoothing model that are inconsistent with the data under rational expectations – that
is, under the assumption of no model uncertainty – are potentially consistent with the data when decisions by the
government are made with an eye on robustness. In particular, we can increase the volatility of tax changes relative to
changes in spending, decrease the correlation between spending and deficits, and pass VAR tests regarding the joint
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dynamics of changes in spending and deficits. Finally, we find that the main results obtained in the benchmark model also
hold in the extensions with multiple shocks to the government spending to real GDP ratio.
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Appendix A

A.1. Solving the FI-RE TSH model

The Lagrangian function for the optimization problem specified in (1) and (3) can be written as

L¼ E0 ∑
1

t ¼ 0
βt �1

2
ðτtþφÞ2�λt Rbtþgt�τt� 1þnð Þbtþ1

 �� �� �

The FOCs with respect to τt and btþ1 are

�ðτtþφÞþλt ¼ 0

ð1þnÞλt�βREt ½λtþ1� ¼ 0

which means that

τt ¼
βR
1þn

Et τtþ1
� �þφ

βR
1þn

�1
� �

: ð52Þ

When we impose the condition that βR=ð1þnÞ ¼ 1, (52) leads to the well-known random walk result of tax rates,
τt ¼ Et ½τtþ1�.

The intertemporal budget constraint can be written as

∑
1

j ¼ 0

1þn
R

� �j

gtþ jþRbt ¼ ∑
1

j ¼ 0

1þn
R

� �j

τtþ j
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Taking conditional expectations on both sides gives

Et Rbtþ ∑
1

j ¼ 0

1þn
R

� �j

gtþ j

" #
¼ ∑

1

j ¼ 0

1þn
R

� �j

Et τtþ j
� �

¼ ∑
1

j ¼ 0

1þn
R

� �j 1þn
βR

� �j
" #

τt ¼
1

1�ð1þnÞ2=ðβR2Þ
τt

and the optimal tax rate can be written as

τt ¼ 1�ð1þnÞ2
βR2

 !
Et Rbtþ ∑

1

j ¼ 0

1þn
R

� �j

gtþ j

" #
:

In the case in which n¼0 and βR¼ 1,

τt ¼ R�1ð ÞEt btþ
1
R

∑
1

j ¼ 0

1
R

� �j

gtþ j

" #

After defining ht ¼ Et ½btþð1=RÞ∑1
j ¼ 0ðð1þnÞ=RÞjgtþ j� and combining this expression with the original budget constraint, we

obtain the following budget constraint:

1þnð Þhtþ1 ¼ Rht�τtþζtþ1 or htþ1 ¼
R

1þn
ht�

1
1þn

τtþ
1

1þn
ζtþ1;

where ζtþ1 ¼∑1
j ¼ 0ðð1þnÞ=RÞjþ1ðEtþ1�EtÞ½gtþ1þ j�.

A.2. The equivalence between the univariate and multivariate RB models

The solution methods used to solve the univariate model and the standard multivariate model are different in the sense
that the expectation operator applies to different objects. In the univariate model, the evil agent distorts the transition
equation of ht which by itself includes the expectation on future income, whereas in the multivariate model the evil agent
distorts the government spending process ðgtÞ. Note that in this case the evil agent does not distort the law of motion for bt
because it is a predetermined variable with no uncertainty given τt. Specifically, the following compact matrix equation can
be used to characterize the dynamics of ðb; gÞ:

btþ1

gtþ1

" #
¼

~R 1
1þn

0 ρg

" #
bt
gt

" #
�

1
1þn

0

" #
τtþ

0
1

� �
ϵtþ1; ð53Þ

where we ignore the constant term as it does not affect the stochastic properties of the model. Assume that (53) is the
approximation model. The corresponding distortion model is

btþ1

gtþ1

" #
¼

~R 1
1þn

0 ρg

" #
bt
gt

" #
�

1
1þn

0

" #
τtþ

0
1

� �
ϵtþ1þωνtð Þ: ð54Þ

The robust control problem can thus be written as follows:

v bt ; gt
 �¼min

τt
max
νt

�1
2
τ2t þβ ϑν2t þEt v btþ1; gtþ1

 �� �� �� �
; ð55Þ
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Fig. 10. The equivalence between the multivariate and univariate models.
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subject to (54). Since there is no closed-form solution for this problem, we solve this model numerically. Following the
standard procedure proposed in Hansen and Sargent (2007, Chapters 2 and 10), we can solve this robust linear-quadratic
regulator numerically and obtain a linear function of τt in terms of ðbt ; gtÞ:

τt ¼MPT ðbtþλgtÞ;

where MPT is the marginal propensity to tax, λ measures the relative importance of government spending ðgÞ and
government debts ðbÞ in determining optimal taxation. From (55), it is clear that in the multivariate model RB might affect
the relative importance of the two state variables on the taxation function, while in the univariate model the relative
importance of the two effects are fixed in order to reduce the state space. (i.e., ht ¼ btþð1=ð1þnÞð ~R�ρgÞÞgtþð1�ρgÞg=
ð1þnÞð ~R�ρgÞð ~R�1Þ.) We now show that numerically the two modeling strategies can lead to the identical decision rules.
Note that in our univariate model, after introducing the new state variable, the consumption function under RB can be
written as

τt ¼MPTht ; ð56Þ

where we ignore the constant term; MPT¼ ð1þnÞð ~R�1Þ=ð1�ΣÞ, ht ¼ btþð1=ð1þnÞð ~R�ρgÞÞgt , and Σ ¼ ~Rω2
ζ=ð2ϑÞ. Fig. 10

illustrates how the marginal propensity of taxation ðMPTÞ is affected by the degree of robustness in both the multivariate
and univariate models when we set ~R ¼ 1:01, n¼ 3%, ρg ¼ 0:6, and ω2

ϵ ¼ 1. The figure clearly shows that the two models
deliver the identical MPT for various values of ϑ. For example, the multivariate model predicts that

τt ¼ 0:0182btþ0:0444gt ;

when 1=ϑ¼ 0:15, whereas the univariate model predicts that

τt ¼ 0:0182ht ¼ 0:0182ðbtþ2:4390gtÞ ¼ 0:0182btþ0:0444gt

for the same value of ϑ (i.e., Σ ¼ 0:4337). In addition, we find that the relative importance of government spending and
government debt is also identical in the two models. (See Fig. 11 for an illustration.)
A.3. Deriving the standard errors for the VAR test

In this appendix we derive expressions for the standard errors of the estimators for λ1 and λ2 used in the VAR test of
Section 4.4. Let d� 1= ~R,

A�
a11 a12
a21 a22

" #
;

and I be the 2�2 identify matrix. Define

Λ� λ1 λ2
h i

¼ � 1 0
� �

AdðI�dAÞ�1: ð57Þ

Define

B� ðI�dAÞ�1 ¼
b11 b12
b21 b22

" #
;
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we have BðI�dAÞ ¼ I, and we can solve for the coefficients of the B matrix:

b11 ¼
1�da22

ð1�da11Þð1�da22Þ�d2a12a21
;

b12 ¼
da12

ð1�da11Þð1�da22Þ�d2a12a21
;

b21 ¼
da21

ð1�da11Þð1�da22Þ�d2a12a21
;

b22 ¼
1�da11

ð1�da11Þð1�da22Þ�d2a12a21
:

Now we substitute the B matrix into Eq. (57), obtaining

λ1 ¼ �d
a11ð1�da22Þþda12a21

ð1�da11Þð1�da22Þ�d2a12a21
� �d

c1
c2
;

λ2 ¼ � da12
ð1�da11Þð1�da22Þ�d2a12a21

� � f 1
f 2
:

Let the 2�4 matrix G denote the gradient of Λ with respect to the vectorization of VAR coefficient matrix A:
vecðAÞ � ½a11 a21 a12 a22�T , where Gði; jÞ ¼ ∂λi=∂vecðAÞj (i¼1,2; j¼ 1;2;3;4) and G is given by

G11 ¼ � d
c2

1�da22ð Þ 1�λ1
 �

; G12 ¼ �d2a12
c2

1þd
c1
c2

� �
;

G13 ¼ �d2a21
c2

1þd
c1
c2

� �
; G14 ¼

d2

c2
a11�

c1
c2

1�da11ð Þ
� �

;

G21 ¼
d
f 2
λ2 1�da22ð Þ; G22 ¼

d2

f 2
λ2a12;

G23 ¼ � d
f 2

1�λ2da21
 �

; G24 ¼
d
f 2
λ2 1�da11ð Þ:

Finally, the covariance matrix of Λ is computed as

varðΛÞ ¼ G varðAÞGT ;

where varðAÞ is the covariance matrix (4�4) of vecðAÞ.

A.4. Solving the robust TSH model

To solve the Bellman equation (17), we conjecture that

vðhtÞ ¼ �Ah2t �Bht�C;

where A, B, and C are undetermined coefficients. Substituting this guessed value function into the Bellman equation gives

�Ah2t �Bht�C ¼max
τt

min
νt

�1
2
ðτtþφÞ2þβEt ϑν2t �Ah2

tþ1�Bhtþ1�C
h i� �

; ð58Þ

where htþ1 ¼ ~Rht�ð1=ð1þnÞÞτtþ ~ζ tþ1þω ~ζ νt . We can do the min and max operations in any order, so we choose to do the
minimization first. The first-order condition for νt is

2ϑνt�2AEt ~Rht�
1

1þn
τtþω ~ζ νt

� �
ω ~ζ �Bω ~ζ ¼ 0;

which means that

νt ¼
Bþ2A ~Rht�

1
1þn

τt
� �
2ðϑ�Aω2

~ζ
Þ ω ~ζ : ð59Þ

Substituting (59) back into (58) gives

�Ah2t �Bht�C ¼max
τt

�1
2
ðτtþφÞ2þβEt ϑ

Bþ2A ~Rht�
1

1þn
τt

� �

2 ϑ�Aω2
~ζ

� 	 ω ~ζ

2
664

3
775
2

�Ah2tþ1�Bhtþ1�C

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;
;
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The first-order condition for τt is

� τtþφ
 ��2βϑ

1
1þn

Aω ~ζ

ϑ�Aω2
~ζ

νtþ2βA
1

1þn
1þ

Aω2
~ζ

ϑ�Aω2
~ζ

0
@

1
A ~Rht�

1
1þn

τtþω ~ζ νt
� �

þβB
1

1þn
1þ

Aω2
~ζ

ϑ�Aω2
~ζ

0
@

1
A¼ 0:

Using the solution for νt the solution for taxation is

τt ¼
2β ~RA

ð1þnÞ�ð1þnÞAω2
~ζ
=ϑþ2βA=ð1þnÞhtþ

�ð1þnÞ 1�Aω2
~ζ
=ϑ

� 	
φþβB

ð1þnÞ�ð1þnÞAω2
~ζ
=ϑþ2βA=ð1þnÞ: ð60Þ

Substituting the above expressions into the Bellman equation gives

�Ah2
t �Bht�C ¼ �1

2
2β ~RA

ð1þnÞ�ð1þnÞAω2
~ζ
=ϑþ2βA=ð1þnÞhtþ

βBþ2βφA=ð1þnÞ
ð1þnÞ�ð1þnÞAω2

~ζ
=ϑþ2βA=ð1þnÞ

2
4

3
52

þ
βϑω2

~ζ

½2ðϑ�Aω2
~ζ
Þ�2

2A ~R
ð1þnÞ2 �ð1þnÞ2Aω2

~ζ
=ϑ

ð1þnÞ2 �ð1þnÞ2Aω2
~ζ
=ϑþ2βA

� �
ht

þ
ðð1þnÞ2Bþ2Að1þnÞφÞð1�Aω2

~ζ
=ϑÞ

ð1þnÞ2 �ð1þnÞ2Aω2
~ζ
=ϑþ2βA

8>>>><
>>>>:

9>>>>=
>>>>;

2

�βA

ð1þnÞ2 ~R
ð1þnÞ2 �ð1þnÞ2Aω2

~ζ
=ϑþ2βA

� �2
h2t �

ð1þnÞ2 ~R ½�2ð1þnÞφþ2βB�Bω2
~ζ
=ϑð1þnÞ2 �

½ð1þnÞ2 �ð1þnÞ2Aω2
~ζ
=ϑþ2βA�2 ht

þ
�2ð1þnÞφþ2βB�Bω2

~ζ
=ϑð1þnÞ2

2½ð1þnÞ2 �ð1þnÞ2Aω2
~ζ
=ϑþ2βA� þω2

~ζ

8>>>><
>>>>:

9>>>>=
>>>>;

�βB
ð1þnÞ2 ~R

ð1þnÞ2�ð1þnÞ2Aω2
~ζ
=ϑþ2βA

ht�
�2ð1þnÞφþ2βB�Bω2

~ζ
=ϑð1þnÞ2

2ðð1þnÞ2�ð1þnÞ2Aω2
~ζ
=ϑþ2βAÞ

2
4

3
5�βC:

Given β ~R ¼ 1, collecting and matching terms, the constant coefficients turn out to be

A¼ ð1þnÞ2 ~Rð ~R�1Þ
2�ð1þnÞ2 ~Rω2

~ζ
=ϑ

; ð61Þ

B¼ ð1þnÞφ ~R

1�ð1þnÞ2 ~Rω2
~ζ
=ð2ϑÞ

: ð62Þ

Substituting (61) and (62) into (60) yields the taxation function (18) in the text.
We impose parameter restrictions so that A40, implying that the value function is concave; these restrictions amount to

requiring that ϑ not be too small and are shown in the text to imply Σo1.

A.5. Deriving the stochastic properties of optimal taxation and government debts under RB

A.5.1. Deriving the volatility of the change in taxes
Given (25), τtþ1 ¼ ρhτtþðð ~R�1Þ=ð1�ΣÞÞζtþ1�ð ~R�1ÞΣφ=ð1�ΣÞ, the variance of Δτtþ1 can be written as

var Δτtþ1
 �¼ var ρh�1

 �
τtþ

~R�1
1�Σ

ζtþ1

 !

¼ ð1�ρhÞ2
~R�1
1�Σ

 !2 ω2
ζ

1�ρ2
h

þ
~R�1
1�Σ

 !2

ω2
ζ ¼

2
1þρh

~R�1
1�Σ

 !2

ω2
ζ :

Using the definition of the relative volatility of the change in taxes and government spending, we can obtain (27) in the text.

A.5.2. Deriving the correlation between government debts and spending
Given (20), def t ¼ ðð1�ρgÞ=ð1þnÞð ~R�ρgÞÞðgt�gÞ�ð1�ρhÞht�ð1=ð1þnÞÞΣφ=ð1�ΣÞ,

var def t
 �¼ var

1
1þn

1�ρg

~R�ρg

gt� 1�ρh

 �
ht

 !

¼ 1�ρg

ð1þnÞð ~R�ρgÞ

 !2

var gt
 �þð1�ρhÞ2 var htð Þ�2

ð1�ρgÞð1�ρhÞ
ð1þnÞð ~R�ρgÞ

cov gt ;ht
 �

¼ 1�ρg

~R�ρg

 !2ð ~R�ρgÞ2ω2
~ζ

1�ρ2
g

þð1�ρhÞ2
ω2

~ζ

1�ρ2
h

�2
ð1�ρgÞð1�ρhÞ

~R�ρg

ð ~R�ρgÞω2
~ζ

1�ρgρh
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¼ 1�ρg

1þρg
þ1�ρh

1þρh
�2

ð1�ρhÞð1�ρgÞ
1�ρgρh

" #
ω2

~ζ
; ð63Þ

where we use the facts that ρh ¼ 1�Σð ~R�1Þ=ð1�ΣÞ, varðgtÞ ¼ω2=ð1�ρ2
g Þ ¼ ð ~R�ρgÞ2ω2

ζ=ð1�ρ2
g Þ, varðhtÞ ¼ω2

~ζ
=ð1�ρ2

hÞ, and
covðgt ;htÞ ¼ ð1þnÞð ~R�ρgÞω2

~ζ
=ð1�ρgρhÞ. Using (20) and (10), the covariance between the government debt and spending is

cov def t ; gt
 �¼ cov

1�ρg

ð1þnÞð ~R�ρgÞ
gt� 1�ρh

 �
ht ; gt

 !

¼ 1�ρg

ð1þnÞ ~R�ρg

� 	 var gt
 �� 1�ρh

 �
cov ht ; gt

 �

¼ 1�ρg

ð1þnÞ ~R�ρg

� 	 ð ~R�ρgÞ2
1�ρ2

g
ω2
ζ�

ð1þnÞ ~R�ρg

� 	
ð1�ρhÞ

1�ρgρh
ω2

~ζ

¼ 1þnð Þ ~R�ρg

� 	 1
1þρg

� 1�ρh

1�ρgρh

 !
ω2

~ζ
: ð64Þ

Using (63) and (64), the correlation between the current account and net income can be written as (28) in the text.

Appendix B. Supplementary data

Supplementary data associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.jedc.
2014.06.004.
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