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1 Introduction

Finance is littered with puzzles; one prominent and persistent puzzle is the observation by Shiller

(1981) that aggregate stock prices are too volatile relative to the expected present value of divi-

dends. Several studies have identified resolutions to the puzzle, including nonstandard preferences

and nonstationary dividend processes, that argue the issue is with the inputs to the expectations

operator for future dividends.1 An alternative approach is the dispersed information environment

of Kasa, Walker, and Whiteman (2014). In their model the issue is that the wrong expectations

operator is used – the relevant expected value is taken using the average expectations operator,

which in general does not satisfy a law of iterated expectations.

Another aspect of the equity volatility puzzle is that macroeconomic quantities – aggregate out-

put, consumption, and dividends – are too smooth relative to equity prices. In actual economies all

these quantities are endogenous and respond to the same shocks that drive equity price movements.

The goal of our paper is to understand whether a production-based asset pricing model is able to

deliver both smooth aggregate quantities and volatile equity prices, without introducing complex

exogenous shocks or nonstandard preferences. We provide a positive answer to this question by

developing a model of a dispersed-information island economy along the lines of Lorenzoni (2009)

and Angeletos and La’O (2010, 2013), extended to include a centralized stock market.

Our model consists of a continuum of islands, each populated by a continuum of identical

households and firms. Island-specific productivity consists of an aggregate and an idiosyncratic

component. However, agents on each island can not separately observe each component of the

productivity, only their sum. Households consume an aggregate of island-specific goods and trade

shares in an aggregate equity market.

Maintaining dynamic and persistent information frictions is crucial for our results. Such frictions

often lead to the technical problem of “forecasting the forecasts of others” (Townsend (1983)). That

is, the state space for the model solution contains an infinite number of higher-order expectations

so that the time-domain methods become largely intractable. Therefore we use frequency-domain

methods to circumvent this problem; under a special assumption, we provide analytical character-

ization of the equilibrium. For general cases, we develop a numerical method to solve the model.2

Our first main result is that higher-order expectations under dispersed information always re-

duce the volatility of business cycle fluctuations in the real economy, provided production decisions

display strategic complementarity. We establish this result by showing that the volatility of aggre-

gate output under full information gives an upper bound for that under dispersed information. The

1See Campbell (1999) and Cochrane (2011) for surveys.
2Hansen and Sargent (1980), Futia (1981), Whiteman (1983, 1985), and Taub (1989) are among the first generation

of research that employ these methods. Recent developments include Kasa (2000), Walker (2007), Bernhardt, Seiler,
and Taub (2010), Makarov and Rytchkov (2012), Kasa, Walker, and Whiteman (2014), Rondina and Walker (2015),
Tan and Walker (2015), and Huo and Takayama (2015).
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key assumption for this result is that agents in the economy are informationally small in the sense

that there is a continuum of agents with private information and the idiosyncratic shock compo-

nent of the private information washes out in the aggregate. Since aggregate output depends on

the average forecast of aggregate demand, there is no need for any agent to forecast the behavior of

any other particular agent’s action to predict aggregate output. The slow learning effect brought in

by signal extraction leads to dampened fluctuations, while the speculative effect of the forecasting

the forecasts of others in models with finitely many agents completely vanishes due to the law of

large numbers.

Our second main result is that as the idiosyncratic TFP volatility approaches infinity, an en-

dogenous unit root arises in the stochastic processes of investors’ shareholdings and the aggregate

equity price. Thus the equity price becomes infinitely volatile as the idiosyncratic TFP volatility

approaches infinity. This result is the most important contribution of our paper and arises despite

the fact that the aggregate equity price only respond to aggregate shocks, not idiosyncratic shocks.

The key is that the response coefficient endogenously varies with the idiosyncratic TFP volatility

– as idiosyncratic volatility rises, a feedback loop between the idiosyncratic shareholdings and the

aggregate equity price volatility emerges and raises the sensitivity of equity prices to aggregate

shocks. Our theoretical result has an appealing quantitative implication in that we can choose a

relatively low volatility of aggregate shocks to match the low volatility of aggregate consumption

and choose a relatively high volatility of idiosyncratic shocks to match the high volatility of equity

prices as in the data.

In our model, the equity price is equal to the sum of the discounted average forecast of the

individual stochastic discount factors (SDFs) and the discounted average forecast of future divi-

dends. Due to dispersed information, the average forecast of the individual SDFs is not equal to

the forecast of the average SDFs. Thus the variation in the distribution of individual consumption

matters for equity prices. Since individual shareholdings and labor supply affect individual con-

sumption and SDFs, their responses to idiosyncratic shocks affect equity volatility. As a result the

effect on the equity price is different from the effect on aggregate output, which depends on the

average forecast of aggregate demand instead of individual behavior.

Agents on each island observe their island-specific TFP and the equity price. Suppose the

volatility of the idiosyncratic component of TFP is arbitraily large and agents only observe the

island-specific TFP (that is, for now they ignore the price when filtering). If aggregate productivity

increases, each agent misinterprets this change in TFP as an increase in idiosyncratic productivity.

As a result, the agent increases his demand for assets while simultaneously believing some other

agent will decrease his demand by the same amount; that is, he does not believe the price will

change. As a result, each agent acts as if the source of the shock is known; the resulting process

for shareholding approximates the process under full information, in which individual consumption
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and shareholdings follow a random walk as in Graham and Wright (2010). Since each agents’

shareholdings follows a random walk, the aggregate demand for shares would have a unit root. But

the total supply of asset is constant, so the equity price must have a unit root. The correlated

estimation errors under dispersed information cause the permanent shifts in shareholdings to be

transmitted into permanent shifts in equity prices.

In the preceding paragraph, since all agents make this same error, the equity price must rise

to clear the market. If agents observe the price change, they can infer that the shock must have

been aggregate, not idiosyncratic. To see why this inference eliminates the unit root in prices,

consider the effect of a rising price on asset demand. As the price rises, agents move along their

demand curve as shares become more expensive (a standard wealth effect). But also agents know

that aggregate productivity is mean-reverting, so they expect future prices to fall relative to the

current price, inducing a decline in asset demand since they will be cheaper to purchase tomorrow.

The result is that the price does not inherit the unit root from individual shareholdings, and the

true state is revealed.

To prevent information from fully revealing the state, we follow Hassan and Mertens (2017)

and assume that investors are near rational and make correlated forecast errors. Now consider the

agent’s learning process in response to the rising price; agents will assign some weight to aggregate

productivity rising and some to the correlated error rising. The difference is that each agent believes

the error does not apply to him, only to everyone else; as a result, they individually believe that

the price tomorrow will be higher, increasing current demand. The result is that the price does not

mean revert and again inherits the unit root from idiosyncratic shareholdings.

Note that the previous result is not simply a result of adding more unknown states than signals;

while both lead to forecasting errors, only the near-rational shock leads to the right kind of error.

For example, suppose we introduce an asset supply/noise trader shock, as is common in the noisy

rational expectations literature. In that case, the rising price will be attributed partly to a rise in

aggregate TFP and partly to a fall in asset supply. But if both processes are stationary, they both

imply that future prices will fall relative to current prices and reduce asset demand, eliminating

the confusion effect and the unit root.

We establish our preceding results by assuming that the common forecast error follows a special

process so that the equilibrium can be characterized by analytic rational functions in the frequency

domain, which are ARMA (p,q) processes in the time domain.3 If we relax this assumption, the

equilibrium cannot be characterized by rational functions as first pointed out by Makarov and

Rytchkov (2012), so we resort to numerical methods using rational functions as approximations.

Our numerical solutions show that, unlike output volatility, equity volatility increases quickly with

idiosyncratic TFP volatility even for a very small common forecast error. Using calibrated param-

3Rondina and Walker (2018) refer to this assumption as the ”Taub trick.”

4



eter values for aggregate and idiosyncratic TFP volatilities, we show that our model can match

both the output and equity price volatilities in the data.

From a technical point of view, we apply the two-step spectral factorization method from

Rozanov (1967) to solve economic problems with non-square signal systems, which is of independent

interest. We first derive the Wold representation and then apply the Wiener-Hopf prediction

formula to compute conditional expectations. The rest of our solution method follows the classical

approach to solving linear rational expectations models (e.g., Whiteman (1983), Kasa, Walker,

and Whiteman (2014), Rondina and Walker (2015), and Tan and Walker (2015)). Our procedure

extends the existing literature on models with private information to non-square environments with

more underlying shocks than signals. The restriction that the numbers of signals and shocks are the

same is quite limited: given a restriction to square systems, the equilibrium will be fully revealing

unless there is non-invertibility from signals to shocks.

Our approach complements the state-space approach applied by Huo and Takayama (2015) to

deal with non-square signal systems. Their approach is numerically convenient since it can be solved

using fast Ricatti equation methods and the Kalman filter. One drawback is that it is difficult to

find an analytical solution for high-dimensional systems because the Ricatti equation typically does

not admit an analytical solution. In contrast, our approach can deliver analytical solutions in a

wider range of models and facilitate the numerical computation.

Our paper is related to two strands of the literature. The first strand is on asset pricing under

dispersed information (e.g., Bacchetta and van Wincoop (2008), Kasa, Walker, and Whiteman

(2014), and Rondina and Walker (2015)).4 Bacchetta and van Wincoop (2008) argue that equity

volatility is reduced under dispersed information and higher-order expectations. Kasa, Walker, and

Whiteman (2014) show that equity volatility can be excessively high in a model with two types

of agents. Their intuition is in a similar spirit of Harrison and Kreps (1978) and Scheinkman and

Xiong (2003), in which higher-order beliefs lead to speculative bubbles. Our paper differs from this

literature in three important ways. First, in our environment with a continuum of informationally

small agents, higher-order beliefs do not lead to high volatilities per se. In fact, they dampen

aggregate output volatility rather than amplifying it. It is the higher-order beliefs about the average

forecast of individual SDFs that generates massive fluctuations in the financial market. Second,

all these papers study endowment economies in which consumption and dividends are exogenously

given. They cannot address the issue of why macroeconomic quantities are too smooth relative to

equity prices. Finally, many papers in this literature assume constant exogenous SDFs, whereas

our SDFs are endogenous, heterogeneous, and time-varying; as noted already, this feature is key

for our result.

4Our paper is also related to the literature on noisy rational expectations models, which is too large for us to
cite all related papers. Recent contributions include Tsyvinski, Mukherji, and Hellwig (2006), Bernhardt, Seiler, and
Taub (2010), Albagli, Hellwig and Tsyvinski (2015), and Albuquerque and Miao (2015).
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A related result can be found in Bergemann, Heumann, and Morris (2015), who use a beauty-

contest model of global games to show that aggregate volatility can increase without bound as

idiosyncratic volatility becomes larger; the key is that the authors allow the signal structure (that

is, the weights on the unknown states in the signal) to be chosen optimally in order to maximize

volatility. In our two-period model, we show that idiosyncratic shocks only have a bounded effect

on aggregate volatility as the idiosyncratic volatility only shows up in signal-to-noise ratio assuming

weight is exogenous fixed in the signal (equal weights in island-specific productivity).

Our paper is also related to the large literature that incorporates dispersed information into

macroeconomics.5 In particular, Angeletos and La’o (2013) informally argue that dispersed infor-

mation may dampen output volatility. One of our contributions is to formally prove this result

under general assumptions in the frequency domain.

Three recent papers consider both business cycles and asset prices. Benhabib, Liu, and Wang

(2016) build an overlapping-generations model to show that exuberant financial market sentiments

of high output and high demand for capital increase the price of capital, which signals strong

fundamentals of the economy to the real side and consequently leads to an actual boom in real

output and employment. Hassan and Mertens (2014, 2017) introduce dispersed information into

dynamic stochastic general equilibrium models with physical capital. Hassan and Mertens (2014)

introduce noise traders to prevent equilibrium from fully revealing the state, while Hassan and

Mertens (2017) replace noise traders with near rational traders who make small correlated errors.

As we noted above, common forecast errors play an important role in our paper. While Hassan

and Mertens (2017) focus on the welfare implications of the near-rational behavior, we focus on the

output and equity volatilities. In their model, the equity price is mainly driven by the near-rational

errors, while in our model aggregate TFP shocks play a dominant role .

2 Basic Intuition

We use a simple two-period model of an endowment economy to illustrate the basic intuition behind

our analysis. There is a continuum of agents indexed by i ∈ I = [0, 1] who trade a single stock

with a unit supply in period 1. The stock pays random dividends D in period 2. Each agent i is

endowed with one unit of the stock and random labor income Li in period 1. He derives utility

from consumption Ci1 and Ci2 in the two periods according to the function

Ei

[
C1−γ
i1

1− γ
+ β

C1−γ
i2

1− γ

]
,

where Ei denotes the subjective expectation operator given agent i’s information, β ∈ (0, 1) is the

subjective discount factor, and γ is inverse of intertemporal elasticity of substitution/coefficient of

5See Angeletos and Lian (2016) for a survey.
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relative risk aversion. His budget constraints are given by

Ci1 +QSi = Q+ Li, Ci2 = DSi,

where Q and Si denote the stock price and shareholdings, respectively.

Dividends and labor income satisfy

logD = log D̄ + xdεa, logLi = log L̄+ xlεi,

where D̄, xd, L̄, and xl are exogenous constants, and εa and εi are independent random normal

variables with means zero and variances σ2a and σ2i . The labor income shock is purely idiosyncratic

such that
∫
I ǫidi = 0.

At the beginning of period 1, each agent i receives an exogenous signal xi = ǫa + ǫi, but does

not observe ǫa and ǫi separately. Agents do not communicate their signals to each other. Based on

his private signal xi and the equity price Q, each agent i trades on the stock market. At the end

of period 1, labor income realizes and agent chooses consumption Ci1. At the beginning of period

2, the random labor income and dividends are realized and agent i chooses consumption Ci2 out of

dividend income. In equilibrium
∫
I Sidi = 1. It is straightforward to show that the deterministic

equilibrium when ǫa = ǫi = 0 is given by

S̄i = 1, C̄i1 = L̄, C̄i2 = D̄, Q̄ = β
(
L̄/D̄

)γ
D̄.

In the stochastic case agent i’ utility maximization leads to the Euler equation

Q = Ei [MiD] .

where Mi = β (Ci1/Ci2)
γ denotes the stochastic discount factor (SDF). Following Hassan and

Mertens (2017), each agent makes a small error when forming his expectation. Specifically, let

Ei (·) = Ei (·)Ui,

where Ei denotes the rational expectation operator conditional on agent i’s information {xi, Q}

and Ui is a small exogenous error that shifts his conditional expectations. Assume that

logUi = u+ vi,

where u and vi are independent normal random variables with means zero and variances σ2u and

σ2v. Here u represents aggregate errors and vi represents idiosyncratic errors satisfying
∫
I vidi = 0.

When Ui = 1 for all i, agents have full rational expectations.

Introducing near rational forecast errors in the model injects additional noise into the equity

price, which prevents information from fully revealing the state. In the literature, there are many
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candidate shocks available to serve this purpose, e.g., a noise trader shock to the asset supply.

Small deviations from the optimal forecasts will play an important role in the dynamic setting

where interactions between the stock price and trading behavior becomes the key to understanding

stock price fluctuations.

Now we log-linearize the stochastic equilibrium around the deterministic equilibrium and use a

lower case variable to denote its log deviation from its deterministic equilibrium value. We then

obtain the log-linearized Euler equation

q = Ei[d] + Ei[mi] + u+ vi, mi = γ(ci1 − ci2). (1)

Next we substitute the log-linearized budget constraints into the SDF and use the Euler equation

to derive the log-linearized trading strategy

si =
Ei[(1− γ)d]− q + u+ vi

γ(1 + Q̄/L̄)
+

Ei[li]

1 + Q̄/L̄
. (2)

This expression is akin to Merton’s (1969) result: the trading strategy consists of a mean-variance

efficient component and a hedging component against idiosyncratic labor income.

Aggregating equation (2) over i ∈ [0, 1] and using the log-linearized market-clearing condition
∫
I sidi = 0, we obtain

q = (1− γ) Ē[d] + γĒ[li] + u, (3)

where Ē [·] ≡
∫
Ei [·] di denotes the average expectation operator.

To solve the model, we conjecture that the equity price takes the form:

q = qaǫa + quu, (4)

where qa and qu are nonzero constants to be determined. Then the information set can be nor-

malized to {q̂, xi}, where q̂ = ǫa +
qu
qa
u ≡ ǫa + û. The presence of common forecast errors prevents

equity prices to fully reveal the aggregate dividend information.

By the Gaussian projection theorem,

Ei[d] = xd(τ q q̂ + τxxi) =⇒ Ē[d] = τ qxd(ǫa + û) + τxxdǫa, (5)

where the noise-to-signal ratios are defined as

τ q =
σ2aσ

2
i

g2(σ2aσ
2
u + σ2uσ

2
i ) + σ2aσ

2
i

∈ (0, 1), τx =
g2σ2aσ

2
u

g2(σ2aσ
2
u + σ2uσ

2
i ) + σ2aσ

2
i

∈ (0, 1),

and g ≡ qu/qa will be determined in the equilibrium.

A direct comparison of the two expectations in (5) implies that, if agents are informationally

small, the variance of the market average forecast of aggregate fundamentals is smaller than that of

the individual forecast in that V ar
(
Ē[d]

)
< V ar (Ei[d]) . It is also easy to check that V ar (Ei[d]) <
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V ar (d) . We will show that this dampening result applies to our general dynamic model when

aggregate fundamentals are endogenous (see Lemma 2). An immediate implication is that dispersed

information does not generate large equity price volatility if γ = 0 (agents are risk neutral). In this

case it follows from (3) that equity volatility is bounded by the dividend volatility given the small

variations in forecast errors u. Thus we need risk aversion γ > 0 and hence volatile SDFs.

Consider the second term on the right side of equation (3), which comes from the average

forecast of individual SDFs. If agents can communicate with each other so that information is

homogenous, this term will vanish: Ē[li] = Ei[
∫
I lidi] = 0. Under dispersed information without

communication, we have

Ei[li] = xl [−τ q q̂ + (1− τx)xi] =⇒ Ē[li] = −τqxl(ǫa + û) + (1− τx)xlǫa. (6)

A high equity price q̂ may be due to a high dividend shock ǫa. Agent i may believe the labor income

shock εi to be low given a fixed signal xi = ǫa + ǫi, which explains the negative coefficient of q̂ in

(6). Thus learning from prices dampens the effect of idiosyncratic shocks.

Plugging (5) and (6) into (3) yields

q = [(1− γ)xdτa + γxlτ i] ǫa + [(1− γ)gτ qxd − γgτ qxl + 1] u, (7)

where τa = τ q + τx ∈ (0, 1) and τ i = 1 − (τ q + τx). Matching coefficients in (4) yields a cubic

equation for g :

[
(1− γ)xdσ

2
aσ

2
u + γxl(σ

2
aσ

2
u + σ2uσ

2
i )
]
g3 −

(
σ2aσ

2
u + σ2uσ

2
i

)
g2 + γxlσ

2
aσ

2
i g − σ2aσ

2
i = 0.

Substituting (7) into (2) yields the equilibrium trading strategy

si =
(1− γ)xdτx + γxl(1− τx)

γ(1 + Q̄/L̄)
ǫi +

1

γ(1 + Q̄/L̄)
vi,

which only responds to idiosyncratic labor income shocks and idiosyncratic forecast errors. The

presence of idiosyncratic forecast errors prevents shareholdings from fully revealing the idiosyncratic

labor income realization.

Equation (7) shows that small common errors in forecasting leads to non-fundamental deviations

in the equilibrium stock price, as emphasized by Hassan and Mertens (2017). They also show that

small common errors in household expectations weaken the stock market’s capacity to aggregate

dispersed information. We argue that their results rely on the average forecast of the aggregate

shock, whose effect corresponds to the response coefficient τa in (7). In contrast, our model features

uninsured idiosyncratic labor income shocks and hence the equilibrium equity price also depends

on the average forecast of these shocks. This effect corresponds to the response coefficient τ i in (7).

To relate this result to Hassan and Mertens (2017), we consider the impact of σi on τa and τ i,

illustrated in Figure 1. The figure shows that τa decreases with σi as in Hassan and Mertens (2017).
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However, τ i increases with σi. Intuitively, if agents are unable to distinguish between aggregate and

idiosyncratic shocks and make errors in forecasting, the equilibrium price is not fully revealing and

agents have to solve a signal extraction problem. If σi is higher, the agents put a larger weight

on the idiosyncratic labor income shock and a smaller weight on the aggregate dividend shock.

However, the additional volatility due to the large idiosyncratic shock only has a limited effect

since τ i ∈ (0, 1). Even if idiosyncratic shocks are arbitrarily volatile, aggregation cancels them

out and τ i approaches the upper bound of one. Unless we assume a very high value of xl, the

quantitative effect on equity prices will be small.

In the next section we extend this simple example to an infinite-horizon setup. We will endoge-

nize labor income and dividends by introducing the production side of the economy so that xd and

xl are endogenous. In the infinite-horizon model individual SDFs depend on future individual con-

sumption which in turn depends on future trading strategies and labor income. Thus equity prices

depend on the higher-order beliefs about the average forecasts of future individual shareholdings

and labor income. Interpreted through the lens of the two-period model, this dynamic interac-

tion makes shareholdings and equity prices highly persistent and generates a positive connection

between σi and xl that causes equity volatility to increase without bound as σi → ∞.

3 Model

We consider a variation of the classical dispersed-information (real) business cycle models of Loren-

zoni (2009) and Angeletos and La’O (2010, 2013). The economy consists of a continuum of islands

with a Lebesgue measure over I = [0, 1]. Information is dispersed across islands. There is a

representative household and a representative firm on each island. Each firm is monopolistically

competitive and produces a specialized good using labor input only, while households have Dixit-

Stiglitz preferences over varieties. Labor is immobile across islands, but consumption goods of all

varieties are freely mobile. The equity market is operated through a mutual fund which owns the

firms and issues equity shares to households. The stock price therefore reflects the average valuation

of firms in the economy. We normalize the aggregate stock supply to one.

3.1 Households

A representative household on each island i ∈ I derives utility from the composite good consump-

tion {Cit} and labor supply {Nit} according to the utility function of Greenwood, Huffman, and

Hercowitz (1988):

Ei

[
∞∑

t=0

βt log

(
Cit −

N1+φ
it

1 + φ

)]
,
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where Ei denotes household i’s subjective expectation operator, β ∈ (0, 1) , φ > 0,

Cit =

[∫

I
Cit (j)

ς−1
ς dj

] ς
ς−1

,

and Cit (j) denotes the consumption of good j demanded by the household on island i. Here

ς > 1 denotes the inter-island elasticity of substitution that determines the degree of strategic

complementarity.

The household faces the following intertemporal budget constraint

∫

I
Cit (j)Pt (j) dj +QtS

h
it+1 = Sh

it (Qt +Dt) +WitNit, (8)

where Pt (j) , Qt, S
h
it, Dt, and Wit represent the price of good j, the stock price, share holdings,

aggregate dividends, and the wage rate in island i, respectively.

To simplify the forecasting problem, each household i consists of two family members, an

investor and a shopper. They have different information sets and do not communicate with each

other. In each period t the investor’s information set consists of the current and past TFP shocks

Ait, wages Wit, and stock prices Qt. Given this information set, the investor chooses labor supply

and shareholdings. The first-order conditions are given by

Wit = Nφ
it, (9)

Eit [Mit+1 (Qt+1 +Dt+1)] = Qt, (10)

where the SDF Mit+1 is given by

Mit+1 =
β
(
Cit −N1+φ

it / (1 + φ)
)

Cit+1 −N1+φ
it+1/ (1 + φ)

.

Our adopted utility function implies that the labor supply in (9) is independent of Cit and hence

simplifies our analysis, but it is not crucial for our main results (see Appendix A).

Assume that investors are near rational and each investor i’s subjective expectations satisfy

Eit [·] = Eit [·]Uit,

where Eit denotes the rational expectation operator conditional on the investor’s information at

time t and Uit is a small exogenous error that shifts the subjective conditional expectations. Let

Uit satisfy

logUit = ut + vit, (11)

where the aggregate component ut satisfies

ut = u(L)ǫut, (12)
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and the idiosyncratic component satisfies

∫

I
vitdi = 0. (13)

Here u(L) is a square-summable, one-sided lag polynomial and εut and vit are identically and

independently distributed random variables drawn from the normal distributions with means zero

and variances σ2u and σ2v.

The shopper collects dividends Dt and purchases consumption good Cit (j) after observing the

product prices Pt (j) for all j and the aggregate price level Pt. He does not face a forecasting

problem and the first-order condition is

Cit (j) =

[
Pt (j)

Pt

]−ς

Cit, (14)

where the aggregate price index

Pt ≡

[∫

I
Pt (j)

1−ς di

] 1
1−ς

satisfies ∫

I
Cit (j)Pt (j) dj = PtCit.

We normalize the price index Pt to one so that the budget constraint (8) becomes

Cit +QtS
h
it+1 = Sh

it (Qt +Dt) +WitNit. (15)

Aggregating (14) over i ∈ I yields the total demand for good j ∈ [0, 1] ,

Yjt =

∫

I
Cit (j) di = [Pt (j)]

−ς Yt, (16)

where Yt denotes aggregate consumption

Yt =

∫

I
Citdi ≡ Ct. (17)

3.2 Firms

The representative firm in island i ∈ [0, 1] has a production function

Yit = AitNi
α
t , α ∈ (0, 1) , (18)

where Ait satisfies

Ait = At exp (ǫit) . (19)

Here At represents the aggregate component that affects all firms in all islands and ǫit represents

the idiosyncratic component that is independent of At and affects the firm in island i only. Investors
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on island i observe Ait at time t, but cannot distinguish between the aggregate and idiosyncratic

components. Let

logAt = a(L)ǫat, (20)

where ǫat and ǫit are identically and independently distributed over time and drawn from the normal

distributions with means zero and variances σ2a and σ2i , respectively. Here a(L) denotes a one-sided,

square-summable lag polynomial. Moreover, assume that the law of large number (LLN) holds for

ǫit so that ∫

I
ǫitdi = 0. (21)

In each period t the firm’s information set consists of the current and past TFP shocks Ait,

wages Wit, and stock prices Qt. Given this information set it solves the static profit maximization

problem

πit = max
Nit

Eit [Pt (i)]Yit −WitNit

subject to the demand schedule in (16) for j = i. Since the production and labor demand choice is

made before observing the output price Pt (i), the firm needs to form static conditional expectation

about the price Pt (i) given the infinite history of signals. Since Yit and Nit are observable choice

variables, the firm essentially forms conditional expectations about the aggregate demand Yt. Simple

algebra yields the labor demand condition

α

(
1−

1

ς

) Y
(1− 1

ς )
it Eit

[
Y

1
ς

t

]

Nit
=Wit. (22)

For simplicity we assume that firms are fully rational and do not make forecasting errors. Introduc-

ing forecasting errors affects profits πit and hence dividends and stock prices. The firms’ forecasting

errors would therefore play a similar role to the households’ forecasting errors in equation (10).

It follows from equations (18) and (22) that observing the local wage Wit is equivalent to

observing the local productivity shock Ait. Thus we can write the information set in the conditional

expectation operators Eit and Eit as {Xi,t−k}
∞
k=0, where the signal vector is Xit = [Ait, Qt]

⊺ .

3.3 Equilibrium Characterization in the Time Domain

There is one aggregate mutual fund that issues equity shares and collects dividends from individual

islands. The aggregate dividend satisfies Dt =
∫
I πitdi and aggregate output satisfies Yt =

∫
I Yitdi.

The mutual fund distributes the dividend to households. The market-clearing condition for the

stock is given by ∫

I
Sh
it+1 di = 1,∀t (23)
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A competitive equilibrium with dispersed information is characterized by a system of 9 equations

(9), (10), (14), (15), (16), (17), (18), (22), and (23) for 9 variables Wit, Nit, S
h
it, Cit, Cit (j) , Yit,

Pt (j) , Qt, and Yt, where Dt satisfies
∫

I
WitNitdi+Dt = Yt. (24)

This equation follows from aggregating (15) using (17) and (23).

Since the equilibrium system is nonlinear and does not admit an explicit solution, we follow

the standard method in the literature on dispersed information and derive a log-linearized system

(see Appendix A). We use a lower case variable to denote the log deviation from the non-stochastic

steady state. We impose the following assumption on the parameters so that there exists a unique

deterministic steady-state equilibrium.

Assumption 1 The parameter values satisfy α, β ∈ (0, 1) , φ > 0, ς > 1.

We first use (9), (22), and (18) to eliminate Wit and Nit to derive

yit =
1

ξ
ait + θEit [yt] , (25)

and

yit = ait + αnit, (26)

where we define

ξ ≡
1 + φ− α (1− 1/ς)

1 + φ
> 0, θ ≡

α

α+ (1− α+ φ) ς
∈ (0, 1) .

The parameter θ describes the degree of strategic complementarity (see Angeletos and La’O (2013)

and Huo and Takayama (2015)). Aggregating (25) over I = [0, 1], we have

yt =
1

ξ

∫

I
aitdi+ θEit [yt] , (27)

where the average conditional expectation operator is defined as

Et [·] ≡

∫

I
Eit [·] di.

Log-linearizing (10) and (15) yields

qt = Eit [mit+1] + Eit [βqt+1 + (1− β) dt+1] + ut + vit, (28)

where

Eit [mit+1] = α2s
h
it − α1s

h
it+1 + Eit

[
α3s

h
it+2 +∆bit

]
, (29)

and

bit = α4dt + α5nit, ∆bit+1 ≡ bit − bit+1. (30)
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Notice that shit and s
h
it+1 are in agent i’s information set at time t. Unlike the two-period model,

agent i’s Euler equation depends on his future consumption so that his expected SDF depends on

his forecast of his future shareholdings, labor income, and dividends. Using (9) and (24) we obtain

α6dt + α7nt = yt, (31)

where nt =
∫
I nitdi. Here the coefficients α1, α2, ..., α7 are defined in Appendix A. Define the

parameter λs ≡ α2/α1. In Appendix A we show the following lemma, which is important for our

unit root results and also holds for general utility functions.

Lemma 1 Under Assumption 1, α1, α2, ..., α7 > 0, λs ≡ α2/α1 ∈ (1/2, 1) , and α1 = α2 + α3.

Aggregating (28) and using (23) and (29), we show that equity prices satisfy

qt = Et

[
α3s

h
it+2 +∆bit+1

]
+ Et [βqt+1 + (1− β) dt+1] + ut. (32)

The first term on the right-hand side of the second equality is the average forecast of the individual

SDFs, which depend on future aggregate dividends, individual shareholdings, and individual labor

income. Iterating (32) forward, we find that the equity price is determined by an infinite number of

forward-looking higher-order expectations about aggregate dividends and individual shareholdings

and labor income.

In summary, we characterize the log-linearized equilibrium by a system of 6 equations (25),

(26), (27), (28), (31), and (32) for 6 variables yit, nit, yt, s
h
it, dt, and qt. We are looking for causal

covariance stationary equilibrium processes.

3.4 Full Information Benchmark

Before solving for the equilibrium under dispersed information, we present the equilibrium under

full information. In this case all agents have the same information about all shocks. They have

rational expectations except when forecasting future stock market conditions because they make

small forecast errors due to the near rational shock. Hence equations (27) and (32) become

yt =
1

ξ
at + θEt [yt] , (33)

qt = Et [∆bt+1] + Et[βqt+1 + (1− β) dt+1] + ut, (34)

where Et denotes the rational expectation operator given all available information. It follows that

cFI
t = yFI

t =
1

(1− θ) ξ
at, (35)

where a variable with a superscript “FI” denotes its full information value.
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We then use (25) and (31) to derive

nFI
t =

1− (1− θ) ξ

α (1− θ) ξ
at, d

FI
t =

α− α7 [1− (1− θ) ξ]

αα6 (1− θ) ξ
at.

Applying the method of undetermined coefficients and the Hansen and Sargent (1980) prediction

formula to (34) yields

qFI
t = cFI

t +
u(L)L− βu(β)

L− β
ǫut.

Thus, given a small forecast error ut, the model under full information cannot simultaneously

generate smooth consumption (output) and highly volatile equity prices. For example, qFI
t =

cFI
t + ut when ut = ǫut.

Next we investigate individual trading behavior, which lies on the heart of our model mechanism.

A subtle but important observation in the full information case is that the processes of individ-

ual consumption and shareholdings contain a unit root. Applying the method of undetermined

coefficients to (28) under full information and using Lemma 1 yield

sh,F I
it+1 = sh,F I

it + χsǫit +
1

α2
vit, χs ≡

α5(1/ξ − 1)

αα2
.

This in turn implies that individual consumption possesses contain a random walk component using

the log-linearized budget constraint:

cFI
it = cFI

it−1 + yFI
t − yFI

t−1 + χcǫit +

(
D

C
χs − χc

)
ǫit−1 −

Q

α2C
vit +

Q+D

α2C
vit−1,

where χc ≡ WN
C (1 + φ)1/ξ−1

α − χs
Q
C , and W , N , Q, D, and C are steady state values given in

Appendix A.

This result is similar to that in Graham and Wright (2010), where the LLN condition (21) and

the full-information assumption ensure that permanent shifts in idiosyncratic consumption and

shareholdings cancel out in the aggregate. In particular,
∫

I
Et

[
shit+2

]
di = Et

∫

I

[
shit+2

]
di = 0.

Under dispersed information, however, this interchange of integration operators is invalid because

agents have different information sets, and the interconnection between shareholding choices and

the equity price leads to our key results for the financial market.

4 Business Cycle Volatility

In this section we show that output volatility under dispersed information is lower than that

under full information. This result may seem counterintuitive because speculation due to dispersed

information might be expected to generate high volatility. We will show that our result is quite

general and can be established without explicitly solving the model.
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To analyze the log-linearized equilibrium system under dispersed information, we need to deal

with the problem of forecasting the forecast of others as revealed by equations (27) and (32). To

see this point, iterating (27) yields

yt =
1

ξ

∞∑

k=0

θk E
(k)
t

[∫

I
aitdi

]
+ lim

k→∞
θkE

(k)
t [yt] ,

where the k-order average expectation is the repeated integral

E
(k)
t [·] =

∫

I
Eit

∫

I
Eit · · ·

∫

I︸ ︷︷ ︸
k

Eit [·] di · · · di︸ ︷︷ ︸
k

.

Under homogeneous information, higher-order expectations collapse to first-order expectations.

Under dispersed information, aggregate output depends on an infinite number of higher-order

expectations. Solving these higher-order expectations in the time domain is challenging. Therefore

we adopt the frequency domain approach discussed in Appendices E and F.

Conjecture that the solution for output in island i takes the following form

yit =Ma
y (L) ǫat +M i

y (L) ǫit +Mu
y (L) ǫut, (36)

where the corresponding z-transforms Ma
y (z), Mu

y (z), and M i
y (z) are some analytic functions in

H2 (D).6 Then aggregate output satisfies

yt =

∫

I
yitdi =Ma

y (L) ǫat +Mu
y (L) ǫut. (37)

We first present a lemma characterizing the property of the variance of higher-order expecta-

tions, which is central for determining business cycle volatility when information is dispersed.

Lemma 2 Under Assumption 1, we have

V ar
(
Et [yt]

)
< V ar (Eit [yt]) ≤ V ar (yt) .

The second inequality is merely the orthogonality condition associated with the conditional

expectation. The nontrivial part is the first inequality. It shows that the variance of the average

expectations about aggregate output is smaller than the variance of individual expectations about

aggregate output, when individual agents’ effect on the aggregate equilibrium is infinitesimal so that

the LLN can be applied. This feature is in sharp contrast with models that assume finitely-many

uninformed agents, such as Kasa, Walker, and Whiteman (2014).

Using the preceding lemma, we show in Appendix B that the business cycle volatility is damp-

ened under dispersed information relative to a full-information environment.

6Here H
2 (D) denotes the Hardy space for the open unit disk D of the complex space and ‖·‖

H2 denotes its norm.
See Appendix E.
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Theorem 1 Under Assumption 1, the variance of output under dispersed information is bounded

above by the variance under full information

V ar
(
yFI
t

)
> V ar (yt) .

The proof is a simple application of the triangle inequality in Hilbert spaces. Note that this

theorem is applicable to general information structures, exogenous or endogenous, univariate or

multivariate. Adding confidence, noise, or higher-order sentiment shocks would also not change the

results. This invariance arises because the critical step in the proof is Lemma 2, which applies to

general high-dimensional non-square signals. The previous literature has demonstrated this point,

including Morris and Shin (2003), Woodford (2002), and Angeletos and La’O (2013). Here we

simply provide an easy way of formally proving this result without having to explicitly deal with

an infinite number of correlated higher-order expectations. The proof also requires no specific as-

sumptions on the information structure. This dampening result does require, however, the presence

of beauty-contest type of production decisions with strategic complementarity.

Here the presence of higher-order beliefs and the forecasting the forecasts of others problem

dampens business cycle fluctuations. To understand the economic rationale behind this result,

we note that the effect of dispersed information and higher-order expectations works through two

channels. The first channel is associated with slow learning of the unobserved states. Slow learning

creates inertia in endogenous variables, and more importantly in the higher-order average expec-

tations of endogenous and exogenous variables, which leads to low volatility. The second channel

is associated with the forecasting the forecasts of others. Agents have a speculative motive if

other agents overreact to news. This channel is strong for informationally-influential participants

in models with finitely many agents (Kasa, Walker, Whiteman (2014)). It is also at work in the

heterogeneous prior setup (Scheinkman and Xiong (2003)). When each agent is informationally

negligible as in our model, the second channel completely vanishes since there is no need to forecast

any particular agent’s forecast. What matters is the forecast of the average. Thus the first channel

dominates and leads to the volatility bounds we deliver above.

5 Equity Price Volatility

We now turn to the financial side of the model. The main result of this section is that equity

volatility will converge to infinity as the variance of the idiosyncratic TFP shock converges to

infinity. In contrast to the previous section, we need to derive an explicit model solution to establish

this result. We will also prove the existence and uniqueness of equilibrium by extensively using the

frequency domain methods described in Appendixes E and F.
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5.1 Equilibrium Solution

We rewrite (32) as

qt =

∫

I
χitdi+ ut, (38)

where we define

χit ≡ Eit

[
α3s

h
it+2 +∆bit

]
+ Eit [βqt+1 + (1− β) dt+1] . (39)

The information set consists of the history of signals Xit = [ait, qt]
⊺. Conjecture that

χit = π1(L)ait + π2(L)qt, (40)

where the analytic functions π1(z) and π2(z) are endogenously determined in H2 (D).

It follows from (38) that

qt =
π1(L)a (L)

1− π2(L)
ǫat +

u(L)

1− π2(L)
ǫut. (41)

Intuitively, the lag polynomial π1(L) characterizes how the dispersed information about TFP shocks

affects equity prices, while 1
1−π2(L)

characterizes the impact of endogenous learning from equity

prices.

To verify the conjecture in (40), we use (41) and the Wiener-Hopf prediction formula to compute

the conditional expectations in (40). To apply this formula, we write the signal representation as

Xit = H(L)ηit ≡

[
a(L) 1 0

π1(L)a(L)
1−π2(L)

0 u(L)
1−π2(L)

]

ǫat
ǫit
ǫut


 , (42)

which is a non-square system containing endogenous functions. To derive transparent analytical

solutions, we impose the following assumption:

Assumption 2 Let u(z) = π1(z) and a(z) = 1.

The assumption of IID TFP shocks is for simplicity and can be easily relaxed. The assumption

of u(z) = π1(z) follows from Taub (1989) and Rondina and Walker (2015). It is crucial to simplify

the computation of the spectral factorization and the Wold representation for the preceding non-

square signal system. We can then express equilibrium conditions as a system of linear functional

equations for π1 (z) and π2 (z) , allowing us to establish the equilibrium existence and uniqueness

and analyze the key model mechanism transparently in the frequency domain. In the next section

we relax Assumption 2 and derive numerical results.

Conjecture that the equilibrium individual shareholdings satisfy

shit+1 =M i
s (L) ǫit +Mv

s (L) vit, (43)

where M i
s (z) ,M

v
s (z) ∈ H2 (D). In equilibrium, individual shareholdings can only respond to

idiosyncratic TFP shocks and idiosyncratic forecast errors, because the aggregate number of shares

is fixed. The following result delivers the link between equity prices and individual shareholdings.
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Lemma 3 Under Assumptions 1 and 2, we have

M i
s (z) =

π1(z)

α1 − α2z
. (44)

This lemma shows that the exposure of an investor’s shareholdings to the idiosyncratic TFP

shock is closely related to the equity price exposure to the aggregate TFP shock due to investor’s

dispersed information about the two components of the shocks. Thus, if investors make large

adjustments of their shareholding positions, the response of equity prices to aggregate TFP shocks

will also be large. However, this relation vanishes under full-information as analyzed in Section 3.4,

because cross-sectional aggregation neutralizes the effect of individual trading decisions on equity

prices.

Theorem 2 Under Assumptions 1 and 2, there is a unique equilibrium under dispersed information

in which π1 (z) and π2 (z) are rational analytical functions if the function π1(z)
1−π2(z)

∈ H2(D) has no

roots in the open unit disk.

In Appendix C we provide an explicit solution to the equilibrium. The equilibrium is charac-

terized by rational analytic functions π1 (z) and π2 (z) in the closed unit disk, which corresponds

to ARMA(p,q) representations in the time domain. Despite the presence of the infinite number of

higher-order expectations formed by agents, the ARMA(p,q) representation allows us to compute

the equity price volatility in closed-form via the integral method and Parseval’s theorem. More

importantly, the explicit expression also highlights some crucial analytical properties of the equity

price fluctuations under dispersed information. We are particularly interested in the limit property

as σi → ∞.

5.2 Equity Volatility

We decompose the equity price in (41) as qt = qft + qnt , where

qft ≡
π1(L)

1− π2(L)
ǫat and qnt =

u(L)

1− π2(L)
ǫut

represent the components driven by the fundamental TFP shock and the common forecast error,

respectively. In Appendix C we prove the following result.

Theorem 3 Under Assumptions 1 and 2, we have

lim
σi→∞

π1 (1) = ∞,

and

lim
σi→∞

V ar
(
qft

)
= σ2a lim

σi→∞

∥∥∥∥
π1(z)

1− π2(z)

∥∥∥∥
2

H2

= ∞. (45)
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Although idiosyncratic TFP shocks have no effect on the equity price, the equity price becomes

arbitrarily volatile as the volatility of the idiosyncratic shock approaches infinity for any finite

σa > 0 and σu > 0. Therefore, our model has the potential to generate a highly volatile equity

price, because the idiosyncratic TFP volatility is much larger than the aggregate TFP volatility in

the data.

To understand the economic mechanism generating the high equity price volatility, we rewrite

(32) as

qt =

∫

I
Eit [βqt+1 + (1− β) dt+1] di+

∫

I
Eitmit+1di+ ut,

where we can show that

∫

I
Eit [mit+1] di =

∫

I
Eit

[
α3s

h
it+2 +∆bit+1

]
di. (46)

Iterating forward gives

qt =
(
Et [mit+1] + βEtEt+1 [mit+2] + β2EtEt+1Et+2 [mit+3] + ...

)

+(1− β)
(
Et [dt+1] + βEtEt+1 [dt+2] + β2

EtEt+1Et+2 [dt+3] + ...
)

+
(
ut + βEt [ut+1] + β2EtEt+1 [ut+2] + ...

)
.

Thus the equity price consists of a present-value component under a constant SDF, i.e., the infinite

sum of higher-order expectations about future aggregate dividends, a component of the infinite

sum of higher-order expectations about individual SDFs, and a nonfundamental component due to

common forecast errors.

By the intuition developed in Section 2 and 4, the present value component cannot generate

a large volatility, as the higher-order expectations about future aggregate dividends are smoother

than aggregate dividends. In other words, higher-order expectations about aggregate variables and

the failure of the law of iterated expectations do not lead to excess volatility per se. We thus focus

on the second component, which depends on the average forecast of future individual shareholdings

and labor income by (46). Unlike in the case of full information studied in Section 3.5, the average

forecast of individual shareholdings is not equal to the forecast of the average shareholdings,

∫

I
Eit

[
shit+2

]
di 6= Eit

∫

I

[
shit+2

]
di = 0.

Correlated movements in the average expectation of individual shareholdings now affect aggregate

equity prices. The individual equity trading decisions only respond to idiosyncratic TFP shocks

instead of aggregate TFP shocks. Investors interpret a change in the TFP signal as an idiosyncratic

shock to their investment opportunities. When the idiosyncratic TFP volatility σi tends to infin-

ity, the individual shareholdings volatility also tends to infinity because the shareholding process

contains a unit root as in the full information case. This unit root is transmitted to the equity
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price in response to the aggregate TFP shock by Lemma 3. Formally, M i
s (1) → ∞ if and only if

π1 (1) → ∞.

To gain intuition about where this unit root comes from, consider the folllowing thought ex-

periment. Suppose the economy receives a positive innovation to at; since σi is arbitrarily large,

an agent observing the increase in ait will mistakenly attribute it to ǫit. The resulting increase in

wealth will be transitory and lead to a rise in idiosyncratic demand for shares; at the same time,

the agent does not expect the price to change, because he believes there exists another agent whose

idiosyncratic demand for shares has fallen by the exact same amount (leaving aggregate demand

unchanged). Because all agents make this same mistaken inference (all of their wealth has risen),

then aggregate demand rises and market clearing requires the price to rise permanently.7

However, agents also observe the price change and can use that signal to infer that there

must have been an aggregate shock. By (40) and (41) the learning effect is reflected by the

denominator 1 − π2 (L) . If 1 − π2 (1) → ∞ as σi → ∞, the unit root for π1 (z) would cancel out.

The intuition for this adjustment is that the price here plays two roles – it clears markets and it

provides information. For now, suppose the near rational error is not present in the model. Then

the equity price information fully reveals the aggregate TFP shock. As qt rises, agents move along

their demand curve as usual. But the demand curve also shifts inward as qt rises, because agents

know that the TFP shock is mean-reverting, so future equity prices will be lower than the current

price, reducing their current demand. As a result, the unit root from individual shareholdings does

not get transmitted into the equity price.

With near rational errors this process gets short-circuited. In this case, agents will optimally

assign weights to a rise in at and a rise in ut; since agents believe that ut applies only to other

agents, each individual will overestimate the future value of stocks (through some combination of

overestimating qt+1, dt+1, and future consumption), which prevents their demand curve from falling

as qt rises. The learning effect from equity prices is always weaker than the information conveyed by

the TFP signal so that the unit root associated with the TFP shock will survive. Therefore when

the aggregate TFP shock hits the economy, investors’ expectations about future trading decisions

adjust in a simultaneous and persistent manner, leading to high equity price volatility.

Formally, by the Wiener-Hopf prediction formula, we have

Eit

[
shit+2

]
=

τ1
α3L

[
(1− λs) π1 (L)

1− λsL
− (1− λs)π1 (0)

]
ait

−
τ2
α3L

[
(1− λs)π1 (L)

1− λsL
− (1− λs) π1 (0)

]
1− π2(L)

π1(L)
qt,

where τ1 and τ2 are the signal-to-noise ratios (see equations (C.2) and (C.3) in Appendix C):

τ1 =
σ2i

σ2i +
(
σ−2
a + σ−2

u

)−1 , τ2 = τ1
σ2a

σ2a + σ2u
.

7We prove this result formally in a technical appendix available upon request.

22



Due to the common forecast error σu > 0, we have τ2 < τ1. When σi → ∞, we have τ1 → 1,

but τ2 → σ2a/
(
σ2a + σ2u

)
∈ (0, 1) . Thus the expression on the second line of the equation above

associated with learning from prices does not fully offset the expression on the first line.

Note that the previous result is not simply a result of adding more unknown shocks than

signals; while both lead to forecasting confusion, only the near-rational shock leads to the right

kind of confusion. A common practice in the noisy rational expectation literature is to introduce

an asset supply/noise trader shock. In that case, the rising price will be attributed partly to a

rise in aggregate TFP and partly to a fall in asset supply. But if both processes are stationary,

they both imply that future prices will fall relative to current prices and reduce asset demand,

eliminating the confusion effect and the unit root. The key intuition is that agents understand how

changes in the aggregate asset supply shock affect their individual shareholding decisions. In this

sense, the equity price contains enough information for agents to eliminate correlated movements

in the average expectation of individual shareholdings. Note that the equilibrium is still not fully

revealing, as agents will be unsure about the source of the price change; however, they are certain

that the shock was an aggregate one.

6 Extension and Numerical Results

One side effect of the assumption of u(z) = π1(z) is that the volatility of the nonfundamental

component of the equity price also approaches infinity as σi → ∞. To isolate this effect, we relax

Assumption 2 by assuming that ut and at follow independent AR(1) processes.

Assumption 3 u (z) = 1/ (1− ρuz) and a (z) = 1/ (1− ρaz) , where ρa, ρu ∈ [0, 1).

Then the equilibrium system cannot be reduced to a system of linear functional equations for

π1 (z) and π2 (z) and hence π1 (z) and π2 (z) cannot be represented by analytic rational functions.

It is well known that any non-rational analytic functions can be approximated by rational functions

with arbitrary accuracy (Rudin (1987)). Using this fact, we compute the model numerically by

using rational functions to approximate π1 (z) and π2 (z) . This approximation is equivalent to using

finite ARMA(p,q) processes to approximate MA(∞) processes in the time domain. In the numerical

computation, our triangular spectral factorization method displays its advantages. First, under the

current model setup it allows us to derive an almost-analytical spectral factor matrix, without

requiring the rational function assumption, based on the Paley-Wiener Theorem . Second, since

the spectral factorization is almost analytical, we are able to derive the non-linear equilibrium fixed

point problem in a clear, algebraic form. In this way, we minimize the “black box” in numerical

computation so that we are able to see whether the algorithm is correct and whether the model

mechanism works. In Appendix D we provide the equilibrium system and the numerical algorithm

we use to solve the model.
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Figure 1: The impact of idiosyncratic volatility σi on τa and τ i. Parameter values are xl = xd = 1,
γ = 0.4, σa = 0.1, and σu = 0.01.
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Figure 2: The effect of idiosyncratic TFP volatility σi on equity and output volatility.
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To derive quantitative implications, we calibrate the model parameters at quarterly frequency.

We set the subjective discount factor β = 0.99, the labor share of output α = 0.67, the persistence

of the aggregate TFP shock ρa = 0.8, and the volatility of the aggregate TFP shock σa = 0.7%.

We also set the inter-island elasticity of substitution ς = 9 to generate a steady-state markup of

12.5%, and set the φ = 2 to generate a Frisch elasticity of labor supply equal to 0.5, which are

consistent with Angeletos and La’O (2013) and King and Rebelo (2000). As baseline values, we set

the idiosyncratic volatility σi = 5% and the persistence and volatility of the common forecast error

ρu = 0.05, σu = 0.04%. The implied ratio of the unconditional volatility of the common forecast

error and the unconditional total volatility of the aggregate and idiosyncratic TFP shocks is 0.65%.

This small forecast error is consistent with the estimate in Hassan and Mertens (2017). In Appendix

D we show that aggregate output and equity volatilities are independent of the idiosyncratic forecast

error volatility. We thus do not need to assign a value for σv for our numerical solutions. Our

baseline calibration gives quarterly output volatility of 1.5% and quarterly equity volatility of

10.5%, which are in line with US data.

Figures 1-2 present the effect of idiosyncratic TFP volatility on equity price volatility. If σi = 0,

the model with dispersed information reduces to the one with full information. As σi increases from

0 to 10%, equity volatility rises quickly, but output volatility declines slowly. The component (qnt )

of equity volatility contributed by the common forecast error increases with σi and accounts for a

very small fraction of total equity volatility (less than 1%). Thus a very small near-rational error

can produce high equity price volatility for reasonable values of σi.

7 Conclusion

We have developed a model of a production economy with dispersed information that features

smooth aggregate consumption (output) dynamics and highly volatile equity prices. The key ele-

ments of our model are not assumptions on nonstandard preferences, bubbles, or sentiments, but

the introduction of dispersed information, near rational expectations, incomplete markets, and the

endogeneity of SDFs that are time-varying and heterogeneous across population. The key for our

model result is due to the different impact of the higher-order beliefs about the average forecasts of

aggregate demand and the individual SDFs, together with the dynamic interaction between share-

holdings and equity prices. From a technical point of view, we have applied a two-step spectral

factorization method in the frequency domain, which can be applied to many other contexts that

involves solving signal extraction problems with non-square systems.
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Appendix

A Proofs of Results in Section 3

We consider a general utility function

Ei

[
∞∑

t=0

βtU(Cit, Nit)

]
,

where U is twice continuously differentiable and satisfy the usual concavity, monotonicity, and

Inada conditions for consumption Cit and labor Nit. Then the optimality conditions from utility

maximization give

Wit = −
Un(Cit, Nit)

Uc(Cit, Nit)
,

Qt = Eit [Mit+1(Qt+1 +Dt+1] , Mit+1 =
βUc(Cit+1, Nit+1)

Uc(Cit, Nit)
.

The (symmetric) deterministic steady state is characterized by the following nonlinear system

Yi = Ci = C = Y = Nα,

Wi = W =

(
1−

1

ς

)
αNα−1,

D =

(
1−

(
1−

1

ς

)
α

)
Nα,

Q =
β

1− β
D, Sh

i = 1,

and

−
Un(N

α, N)

Uc(Nα, N)
= α(1−

1

ς
)Nα−1. (A.1)

Suppose that equation (A.1) has a unique solution N > 0. We then obtain a unique deterministic

steady state.

Now we consider the log-linear approximation around the deterministic steady state. We use a

lower case variable to denote its log deviation from the deterministic steady state. We derive

uc(cit, nit) = −u1cit + u2nit,

un(cit, nit) = u3cit + u4nit,

where u1, u2, u3, and u4 are functions of steady-state values as well as the preference parameters

u1 =
−CUcc

Uc
> 0, u2 =

UcnN

Uc
,

u3 =
CUnc

Un
, u4 =

UnnN

Un
.
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The Euler equation can be log-linearized as

qt = Eit [βqt+1 + (1− β) dt+1] + Eit [mit+1] + ut + vit. (A.2)

where the stochastic discount factor has the general form

mit+1 = u1(cit − cit+1)− u2(nit − nit+1).

The wage rate satisfies

wit = (u3 + u1)cit + (u4 − u2)nit. (A.3)

Substituting this equation into the log-linearized budget constraint yields

Ccit +Qshit+1 = (Q+D) shit +Ddt +WN (nit + wit)

= (Q+D) shit +Ddt +WN(1 + u4 − u2)nit +WN(u3 + u1)cit, (A.4)

which in turn implies

cit = −
Q

C −WN(u3 + u1)
shit+1 +

(
Q+D

C −WN(u3 + u1)

)
shit

+
D

C −WN(u3 + u1)
dt +

WN(1 + u4 − u2)

C −WN(u3 + u1)
nit.

Substituting this expression for cit into the log-linearized SDF and Euler equation yields

u1(2Q+D)

C −WN(u3 + u1)
shit+1 =

u1(Q+D)

C −WN(u3 + u1)
shit + Eit

[
u1Q

C −WN(u3 + u1)
shit+2 +∆bit+1

]

+ Eit [βqt+1 + (1− β) dt+1]− qt.

where ∆bit+1 ≡ bit − bit+1 and

bit ≡
u1D

C −WN(u3 + u1)
dt +

(
u1
WN(1 + u4 − u2)

C −WN(u3 + u1)
− u2

)
nit.

Define

α1 =
u1(2Q+D)

C −WN(u3 + u1)
, α2 =

u1(Q+D)

C −WN(u3 + u1)
, α3 =

u1Q

C −WN(u3 + u1)
,

α4 =
u1D

C −WN(u3 + u1)
, α5 =

(
u1
WN(1 + u4 − u2)

C −WN(u3 + u1)
− u2

)
.

We then obtain equation (28) and can verify that

α1 = α2 + α3,

λs ≡
α2

α1
=

Q+D

2Q+D
∈ (1/2, 1).

Thus we have proven Lemma 1.
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Log-linearizing (22), (18) and using (A.3) to eliminate wit and nit, we derive
[
1

α
(u4 − u2 + 1)− (1−

1

ς
)

]
yit + (u3 + u1)cit =

[
1

α
(u4 − u2 + 1)

]
ait +

1

ς
Eit[yt].

Aggregating this equation yields (25), where

ξ =
1
α(u4 − u2 + 1)− (1− 1

ς ) + (u3 + u1)
1
α(u4 − u2 + 1)

,

and

θ =
1

ς
(
1
α(u4 − u2 + 1)− (1− 1

ς ) + (u3 + u1)
) .

To ensure a stationary solution, we need to impose assumptions on technology and utility such that

θ ∈ (0, 1).

For the utility function of Greenwood, Huffman, and Hercowitz (1988) used in our paper, we

can simplify the computation significantly. In particular, we can derive deterministic steady state

in an explicit form:

Ni = N =

(
α

(
1−

1

ς

)) 1
φ−α+1

,

Yi = Ci = C = Y =

(
α

(
1−

1

ς

)) α
φ−α+1

,

D =

(
1−

(
1−

1

ς

)
α

)(
α

(
1−

1

ς

)) α
φ−α+1

,

Q =
β

1− β
D, Sh

i = 1,

Wi = W =

(
1−

1

ς

)
αNα−1.

Given Assumption 1, all equilibrium variables are positive and

C −
N1+φ

1 + φ
> 0.

Log-linearizing equation (9) yields wit = φnit. We can also compute that

bit =
D

C − N1+φ

1+φ

dt +

[
WN (1 + φ)−Nφ+1

]

C − N1+φ

1+φ

nit,

and

α1 =
2Q+D

C − N1+φ

1+φ

> 0, α2 =
Q+D

C − N1+φ

1+φ

> 0,

α3 =
Q

C − N1+φ

1+φ

> 0, α4 =
D

C − N1+φ

1+φ

> 0,

α5 =
(1 + φ)WN −Nφ+1

C − N1+φ

1+φ

=
φNφ+1

C − N1+φ

1+φ

> 0.
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Log-linearizing (18) yields

yit = ait + αnit =⇒ nit =
1

α
(yit − ait) .

Aggregating leads to nt =
1
α (yt − at) . Log-linearizing (24) yields yt = α6dt + α7nt, where

α6 =
D

Y
> 0, α7 =

(1 + φ)WN

Y
> 0.

B Proofs of Results in Section 4

Proof of Lemma 2: By the Wiener-Hopf prediction formula,

Eit [yt] = aay (L) ait + aqy(L)qt = aay (L) (at + ǫit) + aqy(L)qt,

where aay (z) and a
q
y(z) can be computed using (F.3). By the LLN (21),

Et [yt] = aay (L)

(
at +

∫

I
ǫitdi

)
+ aqy(L)qt = aay (L) a (L) ǫat + aqy(L)qt.

In the stationary equilibrium the equity price can be represented as

qt =Ma
q (L)ǫat +Mu

q (L)ǫut,

where Ma
q (z) and Mu

q (z) are some analytic functions in H2 (D). By the Parseval theorem,

V ar
(
Et [yt]

)
=
∥∥aay (z) a (z) + aqy (z)M

a
q (z)

∥∥2
H2 σ

2
a +

∥∥aqy (z)Mu
q (z)

∥∥2
H2 σ

2
u

<
∥∥aay (z) a (z) + aqy (z)M

a
q (z)

∥∥2
H2 σ

2
a +

∥∥aqy (z)Mu
q (z)

∥∥2
H2 σ

2
u +

∥∥aay (z)
∥∥2
H2 σ

2
i

= V ar (Eit [yt]) .

We can write Eit [yt] + et = yt, where et is uncorrelated with Eit [yt] . Thus

V ar (yt) ≥ V ar (Eit [yt]) .

Combining the two inequalities above gives us the desired result. Q.E.D.

Proof of Theorem 1: By equation (27),

V ar (yt) = V ar

(
at
ξ

+ θEt [yt]

)
.

Using the triangular inequality and Lemma 2, we have

√
V ar (yt) ≤

√
V ar (at/ξ) + θ

√
V ar

(
Et [yt]

)
<

‖a (z)‖H2σa
ξ

+ θ
√
V ar (yt).

Thus
√
V ar (yt) <

‖a (z)‖H2σa
(1− θ) ξ

.

Using (35), we obtain the desired result. Q.E.D.
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C Proofs of Results in Section 5

Proof of Lemma 3: By equation (28) and (39), we obtain

α1s
h
it+1 = α2s

h
it − qt + χit + ut + vit. (C.1)

Plugging equations (40), (41), and (43) into the equation above, we obtain

α1M
i
s (L) ǫit + α1M

v
s (L) vit

= α2LM
i
s (L) ǫit + α2LM

v
s (L) vit + π1 (L) (ǫat + ǫit)

+ [π2 (L)− 1]

(
π1 (L)

1− π2 (L)
ǫat +

u (L)

1− π2 (L)
ǫut

)

+u (L) ǫut + vit.

Matching coefficients on the two sides of the equation yields

α1M
i
s (z) = α2zM

i
s (z) + π1 (z) ,

α1M
v
s (z) = α2zM

v
s (z) + 1.

We then establish this lemma and obtain Mv
s (z) = 1

α1−α2z
. Q.E.D.

Proof of Theorem 2: Consider the equilibrium conjecture in (41). Given the assumption that

u(z) = π1(z), it follows that

qt =
π1(L)

1− π2(L)
ǫat +

π1(L)

1− π2(L)
ǫut.

For qt and ut to be causal stationary processes, we need π1(z)
1−π2(z)

and π1(z) to be in the Hardy space

H2 (D). We will verify this condition later.

Step 1. We start by deriving the Wold representation for the signal process {Xit} given in

(42). We compute the covariance generating function

Sx(z) = H(z)ΣηH(z−1)⊺ =

[
σ2a + σ2i

π1(z−1)
1−π2(z−1)

σ2a
π1(z)

1−π2(z)
σ2a

π1(z)π1(z−1)
(1−π2(z))(1−π2(z−1))(σ

2
a + σ2u)

]
,

where

Ση =



σ2a 0 0
0 σ2i 0
0 0 σ2u




is the covariance matrix for the innovation vector ηit = [ǫat, ǫit, ǫut]
′ . We wish to derive the spectral

factorization

Sx(z) = Γ(z)Γ(z−1)⊺.
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Applying the triangular factorization method described in Appendix F,8 we obtain

Γ(z) =

[
σe

σ2
a

σp

0 π1(z)
1−π2(z)

σp

]
, Γ−1(z) =




1
σe

− σ2
a

σ2
pσe

1−π2(z)
π1(z)

0 1−π2(z)
π1(z)σp


 ,

where we define

σ2e ≡ σ2i +
σ2aσ

2
u

σ2a + σ2u
, σ2p ≡ σ2a + σ2u.

Note that

det Γ(z) = σpσe
π1(z)

1− π2(z)
.

By Theorem 4.6.11 in Lindquist and Picci (2015), Γ(z) is a Wold spectral factor if and only if
π1(z)

1−π2(z)
has no roots in the open unit disk. We shall make this assumption and then obtain the

Wold representation Xit = Γ (L) eit, where eit is a two-dimensional Wold fundamental innovation

vector with zero mean and identity covariance matrix.

Step 2. We next solve for the equilibrium quantities. We conjecture that yit =My(L)ηit, where

My(z) =
[
Ma

y (z),M
i
y(z),M

u
y (z)

]
and Ma

y (z), M
i
y (z) , and Mu

y (z) are all in H2 (D) . Aggregation

leads to aggregate output yt =My(z)Iyηit, where

Iy =



1 0 0
0 0 0
0 0 1


 .

Using the Wiener-Hopf prediction formula, we derive that Eit[yt] =
[
ψy(L)

]
+
Γ−1(L)Xit, where [·]+

is the annihilation operator and the z-transform of the operator ψy is

ψy (z) = Syx(z)
(
Γ−1(z−1)

)⊺
.

The cross-spectrum is given by

Syx(z) =My(z)IyΣηH
⊺(z−1)

=
[
Ma

y (z), 0,M
u
y (z)

]


σ2a 0 0
0 σ2i 0
0 0 σ2u






1 π1(z−1)

1−π2(z−1)

1 0

0 π1(z−1)
1−π2(z−1)




=

[
Ma

y (z) σ2a,
π1(z

−1)

1− π2(z−1)

(
Ma

y (z)σ2a +Mu
y (z) σ2u

)]

Routine algebra reveals that

ψy(z) = Syx(z)
(
Γ−1(z−1)

)⊺
=

[
(
σ2a
σe

−
σ4a
σ2pσe

)Ma
y (z)−

σ2aσ
2
u

σ2pσe
Mu

y (z),
Ma

y (z)σ
2
a +Mu

y (z)σ
2
u

σp

]
.

8Following Rondina and Walker (2015), we transform the lower-triangular matrix to the upper triangular form by
right multiplication of an unitary matrix, which ease the algebra.
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Since Ma
y (z) ,Mu

y (z) ∈ H2 (D) , both components of ψy(z) are in H2 (D) . Thus
[
ψy(z)

]
+
= ψy(z).

In the innovation form, we have

Eit[yt] =
[
ψy(L)

]
+
Γ−1(L)H(L)ηit

=
[
(h1 + h3)M

a
y (L) + (h4 − h2)M

u
y (L), h1M

a
y (L)− h2M

u
y (L), h3M

a
y (L) + h4M

u
y (L)

]
ηit,

where we define

h1 ≡
σ2a
σ2e

−
σ4a
σ2pσ

2
e

, h2 ≡
σ2aσ

2
u

σ2pσ
2
e

,

h3 ≡
σ2a
σ2p

+
σ6a
σ4pσ

2
e

−
σ4a
σ2pσ

2
e

, h4 ≡
σ4aσ

2
u

σ4pσ
2
e

+
σ2u
σ2p
.

Plugging yit =My(L)ηit and the preceding conditional expectation Eit[yt] into (25) and match-

ing coefficients, we obtain a system of linear equations

Ma
y (z) =

1

ξ
+ θ

[
(h1 + h3)M

a
y (z) + (h4 − h2)M

u
y (z)

]
,

Mu
y (z) = θ

[
h3M

a
y (z) + h4M

u
y (z)

]
,

M i
y(z) =

1

ξ
+ θ

[
h1M

a
y (z)− h2M

u
y (z)

]
,

which yields the solution

Ma
y (z) =

1

ξm1
, Mu

y (z) =
m2

ξm1
,

M i
y(z) =

1

ξ
+ θ

h1 − h2m2

ξm1
,

where we define

m1 ≡ 1−
(h4 − h2)h3θ

1− θh4
− θ(h1 + h3), m2 ≡

h3θ

1− θh4
.

The preceding solution is independent of z, confirming our previous conjecture.

Step 3. We proceed to the financial side of the model and compute the conditional expecta-

tions χit in (39). Using equation (43) and the Wiener-Hopf prediction formula, we compute the

conditional expectation

Eit

[
shit+2

]
= [ψs (L)]+ Γ−1(L)Xit.

where the z-transform of the operator ψs is given by

ψs (z) = z−1Ssx(z)
(
Γ−1(z−1)

)⊺

and the cross-spectrum is given by

Ssx(z) =
[
0,M i

s(z), 0
]


σ2a 0 0
0 σ2i 0
0 0 σ2u






1 π1(z−1)

1−π2(z−1)

1 0

0 π1(z−1)
1−π2(z−1)




=
[
M i

s (z) σ
2
i , 0

]
.

35



Thus

ψs(z) =
1

z

[
Ssx(z)

(
Γ−1(z−1)

)⊺]
=

1

z

[
σ2i
σe
M i

s(z), 0

]
.

There is a pole at zero. Using a lemma in the Appendix A of Hansen and Sargent (1980) we can

compute that

[ψs(z)]+ = ψs(z)−
limz→0 zψs(z)

z
=

1

z

[
σ2i
σe

(M i
s(z)−M i

s(0)), 0

]
.

It follows that

[ψs (z)]+ Γ−1(z) =

[
τ1
M i

s(z)−M i
s(0)

z
, −τ2

1− π2(z)

π1(z)

M i
s(z)−M i

s(0)

z

]
,

where we define the signal-to-noise ratios

τ1 ≡
σ2i
σ2e

∈ (0, 1) , τ2 ≡ τ1
σ2a
σ2p

∈ (0, 1) . (C.2)

By Lemmas 1 and 3, we derive

M i
s(z)−M i

s(0) =
π1 (z)

α1 − α2z
−
π1 (0)

α1
=

1

α3

[
(1− λs)π1 (z)

1− λsz
− (1− λs)π1 (0)

]
.

Thus

Eit

[
shit+2

]
=

1

α3L

[
(1− λs)π1 (L)

1− λsL
− (1− λs) π1 (0)

] [
τ1, −τ2

1− π2(L)

π1(L)

]
Xit. (C.3)

Note that τ2 < τ1 reflects the fact that equity prices do not fully aggregate information due to

near-rational forecast errors.

Now we conjecture that dt =Md (L) ηit, nit =Mn (L) ηit, and bit =Mb (L) ηit, where

Md (z) = [Ma
d (z), 0,M

u
d (z)] ,

Mn (z) =
[
Ma

n(z),M
i
n(z),M

u
n (z)

]
,

Mb (z) =
[
Ma

b (z),M
i
b(z),M

u
b (z)

]
,

and each component of these vectors is in H2 (D) . Plugging these equations and (36) into equations

(30), (31), and nit =
1
α (yit − ait) , and matching coefficients, we can derive that

Md (z) =

[
1

α6

(
1−

α7

α

)
Ma

y (z) +
α7

αα6
, 0,

1

α6
(1−

α7

α
)Mu

y (z)

]
,

Mn (z) =
1

α

[
Ma

y (z)− 1, M i
y(z) − 1, Mu

y (z)
]
,

Mb (z) = α4Md(z) + α5Mn(z).

Note that we have used the assumption that ait = ǫat+ ǫit. Since we have shown above that My (z)

is independent of z, Md (z) ,Mn (z) and Mb (z) are all independent of z.
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Using the Wiener-Hopf prediction formula, we compute

Eit [∆bit] = Eit

[(
1− L−1

)
bit
]
= Eit

[(
1− L−1

)
Mb (L) ηit

]

= [ψb (L)]+ Γ−1(L)Xit,

where the z-transform of the operator ψb is given by

ψb (z) =
z − 1

z
Sbx(z)

(
Γ−1(z−1)

)⊺
,

and the cross-spectrum Sbx(z) is given by

Sbx(z) =Mb(z)ΣηH
(
z−1
)⊺

=

[
Ma

b (z)σ
2
a +M i

b(z)σ
2
i ,

π1(z
−1)

1− π2(z−1)

(
Ma

b (z) σ2a +Mu
b (z) σ2u

)]
.

It follows that

ψb(z) =
z − 1

z
Sbx(z)

(
Γ−1(z−1)

)⊺

=
z − 1

z

[
(
σ2a
σe

−
σ4a
σ2pσe

)Ma
b (z)−

σ2aσ
2
u

σ2pσe
Mu

b (z) +
σ2i
σe
M i

b(z),
Ma

b (z)σ
2
a +Mu

b (z)σ
2
u

σp

]

The complex function ψb(z) has a first-order pole at z = 0. Following Hansen and Sargent (1980),

the annihilation operation is given by

[ψb(z)]+ = ψb(z) −
limz→0 zψb(z)

z
.

It follows immediately that

[ψb(z)]+ = ψb(z)−
(−1)

z

[
(
σ2a
σe

−
σ4a
σ2pσe

)Ma
b (0) −

σ2aσ
2
u

σ2pσe
Mu

b (0) +
σ2i
σe
M i

b(0),
Ma

b (0)σ
2
a +Mu

b (0)σ
2
u

σp

]

= ψb(z) +
1

z

[
h1σeM

a
b (0) − h2σeM

u
b (0) +

σ2i
σe
M i

b(0),
Ma

b (0)σ
2
a +Mu

b (0)σ
2
u

σp

]
.

We can then derive that

Eit [∆bit] = [ψb (L)]+ Γ−1(L)Xit

=
1

z

[
G

(1)
b (L)−G

(1)
b (0),

1− π2(L)

π1(L)

(
G

(2)
b (L)−G

(2)
b (0)

)]
Xit (C.4)

where we define the functions

G
(1)
b (z) ≡ (z − 1)

[
h1M

a
b (z)− h2M

u
b (z) + τ1M

i
b(z)

]
,

G
(2)
b (z) ≡ (z − 1)

[
h3M

a
b (z) + h4M

u
b (z)− τ2M

i
b(z)

]
.

Using the same method, we can compute the conditional expectation of future dividends

Eit [dt+1] =
1

L

[
G

(1)
d (L)−G

(1)
d (0),

1− π2(L)

π1(L)

(
G

(2)
d (L)−G

(2)
d (0)

)]
Xit, (C.5)
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where we define the functions

G
(1)
d (z) ≡ h1M

a
d (z) − h2M

u
d (z),

G
(2)
d (z) ≡ h3M

a
d (z) + h4M

u
d (z).

Since Mb (z) ,Md (z) , and My (z) are constant independent of z, it follows from the previous

construction that G
(1)
d (z) and G

(2)
d (z) are constant independent of z, but G

(1)
b (z) and G

(2)
b (z) are

linear functions of z.

We use the Wiener-Kolmogorov formula to compute

Eit [qt+1] =
[
ψq (L)

]
+
Γ−1 (L)Xit,

where the z-transform of the operator ψq is given by

ψq (z) =
1

z

[
0, 1

]
Sx(z)

(
Γ−1

(
z−1
))⊺

=
1

z

[
0, 1

]
Γ(z) =

1

z

[
0, π1(z)

1−π2(z)
σp

]
,

where the second equality follows from the previous definition of Sx (z) . Thus

[
ψq (z)

]
+
Γ−1 (z) =

[
1

z

[
0, π1(z)

1−π2(z)
σp

]]

+

Γ−1 (z)

=
1

z

[
0, π1(z)

1−π2(z)
σp

]
Γ−1 (z)−

1

z

[
0, π1(0)

1−π2(0)
σp

]
Γ−1 (z)

=
[
0, 1

z

(
1− 1−π2(z)

π1(z)
π1(0)

1−π2(0)

)]
,

and

Eit [qt+1] =
[
0, 1

z

(
1− 1−π2(z)

π1(z)
π1(0)

1−π2(0)

)]
Xit. (C.6)

Step 4. Derive the solution for π1 (z) and π2 (z) . Plugging the expressions for the conditional

expectations (C.3), (C.4), (C.5), and (C.6) derived in Step 3 into equation (39), we obtain an

expression for χit. Matching coefficients of Xit = [ait, qt]
′ with those in (40), we construct the

following equilibrium conditions:

zπ1(z) =
1− λs
1− λsz

τ1π1(z)− (1− λs) τ1π1(0) (C.7)

+(1− β)
[
G

(1)
d (z)−G

(1)
d (0)

]
+G

(1)
b (z)−G

(1)
b (0),

and

zπ2(z) =
1− π2(z)

π1(z)

{
−

1− λs
1− λsz

τ2π1(z) + (1− λs) τ2π1(0)−
βπ1(0)

1− π2(0)
(C.8)

+ (1− β)
[
G

(2)
d (z)−G

(2)
d (0)

]
+G

(2)
b (z)−G

(2)
b (0)

}
+ β.
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Simplifying equation (C.7) yields

π1(z) =
(1− λsz) [x(z)− (1− λs)τ 1π1(0)]

P1 (z)
, (C.9)

where we define the functions

P1(z) ≡ −λsz
2 + z − (1− λs)τ 1,

and

x(z) ≡ (1− β)
[
G

(1)
d (z)−G

(1)
d (0)

]
+G

(1)
b (z)−G

(1)
b (0). (C.10)

By the analysis in Step 3, x (z) is a linear function of z.

Since λs ∈ (1/2, 1) by Lemma 1 and τ1 ∈ (0, 1) , we have P1 (0) = −(1 − λs)τ1 < 0, P1 (1) =

(1− λs) (1− τ1) > 0, and limz→+∞ P1 (z) = −∞. Thus P1 (z) = 0 has two real roots, denoted by

γ1 ∈ (0, 1) and γ2 > 1. We can then write

π1(z) =
(1− λsz)

−λs(z − γ2)(z − γ1)
[x(z)− (1− λs)τ1π1(0)] .

To remove the pole at γ1, we set π1(0) such that

x(γ1)− (1− λs)τ1π1(0) = 0,

which implies that

π1(0) =
x(γ1)

(1− λs)τ1
.

We then collect terms and simplify expressions to derive

π1(z) =
(1− λsz) [x(z)− x(γ1)]

−λs(z − γ1)(z − γ2)
. (C.11)

Since the pole |γ1| < 1 is removed and x (z) is a linear function of z, we deduce that π1(z) ∈ H2 (D) .

Next consider the equilibrium condition (C.8). It is straightforward to show that

π1(z)

1− π2(z)
=
κ(z)− βπ1 (0) / (1− π2 (0))

z − β
, (C.12)

where we define the function

κ(z) ≡ (1− β)[G
(2)
d (z) −G

(2)
d (0)] +G

(2)
b (z)−G

(2)
b (0) (C.13)

−

[
(1− λs)τ 2
1− λsz

− z

]
π1(z) + (1− λs)τ2π1(0).

Since π1 (z) ∈ H2 (D) , λs ∈ (1/2, 1) by Lemma 1, G
(2)
d (z) is a constant, and G

(2)
b (z) is linear in z,

it follows that κ(z) ∈ H2 (D) .
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As mentioned earlier, we need π1(z)
1−π2(z)

to be analytical in the unit disk. Thus we should remove

the pole at z = β by setting the constant π2(0) such that κ(β)− βπ1 (0) / (1− π2 (0)) = 0. Solving

this equation yields

π2(0) = 1−
π1(0)β

κ(β)
.

We can then rewrite (C.12) as
π1(z)

1− π2(z)
=
κ(z) − κ(β)

z − β
. (C.14)

Since we have removed the pole at z = β and κ(z) ∈ H2 (D) , it follows that π1(z)
1−π2(z)

∈ H2 (D) .

By our constructive proof above, we conclude that the equilibrium solution is characterized by

unique rational functions of z in the frequency domain. As mentioned earlier to ensure the spectral

factorization to be valid, we need to impose the assumption that the equation

π1(z)

1− π2(z)
=
κ(z)− κ(β)

z − β
= 0

has no roots inside the open unit disk. The proof is then complete. Q.E.D.

Proof of Theorem 3: We first show that the denominator of the expression for π1 (z) in (C.9)

has a unit root as σi → ∞. Consider the quadratic function,

P1(z) ≡ −λsz
2 + z − (1− λs)τ 1.

Since

lim
σi→∞

τ1 = lim
σi→∞

σ2i
σ2e

= 1,

we have

lim
σi→∞

P1(z) = −λsz
2 + z − (1− λs) = −λs(z − 1)

(
z −

1− λs
λs

)
.

Since λs ∈ (1/2, 1), the root 1−λs

λs
is located inside the unit circle. We know that P1(z) has one

root inside the unit circle and the other outside the unit circle. By the continuous dependence of

roots on coefficients, the larger root γ2 of P1 (z) gradually converges to the unit root as σi → ∞.

We next show that the numerator of π1(z) in (C.9) or (C.11) does have a zero at z = 1

when σi → ∞. By (C.11), it suffices to show that the analytic function x(z) − x(γ1) does not

have a zero at z = 1. Using the result derived in the proof of Theorem 2, we can show that

limσi→∞ h1 = limσi→∞ h2 = 0, limσi→∞G
(1)
d (z) = 0, and limσi→∞G

(1)
b (z) = α5

α

(
1
ξ − 1

)
(z − 1) .

It follows from (C.10) that

lim
σi→∞

x(z) =
α5(1− ξ)

αξ
z.

Therefore,

lim
σi→∞

[x(1) − x(γ1)] =
α5(1− ξ)

αξ
(1− lim

σi→∞
γ1) =

α5(1− ξ)

αξ

(
1−

1− λs
λs

)
.
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By Assumption 1, we know that

ξ ≡
1 + φ− α (1− 1/ς)

1 + φ
∈ (0, 1),

as φ > 0 and ς > 1. It follows from λs ∈ (12 , 1) that

lim
σi→∞

[x(1)− x(γ1)] 6= 0.

Hence, π1(z) does not converge to zero at z = 1 when σi → ∞, but it has a pole at z = limσi→∞ γ2 =

1. Since π1(z) is rational in the frequency domain, a pole at the unit circle is sufficient to ensure

that

lim
σi→∞

∣∣∣∣π1(z)
∣∣∣∣
H2 → ∞.

Now we wish to show that the analytic function π1(z)
1−π2(z)

has no zero at z = 1 as σi → ∞. We

only need to consider the equation κ (z) − κ (β) = 0 by (C.14). We can rewrite the expression for

κ (z) in (C.13) as

κ (z) = A(z)−

[
(1− λs)τ2
1− λsz

− z

]
π1(z) + (1− λs)τ 2π1(0),

where A (z) is a linear function of z. Plugging (C.11) into this equation, we can derive

κ (z)− κ (β) = A(z) + (1− λs)τ2π1(0)− κ(β)

+
[x(z)− x(γ1)] [(1− λs)τ 2 − (1− λsz)z]

λs(z − γ1)(z − γ2)
.

The linear function A(z) is bounded in the closed unit disk, sup|z|≤1 |A(z)| <∞. Moreover, we

know that π1(z) is analytic and rational inside the open unit disk |z| < 1, even when σi → ∞.

Thus π1(0) and κ(β) are finite for 0 < β < 1. It follows that the expression on the first line of the

right-hand side of the equation above is bounded at z = 1 when σi → ∞.

Consider the expression on the second line of the equation above. The denominator converges

to zero at z = 1 as σi → ∞. For the numerator, we have

lim
σi→∞

[x(z)− x(γ1)] [(1− λs)τ2 − (1− λsz)z]|z=1

=

[
α5(1− ξ)

αξ

(
1−

1− λs
λs

)]
(1− λs)

(
σ2a
σ2p

− 1

)

6= 0,

where we have used the previous definition of σ2e to derive

lim
σi→∞

τ2 = lim
σi→∞

σ2aσ
2
i

σ2eσ
2
p

=
σ2a
σ2p

∈ (0, 1).

We conclude that κ (1)− κ (β) converges to infinity as σi → ∞.
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Therefore, π1(z)
1−π2(z)

does not have a zero at z = 1 when σi → ∞, but it has a pole at z =

limσi→∞ γ2 = 1. This implies that the rational function π1(z)
1−π2(z)

will have infinite norm at the limit,

lim
σi→∞

∣∣∣∣∣

∣∣∣∣∣
π1(z)

1− π2(z)

∣∣∣∣∣

∣∣∣∣∣
H2

→ ∞.

This completes the proof. Q.E.D.

D Analysis in Section 6

D. 1 Equilibrium System

As in Section 5, we derive the equilibrium system in four steps.

Step 1. Derive the Wold representation for the signal system under Assumption 3. Given the

AR(1) processes for at and ut, the signal representation follows

Xit = H(L)ηit ≡




1
1−ρaL

1 0

π1(L)(
1−π2(L)

)(
1−ρaL

) 0 1(
1−π2(L)

)(
1−ρuL

)






ǫat
ǫit
ǫut


 , (D.1)

and so the spectral density for the signal is

Sx(z) = H(z)ΣηH(z−1)⊺ =




σ2
a

(1−ρaz)(1−ρaz
−1)

+ σ2i
π1(z−1)

1−π2(z−1)
1

(1−ρaz)(1−ρaz
−1)

σ2a

π1(z)
1−π2(z)

1
(1−ρaz)(1−ρaz

−1)
σ2a

π1(z)π1(z
−1)

(1−ρaz)(1−ρaz
−1)

σ2
a+

σ2u
(1−ρuz)(1−ρuz−1)

(1−π2(z))(1−π2(z−1))


 .

Using the method presented in Appendix F, we can first factorize the spectral density in a lower

triangular form

Γ̃(z) =




σw
z−λw

1−ρaz
0

σ2
a

σw

π1(z)z
(1−π2(z))(1−λwz)(1−ρaz)

1
σw

π̃1(z)
1−π2(z)

1−ρaz
1−λwz


 ,

where the constants λw ∈ (0, 1) and σw are determined by the univariate spectral factorization of

the first signal ait in the frequency domain,

σ2w
(1− λwz)(1− λwz

−1)

(1− ρaz)(1− ρaz
−1)

=
σ2a

(1− ρaz)(1 − ρaz
−1)

+ σ2i .

It follows that

σ2w(1− λwz)(1 − λwz
−1) = σ2a + σ2i (1− ρaz)(1− ρaz

−1).

Matching coefficients on the two sides of the equality yields

λw =
1

2ρa

[(
1 + τ + ρ2a

)
−
√
τ2 + 2τ + 2τρ2a + 1− 2ρ2a + ρ4a

]
,
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and

σ2w =
ρaσ

2
i

λw
.

Here τ ≡ σ2a/σ
2
i ∈ (0,∞) denotes the relative volatility of the aggregate shock to the idiosyncratic

shock. It is easy to verify that 0 < λw < ρa < 1 and limσi→∞ λw = ρa.

Define the function π̃1(z) by the following equation

π̃1(z)π̃1(z
−1) =

π1(z)π1(z
−1)

(1− ρaz)(1− ρaz
−1)

σ2aσ
2
i (D.2)

+
(1− λwz)(1 − λwz

−1)

(1− ρaz)(1 − ρaz
−1)(1− ρuz)(1 − ρuz

−1)
σ2uσ

2
w.

A stationary equilibrium requires that the endogenous function π1 ∈ H2 (D). It is then clear that

the right-hand side of equation (D.2) is a well-defined spectral density supported by a stationary

process. Then by the Paley-Wiener Theorem (e.g. Lindquist and Picci, 2015, Theorem 4.4.1),

there exists a Wold spectral factor π̃1(z) ∈ H2 (D) that satisfies the factorization (D.2). Using a

similar argument, we can show that the function π̃1(z)
1−π2(z)

∈ H2 (D). Hence, the matrix Γ̃(z) is a

valid spectral factor in H2 (D) that satisfies

Sx(z) = Γ̃(z) Γ̃⊺(z−1).

The determinant of Γ̃(z) is given by

det Γ̃(z) =
π̃1(z)

1− π2(z)

z − λw
1− λwz

.

As in Section 5, we restrict our attention to the equilibrium such that π̃1(z)
1−π2(z)

has no roots in the

open unit disk. To derive the wold fundamental representation, we need to remove the root at

z = λw ∈ (0, 1). Using the Blaschke matrix B (z) by Proposition 2 in Appendix F, we set

Γ(z) = Γ̃(z)V −1B(z),

where

V =




√
h2

1+h2

√
1

1+h2√
1

1+h2 −
√

h2

1+h2


 =

[
V11 V12
V12 V22

]
, B(z) =

[
1 0

0 1−λwz
z−λw

]
.

Here the constant

h ≡
π1(λw)λwσ

2
a

π̃1(λw)(1 − ρaλw)
2

is endogenous and will be determined in equilibrium. The unitary matrix V is symmetric and

satisfies V = V ⊺ = V −1, and detV = −1. We then obtain the Wold fundamental matrix

Γ(z) =



σw

z−λw

1−ρaz
V11 σw

1−λwz
1−ρaz

V12

Γ
(1)
π (z) Γ

(2)
π (z)


 ,
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where we define

Γ(1)
π (z) ≡

σ2a
σw

π1(z)z

(1 − π2(z))(1 − λwz)(1− ρaz)
V11 +

1

σw

π̃1(z)

1− π2(z)

1− ρaz

1− λwz
V12,

Γ(2)
π (z) ≡

σ2a
σw

π1(z)z

(1 − π2(z))(z − λw)(1− ρaz)
V12 +

1

σw

π̃1(z)

1− π2(z)

1− ρaz

z − λw
V22.

We compute that

Γ−1(z) =




G1(z)
σ2
a

σw

π1(z)
π̃1(z)

+G2(z)
1
σw

−1−π2(z)
π̃1(z)

σwG3(z)

−
[
G4(z)

σ2
a

σw

π1(z)
π̃1(z)

+G5(z)
1
σw

]
1−π2(z)
π̃1(z)

σwG6(z)


 ,

where we define

G1(z) = −V12
z

(z − λw)(1− ρaz)
, G2(z) = −V22

1− ρaz

z − λw
,

G3(z) = −V12
1− λwz

1 − ρaz
, G4(z) = −V11

z

(1− λwz)(1 − ρaz)
,

G5(z) = −V12
1− ρaz

1− λwz
, G6(z) = −V11

z − λw
1− ρaz

.

Note that all G1(z), ..., G6 (z) are independent of the endogenous price signal except for the constant

in V . We also define the following functions that will be repeatedly used later:

Γ
(1)
I (z) = G1(z)

σ2a
σw

π1(z)

π̃1(z)
+G2(z)

1

σw
,

Γ
(2)
I (z) = G4(z)

σ2a
σw

π1(z)

π̃1(z)
+G5(z)

1

σw
,

Γ
(3)
I (z) ≡ σwG3(z)

π1(z)

π̃1(z)
,

Γ
(4)
I (z) ≡ σwG6(z)

π1(z)

π̃1(z)
.

By the Paley-Wiener Theorem and the fact that π̃1(z) is analytic in the open unit disk and Wold

fundamental, these functions are analytic in the open unit disk.9

Step 2. Solve for the equilibrium quantities. We conjecture that yit = My(L)ηit, where

My(z) =
[
Ma

y (z),M
i
y(z),M

u
y (z)

]
and Ma

y (z), M
i
y (z) , and Mu

y (z) are all in H2 (D) . Aggregation

leads to aggregate output yt =My(z)Iyηit, where Iy is defined earlier.

Using the Wiener-Hopf prediction formula, we derive that

Eit [yt] =
[
ψ(1)
y (L) ψ(2)

y (L)
]

+
Γ−1(L)H(L)ηit,

9Sayed and Kailath (2001) summarized the property of the Wold fundamental matrix implied by the Paley-Wiener
theorem.
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in terms of innovations, where the z-transform of the operator ψy =
[
ψ
(1)
y ψ

(2)
y

]
is given by

ψy (z) = z−1Syx(z)
(
Γ−1(z−1)

)⊺
. (D.3)

The annihilation is given by
[
ψ
(1)
y (z)

]
+
= ψ

(1)
y (z)−P

(1)
y (z) and

[
ψ
(2)
y (z)

]
+
= ψ

(2)
y (z)−P

(2)
y (z), where

P
(1)
y (z) and P

(2)
y (z) denote the negative powers of z in the Laurent series expansions of ψ

(1)
y (z)

and ψ
(2)
y (z) , respectively. There are no explicit formulas for P

(1)
y (z) and P

(2)
y (z) in general.

Using (D.3), yt =My(z)Iyηit, and the cross-spectrum

Syx =My(z)IyΣηH
⊺(z−1) =

[
Ma

y , 0,M
u
y

]


σ2a

σ2u
σ2u







1
1−ρaz

−1

π1(z−1)
(1−π2(z−1))(1−ρaz

−1)

1 0
0 1

(1−π2(z−1))(1−ρuz
−1)


 ,

we can derive

ψ(1)
y (z) =Ma

y (z)σ
2
aA

(1)
n (z)−Mu

y (z)σ
2
uA

(2)
n (z),

ψ(2)
y (z) = −Ma

y (z)σ
2
aA

(3)
n (z) +Mu

y (z)σ
2
uA

(4)
n (z),

where we define

A(1)
n (z) =

1

1− ρaz
−1

[
Γ
(1)
I (z−1)− Γ

(3)
I (z−1)

]
,

A(2)
n (z) =

1

1− ρuz
−1

1

π1 (z−1)
Γ
(3)
I (z−1),

A(3)
n (z) =

1

1− ρaz
−1

[
Γ
(2)
I (z−1)− Γ

(4)
I (z−1)

]
,

A(4)
n (z) =

1

1− ρuz
−1

1

π1 (z−1)
Γ
(4)
I (z−1).

Substituting the preceding expression for Eit [yt] into (25) and matching coefficients for ηit, we

obtain

Ma
y (z) =

1

ξ

1

1− ρaz
+

1

1− ρaz

[
G(1)

y (z)−A(1)
y (z) +G(2)

y (z)−A(2)
y (z)

]
θ, (D.4)

M i
y(z) =

1

ξ
+
[
G(1)

y (z)−A(1)
y (z)

]
θ, (D.5)

Mu
y (z) =

1

1− ρuz

θ

π1(z)

[
G(2)

y (z)−A(2)
y (z)

]
, (D.6)

where we define

G(1)
y (z) = ψ(1)

y (z)Γ
(1)
I (z)− ψ(2)

y Γ
(2)
I (z),

A(1)
y (z) = P (1)

y (z)Γ
(1)
I (z)− P (2)

y Γ
(2)
I (z),

G(2)
y (z) = ψ(2)

y (z)Γ
(4)
I (z)− ψ(1)

y (z)Γ
(3)
I (z),

A(2)
y (z) = P (2)

y (z)Γ
(4)
I (z)− P (1)

y Γ
(3)
I (z).

45



Here Γ
(1)
I (z), ...,Γ

(4)
I (z) are defined earlier.

Using equations (D.4) and (D.6) and the definition of G
(1)
y (z) and G

(2)
y (z) , we can derive that



Q1(z) Q2(z)

Q3(z) Q4(z)





Ma

y (z)

Mu
y (z)


 =




1
ξ −A

(1)
y (z)θ −A

(2)
y (z)θ

−A
(2)
y (z)θ


 , (D.7)

where we define

Q1(z) = (1− ρaz)− θσ2aHa(z),

Q2(z) = θσ2uHu(z),

Q3(z) = θσ2aHd(z),

Q4(z) = (1− ρuz)π1(z)− θσ2uHc(z),

and

Ha(z) = A(1)
n (z)

(
Γ
(1)
I (z)− Γ

(3)
I (z)

)
+A(3)

n (z)
(
Γ
(2)
I (z) − Γ

(4)
I (z)

)
,

Hu(z) = A(2)
n (z)

(
Γ
(1)
I (z)− Γ

(3)
I (z)

)
+A(4)

n (z)
(
Γ
(2)
I (z)− Γ

(4)
I (z)

)
,

Hc(z) = A(4)
n (z)Γ

(4)
I (z) +A(2)

n Γ
(3)
I (z),

Hd(z) = A(3)
n (z)Γ

(4)
I (z) +A(1)

n Γ
(3)
I (z).

Once π1 (z) and π2 (z) are known, we can use the system (D.7) to determine Ma
y (z) and Mu

y (z) .

Equation (D.5) then determines M i
y (z) .

As in the proof of Theorem 2, we deduce that dt = Md (L) ηit, nit = Mn (L) ηit, and bit =

Mb (L) ηit, where

Md (z) =

[
1

α6

(
1−

α7

α

)
Ma

y (z) +
α7

αα6

1

1− ρaz
, 0,

1

α6
(1−

α7

α
)Mu

y (z)

]
, (D.8)

Mn (z) =
1

α

[
Ma

y (z)−
1

1− ρaz
, M i

y(z)− 1, Mu
y (z)

]
, (D.9)

Mb (z) = α4Md(z) + α5Mn(z). (D.10)

Each component of these vectors is in H2 (D).

Step 3. We proceed to the financial side of the model. We need to compute several conditional

expectations for χit in (39). First, we use the Wiener-Hopf formula to derive

α3Eit

[
shit+2

]
= α3 [ψs (L)]+ Γ−1(L)Xit,

where the z-transform of the operator ψs is given by

ψs (z) = z−1Ssx(z)
(
Γ−1(z−1)

)⊺
,
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and

α3

[
ψ(1)
s (z)

]
+

= α3ψ
(1)
s (z)− P (1)

s (z),

α3

[
ψ(2)
s (z)

]
+

= α3ψ
(2)
s (z)− P (2)

s (z).

Here P
(1)
s (z) and P

(2)
s (z) denote the negative powers of z in the Laurent series expansions of

α3ψ
(1)
s (z) and α3ψ

(2)
s (z), respectively. It follows that

α3

[
ψ(1)
s (z), ψ(2)

s (z)
]
+
Γ−1(z) =

[
G(1)

s (z) −A(1)
s (z),

1− π2(z)

π1(z)

(
G(2)

s (z)−A(2)
s (z)

)]
,

where

G(1)
s (z) = σ2i z

−1α3M
i
s(z)

[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

]
,

G(2)
s (z) = σ2i z

−1α3M
i
s(z)

[
−Γ

(3)
I (z)Γ

(1)
I (z−1)− Γ

(4)
I (z)Γ

(2)
I (z−1)

]
,

and

A(1)
s (z) = P (1)

s (z)Γ
(1)
I (z)− P (2)

s (z)Γ
(2)
I (z),

A(2)
s (z) = P (2)

s (z)Γ
(4)
I (z)− P (1)

s (z)Γ
(3)
I (z).

It is easy to verify that Lemma 3 continues to hold, which implies

G(1)
s (z) = σ2i

1− λs
z(1− λsz)

π1(z)
[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

]
,

G(2)
s (z) = σ2i

1− λs
z(1− λsz)

π1(z)
[
−Γ

(3)
I (z)Γ

(1)
I (z−1)− Γ

(4)
I (z)Γ

(2)
I (z−1)

]
.

Second, the Wiener-Hopf formula gives

Eit [qt+1] =
[
ψq (L)

]
+
Γ−1(L)Xit,

where the z-transform of the operator ψq is given by

ψq (z) =
1

z

[
0, 1

]
Sx(z)

(
Γ−1

(
z−1
))⊺

=
1

z

[
0, 1

]
Γ(z) = z−1

[
Γ
(1)
π (z) Γ

(2)
π (z)

]
,

where Γ
(1)
π (z) and Γ

(2)
π (z) are defined earlier. Since z = 0 is the only inside pole of ψq (z), it follows

from the lemma in Appendix A of Hansen and Sargent (1980) that

[
ψq (L)

]
+
Γ−1(z) = z−1 [0 1]− Pq (z) Γ

−1(z),

where

Pq (z) = z−1
[

1
σw

π̃1(0)
1−π2(0)

V12,
1
σw

π̃1(0)
1−π2(0)

(
− 1

λw

)
V22

]
.
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Thus

Eit [qt+1] = −z−1 1

σw

π̃1(0)

1− π2(0)

[
V12Γ

(1)
I (z) +

1

λw
V22Γ

(2)
I (z)

]
ait

+z−1 1

σw

π̃1(0)

1− π2(0)

[
V12Γ

(3)
I (z) +

1

λw
V22Γ

(4)
I (z)

]
1− π2(z)

π1(z)
qt.

Third, the Wiener-Hopf formula gives

Eit [dt+1] = [ψd (L)]+ Γ−1(L)Xit,

where the z-transform of the operator ψd is given by

ψd (z) =
[
ψ
(1)
d (z), ψ

(2)
d (z)

]
= z−1Sdx(z)

(
Γ−1(z−1)

)⊺
,

and
[
ψ
(1)
d (z)

]
+
= ψ

(1)
d (z)−P

(1)
d (z),

[
ψ
(2)
d (z)

]
+
= ψ

(2)
s (z)−P

(2)
d (z). Here P

(1)
d (z) and P

(2)
d (z) denote

the negative powers of z in the Laurent series expansions of ψ
(1)
d (z) and ψ

(2)
d (z), respectively. As

in Step 2 we can compute that

ψ
(1)
d (z) = z−1

[
Ma

d (z)A
(1)
n (z)σ2a −Mu

d (z)A
(2)
n (z)σ2u

]
,

ψ
(2)
d (z) = z−1

[
−Ma

d (z)A
(3)
n (z)σ2a +Mu

d (z)A
(4)
n (z)σ2

u

]
.

It follows that

Eit [dt+1] =

[
G

(1)
d (L)−A

(1)
d (L),

1− π2(z)

π1(z)

(
G

(2)
d (L)−A

(2)
d (L)

)]
Xit,

where

G
(1)
d (z) = ψ

(1)
d (z)Γ

(1)
I (z)− ψ

(2)
d Γ

(2)
I (z),

G
(2)
d (z) = ψ

(2)
d (z)Γ

(4)
I (z)− ψ

(1)
d (z)Γ

(3)
I (z),

and

A
(1)
d (z) = P

(1)
d (z)Γ

(1)
I (z)− P

(2)
d (z)Γ

(2)
I (z),

A
(2)
d (z) = P

(2)
d (z)Γ

(4)
I (z)− P

(1)
d (z)Γ

(3)
I (z).

Finally, the Wiener-Hopf formula gives

Eit [∆bit] = [ψb (L)]+ Γ−1(L)Xit,

where the z-transform of the operator ψb is given by

ψb (z) =
[
ψ
(1)
b (z), ψ

(2)
b (z)

]
= z−1(z − 1)Sbx(z)

(
Γ−1(z−1)

)⊺
,
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and
[
ψ
(1)
b (z)

]
+
= ψ

(1)
b (z)−P

(1)
b (z),

[
ψ
(2)
b (z)

]
+
= ψ

(2)
b (z)−P

(2)
b (z). Here P

(1)
b (z) and P

(2)
b (z) denote

the negative powers of z in the Laurent series expansions of ψ
(1)
b (z) and ψ

(2)
b (z), respectively. It

follows that

[
ψ
(1)
b (z), ψ

(2)
b (z)

]
+
Γ−1(z) =

[
G

(1)
b (z)−A

(1)
b (z),

1− π2(z)

π1(z)

(
G

(2)
b (z)−A

(2)
b (z)

)]
,

where

G
(1)
b (z) = ψ

(1)
b (z)Γ

(1)
I (z)− ψ

(2)
b Γ

(2)
I (z),

G
(2)
b (z) = ψ

(2)
b (z)Γ

(4)
I (z)− ψ

(1)
b (z)Γ

(3)
I (z),

and

A
(1)
b (z) = P

(1)
b (z)Γ

(1)
I (z)− P

(2)
b (z)Γ

(2)
I (z),

A
(2)
b (z) = P

(2)
b (z)Γ

(4)
I (z)− P

(1)
b (z)Γ

(3)
I (z).

As in Step 2 we can also derive that

ψ
(1)
b (z) = z−1(z − 1)

[
Ma

b (z)A
(1)
n (z)σ2a −Mu

b (z)A
(2)
n (z)σ2u + Γ

(1)
I (z−1)M i

b(z)σ
2
i

]
,

ψ
(2)
b (z) = z−1(z − 1)

[
−Ma

b (z)A
(3)
n (z)σ2a +Mu

b (z)A
(4)
n (z)σ2

u − Γ
(2)
I (z−1)M i

b(z)σ
2
i

]
.

Step 4. Derive the equilibrium system for π1 (z) and π2 (z) . By Step 3 we obtain an expression

for χit.Matching coefficients ofXit = [ait, qt]
⊺ with those in (40), we obtain the following equilibrium

conditions for π1 (z) and π2 (z) :

π1(z) =
(1− λs)

z(1− λsz)

[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

]
σ2iπ1(z)−A(1)

s (z) +
R(1)(z)

z(1− λsz)
, (D.11)

and

π2(z) =
1− π2(z)

z(1− λsz)π1(z)

{
(λs − 1)

[
Γ
(1)
I (z−1)Γ

(3)
I (z) + Γ

(2)
I (z−1)Γ

(4)
I (z)

]
σ2iπ1(z) (D.12)

−z(1− λsz)A
(2)
s (z) +R(2)(z)

}
+ z−1β,

where R(1)(z) and R(2)(z) are defined as

R(1)(z) =

{
− β

1

σw

π̃1(0)

1− π2(0)
z−1

(
V12Γ

(1)
I (z) +

1

λw
V22Γ

(2)
I (z)

)

+ (1− β)
[
G

(1)
d (z)−A

(1)
d (z)

]
+
[
G

(1)
b (z)−A

(1)
b (z)

]}
z(1− λsz)
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and

R(2)(z) =

{
β

1

σw

π̃1(0)

1− π2(0)
z−1

(
V12Γ

(3)
I (z) +

1

λw
V22Γ

(4)
I (z)

)

+ (1− β)
[
G

(1)
d (z)−A

(1)
d (z)

]
+
[
G

(2)
b (z)−A

(2)
b (z)

]}
z(1− λsz).

Define an operator T that maps the vector of functions [π1 (z) , π2 (z)] to the vector of func-

tions that are equal to the expressions on the right-hand sides of equations (D.11) and (D.12).

Since the signal system contains endogenous prices, many variables in these expressions depend on

[π1 (z) , π2 (z)] in a complicated way. Thus the operator T is nonlinear in general. The equilibrium

functions π1 (z) and π2 (z) correspond to the fixed point of T in H2 (D) . Moreover, we use (D.12)

to derive that

π1(z)

1− π2(z)
=

1

(1− λsz)(z − β)

{
−z(1− λsz)A

(2)
s (z) +R(2)(z) (D.13)

+
[
z(1− λsz)− (1− λs)

(
Γ
(1)
I (z−1)Γ

(3)
I (z) + Γ

(2)
I (z−1)Γ

(4)
I (z)

)
σ2i

]
π1(z)

}
.

We also have to ensure that π1(z)
1−π2(z)

∈ H2 (D) in equilibrium.

D. 2 Numerical Methods

The equilibrium is characterized by the fixed point of the operator T . Due to the endogeneity of

the price signal, this operator is nonlinear and thus the model does not admit a solution in the

form of rational functions. We now approximate the true model solution, which is in the form of

MA(∞), by finite-order ARMA(p,q) processes in the time domain or by rational functions in the

frequency domain. Rational functions also allow us to evaluate the annihilation operator tractably

using the lemma in Appendix A of Hansen and Sargent (1980). The numerical method involves

the following steps.

Step 1. We begin by an initial guess for π1(z) in the form of an irreducible rational function:

π1(z) = σπ

∏q
i=1 (1 + θiz)∏p
j=1

(
1− ρjz

) , (D.14)

where p and q are the orders of the ARMA representation and σπ, θi, and
∣∣ρj
∣∣ < 1 are constants.

Given the initial guess, we solve for the canonical factorization equation (D.2) to obtain

π̃1(z) = σπ̃

∏m+1
i=1

(
1 + θ̂iz

)

(1− ρaz)(1 − ρuz)
∏p

j=1

(
1− ρjz

) , (D.15)
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where m = max(p, q) and σπ̃ and θ̂i are determined by the factorization:

σ2π̃

m+1∏

i=1

(
1 + θ̂iz

)(
1 + θ̂iz

−1
)
=σ2aσ

2
i σ

2
π

q∏

i=1

(1 + θiz)
(
1 + θiz

−1
)
(1− ρuz)(1 − ρuz

−1)

+ σ2uσ
2
w(1− λwz)(1− λwz

−1)

p∏

j=1

(
1− ρjz

) (
1− ρjz

−1
)
. (D.16)

In particular, set
∣∣∣θ̂i
∣∣∣ < 1, ∀i = 1, 2, ...m + 1.

In addition, we take an initial guess for the constant π̃1(0)
1−π2(0)

.

Step 2. Solve for the decision rules for quantities on the real side of the economy. We use

(D.7) to derive Ma
y (z) and Mu

y (z). We need to compute P
(1)
y (z) and P

(2)
y (z) by using the lemma

in Hansen and Sargent (1980). Given the guess for π1(z) in (D.14), (D.15), and the expressions for

ψ
(1)
y (z) and ψ

(2)
y (z) derived in Step 2 of Section D. 1, we deduce that −θ̂1, ..., and −θ̂m+1 are the

poles of ψ
(1)
y (z) and ψ

(2)
y (z) that are inside the unit disk. Thus we have

P (1)
y (z) =

m+1∑

k=1

ψk,y

z + θ̂k
, P (2)

y (z) =

m+1∑

k=1

fk
ψk,y

z + θ̂k
,

fk ≡
V11
V12

1 + λwθ̂k

θ̂k + λw
, k = 1, 2, ...m + 1,

where each ψk,y is a constant defined as

ψk,y = lim
z→−θ̂k

(z + θ̂k)
[
Ma

y (z)σ
2
aA

(1)
n (z)−Mu

y (z)σ
2
uA

(2)
n (z)

]
,

provided that all poles
{
−θ̂k

}m+1

k=1
inside the unit disk are distinct. No constant ψk,y can be solved

numerically using the preceding formula because Ma
y (z) and Mu

y (z) are unknown functions to be

determined. We will use the method below to determine all ψk,y.

Plugging the guess for π1(z) and the expressions above for P
(1)
y (z) and P

(2)
y (z) (taking all

unknown constant ψk,y as given) into (D.7), we obtain the following linear system:



Q1(z) Q2(z)

Q̃3(z) Q̃4(z)





Ma

y (z)

Mu
y (z)


 =




1
ξ −A

(1)
y (z)θ −A

(2)
y (z)θ

−
∏p

j=1

(
1− ρjz

)
A

(2)
y (z)θ


 ≡



C

(1)
y (z)

C
(2)
y (z)


 , (D.17)

where

Q̃3(z) = θσ2a

p∏

j=1

(
1− ρjz

)
Hd(z),

Q̃4(z) =

q∏

i=1

(1 + θiz) (1− ρuz)σπ − θσ2u

p∏

j=1

(
1− ρjz

)
Hc(z).
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Solving this linear system yields



Ma

y (z)

Mu
y (z)


 =

1

D2
1(z)

[
Q̃4(z)Q1(z) −Q2(z)Q̃3(z)

]



D1(z)Q̃4(z)C

(1)
y (z)−D1(z)Q2(z)C

(2)
y (z)

−D1(z)Q̃3(z)C
(1)
y (z) +D1(z)Q1(z)C

(2)
y (z)


 ,

where we define

D1(z) =

m+1∏

i=1

(
1 + θ̂iz

)(
z + θ̂i

)
.

We can verify that the above solutions for Ma
y (z) and Mu

y (z) are irreducible rational functions.

That is, the numerator and denominator are pure polynomial functions.

The denominator function Dy(z) ≡ D2
1(z)

[
Q̃4(z)Q1(z)−Q2(z)Q̃3(z)

]
determines the existence

and uniqueness of a stationary equilibrium. The necessary condition for the existence requires that

Dy(z) has precisely m+1 roots inside the open unit disk. We verify this condition in every iteration

in our numerical computations. Let {zj}
m+1
j=1 denote all the inside roots of Dy(z). To pin down the

vector of constants ψy =
[
ψ1,y, ..., ψm+1,y

]
⊺
, we use the following system of m+ 1 equations:

D1(zj)Q̃4(zj)C
(1)
y (zj)−D1(zj)Q2(zj)C

(2)
y (zj) = 0, j = 1, 2, ...m + 1,

which gives a linear system for ψy :

Acψy = Cc,

where Ac is an (m+ 1)× (m+ 1) matrix of constants, and Cc is an (m+ 1) dimensional vector of

constants. We derive this system by substituting P
(1)
y (z) and P

(2)
y (z) (which depend on ψy) into

A
(i)
y (z) and C

(i)
y (z) , i = 1, 2. For simplicity, we omit the detailed algebra here. The idea is that

the solution for ψy must remove the poles of Dy(z) inside the open unit disk so that the solutions

for Ma
y (z) and Mu

y (z) are analytic inside the open unit disk. If the matrix Ac is invertible, the

solution is unique. We verify this condition in every iteration of our numerical computations. Given

the solutions for Ma
y (z) and M

u
y (z), we solve for M i

y(z) using (D.5). We can also solve for Mb (z) ,

Mn (z) , and Md (z) using the formulas derived in Step 2 of Section D. 1.

Step 3. We compute all annihilated functions of negative powers of z on the financial side of

the model using the Hansen-Sargent lemma. Let {zk}
m+2
k=1 =

{
0,−θ̂1, ...,−θ̂m+1

}
denote the set of

poles inside the unit disk. Provided that all poles are distinct, we have

P (1)
s (z) =

m+2∑

k=1

ψ
(1)
k,s

z − zk
, P (2)

s (z) = −

m+2∑

k=1

ψ
(2)
k,s

z − zk
,

P
(1)
d (z) =

m+2∑

k=1

ψ
(1)
k,d

z − zk
, P

(2)
d (z) =

m+2∑

k=1

ψ
(2)
k,d

z − zk
,
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P
(1)
b (z) =

m+2∑

k=1

ψ
(1)
k,b

z − zk
, P

(2)
b (z) =

m+2∑

k=1

ψ
(2)
k,b

z − zk
,

where the constants are given by

ψ
(1)
k,s = lim

z→zk
(z − zk)

[
z−1α3M

i
s(z)Γ

(1)
I (z−1)

]
σ2i ,

ψ
(2)
k,s = lim

z→zk
(z − zk)

[
z−1α3M

i
s(z)Γ

(2)
I (z−1)

]
σ2i ,

ψ
(1)
k,d = lim

z→zk
(z − zk)z

−1
[
Ma

d (z)A
(1)
n (z)σ2a −Mu

d (z)A
(2)
n (z)σ2u

]
,

ψ
(2)
k,d = lim

z→zk
(z − zk)z

−1
[
Mu

d (z)A
(4)
n (z)σ2u −Ma

d (z)A
(3)
n (z)σ2a

]
,

ψ
(1)
k,b = lim

z→zk
(z − zk)(z − 1)z−1

[
Ma

b (z)A
(1)
n (z)σ2a −Mu

b (z)A
(2)
n (z)σ2u +M i

b(z)Γ
(1)
I (z−1)σ2i

]
,

ψ
(2)
k,b = lim

z→zk
(z − zk)(z − 1)z−1

[
Mu

b (z)A
(4)
n (z)σ2

u −Ma
b (z)A

(3)
n (z)σ2a −M i

b(z)Γ
(2)
I (z−1)σ2i

]
.

Given the guess of π1(z) in (D.14) and the solutions for My (z) ,Md (z) ,Mn (z) , and Mb (z) in the

previous step, we can compute the constants ψ
(1)
k,d, ψ

(2)
k,d, ψ

(1)
k,b, and ψ

(2)
k,b for k = 1, 2, ...,m + 2. The

other constants ψ
(1)
k,s and ψ

(2)
k,s will be solved in the next step. We cannot use the formulas above to

determine ψ
(1)
k,s and ψ

(2)
k,s because M i

s (z) is unknown function to be determined in equilibrium. We

can verify that

ψ
(2)
k,s = hkψ

(1)
k,s,

hk =





V12
V22

1−λwzk
zk−λw

, if zk = 0,

V11
V12

1−λwzk
zk−λw

, else.

Thus we only need to solve for ψ
(1)
k,s, k = 1, ...,m + 2.

Step 4. Solve for the update of π1 (z) and π2 (z) using equations (D.11) and (D.12). Given the

guess for π1 (z) in (D.14), we can verify that R(1) (z) is an analytic rational function. Let R
(1)
D (z)

denote the denominator polynomial function of R(1)(z) in its irreducible form. Since R(1)(z) is

analytic, R
(1)
D (z) 6= 0 inside the open unit disk. We can write

R
(1)
D (z) = R

(1)
D (0)

g∏

i=1

(1 + ziz) ,

where g denotes the degree of R
(1)
D (z) and −z−1

i , ...,−z−1
g are the g roots of R

(1)
D (z) that are outside

the open unit disk. Using the definition of the unitary matrix V , we can show that the denominator
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of the rational function z(1−λsz)−(1−λs)σ
2
i

[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

]
in the irreducible

form is given by

D1(z) =

m+1∏

k=1

(
1 + θ̂kz

)(
z + θ̂k

)
.

Notice that some factors in D1 (z) and R
(1)
D (z) may be identical. We define D2(z) as their least

common multiple.

We now rewrite (D.11) as

π1(z) =
D2(z)

[
R(1)(z) − z(1− λsz)A

(1)
s (z)

]

D2(z)

[
z(1− λsz)− (1− λs)σ

2
i

[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

] ] , (D.18)

where both the numerator and the denominator are pure polynomial functions. Let πD1 (z) denote

the denominator function. The existence and uniqueness of a stationary equilibrium solution for

π1 (z) is determined by the roots of πD1 (z). More specifically, to determine the m+ 2 dimensional

vector of unknown constants ψs =
[
ψ
(1)
1,s, ..., ψ

(1)
m+2,s

]
⊺

, we need πD1 (z) to have precisely m + 2

distinct roots inside the open unit disk. We verify this condition in every iteration of the numerical

computation. Without risk of confusion, let {ẑk}
m+2
k=1 denote the set of distinct roots of πD1 (z) that

are inside the open unit disk.

We then pin down ψs by removing the poles {ẑk}
m+2
k=1 and evaluating the numerator polynomial

D2(ẑk)
[
R(1)(ẑk)− ẑk(1− λsẑk)A

(1)
s (ẑk)

]
= 0, ∀k = 1, 2, ...m + 2,

which leads to the linear system

Aπψs = Cπ,

where we have used the definition of A
(1)
s (z) and the expression of P

(1)
s (z) derived in Step 2. We

deduce that Aπ is an (m+ 2)× (m+ 2) matrix with elements given by

Aπ(k, i) =
Γ
(1)
I (ẑk)D2(ẑk)

ẑk − zi
+

Γ
(2)
I (ẑk)D2(ẑk)

ẑk − zi
hi,

for k = 1, 2, ...m + 2 and i = 1, 2, ...m + 2, and zi ∈
{
0,−θ̂1, ...,−θ̂m+1

}
. The kth element of

(m+ 2)× 1 vector Cπ is given by

Cπ(k) = R(1)(ẑk)D2(ẑk), ∀k = 1, 2, ...,m + 2.

If Aπ is full rank, the solution is indeed unique. Again, we verify this condition in every iteration.

Once determining ψs, we update the guess for π1 (z) using the solution in (D.18). Given this

solution for π1 (z) , we use (D.13) to solve for π1(z)
1−π2(z)

. Observe that the numerator on the right-

hand side of (D.13) is analytic inside the open unit disk, but we still need to remove the pole at
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z = β. We set the constant π̃1(0)
1−π2(0)

to remove this pole. That is,

φ(β)π1(β)− β(1− λsβ)A
(2)
s (β) +R(2)(β) = 0,

where

φ(z) = z(1− λsz)− (1− λs)
[
Γ
(1)
I (z−1)Γ

(3)
I (z) + Γ

(2)
I (z−1)Γ

(4)
I (z)

]
σ2i .

This leads to the following solution for the constant

π̃1(0)

1− π2(0)
=

σw

β(1− λsβ)
[
V12Γ

(3)
I (β) + 1

λw
V22Γ

(4)
I (β)

]×

{
β(1−λsβ)

(
A(2)

s (β)− (1−β)
[
G

(1)
d (β)−A

(1)
d (β)

]
−
[
G

(2)
b (β)−A

(2)
b (β)

])
−φ(β)π1(β)

}
. (D.19)

We use this solution to update the initial guess for π̃1(0)
1−π2(0)

. Finally, we iterate until convergence.

In summary, we employ the following iterative algorithm to solve the model.

Algorithm 1 Numerical Approximation of Equilibrium

Step 0. Begin with a guess for p, q, σπ , πc ≡
π̃1(0)

1−π2(0)
, {θi}

q
i=1, {ρj}

p
j=1 with |ρj | < 1, ∀j.

Step 1: Set m = max {p, q} and compute σπ̂ and {θ̂i}
m
i=1 using (D.16).

Step 2: Solve for the functions My (z) , Md (z) , Mb (z) , and Mn (z) .

Step 3: Let πA
1 (z) and π+

c be the expressions on the right-hand sides of (D.18) and (D.19), respectively.

Step 4: Update the initial guess using

π
+
1 (z) = σ

+
π

∏q
i=1

(

1 + θ
+
i
z
)

∏p
j=1

(

1 − ρ
+
j
z
) ,

where σ+
π , θ

+
i
, ρ

+
j

are the solution to the problem

min
σπ,θi,ρj

N
∑

n=1

∣

∣

∣
π
+
1 (n) − π

A
1 (n)

∣

∣

∣

2
,

where π
+
1 (n) and πA

1 (n) are the coefficients of the moving average expansion of π
+
1 (z) and πA

1 (z), with N = 70.

Step 5: Iterate Steps 0–4 until max
{∣

∣

∣ρ
+
j

− ρj

∣

∣

∣ ,
∣

∣

∣θ
+
i

− θi

∣

∣

∣ ,
∣

∣

∣σ
+
π − σπ

∣

∣

∣

}

< 10−3; ∀i, j

Step 6: Compute ǫ = max
{∣

∣

∣

∣

∣

∣
π
+
1 (z) − πA

1 (z)
∣

∣

∣

∣

∣

∣

H2
,
∣

∣

∣
π+
c − πc

∣

∣

∣

}

; if ǫ < 10−5, stop; otherwise, set p := p + 1, q := q + 1 and repeat

Steps 0-5.

E Frequency Domain Methods

In this section we introduce some mathematical background for the frequency domain methods.

We study casual covariance stationary real-valued equilibrium processes that have an MA(∞)

representation. For example, the aggregate output process in the model of Section 3 can be written

as

yt =

∞∑

j=0

Mjεa,t−j , (E.1)

where {Mj}
∞
j=0 is square summable, i.e.,

∑∞
j=0 |Mj |

2 < ∞. Solving for the infinite sequence of

{Mj}
∞
j=0 is a daunting task. The idea of the frequency domain method is to transform this problem
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into an equivalent problem of solving for an analytical function in the Hardy space. To define this

space, we recall that C denotes the complex plan, T denotes the unit circle, and D denotes the open

unit disk.

Definition 1 The Hardy space H2 (D) is the class of analytical functions g in the unit disk D

satisfying {
1

2π
sup

0≤r<1

∫ π

−π

∣∣g
(
reiω

)∣∣2 dω
}1/2

<∞.

It can be verified that the expression on the preceding inequality defines a norm on H2 (D) ,

denoted as ‖g‖
H2 . The Hardy space can also be viewed as a certain closed vector subspace of the

complex L2 space for the unit circle T. This connection is provided by the fact that the radial limit

g̃
(
eiω
)
= lim

r↑1
g
(
reiω

)

exists for almost all ω ∈ [−π, π] . The function g̃ belongs to the space L2 (T) of functions f : T → C

with the inner product

< f1, f2 >=
1

2π

∫ π

−π
f
(
eiω
)
f2 (eiω)dω, f1, f2 ∈ L2 (T) .

Then we have

‖g‖
H2 = ‖g̃‖L2 = lim

r↑1

{
1

2π

∫ π

−π

∣∣g
(
reiω

)∣∣2 dω
}1/2

<∞.

Denote by H2 (T) the vector subspace of L2 (T) consisting of all limit functions g̃, when g varies

in H2 (D).

Theorem 4 (Katznelson 1976) f ∈ H2 (T) if and only if f ∈ L2 (T) and f̂n = 0 for all n < 0 ,

where f̂n is the Fourier coefficient of a function f integrable on the unit circle,

f̂n =
1

2π

∫ π

−π
f
(
eiω
)
e−iωndω, n = 0,±1,±2, ....

Suppose that g̃ ∈ H2 (T) and g̃ has Fourier coefficients {an} with an = 0 for all n < 0. We

define

g (z) =

∞∑

n=0

anz
n, |z| < 1.

The following theorem ensures g ∈ H2 (D) . Thus we have a bijection between H2 (D) and H2 (T) .

Theorem 5 If f (z) is an analytic function in D and its Laurent expansion is

f (z) =

∞∑

n=0

bnz
n,
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then f ∈ H2 (D) if and only if {bn}
∞
n=0 is square summable, i.e.,

∑∞
n=0 |bn|

2 < ∞. When this

condition is satisfied
∞∑

n=0

|bn|
2 = ‖f‖

H2 .

We call the map from the sequence {bn}
∞
n=0 to f (z) a z-transform. Theorem 5 also allows

us to give an equivalent definition of the Hardy space H2 (D) as the class of analytical functions

f : D → C, which are the z-transforms of some square summable sequences. Thus solving for

{Mj}
∞
j=0 in (E.1) is equivalent to solving for a function M (z) in the hardy space H2 (D) . In

particular, we can write yt = M (L) ǫat, where M (z) ∈ H2 (D) is the object we will solve for. We

can use Theorem 5 to compute the variance of yt easily because

V ar (yt) = σ2a

∞∑

j=0

M2
j = σ2a ‖M (z)‖

H2 .

Finally, a rational function f(z) ∈ H2(D) if and only if f(z) is analytic in the closed unit disk.

In particular, poles are not allowed on the unit circle.

F Computing Expectations in the Frequency Domain

We present our approach in a general framework. Suppose that the signal is an ℓ-dimensional

variable Xt, defined in terms of infinite-order moving average processes.10 Let C denote the complex

plane, T denote the unit circle {z ∈ C : |z| = 1} , and D denote the open unit disk {z ∈ C : |z| < 1} .

Definition 2 (signal representation) The ℓ−dimensional real-valued signal process {Xt} is linearly

regular and admits representation

Xt
ℓ×1

= H (L)
ℓ×k

ηt
k×1

, ℓ ≤ k,

where L denotes the lag operator, {ηt} represents structural Gaussian innovations with mean zero

and covariance matrix Ση, and H (z) is an ℓ× k matrix analytic function defined on the open unit

disk D in the matrix-valued Hardy space H2 (D).11

We call H (·) the signal matrix or the transfer function as in the mathematics literature. To

simplify the signal extraction problem, it is useful to assume a maximal rank condition for the

signal process so that no redundant information is contained in Xt.

10We can extend the definition to contain information about future innovations (e.g. Bachetta and Wincoop, 2008).
11See Appendix E for the definition of the Hardy space.
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Assumption 4 The ℓ−dimensional signal process Xt has maximal rank, i.e. the rank of its asso-

ciated spectral density fx (ω) equals its dimension:

rank (fx (ω)) = ℓ

for almost all ω ∈ [−π, π].

An important methodological contribution of our paper is that we study a non-square signal

representation in that ℓ < k. The existing literature focuses on the case of square signal represen-

tations with ℓ = k (e.g., Kasa, Walker, and Whiteman (2014), and Rondina and Walker (2015)).

To use the Wiener-Hopf prediction formula, we need the Wold fundamental representation for the

signal process. For the case of non-square signal representation, finding the Wold representation is

non-trivial. We use spectral factorization techniques to solve this problem.

F. 1 A Two-Step Spectral Factorization Method

Our goal is to find a Wold representation for {Xt}. We are looking for an analytic matrix function

Γ (·) in the Hardy space H2 (D) such that

Xt
ℓ×1

= Γ (L)
ℓ×ℓ

et
ℓ×1

, fx (ω) = Γ
(
e−iω

)
Γ∗
(
e−iω

)
, ω ∈ [−π, π] , (F.1)

where asterisk denotes the conjugate transpose, {et} is some mutually uncorrelated Wold (funda-

mental) innovation process with mean zero and an identity covariance matrix, fx is the spectral

density, and Γ (·) is an analytic function.12

For the square signal case with ℓ = k, we can directly apply the Beurling-Blaschke factorization

method to derive the Wold representation as in Kasa, Walker, and Whiteman (2014) and Rondina

and Walker (2015). However, this method does not apply to the non-square case with ℓ < k. We

propose a two-step spectral factorization procedure. In step 1 we apply the convolution theorem

to find the spectral density fx (ω) of the signal process {Xt}. Then we use the Rozanov (1967)

theorem to find a lower triangular decomposition of fx (ω) . In step 2 we apply the Beurling-Blaschke

factorization method to the lower triangular matrix. Due to the length constraints, we omit the

proofs in this section. These proofs and examples are available upon request.

We start with the following result.

Lemma 4 Suppose that Xt is the vector of signals defined in Definition 2 and Assumption 4 holds.

Moreover, the transfer function H(z) is a non-square matrix function with dimension k > ℓ. Then

12Note that the Wold fundamental innovations can have non-diagonal, non-normalized covariance matrices. Using
the unitary eigen-decomposition of the covariance matrix, we can obtain the orthonormal Wold representations with
an identity covariance matrix.
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the spectral density fx(ω) is an ℓ× ℓ matrix function defined on [−π, π] and

fx (ω) = H
(
e−iω

)
ΣηH

∗
(
e−iω

)
= H (z) ΣηH

(
z−1
)⊺
, z = e−iω,

where the superscript ⊺ denotes the transpose of a matrix. Furthermore, fx (ω) is a Hermitian

normal matrix that is non-negative definite for almost all ω ∈ [−π, π]. If we extend the definition

of z to the entire complex plane C, then the autocovariance generating function is given by Sx (z) =

H (z) ΣηH
(
z−1
)
⊺
, but without the Hermitian non-negativeness property for general z ∈ C.

Lemma 4 allows us to transform the non-square signal transfer matrix function into the square

spectral density matrix fx (ω). Based on this lemma, the first step of the spectral factorization

method is to decompose fx (ω) into triangular matrix functions using Rozanov’s (1967) analytical

method.

Proposition 1 Given an ℓ × ℓ spectral density matrix fx (ω) with full rank almost everywhere,

there exists an ℓ× ℓ lower triangular matrix function Γ̃
(
e−iω

)
such that

fx (ω) = Γ̃
(
e−iω

)
Γ̃∗
(
e−iω

)
,

where

Γ̃ (z) =




Γ̃11 (z) 0 ... 0

Γ̃21 (z) Γ̃22(z) ... 0
...

...
. . .

...

Γ̃ℓ1 (z) Γ̃ℓ2 (z) ... Γ̃ℓℓ (z)


 .

If fx (ω) is rational, then all elements of the matrix function are rational and analytic in the closed

unit disk T∪D and hence in the H2 (D) space. Moreover, Γ̃
(
e−iω

)
has full rank in D except for at

most a finite number of points.

If the determinant of the analytic matrix Γ̃ (z) vanishes at finitely many points inside the unit

disk, it is not a Wold spectral factor. Without loss of generality, let {z1, z2, ....zn} be the finite set

of distinct points such that det
(
Γ̃ (zj)

)
= 0, |zj | < 1, j ∈ {1, 2, ...n}. Let zj denote the conjugate

of zj. We assume that all zeros are of order 1 (this property is generic).

The second step of our spectral factorization method employs a multivariate version of the

Beurling-Blaschke factorization theorem to remove any zeros inside the unit disk.

Proposition 2 The Wold spectral factor Γ (z) is given by the factorization for Hardy space func-

tions

Γ (z) = Γ̃ (z)
n∏

j=1

V −1
j Bj (z) ,
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where the ℓ× ℓ Blaschke matrices Bj (z) are (inverse) inner matrix functions of the form

Bj (z) =




1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 .....
1−z̄jz
z−zj


 ,

and the constant unitary matrix Vj is given by the singular value decomposition of Γ̃ (z) evaluated

at the zeros

Γ̃ (zj) = UjDVj ,

where D is a diagonal matrix containing the singular values.

The constant unitary matrices Vj remove the unwelcome poles brought in by the Blaschke fac-

tors. There are different ways of computing these matrices, and we use the eigen-decomposition

method. In particular, the orthonormal column vectors of Vj can be directly picked from nor-

malized linear independent eigenvectors of the Hermitian matrix Gj (zj) = Γ̃∗ (zj) Γ̃ (zj), which

are automatically pairwise-orthogonal for distinct eigenvalues. For more complicated systems, the

eigenvectors can be found easily using symbolic toolboxes in Matlab or Mathematica.

F. 2 Wiener-Hopf Prediction Formula

Using the Wold representation for the signal process, we can compute the conditional expectations

given the history of signals. Since in our model agents need to perform optimal linear filtering to

estimate unobserved shocks, we use the Wiener-Hopf prediction formula, a generalization of the

Wiener-Kolmogorov forecasting formula.

Consider any random vector Θt satisfying Θt = G (L) ηt, where G (z) is a matrix analytic

function in some matrix-valued Hardy space, we wish to compute the conditional expectation

E [LmΘt| {Xt−n}
∞
n=0] given the history of signals {Xt−n}

∞
n=0 , where m is any integer. The Wiener-

Hopf prediction formula gives

E [LmΘt| {Xt−n}
∞
n=0] = Ξ (L)Xt, (F.2)

where the analytic matrix function Ξ (z) is given by

Ξ (z) =
[
zmSΘx(z)

(
Γ−1

(
z−1
))⊺]

+
Γ−1 (z) . (F.3)

Here Γ (z) is the Wold spectral factor derived in the previous subsection and SΘx(z) = G (z) ΣηH (1/z)⊺

is the covariance generating function. The annihilation operator [·]+ is linear and is used to remove

the principal part of the Laurent series expansion of the analytic functions around a common region
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of convergence.13 This formula reduces to the Wiener-Kolmogorov formula when Θt = Xt so that

Ξ (z) = [zmΓ (z)]+ Γ−1 (z) . If the forecast objects follow geometrically discounted processes, the

formula reduces to the Hansen-Sargent optimal prediction formula.

13See Kailath, Sayed, and Hassibi (2000) for a textbook proof of the Wiener-Hopf prediction formula. Hansen and
Sargent (1980) provide a practical method of computing the annihilation operator using elementary complex analysis.
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