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In this paper we examine the implications of two theories of informational frictions,
signal extraction (SE) and rational inattention (RI), for optimal decisions and economic
dynamics within the linear-quadratic-Gaussian (LQG) setting. We first show that if the
variance of the noise and channel capacity (or marginal information cost) is fixed
exogenously in the SE and RI problems, respectively, the two environments lead to
different policy and equilibrium asset pricing implications. Second, we find that if the
signal-to-noise ratio and capacity in the SE and RI problems are fixed, respectively,
the two theories generate the same policy implications in the univariate case, but
different policy implications in the multivariate case. We also show that our results
do not depend on the presence of correlation between fundamental and noise shocks.
We then discuss the applications to macroeconomic models of permanent income and
price-setting. (JEL C61, D81, E21)

I. INTRODUCTION

The objective of this paper is to compare
two theories of information frictions. In the
first theory, agents observe the state of the
world with exogenously imposed noise; we refer
to this environment as the signal extraction
(SE) model.1 The second theory permits agents
to design the distribution of noise terms by
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1. Muth (1960) first applied the SE structure to an
economic model (namely the permanent income model of
Friedman 1957); later SE problems were extended to models
with multiple agents by Townsend (1983) and Sargent
(1991). More recent studies include Morris and Shin (2002),
Wang (2004), and Angeletos and La’O (2010).

focusing limited attention on certain variables
at the expense of others; following Sims (2003)
we refer to this model as the rational inat-
tention (RI) model.2 In both models, agents
respond to changes in the true underlying state
slowly because it takes time for them to learn
exactly what the new state is. The key differ-
ence is that the noise distribution under RI is
an outcome of optimal choice, and thus can
adapt to changing circumstances in the econ-
omy, whereas under SE the noise distribution is
technologically fixed. Our goal is to explore this
crucial distinction.

We explore the distinction between SE and
RI within a linear-quadratic-Gaussian (LQG)
setting. We first study a univariate case for
which the variance-covariance matrix of the
noise shocks can be solved in closed form. First,
we note that (at least within the LQG frame-
work) any variance-covariance structure for the

2. Luo (2008) was an early contribution to the RI lit-
erature; other contributions include Adam (2005), Kasa
(2006), Luo (2010), Luo and Young (2010a), Maćkowiak
and Wiederholt (2009), Melosi (2009), Reis (2010), Van
Nieuwerburgh and Veldkamp (2010), Paciello and Wieder-
holt (2013), and Kim, Ko, and Yun (2012).

ABBREVIATIONS

LQG: Linear-Quadratic-Gaussian
RBC: Real Business Cycle
RI: Rational Inattention
SE: Signal Extraction
SNR: Signal-to-Noise Ratio
SOE: Small Open Economy
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noise shocks derived from the RI problem can be
exogenously imposed in the SE environment, so
there is a sense in which the two environments
are observationally equivalent.

The next result we find is that if the variance
of the noise itself is fixed, we can use a policy
experiment to distinguish SE from RI. Suppose
that the variance of an exogenous shock is scaled
up because of a change in policy. In the SE prob-
lem where the distribution of noise is exogenous,
an increase in the variance of the shock will lead
to a different solution for the conditional vari-
ance and Kalman gain; consequently, the change
in policy will lead to a change in the model’s
dynamic behavior and the agent’s payoffs. In
contrast, in the RI problem, if channel capacity
is fixed, a change in the variance of the exoge-
nous shock will lead to the same change in the
conditional variance of the state and the variance
of the noise, but will not affect the Kalman gain.
That is, inattentive agents with fixed capacity
will behave as if they face noise shocks whose
nature changes systematically as the dynamic
properties of the economy change with policy.
Furthermore, we show that if we assume that
the marginal cost of information is fixed, capac-
ity will be elastic with respect to a change in
policy; consequently, the Kalman gain in this
case will also adjust in response to the policy
change. The losses of agents due to imperfect
information depend on the value of the Kalman
gain. Therefore, in general, SE and RI imply
different policy recommendations.

In contrast, we also find that in the univariate
case, if the ratio of the variance of the exogenous
shock to that of the noise (i.e., the signal-
to-noise ratio, SNR) is fixed, the SE and RI
problems are observationally equivalent in the
sense that they lead to the same dynamics
of the model economy when the ratio of the
conditional variance to that of the noise in
the SE problem equals a particular function
of the channel capacity in the RI problem.
Our results do not depend on the presence or
absence of correlation between fundamental and
noise shocks. Specifically, in the presence of
the correlation, a change in the variance of the
exogenous shock does not change the dynamic
behavior of the model in the fixed capacity
case, whereas it changes the model’s dynamics
in the fixed information-processing cost case in
which both the variance of noise and the Kalman
gain are affected by the interactions between
the correlation, the variance of the fundamental
shock, and the conditional variance.

We then move on to study the multivari-
ate case. In this case, given channel capacity
the conditional variance-covariance matrix can
be obtained by solving a semidefinite program-
ming problem in which the inattentive agent
minimizes the expected loss due to information-
processing constraints. After computing the opti-
mal steady-state conditional variance-covariance
matrix, we can recover the variance-covariance
matrix of the noise vector and then determine the
Kalman gain. In this case, we show that SE and
RI generate different dynamics after a change in
the variance of the exogenous shock even if the
SNR is fixed.

However, when modeling the multivariate SE
problem, it is difficult to specify the process
of the vector of noises ex ante without prior
knowledge about the states. Ad hoc assumptions
on the nature of the noise might be inconsis-
tent with the underlying efficiency conditions
(equalization of the marginal utility of addi-
tional capacity across variables).3 Therefore, RI
provides a micro-founded method for specify-
ing the stochastic properties of the noises. It is
worth noting that in the multivariate RI problem,
the agent’s preference, budget constraint, and
information-processing constraints jointly deter-
mine the values of the conditional variance of
the state, the variance of the noise, and the
Kalman gain, whereas in the multivariate SE
problem given the variance of the noise, the
propagation equation updating the conditional
variance based on the budget constraint is used
to determine the conditional variance and then
the Kalman gain.

Finally, we present two canonical examples
to illustrate our results. First, we study a per-
manent income model to explore the different
consumption and asset pricing implications of
SE and RI. We argue that the RI model with
fixed information-processing cost does a bet-
ter job at replicating the different consumption
behavior in emerging and developed small open
economies (SOEs), and thus helps us distinguish
RI from SE.4 We also discuss a simplified model
of price setting in the vein of Maćkowiak and
Wiederholt (2009) that optimal attention allo-
cation between the aggregate and firm-specific
shocks can also help distinguish RI from SE.

3. See Melosi (2009) for an empirical investigation of
this issue.

4. Aguiar and Gopinath (2007) document that the rel-
ative volatility of consumption growth to income growth
in emerging countries is significantly greater than that in
developed countries.
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In that model, Paciello and Wiederholt (2013)
show that optimal monetary policy under SE
and RI differs precisely because the monetary
authority can manipulate the attention decision;
in other words, it matters whether agents live in
an SE or RI world.

The remainder of the paper is organized as
follows. Section II examines optimal decisions
and economic dynamics in an LQG setting with
SE. Section III presents the RI version of the
model and compares different implications of
RI and SE for dynamics and policy within the
LQG setting. Section IV presents applications
to models of permanent income and price set-
ting. Section V briefly discusses the different
implications of SE and RI for consumption in a
continuous-time setting. Section VI concludes.

II. SIGNAL EXTRACTION IN AN LQG MODEL

A. Full-Information Rational Expectations
LQG Model

Consider the following LQG model:

v (s0) = max{ct ,st+1}
(1)

E0

[ ∞∑
t=0

βt
(
sT
t Qst + cT

t Rct + 2cT
t Wst

)]
,

subject to

st+1 = Ast + Bct + εt+1,(2)

with s0 known and given, where β < 1 is the
discount factor, st is a (n × 1) state vector,
ct is a (k × 1) control vector, εt+1 is an iid
(n × 1) vector of Gaussian random variables
with mean 0 and covariance matrix �, and
Et [·] denotes the mathematical expectation of
a random variable given information processed
at t . We assume that Q, R, and W are such that
the objective function is jointly concave in st

and ct , and the usual conditions required for the
optimal policy to exist are satisfied.

When the agent can fully observe the state
st , the model is a standard linear-quadratic
regulator problem. Solving the corresponding
Bellman equation

sT
t P st = max

ct

{
sT
t Qst + cT

t Rct + 2cT
t Wst

+ βEt

[(
sT
t AT + cT

t BT + εT
t+1

)
×P ×

(
Ast + Bct + εt+1

)]}

yields the decision rule

c∗
t = −Fst ,(3)

and the Riccati equation is

P = Q + FT RF − 2FT W(4)

+β
(
AT − FT BT

)
P (A − BF) ,

where

F = (R + βBT PB
)−1 (

W + βBT PA
)
.(5)

Iterating on the matrix Riccati equation (4)
uniquely determines P , as the equation defines
a contraction mapping. Using P , we can deter-
mine F in the optimal policy (5).

B. Signal Extraction with Exogenous Noises

Following the SE literature (e.g., Lucas
1972; Morris and Shin 2002; Muth 1960), we
now assume that the agent cannot observe the
true state st perfectly and only observes the
noisy signal s∗

t = st + ξt when making deci-
sions. Here ξt is a (n × 1) vector of noises. The
agent then estimates the state using a standard
Kalman filtering equation. In the standard SE
problem, the stochastic property of the noise ξt

is given exogenously. Specifically, assume that
ξt is an iid Gaussian innovation with mean 0
and variance-covariance matrix �.5 We point
out here that the agent may not have perfect
information even about the endogenous part of
the state vector st .

Under the LQG assumption, the certainty
equivalence principle holds when the agent
cannot observe st perfectly, so the decision rule
under imperfect information can be written as

c∗
t = −F ŝt ,(6)

where ŝt = E [st |It ] is the perceived state and
It =

{
s∗
t , s

∗
t−1, · · ·, s∗

0

}
is the information set

including perceived signals until time t .
Furthermore, we assume that in the steady

state, the true state follows a normal distribu-
tion after observing the noisy signals st |It ∼
N (E [st |It ] , �t ), where �t = Et

[(
st − ŝt

)(
st −

ŝt

)T ]
is the conditional variance-covariance

matrix, and the Kalman filtering equation gov-
erns the behavior of ŝt

ŝt+1 = (1 − θ) (Âst + Bct ) + θs∗
t+1,(7)

5. Our quadratic objective function encompasses the
standard tracking objective of minimizing the squared dif-
ference of the control from the target.
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where θ is the steady-state Kalman gain to
be determined.6 Following the standard proce-
dure in the Kalman filter literature, we have
the steady state updating equation for � and
Kalman gain θ:

� = (I − θ)
(
A�AT + �

)
(I − θ)T + θ�θT

(8)

and

θ = (� + A�AT
) (

� + A�AT + �
)−1

.(9)

After computing (θ, �) by iteration, we can
obtain a complete characterization of the dy-
namic system. The key assumption in the SE
problem is that the variance-covariance matrix
of the noise, �, is given. Given this �,
Equations (8) and (9) jointly determine the
steady state (θ, �). It is straightforward to show
that we have the following alternative equations
for computing the Kalman gain and the condi-
tional variance-covariance matrix, (θ, �):

�−1 = �−1 − �−1.(10)

and

θ = ��−1,(11)

where � = A�AT + � is the steady-state con-
ditional variance of the state prior to observing
the new signal. After obtaining the Kalman gain,
Equations (6), (7), and (11) completely charac-
terize the model’s dynamic behavior.

III. RATIONAL INATTENTION IN THE LQG MODEL

Following Sims (2003), we introduce RI
into the LQG model proposed in Section A
by assuming agents face information-processing
constraints and have only finite Shannon chan-
nel capacity to observe the state of the world.
Specifically, we use the concept of entropy from
information theory to characterize the uncer-
tainty about a random variable; the reduction in
entropy is thus a natural measure of information
flow. Formally, entropy is defined as the expec-
tation of the negative of the (natural) log of the
density function, −E

[
ln (f (X))

]
. For example,

the entropy of a discrete distribution with equal
weight on two points is simply E

[
ln (f (X))

] =
−0.5 ln (0.5) − 0.5 ln (0.5) = 0.69, and the unit

6. Muth (1960) showed that the exponentially weighted
average of past observations of a random walk plus a noise
process is optimal in the sense that it minimizes the mean
squared forecast error.

of information contained in this distribution is
0.69 “nats.”7 In this case, an agent can remove
all uncertainty about X if the capacity devoted
to monitoring X is κ = 0.69 nats.

With finite capacity κ ∈ (0,∞) , a vari-
able s following a continuous distribution can-
not be observed without error and thus the
information set at time t + 1, It+1, is gen-
erated by the entire history of noisy signals{
s∗
j

}t+1

j=0
. Following the literature, we assume

the noisy signal takes the additive form s∗
t+1 =

st+1 + ξt+1, where ξt+1 is the endogenous noise
caused by finite capacity. We further assume
that ξt+1 is an iid idiosyncratic shock and is
independent of the fundamental shock. Note
that the reason that the RI-induced noise is
idiosyncratic is that the endogenous noise arises
from the consumer’s own internal information-
processing constraint. Agents with finite capac-
ity will choose a new signal s∗

t+1 ∈ I t+1 ={
s∗

1 , s∗
2 , · · ·, s∗

t+1

}
that reduces the uncertainty

of the state variable st+1 as much as possible.
Formally, this idea can be described by the infor-
mation constraint

H (st+1|It ) − H (st+1|It+1) ≤ κ,(12)

where κ is the investor’s information channel
capacity, H (st+1| I t ) denotes the entropy of the
state prior to observing the new signal at t + 1,
and H (st+1| I t+1) is the entropy after observ-
ing the new signal. κ imposes an upper bound on
the amount of information—that is, the change
in the entropy—that can be transmitted in any
given period. Finally, following the literature,
we suppose that the prior distribution of st+1 is
Gaussian.

Under the LQG setting, as has been shown
in Sims (2003, 2006), the true state under
RI also follows a normal distribution st |It ∼
N (E [st |It ] , �t ), where �t = Et

[(
st − ŝt

)(
st −

ŝt

)T ]
. In addition, given that the noisy signal

takes the additive form s∗
t+1 = st+1 + ξt+1, the

noise ξt+1 should also be Gaussian. It is worth
noting that the Gaussianity of the posterior vari-
ance of the true state and the noise is opti-
mally determined by the LQG structure. This
result is often assumed as a matter of conve-
nience in SE models with exogenous noises,
and RI can rationalize this assumption. In addi-
tion, in the steady state the agent observes an

7. For alternative bases for the logarithm, the unit of
information differs; with log base 2 the unit of information
is the “bit” and with base 10 it is a “dit” or a “hartley.”
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additive noisy signal: s∗
t = st + ξt . Note that in

the RI problem we also have the usual formula
for updating the conditional variance-covariance
matrix of a Gaussian distribution � in steady
state:

�−1 = �−1 − �−1.(13)

Using these expressions, the Kalman gain θ can
also be written as

θ = ��−1.(14)

A. The Univariate Case

The key difference between SE and RI is
that under RI the agent faces the information-
processing constraint

− ln (|�t+1|) + ln
(∣∣AT �tA + �

∣∣) ≤ 2κ.(15)

As more information about the state is better
in single-agent models, this constraint will be
binding.8 Considering the univariate state case
n = 1, (15) fully determines the value of the
steady-state conditional variance �:

� = �

exp (2κ) − A2
,(16)

which means that � is determined by the
variance of the exogenous shock (�) and the
exogenously given capacity (κ).9 Given this �,
we can use (13) to recover the variance of the
endogenous noise (�):

� = (�−1 − �−1)−1
,(17)

where � = A2� + �, and use (14) to find the
Kalman gain (θ):

θ = ��−1 = 1 − ��−1,(18)

which reduces to θ = 1 − 1
exp(2κ)

using Equa-
tions (14), (16), and (17). Note that Equations
(17) and (18) also hold in the SE problem.
To compare the RI and SE problems in the
univariate case, we first consider the following
two cases.

8. By “better” we mean that conditional on draws by
nature for the true state, the expected utility of the agent
increases if information about that state is improved.

9. Note that here we need to impose the restriction
exp (2κ) − A2 > 0. If this condition fails, the state is not
stabilizable and the unconditional variance diverges. Obvi-
ously we cannot directly impose conditions on A, as it is
chosen by the agents in the model; it is also clear that we
can, for a given model, easily find sufficient conditions that
guarantee the restriction holds.

Case 1. Assume that � is fixed exogenously
in the SE case.

In Case 1, it is clear that in the SE problem
given � and �, we can compute � by solving
the nonlinear equation (10). After obtaining �,
we can use Equation (11) to determine the
Kalman gain θ; thus, in this sense SE and RI
have the same implications.

We now discuss how to use a policy experi-
ment to distinguish RI from SE. Suppose that the
variance of the exogenous shock, �, is scaled up
because of a change in policy. In the SE problem
with fixed �, Equations (17) and (18) imply that
an increase in � will generally lead to a different
solution for � and θ; consequently, the change
in policy will lead to a change in the model’s
dynamics. Because � is a nonlinear function of
�, the effect of changes in � on � could be
complicated. In the next section, we will explore
this relationship using some numerical examples
in a permanent income model. In contrast, in the
RI problem, if κ is fixed, Equations (16), (17),
and (18) imply that a change in � will lead to
the same change in �, �, and �, but has no
impact on θ. In other words, agents with fixed
capacity will behave as if facing noise whose
nature changes systematically as the dynamic
properties of the economy change, that is, the
change in policy does not change the model’s
dynamics.

Case 2. Assume that the SNR (SNR), ��−1,
is fixed exogenously in the SE case.

Note that Equation (17) can be rewritten as

��−1 = ��−1 −
[
A2 (��−1)−1 + 1

]−1
.

(19)

In Case 2, since the SNR is fixed, (19) can be
used to solve for ��−1. Given the SNR and
��−1, we can compute

��−1 = (��−1) (��−1) .(20)

Consider the same case in which � is scaled
up, fixed SNR means that the exogenous noise
should also be scaled up such that ��−1 is
fixed at the same level; consequently, Equation
(19) leads to the same solution for ��−1

and Equation (20) leads to the same ��−1.
The following proposition summarizes the main
conclusion in this case:

PROPOSITION 1. In Case 2 (i.e., the SNR is
fixed), the SE and RI problems are observation-
ally equivalent in the sense that they lead to the
same dynamics if κ is fixed and ��−1 in the
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SE problem is equal to 1 − 1/ exp (2κ) in the RI
problem.

Proof. The proof is straightforward by compar-
ing Equations (18) and (20). �

In the above analysis, for simplicity we
assume that κ remains unchanged when � is
altered by the government policy. However,
if an increase in � leads to higher marginal
welfare losses due to imperfect observations,
some capacity may be reallocated from other
sources to reduce the welfare losses due to low
capacity. In this case, θ will change accordingly
as it is completely determined by capacity
κ; consequently, the dynamic behavior of the
model will also change in response to the change
in �. We will further explore this issue in the
next section and the permanent income model
in Section 4.

Alternative Way to Model Limited Information-
Processing Capacity. As argued by Sims
(2010), instead of using fixed finite chan-
nel capacity to model limited information-
processing ability, it is also reasonable to assume
that the marginal cost of information process-
ing is constant. That is, the Lagrange multi-
plier on Equation (15) is constant.10 In the
univariate case, if the decision rule under full
information is c∗

t = Hst and the objective of
the agent with finite capacity is to minimize∑∞

t=0 βt
(
ct − c∗

t

)2
, the optimization problem

reduces to

min
�t

∞∑
t=0

βt

[
H 2�t + λ ln

(
A2�t−1 + �

�t

)]
,

where �t is the conditional variance at t , λ
is the Lagrange multiplier corresponding to
Equation (15), and we impose the restriction that
βA = 1 and H = A − 1 for simplicity. Solving
this problem yields the optimal steady-state
conditional variance:

� =
− (�H − λA)

+
√

(�H − λA)2 + 4λ�A2

2HA2
> 0.

(21)

It is straightforward to show that as λ goes to
0, � = 0; and as λ goes to ∞, � = ∞. Com-
paring Equations (21) with (16), it is clear that

10. Formally, the assumption is that κ is a choice
variable and the utility cost function is μκ for some
constant μ.

the two modeling strategies are observationally
equivalent in the sense that they lead to the same
conditional variance if the following equality
holds:

κ = 1

2
ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A2 + 2HA2⎛⎜⎜⎜⎝

− [H − A (λ/�)
]

+
√√√√ [

H − A (λ/�)
]2

+ 4A2 (λ/�)

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(22)

In this case, the Kalman gain is

θ = 1 −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A2 + 2HA2⎛⎜⎜⎝

− [H − A (λ/�)
]

+
√√√√ [

H − A (λ/�)
]2

+ 4A2 (λ/�)

⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−1

.

(23)

It is obvious that κ converges to its lower limit
κ= ln (A) as λ goes to ∞; and it converges to
∞ as λ goes to 0.11 In other words, using the RI
modeling strategy, the agent is allowed to adjust
the optimal level of capacity in such a way
that the marginal cost of information processing
for the problem at hand remains constant. Note
that this result is consistent with the concept
of “elastic” capacity proposed in Kahneman
(1973).

Furthermore, it is clear from Equation (22)
that if the cost of information processing (λ)
is fixed, an increase in fundamental uncertainty
(�) will lead to higher capacity (κ) devoted to
monitoring the evolution of the state. We now
consider the same policy experiment discussed
above: � is scaled up because of a change in
policy. If we adopt the assumption that λ is
fixed, Equation (21) means that there is a less
change in � because ∂ ln �

∂ ln �
< 1. Note that in the

fixed κ case, ∂ ln �
∂ ln �

= 1. Consequently, a change
in � will change θ and the model’s dynamics

11. We require here that H �= 0; that is, the state must
be detectable. If the state is not detectable there is no point
in allocating attention to monitoring it.
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if the inattentive agent is facing fixed marginal
cost of information. Therefore, different ways
of modeling RI may lead to different policy
implications.12

Extension to Correlated Shocks and Noises. In
the above analysis, we assumed that the exoge-
nous fundamental shock and noise are uncorre-
lated. We now discuss how correlated shocks
and noises affect the implications of SE and
RI for the model’s dynamic behavior. In real
systems, we may observe correlated shocks and
noises. For example, if the system is an air-
plane and winds are buffeting the plane, the ran-
dom gusts of wind affect both the process (the
airplane dynamics) and the measurement (the
sensed wind speed) if people use an anemome-
ter to measure wind speed as an input to the
Kalman filter. Please see Simon (2006) for a dis-
cussion. To use an economic example, suppose
there is a correlation between levels and volatil-
ity, and also that producing national income data
is costly; then a transition from low to high
volatility would be associated with low output
levels and, at the margin, less accurate measure-
ments.

It is straightforward to introduce correlated
shocks and noises into the SE problem. Specifi-
cally, we consider the case in which the process
shock (ε) and the noise (ξ) are correlated as
follows:

corr (εt+1, ξt+1) = ρ,

cov (εt+1, ξt+1) = � = ρ
√

�
√

�,

where ρ is the correlation coefficient between
εt+1 and ξt+1, � =var

[
εt+1

]
and �= var

[
ξt+1

]
.

Under SE, � is given exogenously and the
correlation just introduces another exogenous
stochastic dimension on the noise. As shown in
Simon (2006), in this case the optimal Kalman
gain can be written as

θ = (� + �) (� + � + 2�)−1 ,(24)

and the updating formula for the conditional
variance is

� = � − (� + �)2 (� + � + 2�)−1 ,(25)

12. Note that these two different ways to model RI are
very similar to the constraint and multiplier preferences
adopted by Hansen and Sargent (2007) to model aversion to
model misspecification. They also established the observa-
tional equivalence between the two preferences within the
LQG setting. Luo and Young (2010a) extend this equiva-
lence to RI settings.

where � = � + A2�. Just like the case without
the correlation, given � and �, Equations (24)
and (25) jointly determine the steady state
(θ, �).

In the RI problem, the correlation gener-
alizes the assumption in Sims (2003) on the
uncorrelated RI-induced noise. In the steady
state, Equation (25) can be rewritten as the
following quadratic equation in terms of

√
�:[

ρ2� − (� − �)
]
� + 2ρ�

√
�

√
� + �� = 0,

which can be solved for

� =

⎛⎜⎜⎜⎜⎜⎝
−ρ�

√
�

+
√

ρ2�2�−��
[
ρ2�− (� − �)

]
ρ2� − (� − �)

⎞⎟⎟⎟⎟⎟⎠
2

.

(26)

It is clear from (26) that if κ is fixed, the change
in � will lead to the same change in �, �,
and �, but has no effect on the Kalman gain
θ = ��−1. That is, the presence of correlated
noise does not change the dynamic behavior of
the model.

Consider the RI problem with a fixed in-
formation-processing cost (λ). From Equations
(21) and (26), it is clear that in the presence of
correlated noise (ρ > 0), there is a less change
in � when there is a change in � because
∂ ln �
∂ ln �

< 1, and consequently, the change in �
will also change θ because � depends on the
interactions between � and �.

B. The Multivariate Case

In the multivariate RI problem, it is more dif-
ficult to determine the steady-state conditional
variance-covariance matrix � because it cannot
be computed analytically. Here we follow Sims
(2003) and calculate the expected loss due to
imperfect observations under RI. Specifically,
we assume that the value functions under full
information and imperfect information can be
written as

v (st ) = sT
t P st and v̂ (̂st ) = ŝT

t P̂ ŝt ,

respectively.13 We can compute the optimal �
by minimizing the expected welfare loss due to
RI,

Et [v (st ) − v̂ (̂st )] ,(27)

13. See also Maćkowiak and Wiederholt (2009).
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subject to information-processing constraints.
Note that to solve this problem numerically, we
need to use a two-stage procedure.14 First, under
the LQG assumption, the certainty equivalence
principle applies and the decision rule under
imperfect information,

c∗
t = −F ŝt ,(28)

is independent of � or �. We then use this
decision rule to determine v̂ (̂st ) which depends
on � and �. Applying the welfare criterion
proposed in Equation (27), we can solve for
optimal steady-state � and �.

Solving the problem posed in Equation (27)
is equivalent to solving the semidefinite pro-
gramming problem

max
�

{trace (−Z�)}(29)

subject to

− ln (|�|) + ln
(∣∣AT �A + �

∣∣) ≤ 2κ,(30)

AT �A + � 	 �,(31)

where Z = FT RF − 2FT W + β
(
FT BT PBF

+FT BT PA + AT PBF
)

(see Appendix S1,
Supporting Information, for the derivation). If
the positive-definiteness constraint on AT �A +
� − �, Equation (31), does not bind, the first-
order condition for � can be written as

�−1 = (G�GT + G0
)−1 − Z

λ
,(32)

where G = (AT
)−1

A and G0 = (AT
)−1

�A−1.
We can then use standard methods to solve
Equation (32). When applied to a permanent
income model in the next section, we first solve
this equation and then check whether in fact
Equation (31) is satisfied by the optimal solution
of �. If so, the problem is solved.15

After computing the optimal steady-state �,
we can then use Equation (13) to determine
the steady-state � and Equation (14) to deter-
mine the Kalman gain θ. Therefore, the key
difference between SE and RI is that in the
SE problem we need to specify the process of
the noise first, whereas in the RI problem we
need to first specify the value of channel capac-
ity that determines the steady-state conditional

14. Sims (2010) also applied this principle to solve a
tracking problem with information constraints.

15. If this constraint does not bind, in principle we can
apply the logic of the reverse water-filling problem to solve
for �.

variance of the state by solving the semidefi-
nite programming problem proposed in Equation
(29) subject to Equations (30) and (31).16 The-
oretically, it is clear that after solving an RI
problem, we can always reconstruct an SE prob-
lem using the resulting endogenous noise due to
RI as the input, and the two models are observa-
tionally equivalent in this sense. However, it is
difficult to specify the process of the vector of
noises ex ante when modeling the multivariate
SE problem.17

When modeling the multivariate RI prob-
lem we only need to set a value for channel
capacity and then compute optimal conditional
variance-covariance matrices of the state and
the variance-covariance matrices of the noise
vector by solving the constrained semidefinite
minimization problem (29). Therefore, in the
multivariate RI problem, the agent’s preference,
budget constraint, and information-processing
constraints jointly determine the values of �,
�, and θ, whereas in the multivariate SE prob-
lem given �, Equation (13) that is used to
determine � and θ only depends on the budget
constraint. If the noise in SE is specified exoge-
nously, it may violate the optimality conditions
for RI; for example, Melosi (2009) showed
that a particular estimated SE model does not
equate the marginal utility of attention across
states, implying that the variance-covariance
matrix of the noise would not be consistent
with any channel capacity. Of course, obtaining
the marginal utility of attention requires solv-
ing the RI problem, so it will be difficult to
specify ex ante an SE problem consistent with
RI.18

We now consider the different policy effects
of RI and SE in the multivariate case. We first
assume that initially the SE and RI problems
have the same Kalman gain that generates
the same dynamic behavior. Suppose that the
variance-covariance matrix of the exogenous
shock, �, is scaled up because of a change
in policy.19 In the SE problem with fixed �,

16. Note that the basic idea of solving the multivariate
RI problem is the same as that in the univariate model and
thus the key difference between SE and RI problems remains
unchanged.

17. This problem will be particularly difficult for non-
LQG problems, as the distribution of the noise shocks will
generally be impossible to specify analytically.

18. The robustness of the result in Melosi (2009) is
unknown, but it clearly depends on model assumptions to
some degree.

19. That is, all elements in the variance-covariance
matrix are scaled up.
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Equations (17) and (18) imply that a change of
� will lead to a different solution for � and θ,
that is, the change in policy will lead to a change
in the model’s dynamics. In contrast, in the
multivariate RI problem, as shown in Equations
(29)–(31), a change in � will have complicated
effects on �, �, and θ. In other words, in
the multivariate case a change in policy will
affect the model’s behavior in both SE and RI
problems. (Note that in the univariate case the
change in policy does not change the model’s
dynamics.)

We next consider the effects of RI and SE
in Case 2 (i.e., the SNR, ��−1, is fixed in the
SE problem). As before, we assume that initially
the SE and RI problems have the same Kalman
gain. To illustrate how a change in � affects
the Kalman gain in RI and SE problems, we
multiply � on both sides of Equation (17):

��−1 = I − [A�AT �−1(33)

+ (��−1) (��−1) ]−1
,

where I is the identity matrix and we use the
fact that ��−1 = (��−1

) (
��−1

)
. In Case 2,

the policy has the same impact on � and �
to keep the SNR fixed. Equation (33) clearly
shows that if the policy changes � and then
A�AT �−1, it will affect θ = ��−1 even in
Case 2. Multiplying � on both sides of (17)
gives

��−1 = ��−1 − (A�AT �−1 + I
)−1

,(34)

which means that a change in � will lead to
different � given that ��−1 is fixed. Note that
in the univariate case, A�AT �−1 = A2, which
means that the policy has no impact on θ, and
the SE and RI problems cannot be distinguished
by the policy in Case 2 that the SNR, ��−1, is
fixed.

IV. APPLICATIONS TO MODELS OF PERMANENT
INCOME AND PRICE SETTING

In this section, we consider the effects of
SE and RI for consumption dynamics and their
policy and welfare implications in an otherwise
standard permanent income model. As in the
previous section we first consider applications to
the univariate case and then discuss applications
to the multivariate case.

We are not the first to examine this model.
Sims (2003) examined how RI affects consump-
tion dynamics when the agent only has lim-
ited capacity when processing information. Luo

(2008) showed that the RI permanent income
can be solved explicitly even if the income
process is not iid, and then examined how
RI can resolve the well-known excess smooth-
ness and excess sensitivity puzzles; that model
admits a reduction to a single state variable.20

To explore the attention allocation problem
explicitly, we also consider a simplified price-
setting model used in Woodford (2001) and
Maćkowiak and Wiederholt (2009), and argue
that this model can also help distinguish RI
from SE.

A. The Univariate Permanent Income Model

Optimal Consumption. Following Luo (2008),
we have the subsequent univariate version of
the standard permanent income model (Flavin
1981; Hall 1978) in which households solve the
dynamic consumption-savings problem

v(s0) = max
{ct }

E0

[ ∞∑
t=0

βt u(ct )

]
(35)

subject to

st+1 = Rst − ct + ζt+1,(36)

where u(ct ) = − 1
2 (c − ct )

2 is the period util-
ity function, c > 0 is the bliss point, ct is
consumption,

st = wt + 1

R

∞∑
j=0

R−jEt

[
yt+j

]
(37)

is permanent income (the expected present
value of lifetime resources), consisting of finan-
cial wealth (wt ) plus human wealth (i.e., the
expected discounted present value of current and
future labor income, y),

ζt+1 = 1

R

∞∑
j=t+1

(
1

R

)j−(t+1)

(Et+1 − Et)
[
yj

](38)

is the time (t + 1) innovation to permanent
income with mean 0 and variance ω2

ζ , wt is
cash-on-hand (or market resources), yt is a gen-
eral income process with Gaussian white noise
innovations, β is the discount factor, and R is
the constant gross interest rate at which the

20. The excess smoothness puzzle states that consump-
tion responds too little to permanent changes in income.
The excess sensitivity puzzle states that current consump-
tion responds to changes in income that were anticipated in
earlier periods.
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consumer can borrow and lend freely.21 We
assume y follows an AR(1) process with persis-
tence coefficient ρ ∈ [0, 1], yt+1 = ρyt + εt+1,
where εt+1 ∼ N

(
0,ω2

)
, st = wt + yt/ (R − ρ)

and ζt+1 = εt+1/ (R − ρ).22 For the rest of the
paper we will restrict attention to points where
ct < c, so that utility is increasing and concave;
following the literature we impose the restriction
that βR = 1, because it implies a stationary path
for consumption. This specification follows that
in Hall (1978) and Flavin (1981) and implies
that optimal consumption is determined solely
by permanent income:

ct = (R − 1) st .(39)

Within this LQG setting, the certainty equiva-
lence principle holds and introducing SE or RI
lead to the following new consumption function:

ct = (R − 1) ŝt ,(40)

where ŝt = Et [st ] is the perceived state and
is governed by the following Kalman filtering
equation

ŝt+1 = (1 − θ) (Rŝt − ct ) + θ (st+1 + ξt+1) ,
(41)

where θ is the Kalman gain, and given s0 ∼
N (̂s0, �0). As shown in Luo (2008), combining
Equations (36), (40), with (41) yields the follow-
ing expression for the change in consumption:

�ct = (R − 1)

[
θζt

1 − (1 − θ)R · L
(42)

+ θ

(
ξt − θRξt−1

1 − (1 − θ)R · L

)]
,

where L is the lag operator. We require (1 −
θ)R2 < 1, the model equivalent of the stabi-
lizability condition stated before (this condi-
tion implies (1 − θ)R < 1 since R > 1). This
MA(∞) process shows that the dynamic behav-
ior of the model is strongly influenced by the
Kalman gain θ. Using the explicit expression
for consumption growth (42), we can compute
the key stochastic properties of consumption

21. Note that in this case, the flow budget constraint is
wt+1 = Rwt − ct + yt .

22. Here we assume that disposable income follows
a persistent trend-stationary AR(1) process; Luo, Nie,
and Young (2012) estimated the process for small-open
economies. It is well known that given the length and struc-
ture of the data on real income, it is difficult to distinguish
persistent trend-stationary AR(1), unit root, and difference-
stationary (DS) processes for real income. We focus on the
AR(1) case in this paper.

process: the volatility of consumption growth,
the persistence of consumption growth, and the
correlation between consumption growth and
income shocks.23 All these moments depend on
the Kalman gain. In other words, SE and RI lead
to different consumption processes if and only
if the resulting θ differs.

It is worth noting that the representative-
agent RI model can be regarded as an extreme
case of an RI model with a continuum of
agents. For example, consider two PIH mod-
els: one with a representative consumer and one
with a continuum of consumers endowed with
identical channel capacity. While the effect of
RI on the reaction of consumption to income
shocks is the same in the two PIH environments,
the volatility of aggregate consumption depends
on the specifics of the aggregative mechanism.
As argued in Sims (2003), although the ran-
domness in an agent’s response to aggregate
shocks will be idiosyncratic because it arises
from the agent’s own information-processing
channel, there is likely a significant common
component. Therefore, the common term of the
noise lies between 0 and the part of the RI-
induced noise, ξt . If we assume that ξt con-
sists of two independent noises: ξt = ξt + ξi

t ,
where ξt = Ei [ξt ] and ξi

t are the common and
idiosyncratic components of the error gener-
ated by ζt , respectively. A single parameter,

λ = var
(
ξt

)
var(ξt )

∈ [0, 1], can be used to measure the
common source of coded information on the
aggregate component (or the relative importance
of ξt vs. ξt ). (Sims 2003 argued that the pres-
ence of the common noise can help fit the
model with the VAR evidence better.) Given
the existing theories on this issue, we cannot
pin down the value of λ. Therefore, the λ = 1
case can be viewed as a special case of the
model with a continuum of consumers which is
equivalent with the representative-agent model
in which we do not need to discuss the aggre-
gation issue.

Policy Implications under SE and RI. In this
univariate permanent income model, substituting
A = R into Equation (19),

ω2
ζ�

−1 = ω2
ζ�

−1 −
[
R2 (ω2

ζ�
−1)−1 + 1

]−1
,

(43)

23. See Luo (2008) for a discussion on the effects of RI
on consumption dynamics.
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FIGURE 1
Relationship between π and θ
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where ω2
ζ�

−1 = (ω2
ζ�

−1
) (

��−1
)
, and denote

θ = ��−1 and π = ω2
ζ�

−1, we obtain the fol-
lowing relation between π and θ:

π = θ

(
1

1 − θ
− R2

)
.(44)

Solving for θ yields

θ =

(− (1 + π − R2
)

+
√(

1 + π − R2
)2 + 4R2π

)
2R2

,(45)

where we omit the negative root of θ as both �
and � must be positive. Figure 1 illustrates the
relationship between π and θ given R = 1.02
and π ∈ [0.1, 10]. It clearly shows that θ is
an increasing function of π, the signal-to-noise
ratio. Also, as π → ∞, θ → 1.

In the RI version of the permanent income
model, we have

� = �

exp (2κ) − R2
,(46)

� = (�−1 − �−1)−1
,(47)

where � = R2� + �. Using (46) and (47), the
Kalman filter gain under RI can be written as

θ = ��−1 = 1 − 1

exp (2κ)
.(48)

Comparing Equations (45) with (48), it is
clear that the signal-to-noise ratio (π) and the
level of channel capacity (κ) have one-to-one
correspondence. Figure 2 shows the relation-
ship between κ and π when the SE and RI

FIGURE 2
Relationship between κ and π
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problems are observationally equivalent in the
sense that they lead to the same consumption
dynamics governed by the Kalman gain θ, that
is, π = (1 − exp (−2κ))

(
exp (2κ) − R2

)
. This

result is consistent with the general conclusion
we obtained using Case 2 in the previous
section.

Using the same expression for θ, (45), we
can examine how Case 1 can be used to distin-
guish SE and RI when implementing a change
in government policy. Specifically, in the SE
problem, we assume that before the govern-
ment implements stabilization policies, the SNR
π = ω2

ζ/� = 2. In this case, θ = 0.73. After the
government implements these policies, the vari-
ance of the shock to permanent income will be
reduced from ω2

ζ to 0.5ω2
ζ . As � is fixed in Case

1, π will fall from 2 to 1; consequently, θ =
0.62. We now assume that the RI and SE prob-
lems are observationally equivalent in the sense
that they lead to the same θ = 0.73 before imple-
menting the stabilization policies. After imple-
menting these policies, ω2

ζ will be scaled down
to 0.5ω2

ζ , and the RI theory predicts that both �
and � will be scaled down to 0.5� and 0.5�,
respectively.24 Consequently, the Kalman filter
gain, θ = ��−1 = 0.73, remains unchanged. In
other words, stabilization policy has different
implications for consumption dynamics in the
SE and RI models.

Alternatively, if we assume that the cost of
information processing (λ) is fixed, the optimal

24. A proof is straightforward from Expressions (46)
and (47).



822 ECONOMIC INQUIRY

conditional variance equals

� =

(− [�(R − 1) − λR]

+
√

[�(R − 1) − λR]2 + 4λ�R2

)
2 (R − 1) R2

.

(49)

Comparing Equations (49) with (46), it is clear
that the two modeling strategies are observa-
tionally equivalent in the sense that they lead to
the same conditional variance if the following
equality holds:

κ = 1

2
ln

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
R2 + 2 (R − 1) R2⎛⎜⎜⎝

− [(R − 1) − R
(
λ/ω2

ζ

)]
+
√√√√ [

(R − 1) − R
(
λ/ω2

ζ

)]2
+4R2

(
λ/ω2

ζ

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(50)

In this case, the Kalman gain is

θ =1−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
R2 + 2 (R − 1) R2⎛⎜⎜⎝

− [(R − 1) − R
(
λ/ω2

ζ

)]
+
√√√√ [

(R − 1) − R
(
λ/ω2

ζ

)]2
+4R2

(
λ/ω2

ζ

)
⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−1

.

(51)

After implementing these policies, ω2
ζ is scaled

down to 0.5ω2
ζ (i.e., the economy switches

to a more stable environment) and the fixed
λ theory predicts that the Kalman filter gain,
θ = ��−1, is reduced. For example, before the
government implements stabilization policies,
we have λ/ω2

ζ = 0.000135 and θ = 0.79. After
the policy, we can easily calculate that θ = 0.68
using Equation (51). Figure 3 plots the different
implications of SE and RI for consumption
dynamics after implementing the stabilization
policy: consumption growth falls more (less)
under SE than RI when κ is fixed (when
λ is fixed), since the Kalman gain decreases
(increases). The intuition behind this result is
simple. In the fixed λ case some capacity will be
reallocated to other sources because a reduction
in macroeconomic uncertainty leads to smaller
welfare losses due to RI.

FIGURE 3
Consumption Dynamics under SE and RI after
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Implications for Consumption Volatility in
Emerging and Developed Countries. Aguiar and
Gopinath (2007) consider two groups of small
economies (emerging and developed econo-
mies), and find that consumption is more volatile
than income at business cycle frequencies for
emerging markets, as compared to a ratio of
less than one for developed markets. They show
that a SOE real business cycle (RBC) model
driven primarily by shocks to trend growth can
explain well this regularity about the relative
volatility of consumption to income in emerg-
ing markets. However, by using a long time
series data over 1900–2005, Garcı́a-Cicco, Pan-
crazi, and Uribe (2010) estimate an RBC model
driven by the same shocks considered in Aguiar
and Gopinath (2007), and find that the model
does a poor job explaining the observed busi-
ness cycle fluctuations in Argentina and Mexico
along a number of dimensions including the rel-
ative volatility of consumption to income. In this
section, we briefly show that the RI model with
a fixed information-processing cost can explain
the observed difference in consumption volatil-
ity in emerging and developed countries.

The PIH model presented in Section A can be
regarded as an SOE model in which the constant
interest rate is given exogenously and there are
a continuum of consumers in the model econ-
omy. Using Equation (42) and assuming that
all idiosyncratic errors are canceled out after
aggregation, the relative volatility of consump-
tion growth to income growth can be written
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as

μ ≡ sd (�ct )

sd (�yt )
=
(

R − 1

R − ρ

√
1 + ρ

2

)
(52)

×
√

θ2

1 − ((1 − θ) R)2 ,

where sd (·) denotes standard deviation. It
is straightforward to show that the relative
consumption volatility is decreasing with the
degree of imperfect state observations because
∂μ/∂θ < 0. As shown in Luo, Nie, and Young
(2012), if there is no imperfect-state-observation
assumption (i.e., θ = 1), the model cannot
generate the empirical relative consumption
volatility. For example, if R = 1.04, the full
information model predicts that μ in emerg-
ing and developed economies would be 0.28
and 0.24, respectively. In contrast, in the data,
the corresponding μ values are 1.35 and 0.98,
respectively.25 In the RI model with fixed capac-
ity, θ is uniquely determined by fixed capac-
ity κ and thus has no impact on the cross-
country comparison if emerging and developed
countries have the same average amount of
channel capacity. In contrast, if we adopt the
fixed information-processing cost assumption,
Equations (51) and (52) can have the potential to
generate the observed difference in consumption
volatility in emerging and developed countries
because θ is an increasing function of income
uncertainty and income uncertainty in emerging
countries is much higher than that in developed
countries (sd (�y) /mean(y) is 3.82 in emerg-
ing countries, while it is 2.07 in developed
countries). Intuitively, in developed countries
consumers pay less attention to macroeconomic
conditions because the fundamental uncertainty
is low; consequently, the aggregate consumption
process in these countries is more stable relative
to the income process.26

General Equilibrium Asset Pricing Implications.
The PIH model presented in Section A is usually
regarded as a partial equilibrium model. How-
ever, as noted in Hansen (1987) and Cochrane

25. See Table 1 in Luo, Nie, and Young (2012) for the
estimated income processes in both emerging and developed
countries.

26. It is worth noting that this prediction can also be
used to distinguish SE and RI by examining the time-series
behavior of an economy across “regime changes,” such as
the observed U.S. Great Moderation in which the volatility
of output dropped after 1984. This rationale was also used
in Sargent (1976) to discuss the observational equivalence
between Classical and Keynesian models.

(2005), it is not a partial equilibrium result—it
is a general equilibrium model with a lin-
ear production technology and an exogenous
income process. Given the expression of opti-
mal consumption in terms of the state variables
derived from the PIH model with imperfect-
state-observation, we can price assets by treat-
ing the process of aggregate consumption that
solves the model as though it was an endowment
process. In this setup, equilibrium prices are
shadow prices that leave the agent content with
that endowment process.

In the model setting specified in Section A,
w can be regarded as capital. R can be regarded
as the return on the linear technology and is
not yet the interest rate (the equilibrium rate
of return on one-period claims to consumption).
As proposed in Cochrane (2005) and used in
Luo and Young (2010b), after finding optimal
consumption as in Equation (40), we can price
one-period claims using this equilibrium con-
sumption stream. Denoting the risk-free rate by
Rf , we have the following Euler equation:

1

Rf
≡ Et

[
β
u′ (ct+1)

u′ (ct )

]
= βEt

[
c − ct+1

c − ct

]
= β = 1

R
,

where Et [·] is the consumer’s expectation oper-
ator conditional on his/her processed informa-
tion at time t . We can now use the basic pricing
equation, p = E [mx],27 to compute the price of
the stream of aggregate consumption (treated as
the stream of endowments) as28

pt = Et

⎡⎣ ∞∑
j=1

(
mt,t+j ct+j

)⎤⎦(53)

= 1

R − 1
ct︸ ︷︷ ︸

prn
t

− 1

c − ct

	︸ ︷︷ ︸
pra

t

,

where mt,t+j ≡ βj u′(ct+j )
u′(ct )

is the stochastic dis-
count factor, and 	 ≡∑∞

j=1

(
βj vart

[
ct+j

]) =
(2−θ)R

1−R2(1−θ)
ω2

ζ . Denoting the risk-neutral compo-
nent by prn

t and the risk-adjusted component by

27. Note that we know E [mx] after solving the PIH
model given the state variables and can use them to
determine the asset price p.

28. For the details of the derivation, see Luo and Young
(2010b).
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pra
t , we have

prn
t = 1

R − 1
ct(54)

and

pra
t = 1

c − ct

(2 − θ) R

1 − R2 (1 − θ)
ω2

ζ .(55)

Equation (53) yields the following implications.
The first term in Equation (53) is the risk-neutral
component denoted by prn

t . This term can be
regarded as the value of a perpetuity paying ct .
The second term is the risk-adjusted component,
pra

t ; it lowers the asset price relative to the risk-
neutral level because ct ≤ c and it is decreasing
with the degree of attention (θ).

From Equations (53) and (55), it is clear
that the Kalman gain (θ) also plays a key role
in determining the general equilibrium asset
prices under both SE and RI. Consider the
same policy experiment we discussed in the
last section. If the economy switches to a more
stable environment as a result of stabilization
policy (i.e., ω2

ζ is scaled down to 0.5ω2
ζ ), the

fixed λ assumption predicts that the Kalman
filter gain, θ = ��−1, is reduced. Given that
λ/ω2

ζ = 0.000135 and θ = 0.79, we can easily
calculate that θ = 0.68 using Equation (51).
Equation (55) clearly shows that asset price
falls less (more) under SE than RI when κ is
fixed (when λ is fixed), since the Kalman gain
decreases (increases).

B. The Multivariate Permanent Income Model

In this section, we solve for optimal steady-
state � and � in a parametric multivariate RI
permanent income model and then illustrate the
differences between RI and SE problems. This
example is similar to that discussed in Sims
(2003) and considers multiple income shocks
with different stochastic properties. Specifically,
we assume that the original budget constraint is
as follows

wt+1 = Rwt − ct + yt+1,(56)

where wt is the amount of cash-in-hand, and the
income process yt have two persistent compo-
nents (x and z) and one transitory component(
εy,t

)
:

yt = y + xt + zt + εy,t ,

xt = 0.99xt−1 + εx,t ,

zt = 0.95zt−1 + εz,t ,

with

� = var

[
εy,t

εx,t

εz,t

]
(57)

= 10−3

[
0.9 0 0
0 0.009 0
0 0 0.27

]
,

where xt is the most persistent and smooth
component and εy,t is the most transitory and
volatile component. For the quadratic utility
function u(ct ) = − 1

2 (ct − c)2, using the first
welfare criterion (27) provided in Section B and
setting β = 0.95, we can compute that

� = 10−3

[
0.1399 −0.0737 −0.0110

−0.0737 0.1596 −0.1820
−0.0110 −0.1820 0.5555

]
,

(58)

when capacity κ = 2.2 bits, which can be
used to compute the variance of the noise �
using �−1 = �−1 − �−1, and then compute
the Kalman gain according to θ = ��−1. It
is clear from Equation (58) that owing to the
low capacity devoted to monitoring the state,
the post-observation variances (i.e., the condi-
tional variances) of both the x and z components
are greater than the corresponding innovation
variances in Equation (57). More importantly,
the conditional variance of the slow-moving x
component is 18 times larger than its corre-
sponding innovation variance, whereas that of
the fast-moving z component is only 2 times
larger than its innovation variance.29 The intu-
ition behind this result is that the optimizing
agent devotes much less capacity to monitor-
ing the slow-moving component, which leads
to greater effects on the conditional variance
term. Figure 4 plots the impulse responses of
consumption to the income shocks and noises.
It shows that consumption reacts to the income
shocks gradually and with delay, and reacts to
the corresponding noises promptly. In addition,
we can see that the response of consumption
to the slow-moving x component is much more
damped than that to the fast-moving z compo-
nent. It is also worth noting that as the agent
only cares about the trace of Z� and the sym-
metric matrix Z is negative semidefinite, the

29. Alternatively, we can also see that the conditional
variance of the x component is about three times smaller
than its corresponding unconditional variance (0.4523),
whereas that of the z component is about five times smaller
than its corresponding unconditional variance (2.7692).
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FIGURE 4
Responses of Consumption to Income Shocks

and Noises
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agent with low capacity will choose to make
the post-observations of the states be negatively
correlated. This correlation conserves capacity
by permitting some information about each state
to be transmitted using a single nat.

When we relax the information-processing
capacity and increase κ to 2.8 nats, the condi-
tional covariance matrix becomes

� = 10−3

[
0.0787 −0.0419 0.0153

−0.0419 0.1172 −0.1926
0.0153 −0.1926 0.5170

]
.

(59)

Comparing Equations (58) with (59), we can
see that relaxing information-processing capac-
ity has the largest impact on the conditional
variance of the endogenous state variable w:
the post-observation variance of w is reduced to
about half the initial value. The intuition behind
this result is that the endogenous variable plays
the most important role in the welfare losses
due to RI. To see this clearly, the matrix Z is
displayed here:

Z =10−2

[ −0.0204 −0.6732 −0.2769
−0.6732 −22.2156 −9.1363
−0.2769 −9.1363 −3.7573

]
.

(60)

While w per unit has less of an effect on welfare,
it is proportionally much larger than either of
the other two state variables. It is also clear
that as the information constraint is relaxed
the agent chooses to allocate more capacity to
monitoring the slow-moving component x than
to monitoring the z component.

Note that in the RI problem (58) is optimal
in the sense that it minimizes the expected wel-
fare losses due to finite information-processing
capacity by allocating fixed capacity optimally
across different elements in the state vector. In
contrast, in the SE problem, � must be specified
first and then � and θ can be computed. How-
ever, it is difficult to specify � without prior
knowledge about the states. Ad hoc assumptions
on � might be inconsistent with the underlying
efficiency conditions. Therefore, RI could pro-
vide a useful way to specify the stochastic prop-
erties of the noises by solving the agent’s opti-
mization problem subject to information con-
straints. As we have noted previously, Melosi
(2009) presents an application of this idea; he
notes that a particular estimated model shows
that the marginal utility of information is not
equated across variables and is thus inconsistent
with RI (i.e., inconsistent with any value for κ).

C. Attention Allocation in a Price-Setting
Model

In the multivariate permanent income model
we discussed in the previous section, the differ-
ence between the RI and SE problems comes
from the optimal allocation of capacity, and
the consumption reactions to different income
shocks do depend on optimal attention alloca-
tion. However, in this setting, the optimal atten-
tion/capacity allocation cannot be addressed
explicitly because there exists an endogenous
state variable and attention allocation between
the endogenous state variable (w) and exoge-
nous state variables (persistent components in y)
is nonsymmetric and complicated. In contrast, as
has been shown in Maćkowiak and Wiederholt
(2009), the attention allocation problem between
the exogenously given aggregate and idiosyn-
cratic shocks has an explicit solution. In this
section, we present a simplified version of their
price-setting model.

Consider a firm price-setting model with
monopolistic competition in which firms contin-
uously observe noisy signals about two random
variables: one aggregate variable and one firm-
specific variable. Under the full-information
assumption, the profit-maximizing price (in
logs) of firm i, pi , can be written as

pf
i = p + αxx + αzzi,(61)

where p is the log of the aggregate price
level, x is the log of aggregate output, zi is
an idiosyncratic demand shock, and αx and
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αz are coefficients that depend on structural
parameters in the profit function (the superscript
f in the price function indicates full information).
All the variables on the RHS are assumed
to be normally distributed. Since the sum of
two normal variables is also normal, we can
summarize the aggregate condition as y = p +
αxx such that

pf
i = y + αzzi,(62)

where y and z are assumed to be Gaussian
variables with mean 0 and variances σ2

y and σ2
z ,

respectively. Under RI, the typical firm cannot
observe y and zi perfectly, so all it can observe
are noisy signals y∗ on the aggregate state and
z∗ on the idiosyncratic state:

y∗ = y + ξy and z∗ = zi + ξz,(63)

where the noises due to RI, ξy and ξz are
Gaussian variables with mean 0 and variances
ω2

y and ω2
z , respectively. They are assumed to

be independent with each other and are also not
correlated across firms.30 Given the observed
independent noisy signals, the optimal price can
be written as

p∗
i = E

[
y|y∗]+ αzE

[
zi |z∗] .(64)

Because p∗
i is different from the full-information

solution p
f

i , the firm suffers profit losses from
RI. The profit loss function of the firm can be
written as

�π = γ

2

(
p

f

i − p∗
i

)2
,(65)

where γ > 0. Given Equations (64) and (65), the
attention allocation problem can be reduced to

min var
(
p

f

i |y∗, z∗
)

= σ2
y|y∗ + α2

2σ
2
z|z∗ ,(66)

subject to the information-processing constraint
(IPC):[

1

2
ln
(
2πσ2

y

)− 1

2
ln
(
2πσ2

y|y∗
)]

+
[

1

2
ln
(
2πσ2

z

)+ 1

2
ln
(
2πσ2

z|z∗
)] ≤ κ,

which can be reduced to
σ−2
y|y∗σ−2

z|z∗
σ−2
y σ−2

z

≤ exp (2κ),

where σ2
y|y∗ and σ2

z|z∗ are posterior conditional
variances of y and zi , respectively, and we
use the facts that (1) for a quadratic objective

30. Maćkowiak and Wiederholt (2009) show that inde-
pendent signals are optimal.

function and Gaussian state variables, it is
optimal to choose the joint density of the states
and noisy signals to be also Gaussian and (2)
the aggregate and idiosyncratic variables are
uncorrelated. After using the IPC to substitute
out σ−2

z|z∗ , the optimal solution of σ2
y|y∗ :

σ−2
y|y∗

σ−2
y

= exp (κ)

∣∣∣∣ 1

αz

∣∣∣∣ σy

σz

∈ (1, exp (2κ)) ,(67)

which gives the ratio of posterior to prior
precision of briefs about the aggregate condi-
tion under the optimal attention allocation.31

Equation (67) provides several important impli-
cations for the optimal attention allocation to
the aggregate condition. First, greater values of
σ−2

y|y∗/σ−2
y mean that the firm pays more atten-

tion to the aggregate condition. Second, given
αz, σ−2

y|y∗/σ−2
y is increasing with the relative

importance of the prior variances of the aggre-
gate and firm-specific conditions. As the firm-
specific shock is 10 times more volatile than
the aggregate shock as calibrated in Maćkowiak
and Wiederholt (2009), the firm optimally pays
much more attention to the firm-specific shock.

Similarly, we can obtain optimal
σ−2
z|z∗
σ−2
z

:

σ−2
z|z∗

σ−2
z

= exp (κ) |αz|
(

σy

σz

)−1

.(68)

Finally, using Equations (67) and (68), we can
easily recover the variances of the noises, ω2

y

and ω2
z ,

ω−2
y = σ−2

y|y∗ − σ−2
y ,(69)

ω−2
z = σ−2

z|z∗ − σ−2
z .(70)

In the corresponding SE problem in which ω2
y

and ω2
z are given exogenously and arbitrarily,

using Equations (69) and (70), we can recover
the posterior conditional variances, σ2

y|y∗ and
σ2

z|z∗ , which may not be optimal in the sense that
they do not lead to the minimum welfare loss,
var
(
p

f

i |y∗, z∗
)

. The argument in this model
is similar to that in the permanent income

31. Note that this ratio must be greater than 1, as
otherwise the posterior variance would be higher than the
prior variance, which means that the firms forget. If this
ratio is greater than exp (2κ), it violates the information-
processing constraint.
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model with an endogenous state variable in the
previous section.32

We conclude this section with a point regard-
ing the importance of distinguishing between SE
and RI. In the context of this model, Paciello
and Wiederholt (2013) show how the distinc-
tion for SE and RI matters for optimal policy.
As under RI the variance-covariance matrix of
the noises will shift with monetary policy, the
central bank will use that fact to improve allo-
cations—specifically, they find that the divine
coincidence of monetary policy (no trade-off
between inflation and output stabilization) holds
under RI but not under SE. Of course, this
result does not help us distinguish between the
two theories, but rather provides a motive for
doing so.

V. DISCUSSION ON THE CONTINUOUS-TIME
SETTING

So far we have focused on the discrete-time
setting in which agents are assumed to have
imperfect state information. In this section we
discuss the different implications of SE and
RI in the continuous-time setting. For sim-
plicity, we use the permanent income model
as an example to illustrate the key different
implications of the two information frictions.
In the continuous-time version of the permanent
income model, the typical consumer is assumed
to maximize the following lifetime utility:

E0

[∫ ∞

t=0
exp (−βt) u(ct )dt

]
,(71)

subject to the following budget constraint:

dwt = (rwt + yt − ct ) dt,(72)

where u(ct ) = − (c − ct )
2 /2, and all the vari-

ables here have the same definitions as that in
the last section. Labor income (yt ) is assumed
to follow a continuous-time AR(1) (Ornstein-
Uhlenbeck) process:

dyt = ρ

(
μ

ρ
− yt

)
dt + σdζt ,(73)

where the steady-state income y = μ/ρ, ρ >
0 governs the speed of convergence from the
steady state, and ζt is a standard Brownian
motion.

32. Menkulasi (2010) presents a model of the Great
Moderation under RI and shows that RI implies that the
required decline in volatility for the shocks needed to
replicate observed GDP volatility declines is smaller, but
does not provide evidence of the actual volatility declines.

Just like the discrete-time model, to sim-
plify the model, we adopt the same state-space
reduction approach and define a new state st =
at + yt/ (r + ρ). Consequently, the new state
transition equation can be written as:

dst = (rst − ct ) dt + σsdζt ,(74)

where σs = σ/ (r + ρ). In the full-information
case, it is straightforward to show that the
consumption function is:

ct = rst .(75)

We assume that the consumer cannot observe
the state perfectly and only observes a noisy
signal:

s∗
t = st + ξt ,(76)

where ξt is a standard Brownian motion with
mean 0 and variance �, and is independent of
ζt . To solve the model, we rewrite Equation (76)
in the following differentiation form:

ds∗
t = dst + dξt .

In this continuous-time LQG setting, the separa-
tion principle holds and the consumption func-
tion can now be written as

ct = rŝt ,(77)

and the perceived state ŝt = Et [st ] is governed
by the following Kalman filtering equation:

dŝt = (rŝt − ct ) dt + θdηt ,(78)

where

dηt = r (st − ŝt ) dt + σsdζt + dξt ,(79)

with mean E [dηt ] = 0 and var (dηt ) = (σ2
s +

�)dt , θ = ��−1 is the steady-state Kalman
gain, and �(= (σ−2

s + �−1
)−1

> 0) is the con-
ditional variance of s. Note that ηt is a Brownian
motion with mean 0. Although the Brownian
variable, ξt , is not observable, the innova-
tion process, ηt , is observable because it is
derived from observable processes (i.e., ds∗

t and
(rŝt − ct ) dt). In this case, the path of the con-
ditional expectation, ŝt , is generated by the path
of the innovation process, ηt . In summary, given
�, Equations (77) and (78) completely charac-
terize the dynamics of the continuous-time PIH
model.

We now move on to discuss the RI case in
which we assume that the consumer only has
finite channel capacity when processing relevant
information about the state. As emphasized in
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Sims (1998) and discussed in Kasa (2006) and
Reis (2010), the observation equation, (76), is
not suitable to model RI owing to finite capac-
ity because this specification means that in any
finite interval, arbitrarily large amounts of infor-
mation can be passed through the consumer’s
channel. Specifically, Sims (1998) shows that
when the true state (s) and the noise (ξ) are gen-
erated by nicely behaved stochastic differential
equations driven by Wiener processes, then if
the noise has at least as many derivatives as the
true state, noisy observations can transmit infi-
nite amounts of information in finite time, while
if the noise has fewer derivatives than the true
state, noisy observations over a finite interval
can transmit only finite amounts of information.
Moscarini (2004) solves this problem by assum-
ing that the agent samples the process at discrete
intervals.33 Kasa (2006) proposes an alternative
way to solve this problem. He assumes that the
observation equation is written as:

ds∗
t = stdt + dξt ,(80)

where the current signal affects the instanta-
neous rate of change in the noisy observation. In
this specification, the Kalman filtering equation
can be written as

dŝt = (rŝt − ct ) dt + θdη̃t ,(81)

where

dη̃t = (st − ŝt ) dt + dξ,(82)

with mean E [dη̃t ] = 0 and var (dη̃t ) = �dt .
Here η̃t is also an observable Brownian motion
with mean 0. It is clear from Equations (79)
and (82) that the two specifications of imperfect
information observations, (76) and (80), lead to
different consumption behavior.

In this RI case, of course, the variance of
the noise, �, is determined endogenously by
the following continuous-time version of the
information-processing constraint specified in
Section A:∫

ln

(
dPss∗

d (Ps × Ps∗)

)
dPss∗ ≤ κt,(83)

where Pss∗ is the joint probability measure on s
and s∗, Ps and Ps∗ are the marginal probability
measures of s and s∗, respectively, and κ is finite
capacity. As shown in Duncan (1970) and Reis
(2010), Equation (83) reduces to ��−1 ≤ κ,

33. Moscarini (2004) argues that although the state
transition and predictions (actions) happen continuously,
observations only occur at discrete intervals.

which determines the value of �. Comparing
Equations (79) with (82), it is clear that we must
distinguish the two noisy signal specifications
when modeling RI due to finite capacity; that is,
it is not the case that all SE environments can
be derived from an underlying RI problem.

VI. CONCLUSIONS

In this paper we have explored the implica-
tions of two informational friction theories, SE
and RI, for economic behavior, policy, and wel-
fare within the LQG setting. First, we showed
that if the variance of the noise itself is fixed
exogenously, the two theories can be distin-
guished as they lead to different dynamics and
welfare after implementing government poli-
cies. Second, we showed that if the SNR is
fixed in the SE problem and the channel capac-
ity is fixed in the RI problem, SE and RI are
observationally equivalent in the sense that
they lead to the same dynamics even after
implementing policies in the univariate case,
whereas they generate different policy and wel-
fare implications in the multivariate case. Fur-
thermore, in the multivariate case we showed
that under RI the agent’s preference, budget con-
straint, and information-processing constraints
jointly determine the stochastic properties of
the post-observation variance and endogenous
noise; hence, RI provides a micro-founded way
to specify the nature of the Kalman gain that
governs the model’s dynamics.

Distinguishing between SE and RI has pol-
icy relevance beyond the simple examples we
consider here. As we noted earlier, Paciello
and Wiederholt (2013) study optimal monetary
policy in a model that nests both SE and RI.
They find that the policy can differ across the
two types of models—the key is that under RI
the policymaker can affect the attention allo-
cation between different shocks. In particular,
they find that the divine coincidence of no trade-
off between stabilizing prices and output holds
under RI, but not under SE.

Extending our results to compare environ-
ments outside the LQG setup will be chal-
lenging. Solving the SE problem is straightfor-
ward, although computation of the conditional
expectations may be difficult depending on the
distributional assumptions.34 The RI problem is
difficult to solve, however, because the optimal

34. See Veldkamp (2011) for a textbook treatment on
information choice.
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joint distribution of states and controls is typ-
ically not of a known form and not easy to
approximate; the optimality of discrete solutions
discussed in Matejka and Sims (2010) make it
difficult to characterize the distribution in terms
of a small number of parameters. It seems there-
fore unlikely that SE and RI environments will
generally be observationally equivalent.
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Maćkowiak, B., and M. Wiederholt. “Optimal Sticky
Prices under Rational Inattention.” American Eco-
nomic Review, 99(3), 2009, 769–803.

Matejka, F., and C. A. Sims. “Discrete Actions in
Information-Constrained Tracking Problems.” Unpub-
lished, 2010.

Melosi, L. “A Likelihood Analysis of Models with Informa-
tion Frictions,” Penn Institute for Economic Research
Working Paper 09-009, 2009.

Menkulasi, J. “Rational Inattention and Changes in Macroe-
conomic Volatility.” Unpublished, University of Mary-
land, 2010.

Morris, S., and H. Song Shin. “The Social Value of Pub-
lic Information.” American Economic Review, 92(5),
2002, 1521–34.

Moscarini, G. “Limited Information Capacity as a Source of
Inertia.” Journal of Economic Dynamics and Control,
28(10), 2004, 2003–35.

Muth, J. F. “Optimal Properties of Exponentially Weighted
Forecasts.” Journal of the American Statistical Associ-
ation, 55(290), 1960, 299–306.

Paciello, L., and M. Wiederholt. “Exogenous Informa-
tion, Endogenous Information, and Optimal Mone-
tary Policy.” Review of Economic Studies, 2013. doi:
10.1093/restud/rdt024

Reis, R. “When Should Policymakers Make Announce-
ments?” Unpublished, 2010.

Sargent, T. J. “The Observational Equivalence of Natural
and Unnatural Rate Theories of Macroeconomics.”
Journal of Political Economy, 84(3), 1976, 631–40.

. “Equilibrium with Signal Extraction from Endoge-
nous Variables.” Journal of Economic Dynamics and
Control, 15(2), 1991, 245–73.

Simon, D. Optimal State Estimation: Kalman, H-infinity, and
Nonlinear Approaches. Hoboken, NJ: John Wiley &
Sons, 2006.

Sims, C. A. “Stickiness.” Carnegie-Rochester Conference
Series on Public Policy, 49, 1998, 317–56.

. “Implications of Rational Inattention.” Journal of
Monetary Economics, 50(3), 2003, 665–90.

. “Rational Inattention: Beyond the Linear-Quadratic
Case.” American Economic Review, 96(2), 2006,
158–63.

. “Rational Inattention and Monetary Economics,”
in Handbook of Monetary Economics, Vol. 3, Chapter
4, edited by B. M. Friedman and M. Woodford.
Amsterdam: Elsevier, 2010, 155–81.

Townsend, R. M. “Forecasting the Forecasts of Others.”
Journal of Political Economy, 91(4), 1983, 546–88.

Van Nieuwerburgh, S., and L. Veldkamp. “Information
Acquisition and Under-Diversification.” Review of
Economic Studies, 77(2), 2010, 779–805.

Veldkamp, L. Information Choice in Macroeconomics and
Finance. Princeton, NJ: Princeton University Press,
2011.

Wang, N. “Precautionary Saving and Partially Observed
Income.” Journal of Monetary Economics, 51(8), 2004,
1645–81.

Woodford, M. “Imperfect Common Knowledge and the
Effects of Monetary Policy,” in Knowledge, Informa-
tion, and Expectations in Modern Macroeconomics: In
Honor of Edmund S. Phelps, edited by P. Aghion, R.
Frydman, J. Stiglitz, and M. Woodford. Princeton, NJ:
Princeton University Press, 2001.


