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We study the portfolio decision of a household with limited information-
processing capacity (rational inattention [RI]) in a setting with recursive
utility. We find that RI combined with a preference for early resolution of
uncertainty could lead to a significant drop in the share of portfolios held
in risky assets, even when the departure from the standard expected utility
setting with full-information rational expectations is small. In addition, we
show that the equilibrium equity premium increases with the degree of
inattention because inattentive investors with recursive utility face greater
long-run risk and thus require higher compensation in equilibrium.
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THE CANONICAL OPTIMAL CONSUMPTION-PORTFOLIO choice mod-
els implicitly assume that consumers and investors have unlimited information-
processing capacity and thus can observe the state variable(s) without errors;
consequently, they can adjust their optimal plans instantaneously and completely
to innovations to equity returns. However, plenty of evidence exists that ordinary
people only have limited information-processing capacity and face many compet-
ing demands for their attention. As a result, agents react to the innovations slowly
and incompletely because the channel along which information flows—the Shannon
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channel—cannot carry an infinite amount of information. In Sims (2003), this type
of information-processing limitation is termed as “rational inattention”(RI). In the
RI framework, entropy is used to measure the uncertainty of a random variable, and
the reduction in the entropy is used to measure information flow.1 For finite Shannon
channel capacity, the reduction in entropy is bounded above; as capacity becomes
infinitely large, the RI model converges to the standard full-information rational
expectations (REs) model.2

Luo (2010) applies the RI hypothesis in the intertemporal portfolio choice model
with time-separable preferences in the vein of Merton (1969) and shows that RI
alters the optimal choice of portfolio as well as the joint behavior of aggregate
consumption and asset returns. In particular, limited information-processing capacity
leads to smaller shares of risky assets. However, to generate the observed share and
realistic joint dynamics of aggregate consumption and asset returns, the degree of
attention must be as low as 10% (the corresponding Shannon capacity is 0.08 bits of
information); this number means that only 10% of the uncertainty is removed in each
period upon receiving a new signal about the aggregate shock to the equity return.
Since we cannot estimate the degree of average inattention directly (i.e., without
a model), it is difficult to determine whether this limit is empirically reasonable.
Indirect measurements of capacity uncover significantly higher channel capacity; we
discuss them explicitly later in the paper.3

The preferences used in Luo (2010) are known to entangle two distinct aspects of
preferences. Risk aversion measures the distaste for marginal utility variation across
states of the world, whereas the elasticity of intertemporal substitution measures
the distaste for deterministic variation of consumption across time; with expected
utility, these two attitudes are controlled by a single parameter such that if risk
aversion increases, the elasticity of intertemporal substitution must fall. The result
in Luo (2010) shows that RI interacts with this parameter in a way that raises the
apparent risk aversion (lowers the apparent intertemporal substitution elasticity) of
the investor; however, it is unclear which aspect of preferences is actually being
altered. As a result, interpretation of the results is ambiguous. Here, we develop an
RI-portfolio choice model within the recursive utility (RU) framework and use it to
examine the effects of RI and RU on long-run consumption risk and optimal asset
allocation. Specifically, we adopt preferences from the class studied by Kreps and
Porteus (1978) and Epstein and Zin (1989), where risk aversion and intertemporal

1. Entropy of a random variable X with density p(X ) is defined as E[log(p(X ))]. Cover and Thomas
(1991) is a standard introduction to information theory and the notion of entropy.

2. There are a number of papers that study decisions within the linear quadratic (LQ)-RI framework:
Sims (2003, 2006), Adam (2005), Luo (2008, 2010), Maćkowiak and Wiederholt (2009), and Luo and
Young (2010a, b).

3. The effect of RI on consumption growth and asset prices in the standard expected utility frame-
work has been examined in Luo and Young (2010a). That paper showed that an agent with incomplete
information-processing ability will require a higher return to hold a risky asset because RI introduces (i)
higher volatility into consumption and (ii) positive autocorrelation into consumption growth. In addition,
Luo and Young (2010b) examine how risk-sensitive preferences, a special case of Epstein–Zin RU, affect
consumption, precautionary savings, and the welfare of inattentive agents.
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substitution are disentangled. These preferences also break indifference to the timing
of the resolution of uncertainty, an aspect of preferences that plays an important role
in determining the demand for risky assets (see Backus, Routledge, and Zin 2007).
Indeed, it turns out that this aspect of preferences is key.

For tractability reasons, we are confined to small deviations away from the standard
class of preferences. However, we find that even a small deviation from unlimited
information-processing capacity will lead to large changes in portfolio allocation if
investors prefer early resolution of uncertainty. The intuition for this result lies in the
long-term risk that equities pose: with RI, uncertainty about the value of the equity
return (and therefore the marginal utility of consumption) is not resolved for (in-
finitely) many periods. This postponement of information is distasteful to agents who
prefer early resolution of uncertainty, causing them to prefer an asset with an even
and certain intertemporal payoff (the risk-free asset); in the standard time-separable
expected utility framework, agents must be indifferent to the timing of the resolution
of uncertainty, preventing the model in Luo (2010) from producing significant effects
without very low channel capacity. Due to the nature of the accumulation of uncer-
tainty, even small deviations from indifference (again, in the direction of preference
for early resolution) combined with small deviations from complete information pro-
cessing lead to large declines in optimal risky asset shares. Thus, we provide a theory
for why agents hold such a small share of risky assets without requiring extreme
values for preference parameters.

This result is based on the fact that RI introduces positive autocorrelation into
consumption growth, that is, consumption under RI reacts gradually to the wealth
shock.4 Here, we show that this effect is amplified by a preference for early resolution
of uncertainty and can become quite large, even when the deviation from indifference
is arbitrarily small. Around the expected utility setting with unitary intertemporal
elasticity of substitution and relative risk aversion, what matters for the size of this
effect is the relative size of the deviation in intertemporal elasticity of substitution
(IES) from 1 as compared to the size of the deviation from relative risk aversion of 1;
the absolute size of either deviation is not important, so they can be arbitrarily small.

To explore the equilibrium asset pricing implications of RU and RI, we consider a
simple exchange economy in the vein of Lucas (1978) using the optimal consumption
and portfolio rules. Specifically, we assume that in equilibrium the representative
agent receives an endowment, which equals optimal consumption obtained in the
consumption-portfolio choice model, and can trade two assets: a risky asset entitling
the consumer to the endowment and a riskless asset with zero net supply. Using the
optimal consumption and portfolio rules and the market-clearing condition, we find
that how the interaction of RU and RI significantly increase the equilibrium equity

4. Reis (2006) showed that inattentiveness due to costly planning could lead to slow adjustment of
aggregate consumption to income shocks. The main difference between the implications of RI and Reis’
inattentiveness for consumption behavior is that in the inattentiveness economy, individuals adjust con-
sumption infrequently but completely once they choose to adjust and aggregate consumption stickiness
comes from aggregating across all individuals, whereas individuals under RI adjust their optimal con-
sumption plans frequently but incompletely and aggregate consumption stickiness comes from individuals’
incomplete consumption adjustments.



328 : MONEY, CREDIT AND BANKING

premium and also improve the joint behavior of aggregate consumption and the equity
return.

Finally, we consider two extensions. First, we permit correlation between the
equity return and the RI-induced noise.5 We find that the sign of the correlation
affects the long-run consumption and optimal asset allocation. Specifically, a negative
correlation will further reduce the optimal share invested in the risky asset. We then
present the results of adding nontradable labor income into the model, generating
a hedging demand for risky equities. We find that our results survive essentially
unchanged—RI combined with a preference of early resolution of uncertainty still
decreases the share of risky assets in the portfolio for small deviations around standard
log preferences. In addition, we find that the importance of the hedging demand for
equities is increasing in the degree of RI. As agents become more constrained, they
suffer more from uncertainty about consumption; thus, they are more interested in
holding equities if they negatively covary with the labor income shock and less
interested if they positively covary. Given that the data support a small correlation
between individual wage income and aggregate stock returns (Heaton and Lucas
2000), our results survive this extension intact.

Our model is closely related to van Nieuwerburgh and Veldkamp (2010) and
Mondria (2010). van Nieuwerburgh and Veldkamp (2010) discuss the relationship
between information acquisition, the preference for early resolution of uncertainty,
and portfolio choice in a static model broken into three periods. Specifically, they find
that information acquisition help resolves the uncertainty surrounding asset payoffs;
consequently, an investor may prefer early resolution of uncertainty either because
he has Epstein–Zin preferences or because he can use the early information to adjust
his portfolio. In other words, van Nieuwerburgh and Veldkamp (2010) focus on the
static portfolio underdiversification problem with information acquisition, while we
focus on the dynamic aspect of the interaction between incomplete information and
recursive preferences. Mondria (2010) also considers two-period portfolio choice
model with correlated risky assets in which investors choose the composition of
their attention subject to an information flow constraint. He shows that there is an
equilibrium in which all investors choose to observe a linear combination of these
asset payoffs as a private signal. In contrast, the mechanism of our model is based on
the effects of the interplay of the preference for early resolution of uncertainty and
finite capacity on the dynamic response of consumption to the shock to the equity
return that determines the long-run consumption risk; in our model, the preference
for early resolution of uncertainty amplifies the role of finite information-processing
capacity in generating greater long-run risk.

This paper is organized as follows. Section 1 presents an otherwise standard two-
asset portfolio choice model with RU and RI. Section 2 solves this RI version of the
RU model and examines the implications of the interactions of RI, the separation of
risk aversion and intertemporal substitution, and the discount factor for the optimal
portfolio rule, consumption dynamics, and the equilibrium equity premium. Section 3

5. This assumption generalizes the i.i.d. noise assumption used in Sims (2003) and Luo (2010).
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discusses two extensions: the presence of the correlation between the equity return and
the noise and the introduction of nontradable labor income. Section 4 concludes and
discusses the extension of the results to non-LQ environments. Appendices contain
the proofs and derivations that are omitted from the main text.

1. AN INTERTEMPORAL PORTFOLIO CHOICE MODEL WITH RATIONAL
INATTENTION AND RECURSIVE UTILITY

In this section, we present and discuss a standard intertemporal portfolio choice
model within an RU framework. Following the log-linear approximation method pro-
posed by Campbell (1993), Viceira (2001), and Campbell and Viceira (1999, 2002),
we incorporate RI into the standard model and solve it explicitly after considering
the long-run consumption risk facing the investors.6 We then discuss the interplay
between RI, risk aversion, and intertemporal substitution for portfolio choice and
asset pricing.

1.1 Specification of the Portfolio Choice Model with Recursive Utility

Before setting up and solving the portfolio choice model with RI, it is helpful to
present the standard portfolio choice model first and then discuss how to introduce
RI in this framework. Here, we consider a simple intertemporal model of portfolio
choice with a continuum of identical investors. Following Epstein and Zin (1989),
Giovannini and Weil (1989), and Campbell and Viceira (1999) suppose that investors
maximize an RU function Ut by choosing consumption and asset holdings:

Ut =
{

(1 − β) C1−1/σ
t + β

(
Et

[
U 1−γ

t+1

])(1−1/σ )/(1−γ )
} 1

1−1/σ

, (1)

where Ct represents individual’s consumption at time t, β is the discount factor, γ
is the coefficient of relative risk aversion (CRRA) over wealth gambles, and σ is the
elasticity of intertemporal substitution.7 Let ρ = (1 − γ )/(1 − 1/σ ); if ρ > 1, the
household has a preference for early resolution of uncertainty.

We assume that the investment opportunity set is constant and contains only two
assets: asset e is risky, with one-period log (continuously compounded) return re,t+1,
while the other asset f is riskless with constant log return given by r f . We refer
to asset e as the market portfolio of equities, and to asset f as the riskless bond.

6. Another major advantage of the log-linearization approach is that we can obtain a quadratic expected
loss function by approximating the original value function from the nonlinear problem when relative risk
aversion is close to 1 and thus can justify Gaussian posterior uncertainty under RI.

7. When γ = σ−1, ρ = 1 and the RU reduces to the standard time-separable power utility with RRA γ
and intertemporal elasticity γ −1. When γ = σ = 1, the objective function is the time-separable log utility
function.
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re,t+1 has expected return μ, μ− r f is the equity premium, and re,t+1 has an i.i.d.
unexpected component ut+1 with var[ut+1] = ω2.8

The intertemporal budget constraint for the investor is

At+1 = Rp,t+1 (At − Ct ) , (2)

where At+1 is the individual’s financial wealth (the value of financial assets carried
over from period t at the beginning of period t + 1), At − Ct is current period savings,
and Rp,t+1 is the one-period gross return on savings given by

Rp,t+1 = αt
(
Re,t+1 − R f

)+ R f , (3)

where Re,t+1 = exp(re,t+1), R f = exp(r f ), and αt = α is the proportion of savings
invested in the risky asset.9 As in Campbell (1993), we can derive an approximate
expression for the log return on wealth:

rp,t+1 = α
(
re,t+1 − r f

)+ r f + 1

2
α (1 − α)ω2. (4)

Given the above model specification, it is well known that this simple discrete-time
model cannot be solved analytically. We therefore follow the log-linearization method
proposed in Campbell (1993), Viceira (2001), and Campbell and Viceira (2002) to
obtain a closed-form solution to an approximation of this problem.10 Specifically,
the original intertemporal budget constraint, (2), can be approximated around the
unconditional mean of the log consumption-wealth ratio (c − a = E[ct − at ]):

�at+1 =
(

1 − 1

φ

)
(ct − at ) + ψ + r p

t+1, (5)

where φ = 1 − exp(c − a), ψ = log(φ) − (1 − 1/φ) log(1 − φ), and lowercase let-
ters denote logs. Note that the approximation, (5), holds exactly in our model because
the consumption-wealth ratio in the model with i.i.d. returns is constant.11 As shown
in Viceira (2001), the assumptions on the preference and the investment opportunity

8. Under unlimited information-processing capacity, two-fund separation theorems imply that this
investment opportunity set is sufficient. All agents would choose the same portfolio of multiple risky
assets; differences in preferences would manifest themselves only in terms of the share allocated to this
risky portfolio versus the riskless asset. We believe, but have not proven, that this result would go through
under RI as well.

9. Given i.i.d. equity returns and an RU function, αt will be constant over time. See Giovannini and
Weil (1989) for a proof.

10. This method proceeds as follows. First, the flow budget constraint and the consumption Euler
equations are log approximated around the steady state. The Euler equations are log approximated by a
second-order Taylor expansion so that the second moment is included; these terms are constant and thus
the resulting equation is log linear. Second, the optimal consumption and portfolio choices that satisfy
these log-linearized equations are chosen as log-linear functions of the state. Finally, the coefficients of
these optimal decision rules are pinned down using the method of undetermined coefficients.

11. Campbell (1993) and Campbell and Viceira (1999) have shown that the approximation is exact
when the consumption-wealth ratio is constant over time and becomes less accurate when the ratio becomes
more volatile.
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set ensure that along the optimal path, financial wealth (At ), savings (At − Ct ), and
consumption (Ct ) are strictly positive. Because the marginal utility of consumption
approaches ∞ as consumption approaches zero, the investor chooses consumption-
savings and portfolio rules that ensure strictly positive consumption next period.
Thus, we must have At+1 > 0 and At − Ct > 0, so that the log of these objects is
well defined (note that the intertemporal budget constraint implies that At − Ct > 0
is a necessary condition for next period’s financial wealth to be positive). As shown
in Campbell and Viceira (2002), the optimal consumption and portfolio rules under
full-information RE are then

ct = b0 + at , (6)

α = μ− r f + 0.5ω2

γω2
, (7)

where b0 = log(1 − βσ (Et [R1−γ
p,t+1])

σ−1
1−γ ) and γ can be written as ρ/σ + 1 − ρ.12 Note

that φ = β and b0 = log(1 − φ) when σ is close 1. Consequently, the value function
corresponding to (1) is Vt = (1 − β)At .

1.2 Introducing RI

Following Sims (2003), we introduce RI into the otherwise standard intertemporal
portfolio choice model by assuming consumers/investors face information-processing
constraints and have only finite Shannon channel capacity to observe the state of
the world. Specifically, we use the concept of entropy from information theory to
characterize the uncertainty about a random variable; the reduction in entropy is thus
a natural measure of information flow. Formally, entropy is defined as the expectation
of the negative of the log of the density function, −E[log( f (X ))].13

With finite capacity κ ∈ (0,∞), the true state a (a continuous variable) cannot be
observed without error; thus, the information set at time t + 1,It+1, is generated by the
entire history of noisy signals {a∗

j }t+1
j=0. Following the RI literature, we assume that the

noisy signal takes the additive form: a∗
t+1 = at+1 + ξt+1,where ξt+1is the endogenous

noise caused by finite capacity. We further assume that ξt+1 is an i.i.d. idiosyncratic
Gaussian shock and is independent of the fundamental shock.14 Formally, this idea
can be described by the information constraint

H (at+1|It ) − H (at+1|It+1) = κ, (8)

12. Note that a unitary marginal propensity to consume and a constant optimal fraction invested in
the risky asset are valid not only for CRRA expected utility but also for Epstein–Zin RU when the return
to equity is i.i.d. See Appendices in Giovannini and Weil (1989) and Campbell and Viceira (1999) for
detailed deviations.

13. For the detailed discussions on entropy and its applications in economics, see Sims (2003, 2010).
14. Note that the reason that the RI-induced noise is idiosyncratic is that the endogenous noise arises

from the consumer’s own internal information-processing constraint.
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where κ is the investor’s information channel capacity,H(at+1|It ) denotes the entropy
of the state prior to observing the new signal at t + 1, and H(at+1|It+1) is the
entropy after observing the new signal. κ imposes an upper bound on the amount of
information that can be transmitted in any given period. Furthermore, following the
literature, we suppose that the ex ante at+1 is a Gaussian random variable. As shown
in Sims (2003), the optimal posterior distribution for at+1 will also be Gaussian given
a quadratic loss function. (Please see Appendix A.1 for a discussion on how to obtain
an approximately quadratic loss function in our model.) Finally, we assume that all
individuals in the model economy have the same channel capacity; hence, the average
capacity in the economy is equal to individual capacity.15

As noted earlier, ex post Gaussian uncertainty is optimal:

at+1|It+1 ∼ N (̂at+1, t+1) , (9)

where ât+1 = E[at+1|It+1] and t+1 =var[at+1|It+1] are the conditional mean and
variance of at+1, respectively. The information constraint (8) can thus be reduced to

1

2
(log (�t ) − log (t+1)) = κ , (10)

where t+1 = var[at+1|It+1] and �t = var[at+1|It ] are the posterior and prior vari-
ance, respectively. Given a finite transmission capacity of κ bits per time unit, the
optimizing consumer chooses a signal that reduces the conditional variance by
(log(�t ) − log(t+1))/2.16 In the univariate state case, this information constraint
completes the characterization of the optimization problem and everything can be
solved analytically.17

The intertemporal budget constraint (5) then implies that

Et [at+1] = Et
[
rp,t+1

]+ ψ + ât , (11)

vart [at+1] = vart
[
rp,t+1

]+
(

1

φ

)2

t , (12)

15. Assuming that channel capacity follows some distribution in the cross section complicates the
problem when aggregating, but would not change the main findings.

16. Note that given t , choosing t+1 is equivalent to choosing the noise var[ξt ], because the usual
updating formula for the variance of a Gaussian distribution is

t+1 = �t −�t (�t + var [ξt ])
−1 �t ,

where �t is the ex ante variance of the state and is a function of t .
17. With more than one state variable, there is an additional constraint that requires the difference

between the prior and the posterior variance–covariance matrices be positive semidefinite; the resulting
optimal posterior cannot be characterized analytically and generally poses significant numerical challenges
as well. See Sims (2003) for some examples.



YULEI LUO AND ERIC R. YOUNG : 333

where Et [·] ≡ E[·|It ] and vart [·] ≡ var[·|It ], and It is the information set that includes
all of the processed information. Note that It are different under RI and FI-RE.
Substituting (11) into (10) yields

κ = 1

2

[
log

(
vart

(
rp,t+1

)+
(

1

φ

)2

t

)
− log (t+1)

]
, (13)

which has a unique steady state  = vart [rp,t+1]/[exp(2κ) − (1/φ)2] with
vart [rp,t+1] = α2ω2. Note that here φ is close to β as σ is close to 1. Using the
intertemporal budget constraint (5), we can obtain the corresponding Kalman filter-
ing equation governing the evolution of the perceived state:

PROPOSITION 1. Under RI, the perceived state ât evolves according to the following
equation:

ât+1 = 1

φ
ât +

(
1 − 1

φ

)
ct + ψ + ηt+1, (14)

where ηt+1 is the innovation to the perceived state:

ηt+1 = θ
(
rp,t+1 + ξt+1

)+ θ

φ
(at − ât ) , (15)

at − ât is the estimation error:

at − ât = (1 − θ ) rp,t+1

1 − ((1 − θ )/φ) · L
− θξt

1 − ((1 − θ )/φ) · L
, (16)

θ = 1 − 1/ exp(2κ) is the optimal weight on a new observation, ξt+1 is the i.i.d.
Gaussian noise with E[ξt+1] = 0 and var[ξt+1] = /θ , and a∗

t+1 = at+1 + ξt+1 is
the observed signal.

PROOF. See Appendix 1.2. �

In the next step, we assume that the share invested in the risky asset (α) is constant
and derive the expression for consumption dynamics.18 As we noted before, equations
(5) and (14) are homeomorphic because (14) can be obtained by (i) replacing at with
ât and (ii) replacing rp,t+1 with ηt+1, in (5). Note that rp,t+1 and ηt+1 are i.i.d.
log-normally distributed innovations with mean 0 and α is constant. Given this
equivalence, we can follow the same procedure used in the literature to show that the
consumption function under RI is

ct = b0 + ât , (17)

18. Later, we will verify that our guess that α is constant under RI is correct.
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where b0 = log(1 − βσ (Et [R1−γ
η,t+1])

σ−1
1−γ ) and Rη,t+1 = exp(ηt+1) follows a log-normal

distribution.19 It is straightforward to show that b0 is approximately log(1 − φ) and
φ = β when σ is close to 1. That is, in this case, the values of φ and b0 are independent
of the impact of RI. Note that here (17) is not the final expression for the consump-
tion function because the optimal share invested in stock market α has yet to be
determined.

Before moving on, we want to comment briefly on the decision rule of an agent
with RI. An agent with RI chooses a joint distribution of states and controls, subject to
the information-processing constraint and some fixed prior distribution over the state;
with κ = ∞, this distribution is degenerate, but with κ < ∞, it is generally nontrivial.
The noise terms ξt can be viewed in the following manner: the investor instructs
nature to choose consumption in the current period from a certain joint distribution
of consumption and current and future permanent income, and then nature selects at
random from that distribution (conditioned on the true current permanent income that
the agent cannot observe). Thus, an observed signal about future permanent income
a∗

t+1 is equivalent to making the signal current consumption.
We make the following assumption.

ASSUMPTION 1.

2κ > log (1/φ) . (18)

Equation (18) ensures that agents have sufficient information-processing ability
to “zero out” the unstable root in the Euler equation. It will also ensure that certain
infinite sums converge. Note that using the definition of θ , we can write this restriction
as 1 − θ < φ2 < φ; the second inequality arises because φ < 1. (Note that φ = β

when σ is close to 1.) Note that along the optimal path, financial wealth (At ),
savings (At − Ct ), perceived financial wealth ( Ât = exp(̂at )), and consumption (Ct )
are strictly positive. Given that limCt →0 u′(Ct ) = ∞, the investor chooses optimal
consumption savings and portfolio rules to ensure strictly positive consumption next
period; that is, we must have At+1 > 0 and At − Ct > 0 (i.e., At − (1 − β) Ât > 0), to
guarantee that the logarithm of these objects is well defined. The following example
is illustrative. An inattentive investor does not have perfect information about his
banking account. He knows that he has about $1, 000 in the account, but he does not
know the exact amount (say $1, 010.00). He has already made a decision to purchase
a sofa in a furniture store; when he uses his debit card to check out, he finds that
the price of the sofa (say $1, 099.99) exceeds the amount of money in his account.
He must then choose a less expensive sofa (say $999) such that consumption is
always less than his wealth. In effect, the consumer constrains nature from choosing
points from the joint distribution that imply negative consumption at any future
date.

19. Note that as θ increases to 1, ηt+1 and Rη,t+1 reduce to rp,t+1 and Rp,t+1, respectively.
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Combining (5), (14), and (17) gives the expression for individual consumption
growth:

�ct+1 = θ

{
αut+1

1 − ((1 − θ ) /φ) · L
+
[
ξt+1 − (θ/φ) ξt

1 − ((1 − θ ) /φ) · L

]}
, (19)

where L is the lag operator.20 Note that all the above dynamics for consumption,
perceived state, and the change in consumption are not the final solutions because
the optimal share invested in stock market α has yet to be determined. To determine
the optimal allocation in risky assets, we have to use an intertemporal optimality
condition. However, the standard Euler equation is not suitable for determining the
optimal asset allocation in the RI economy because consumption adjusts slowly
and incompletely, making the relevant intertemporal condition one that equates the
marginal utility of consumption today to the covariance between marginal utility and
the asset return arbitrarily far into the future; that is, it is the “long-run Euler equation”
that determines optimal consumption/savings plans. We now turn to deriving this
equation.

2. MAIN FINDINGS

2.1 Long-Run Risk under RI

Bansal and Yaron (2004), Hansen, Heaton, and Li (2006), Parker (2001, 2003),
and Parker and Julliard (2005) argue that long-term risk is a better measure of the
true risk of the stock market if consumption reacts with delay to changes in wealth;
the contemporaneous covariance of consumption and wealth understates the risk of
equity.21 Long-term consumption risk is the appropriate measure for the RI model.

Following Parker (2001, 2003), we define the long-term consumption risk as the
covariance of asset returns and consumption growth over the period of the return and
many subsequent periods. Because the RI model predicts that consumption reacts
to the innovations to asset returns gradually and incompletely, it can rationalize
the conclusion in Parker (2001, 2003) that consumption risk is long term instead
of contemporaneous. Given the above analytical solution for consumption growth,
it is straightforward to calculate the ultimate consumption risk in the RI model.
Specifically, when agents behave optimally but only have finite channel capacity, we
have the following equality for the risky asset e and the risk-free asset f :

Et

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S
(
Re,t+1 − R f

)] = 0, (20)

20. When θ increases to 1, �ct+1 = αut+1, that is, consumption growth is i.i.d. and is perfectly
correlated with the equity return.

21. Bansal and Yaron (2004) also document that consumption and dividend growth rates contain a
long-run component. An adverse change in the long-run component will lower asset prices and thus makes
holding equity very risky for investors.
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where Ui,t for any t denotes the derivative of the aggregate function with respect to
its i th argument evaluated at (Ct , Et [Ut+1]).22 Note that with time-additive expected
utility, the discount factor U2,t+1+ j is constant and equal to β. Equation (20) implies
that the expected excess return can be written as

Et
[
Re,t+1 − R f

] = −
cont

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S, Re,t+1 − R f

]
Et

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S

] ,

so that

μ−r f + 1

2
ω2 =cont

⎡⎣ρ
σ

⎛⎝ S∑
j=0

�ct+1+ j

⎞⎠+ (1 − ρ)

⎛⎝ S∑
j=0

rp,t+1+ j

⎞⎠ , ut+1

⎤⎦ , (21)

where we have used γ 
 1, ct+1+S − ct =∑S
j=0�ct+1+ j , and �ct+1+ j as given

by (19). Furthermore, because the horizon S over which consumption responds
completely to income shocks under RI is infinite, the right-hand side of (21) can be
written as

lim
S→∞

⎧⎨⎩
S∑

j=0

cont

⎡⎣ρ
σ
�ct+1+ j + (1 − ρ)

⎛⎝ S∑
j=0

rp,t+1+ j

⎞⎠ , ut+1

⎤⎦⎫⎬⎭
= α

(ρ
σ
ς + 1 − ρ

)
ω2, (22)

where ς is the ultimate consumption risk measuring the accumulated effect of the
equity shock to consumption under RI:

ς ≡ θ

∞∑
i=0

(
1 − θ

φ

)i

= θ

1 − (1 − θ ) /φ
> 1, (23)

when Assumption 1 holds.

22. This long-term Euler equation can be obtained by combining the standard Euler equation for the
excess return

Et

[
U1,t+1

(
Re,t+1 − R f

)] = 0,

with the Euler equation for the riskless asset between t + 1 and t + 1 + S,

U1,t+1 = Et+1

[
(βt+1 · · · βt+S)

(
R f

)S
U1,t+1+S

]
,

where βt+1+ j = U2,t+1+ j , for j = 0, · · ·, S. In other words, the equality can be obtained by using S + 1
period consumption growth to price a multiperiod return formed by investing in equity for one period and
then transforming to the risk-free asset for the next S periods. See Appendix 1.3 for detailed derivations.
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2.2 Optimal Consumption and Asset Allocation

Combining Equations (17) and (21) with (22) gives us optimal consumption and
portfolio rules under RI. The following proposition gives a complete characterization
of the model’s solution for optimal consumption and portfolio choice:

PROPOSITION 2. Suppose that γ is close to 1 and Assumption 1 is satisfied. The optimal
share invested in the risky asset is

α∗ =
(ρ
σ
ς + 1 − ρ

)−1 μ− r f + 0.5ω2

γω2
. (24)

The consumption function is

c∗
t = log (1 − φ) + ât , (25)

actual wealth evolves according to

at+1 = 1

φ
at +

(
1 − 1

φ

)
c∗

t +ψ+
[
α∗ (re,t+1 − r f

)+ r f + 1

2
α∗ (1 − α∗)ω2

]
, (26)

and estimated wealth ât is characterized by the following Kalman filtering equation

ât+1 = 1

φ
ât +

(
1 − 1

φ

)
c∗

t + ψ + ηt+1, (27)

where ηt+1 is defined in (15), ψ = log(φ) − (1 − 1/φ) log(1 − φ), φ =
βσ (Et [R1−γ

η,t+1])
σ−1
1−γ , Rη,t+1 = exp(ηt+1), θ = 1 − exp(−2κ) is the optimal weight on a

new observation, ξt is an i.i.d. idiosyncratic noise shock with ω2
ξ = var[ξt+1] = /θ ,

and  = α∗2ω2/[exp(2κ) − (1/φ)2] is the steady-state conditional variance. The
change in individual consumption is

�c∗
t+1 = θ

{
α∗ut+1

1 − ((1 − θ ) /φ) · L
+
[
ξt+1 − (θ/φ) ξt

1 − ((1 − θ ) /φ) · L

]}
. (28)

PROOF. The proof is straightforward. �
The proposition clearly shows that optimal consumption and portfolio rules are

interdependent under RI. Expression (24) shows that although the optimal fraction
of savings invested in the risky asset is proportional to the risk premium (μ− r f +
0.5ω2), the reciprocal of the CRRA (γ ), and the variance of the unexpected component
in the risky asset (ω2), as predicted by the standard Merton solution, it also depends
on the interaction of RI and RU measured by (ρ/σ )ς + 1 − ρ. We now examine how
the interplay of RI and the preference for the timing of uncertainty resolution affects
the long-term consumption risk and the optimal share invested in the risky asset.
Denote (ρ/σ )ς + 1 − ρ in (24) the long-run consumption risk, and rewrite it as

ρ

σ
ς + 1 − ρ = γ + �, (29)
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where

� ≡ γ − 1

1 − σ
(ς − 1) (30)

measures how the interaction of RU (γ − 1)/(1 − σ ) and the long-run impact of
the equity return on consumption under RI (ς ) affect the risk facing the inattentive
investors. Expression (29) clearly shows that risk aversion (γ ) and � determine
the optimal share invested in the risky asset. Specifically, suppose that investors
prefer early resolution of uncertainty: γ > σ ; even a small deviation from infinite
information-processing capacity due to RI will generate large increases in long-
run consumption risk and then reduce the demand for the risky asset.23 From the
expression for �, it is clear that it is the difference between the magnitudes of CRRA
(γ ) and EIS (σ ) that matters, instead of how far away the two parameters are from 1.

From (29), we can see that two aspects of preferences play a role in determining the
portfolio shareα∗: (i) intertemporal substitution, measured byσ and (ii) the preference
for the timing of the resolution of uncertainty, measured by ρ. A household who is
highly intolerant of intertemporal variation in consumption will have a high share
of risky assets. If σ < 1, a household who prefers earlier resolution of uncertainty
(larger ρ) will have a lower share of risky assets. Using the identity, this statement
is equivalent to noting that larger ρ means larger γ for fixed σ , so that more risk
aversion also implies lower share of risky assets. Thus, as noted in Epstein and Zin
(1989), risk aversion and intertemporal substitution, while disentangled from each
other, are entwined with the preference for the timing of uncertainty resolution. Here,
we choose to focus on the temporal resolution aspect of preferences, rather than risk
aversion, for two reasons. First, results in Backus, Routledge, and Zin (2007) show
a household with infinite risk aversion and infinite intertemporal elasticity actually
holds almost entirely risky assets, and the opposite household (risk neutral with
zero intertemporal elasticity) holds almost none (when risks are shared efficiently, at
least). The second household prefers early resolution of uncertainty, a preference that
cannot be expressed within the expected utility framework, and thus prefers paths
of consumption that are smooth, whereas the first household prefers paths of utility
that are smooth. Holding equities makes consumption risky, but not future utility, and
therefore the risk-neutral agent will avoid them. Second, it will turn out that RI will
have a strong effect when combined with a preference regarding the timing of the
resolution of uncertainty, independent of the values of risk aversion and intertemporal
elasticity; specifically, our model will improve upon the standard model by reducing
the portfolio share of risky assets if the representative investor has a preference for
early resolution.

Figures 1 and 2 illustrate how RI affects the long-run consumption risk � when σ
equals 0.9999 and 0.99999, respectively, for different values of γ ; following Viceira
(2001) and Luo (2010), we set β = 0.91. The figures show that the interaction of RI
and RU can significantly increase the long-run consumption risk facing the investors.

23. That is, θ is very close to 100%, and therefore ς is only slightly greater than 1.
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In particular, it is obvious that even if θ is high (so that investors can process nearly
all the information about the equity return), the long-run consumption risk is still
nontrivial. For example, when γ = 1.01, σ = 0.99999, and θ = 0.9 (i.e., 90% of
the uncertainty about the equity return can be removed upon receiving the new
signal), � = 11; if θ is reduced to 0.8, � = 25. That is, a small difference between
risk aversion γ and intertemporal substitution σ has a significant impact on optimal
portfolio rule.

Note that Equation (24) can be rewritten as

α∗ = μ− r f + 0.5ω2

γ̃ ω2
, (31)

where γ̃ = γ [(ρ/σ )ς + 1 − ρ] is the effective CRRA.24 When θ = 1, ς = 1 and
optimal portfolio choice (24) under RI reduces to (7) in the standard RU case, which
we have discussed previously. Similarly, when ρ = 1 (24) reduces to the optimal
solution in the expected utility model discussed in Luo (2010). Later, we will show
that γ̃ could be significantly greater than the true CRRA (γ ). In other words, even if
the true γ is close to 1 as assumed at the beginning of this section, the effective risk
aversion that matters for the optimal asset allocation is γ + �, which will be greater
than 1 if the capacity is low and (γ − 1) is greater than (1 − σ ) (indeed, it can be a lot
larger even for small deviations from γ = σ = 1). Therefore, the degree of attention
(θ ) and the discount factor (β) amount to an increase in the effective CRRA. Holding
β constant, the larger the degree of attention, the less the ultimate consumption risk.
As a result, investors with low attention will choose to invest less in the risky asset.25

As argued in Campbell and Viceira (2002), the effective investment horizon of
investors can be measured by the discount factor β. In the standard full-information
RE portfolio choice model (such as Merton 1969), the investment horizon measured
by β is irrelevant for investors who have power utility functions, have only financial
wealth, and face constant investment opportunities. In contrast, it is clear from (23)
and (24) that the investment horizon measured by β does matter for optimal asset al-
locations under RU and RI because it affects the valuation of long-term consumption
risk. Expression (24) shows that the higher the value of β (the longer the invest-
ment horizon), the higher the fraction of financial wealth invested in the risky asset.
Figure 3 illustrates how the investment horizon affects the long-run consumption risk
� when γ = 1.01, σ = 0.99999, θ = 0.8, and β = 0.91. The figure shows that the
investment horizon can significantly affect the long-run consumption risk facing the
investors. For example, when β = 0.91, � = 25; if β is increased to 0.93, � = 19.

24. By effective, we mean that if we observed a household’s behavior and interpreted it as coming from
an individual with unlimited information-processing ability, γ̃ would be our estimate of the risk aversion
coefficient.

25. Luo (2010) shows that with heterogeneous channel capacity, the standard RI model would predict
that some agents would not participate in the equity market at all. It is clear that the same result would
obtain with RU.
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FIG. 3. The Effects of the Investment Horizon on Long-Run Consumption Risk.

That is, a small reduction in the discount factor has a significant effect on long-run
consumption risk and the optimal portfolio share when combined with RI.

Given RRA (γ ), IES (σ ), and β, we can calibrate θ using the share of wealth held in
risky assets. Specifically, we start with the annualized U.S. quarterly data in Campbell
(2003) and assume that ω = 0.16, π = μ− r f = 0.06, β = 0.91, σ = 0.99999, and
γ = 1.001. We then calibrate θ to match the observed α = 0.22 estimated in section
5.1 of Gabaix and Laibson (1999) to obtain

α∗ =
[
γ + γ − 1

1 − σ
(ς − 1)

]−1
π + 0.5ω2

γω2
= 0.22, (32)

which means that θ = 0.48.26 That is, approximately 48% of the uncertainty is
removed upon receiving a new signal about the equity return. Note that if γ = 1, the
RE version of the model generates a highly unrealistic share invested in the stock
market: α = (π + 0.5ω2)/ω2 = 2.84. To match the observed fraction in the U.S.
economy (0.22), γ must be set to 13.

26. Gabaix and Laibson (2001) assume that all capital is stock market capital and that capital income
accounts for 1/3 of total income.
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2.3 Implications for Consumption Dynamics

Equation (28) shows that individual consumption under RI reacts not only to
fundamental shocks (ut+1) but also to the endogenous noise (ξt+1) induced by finite
capacity. The endogenous noise can be regarded as a type of “consumption shock”
or “demand shock.” In the intertemporal consumption literature, some transitory
consumption shocks are often used to make the model fit the data better. Under RI,
the idiosyncratic noise due to RI provides a theory for these transitory consumption
movements. Furthermore, (28) also makes it clear that consumption growth adjusts
slowly and incompletely to the innovations to asset returns but reacts quickly to the
idiosyncratic noise.

Using (28), we can obtain the stochastic properties of the joint dynamics of con-
sumption and the equity return. The following proposition summarizes the major
stochastic properties of consumption and the equity return.

PROPOSITION 3. Given finite capacity κ (i.e., θ ) and optimal portfolio choice α∗, the
volatility of consumption growth is

var
[
�c∗

t

] = θα∗2

1 − (1 − θ ) /φ2
ω2, (33)

the relative volatility of consumption growth to the equity return is

rv = sd
[
�c∗

t

]
sd [ut ]

=
√

θ

1 − (1 − θ ) /φ2
α∗, (34)

the first-order autocorrelation of consumption growth is

ρ�c = corr
[
�c∗

t ,�c∗
t+1

] = 0, (35)

and the contemporaneous correlation between consumption growth and the equity
return is

corr
[
�c∗

t+1, ut+1
] =

√
θ
(
1 − (1 − θ ) /φ2

)
. (36)

PROOF. See online appendix.27 �
Expression (34) shows that RI affects the relative volatility of consumption growth

to the equity return via two channels: (i) θ/[1 − (1 − θ )/φ2] and (ii) α∗. Holding the
optimal share invested in the risky asset α∗ fixed, RI increases the relative volatility of
consumption growth via the first channel because ∂(θα∗2/[1 − (1 − θ )/φ2])/∂θ < 0.
Equation (28) indicates that RI has two effects on the volatility of �c: the gradual
response to a fundamental shock and the presence of the RI-induced noise shocks.

27. The online appendix for this paper is available from http://yluo.weebly.com/uploads/
3/2/1/4/3214259/jmcb2015onlineappendix.pdf
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FIG. 4. The Effects of RI on Consumption Volatility.

The former effect reduces consumption volatility, whereas the latter one increases
it; the net effect is that RI increases the volatility of consumption growth holding
α∗ fixed. Furthermore, as shown above, RI reduces α∗ as it increases the long-
run consumption risk via the interaction with the RU preference, which tends to
reduce the volatility of consumption growth as households switch to safer portfolios.
Figure 4 illustrates how RI affects the relative volatility of consumption to the equity
return for different values of β in the RU model; for the parameters selected, RI
reduces the volatility of consumption growth in the presence of optimal portfolio
choice.

Expression (35) means that there is no persistence in consumption growth under
RI. The intuition of this result is as follows. Both MA(∞) terms in (28) affect
consumption persistence under RI. Specifically, in the absence of the endogenous
noises, the gradual response to the shock to the equity return due to RI leads to positive
persistence in consumption growth: ρ�c = θ (1 − θ )/φ > 0. (See online appendix.)
The presence of the noise generates negative persistence in consumption growth,
exactly offsetting the positive effect of the gradual response to the fundamental shock
under RI.

Expression (36) shows that RI reduces the contemporaneous correlation be-
tween consumption growth and the equity return because ∂corr(�c∗

t+1, ut+1)/∂θ > 0.
Figure 5 illustrates the effects of RI on the correlation when β = 0.91. It clearly shows
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FIG. 5. The Effects of RI on Consumption Correlation.

that the correlation between consumption growth and the equity return is increasing
with the degree of attention (θ ).

If the model economy consists of a continuum of consumers with identical capacity,
we need to consider how to aggregate the decision rules across all consumers facing
the idiosyncratic noise shock. Sun (2006) presents an exact law of large numbers
(LLN) for this type of economic models and then characterizes the cancelation of
individual risk via aggregation. In this model, we adopt this LLN) and assume that
the initial cross-sectional distribution of the noise shock is its stationary distribution.
Provided that we construct the space of agents and the probability space appropriately,
all idiosyncratic noises cancel out and aggregate noise is zero. After aggregating over
all consumers, we obtain the expression for the change in aggregate consumption:

�c∗
t+1 = θα∗ut+1

1 − ((1 − θ ) /φ) · L
, (37)

where the i.i.d. idiosyncratic noises in the expressions for individual consumption
dynamics have been canceled out. The following proposition summarizes the results
of the joint dynamics of aggregate consumption and the equity return.
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PROPOSITION 4. Given finite capacity κ (i.e., θ ) and optimal portfolio choice α∗, the
relative volatility of consumption growth to the equity return is

rv = sd
[
�c∗

t

]
sd [ut ]

=
√

θ2

1 − (1 − θ ) /φ2
α∗, (38)

the first-order autocorrelation of consumption growth is

ρ�c = corr
[
�c∗

t ,�c∗
t+1

] = θ (1 − θ )

φ
, (39)

and the contemporaneous correlation between consumption growth and the equity
return is

corr
[
�c∗

t+1, ut+1
] =

√
1 − (1 − θ ) /φ2, (40)

where φ = β when σ is close to 1.

PROOF. See online appendix. �

2.4 Channel Capacity

Our required channel capacity (θ = 0.48 or κ = 0.33 nats) may seem low; 1 nat of
information transmitted is definitely well below the total information-processing abil-
ity of human beings.28 However, it is not implausible for little capacity to be allocated
to the portfolio decision because individuals also face many other competing demands
on their attention. For an extreme case, a young worker who accumulates balances in
his 401(k) retirement savings account might pay no attention to the behavior of the
stock market until he retires. In addition, in our model for simplicity, we only consider
an aggregate shock from the equity return, while in reality, consumers/investors face
substantial idiosyncratic shocks that we do not model in this paper; Sims (2010) con-
tains a more extensive discussion of low information-processing limits in the context
of economic models.

As we noted in the Introduction, there are some existing estimation and calibration
results in the literature, albeit of an indirect nature. For example, Adam (2005)
found θ = 0.4 based on the response of aggregate output to monetary policy shocks;
Luo (2008) found that if θ = 0.5, the otherwise standard permanent income model
can generate realistic relative volatility of consumption to labor income; Luo and
Young (2009) found that setting θ = 0.57 allows an otherwise standard real business
cycles model to match the postwar U.S. consumption/output volatility. Finally, Melosi
(2009) uses a model of firm RI (similar to Maćkowiak and Wiederholt 2009) and
estimates it to match the dynamics of output and inflation, obtaining θ = 0.66. Thus, it
seems that somewhere between 0.4 and 0.7 is a reasonable range, and our number lies
right in the middle of this interval, while the one required in Luo (2010) is much lower.

28. See Landauer (1986) for an estimate.
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2.5 Implications for Equilibrium Asset Pricing

According to the standard consumption-based capital asset pricing theory
(CCAPM), the expected excess return on any risky portfolio over the risk-free interest
rate is determined by the covariance of the excess return with contemporaneous con-
sumption growth and the CRRA. Given the observed low contemporaneous covari-
ance between equity returns and contemporaneous consumption growth, the standard
CCAPM theory predicts that equities are not very risky. Consequently, to generate the
observed high equity premium (measured by the difference between the average real
stock return and the average short-term real interest rate), the CRRA must be very
high. Given that ω = 0.16, π = μ− r f = 0.06, and con[�c∗

t+1, ut+1] = 6 × 10−4

(annualized U.S. quarterly data from Campbell 2003), to generate the observed eq-
uity premium, we need a risk aversion coefficient of γ = 100.

To explore the equilibrium asset pricing implications of the optimal consumption
and portfolio rules under RU and RI derived in Section 2.2, we now consider a
simple exchange economy in the vein of Lucas (1978). Specifically, we assume
that the representative agent receives an endowment, which equals consumption in
equilibrium and can trade two assets in the economy: a risky asset entitling the
consumer to the dividend (i.e., endowment) and a riskless asset (an inside bond, i.e.,
in equilibrium its net supply is 0). The returns to the assets then adjust to support a
no-trade equilibrium. Using the optimal consumption and portfolio rules under RU
and RI derived in the above partial equilibrium model, we can then explore how the
interaction of RU and RI affects the equilibrium equity premium. The following is
the definition of the RU-RI equilibrium in our model economy:

DEFINITION 5. The RU-RI equilibrium consists of (i) the portfolio rule α∗, (24), (ii)
the consumption rule c∗, (25), and (iii) the perceived state (̂s) evolution equation,
(27), such that simultaneously,

(i) markets clear in each period: c∗ is just the endowment and α∗ = 1;
(ii) the consumer solves for α∗ and c∗ using the RU-RI model specified in Sections

1.2–2.2.

The following proposition summarizes the implications of the interaction of RU
and RI for the equity premium in the general equilibrium defined above:

PROPOSITION 6. Given finite capacity κ (i.e., θ ), the equilibrium equity premium, π ,
is given by:

π = (γ + �)ω2, (41)

where � = [(γ − 1)/(1 − σ )](ς − 1) and ς = θ/[1 − (1 − θ )/φ] > 1.

PROOF. Equation (41) can be obtained by setting α∗ in (24) to be 1. �
It is clear from (41) that the interaction between RI and RU induces a higher

equity premium because risk aversion and intertemporal substitution are disentangled
and the accumulated effect of the innovation to the equity on consumption ς = θ/
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TABLE 1

EFFECTS OF RU AND RI ON CONSUMPTION AND THE EQUITY PREMIUM

U.S. data Full information θ = 25% θ = 35% θ = 45% θ = 55%

π (σ = 0.998) 0.06 0.023 0.073 0.050 0.039 0.034
π (σ = 0.9973) 0.06 0.023 0.060 0.043 0.035 0.031
π (σ = 0.996) 0.06 0.023 0.048 0.036 0.031 0.028
rv 0.07 1 0.441 0.500 0.565 0.633
ρ�c 0.22 0 0.226 0.275 0.298 0.298
corr(�c∗

t+1, ut+1) 0.21 1 0.308 0.464 0.580 0.676

NOTES: The U.S. data are based on Campbell (2003) and we set γ = 1.01 and β = 0.91.

[1 − (1 − θ )/φ] > 1. The intuition behind this result is that for inattentive investors,
the uncertainty about consumption changes induced by changes in the equity return
takes many periods to be resolved and this postponement is distasteful for these
investors who prefer early uncertainty resolution; consequently, they require higher
risk compensation in equilibrium.

Figures 1 and 2 can be used again to illustrate how RI affects the equity premium
in equilibrium via increasing the long-run consumption risk � when β = 0.91 and
both γ and σ are close to 1. Using the same example in the portfolio choice problem,
when γ = 1.01 and θ = 0.9, � = 11, which means that the required equity premium
would be increased by 11 times; when θ is smaller, � is larger, as we showed earlier,
so the required return must be larger. That is, a small difference between risk aversion
γ and intertemporal substitution σ can have a significant impact on the equilibrium
equity return if agents have limited attention.

Table 1 reports how RI affects the joint behavior of aggregate consumption and
the equity return and the equilibrium equity premium in the RU model. There are
two interesting observations in the table. First, inattention governed by low θ can
significantly increase the equilibrium equity return by interacting with the prefer-
ence for early uncertainty resolution. For example, when θ = 0.25, γ = 1.01, and
σ = 0.9973, the equilibrium equity premium is about 6% , which is just the same
as its empirical counterpart. Second, lowering attention can simultaneously improve
the joint dynamics of aggregate consumption and the equity premium. Specifically,
after matching the equity premium perfectly, we can see that RI can (i) reduce the
relative volatility of consumption growth to the equity return (e.g., when θ reduces
from 0.55 to 0.25, rv can be reduced from 0.633 to 0.441), (ii) generate positive
autocorrelation of consumption growth and make the model match the empirical ev-
idence in this aspect perfectly when θ = 0.25, and (iii) reduce the contemporaneous
correlation between consumption growth and the equity return (e.g., if θ is reduced
from 0.55 to 0.25, rv falls from 0.676 to 0.308, which matches the empirical coun-
terpart, 0.21, much better). From the table, it is clear that it is difficult to generate
the observed relative volatility of consumption growth in the equilibrium model with
β = 0.91. The reason is that we are considering a pure exchange economy where the
share invested in the risky asset is 100% in equilibrium, which significantly increases
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consumption volatility. In addition, from (38)–(40) and (41), we can see that the
value of EIS only affects the equilibrium equity premium and does not affect the
consumption dynamics because φ ∼= β.

We did not conduct a formal Generalized Method of Moments (GMM)-type exer-
cise to fit the four moments in Table 1. However, once we abandon the requirement
that β = 0.91, we can reconcile the three moments (38)–(40). We solve each expres-
sion for β(θ ):

β1 = θ (1 − θ )

ρ�c
,

β2 =
√

1 − θ

1 − corr
[
�c∗

t+1, ut+1
]2 ,

β3 =
√

1 − θ

1 − (rv/θ )2 .

Figure 6 shows that we cannot choose (β, θ ) to match all three moments exactly, but
we can get close; then there exists a value of σ that would match the equity premium
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for any given γ . The value of β is a little below what we used in Table 1, and the
value of θ a little lower (but still substantially above the value from Luo 2010).

2.6 Comparison of Portfolio Choice and Asset Pricing Implications under
Alternative Hypotheses

Model uncertainty and robustness. Robust control and filtering emerged in the en-
gineering literature in the 1970s and was introduced into economics and further
developed by Hansen, Sargent, and others. A simple version of robust optimal con-
trol considers such a question: How to make decisions when the agent does not know
the probability model that generates the data? The agent with the preference for
robustness considers a range of models and makes decisions that maximize utility
given the worst possible model. The work of Uppal and Wang (2003) and Maenhout
(2004) explores how model uncertainty due to a preference for robustness affects
optimal portfolio choice. In particular, Maenhout (2004) shows that robustness leads
to environment-specific effective risk aversion and thus significantly reduces the de-
mand for the risky asset. In addition, after calibrating the robustness parameter, he
finds that robustness increases the equilibrium equity premium.29 In his model, the
optimal portfolio rule is

α = π

(γ + ϑ)ω2
,

where ϑ measures the degree of robustness and γ + ϑ is the effective CRRA. Com-
pared with the portfolio rule derived in our RU-RI model, it is clear that though both
of these two specifications, model uncertainty due to robustness and state uncertainty
due to inattention, can reduce the optimal share invested in the risky asset, the mech-
anisms to generate low allocation in the risky asset are distinct: In the former, the
aversion to model uncertainty increases the effective degree of risk aversion, and thus
reduces the optimal allocation in the equity, whereas in the latter, the interaction of RI
and a preference for early resolution of uncertainty strengthens long-run consumption
risk and thus reduce the optimal share in the equity.30

Infrequent adjustment. Another closely related hypothesis about informational fric-
tions is the infrequent adjustment specification (see Lynch 1996, Gabaix and Laibson
1999, Abel, Eberly, and Panageas 2007, and Nechio 2014 for discussions of the im-
plications of infrequent adjustment in consumption on portfolio choice or/and asset
pricing). Among these models, Gabaix and Laibson (1999)’s 6D bias model is most
related to our work. The key difference between Gabaix and Laibson’s infrequent
adjustment model and our RI model is that in their model, investors adjust their

29. Cecchetti, Lam, and Mark (2000) and Abel (2002) examine how exogenously distorting subjective
beliefs can help resolve the equity premium puzzle and the risk-free rate puzzle; robust control distorts
beliefs in exactly the right manner.

30. Kasa (2006) derives a formal equivalence between robust control and RI in the filtering problem.
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consumption plans infrequently but completely once they choose to adjust, whereas
investors with finite capacity adjust their plans frequently but incompletely in every
period. In addition, in the 6D model, the optimal fraction of savings invested in the
risky asset is assumed to be fixed at the standard Merton solution

α = π

γω2
,

whereπ is the equity premium, γ is CRRA, andω2 is the variance of the equity return,
whereas optimal portfolio choice under RI reflects the larger long-term consumption
risk caused by slow adjustments in consumption, and thus the share invested in the
risky asset is less than the standard Merton solution. Abel, Eberly, and Panageas
(2007) derived a unique solution for the optimal interval of time between consecutive
observations of the value of the portfolio with observation and transaction costs and
showed that even a small observation cost can lead to a substantial (eight-month)
decision interval. They assume that the investment portfolio of riskless bonds and
risky stocks is managed by a portfolio manager who continuously rebalances the
portfolio, which is similar to the assumption used in Gabaix and Laibson (1999).
In other words, they do not examine how infrequent adjustments affect the optimal
asset allocation via the channel of the long-run consumption risk. In all of these
infrequent adjustments, aggregate consumption can have low contemporaneous cor-
relation with the equity return because individual investors adjust their consumption
plans infrequently and only a fraction of the agents adjust their consumption in each
period.

3. TWO EXTENSIONS

3.1 Correlated Shock and Noise

In the above analysis, we assumed that the exogenous shock to the equity return
(ut+1) and RI-induced noise (ξt+1) are uncorrelated. We now discuss how correlated
shocks and noises affect the implications of RI for long-run consumption risk and
optimal asset allocation. In reality, we do observe correlated shocks and noises. For
example, if the system is an airplane and winds are buffeting the plane, the random
gusts of wind affect the process (the airplane dynamics) and the measurement (the
sensed wind speed) if people use an anemometer to measure wind speed as an input
to the Kalman filter. In our model economy, it seems reasonable to assume that given
the same level of capacity, when the economy moves into a recession (or financial
crisis), the innovation to the equity return and the noise due to finite capacity (the
measurement or the perceived/sensed signal) will also be affected by the recession.
In the RI problem, the correlation generalizes the assumption in Sims (2003) on the
uncorrelated RI-induced noise.
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Specifically, we consider the case in which the process shock (ε) and the noise (ξ )
are correlated as follows:

corr (ut+1, ξt+1) = ρuξ , (42)

con (ut+1, ξt+1) = ρuξωωξ , (43)

where ρ ∈ [−1, 1] is the correlation coefficient between ut+1 and ξt+1, and ω2
ξ =

var[ξt+1]. Substituting (42) and (43) into the pricing equation (21), we obtain

π= lim
S→∞

⎧⎨⎩
S∑

j=0

cont

⎡⎣ρ
σ
�ct+1+ j + (1−ρ)

⎛⎝ S∑
j=0

rp,t+1+ j

⎞⎠ , ut+1

⎤⎦⎫⎬⎭ = (γ + �)αω2,

where

� = γ − 1

1 − σ
(ς − 1) + ρρuξ

σ

(
1 − 1

φ
ς

)√
θ

1/ (1 − θ ) − (1/φ)2 (44)

measures the long-run consumption risk in the presence of the correlation between
the equity return and the noise. (See online appendix.) Figure 7 illustrates how RI
affects the long-run consumption risk � for different values of the correlation when
β = 0.91, σ = 0.99999, and γ = 1.01. The figure clearly shows that the positive
correlation will reduce the long-run consumption risk and thus increase the optimal
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share invested in the risky asset. For example, when θ = 0.8 and ρuξ = 0.1, � = 20;
if ρuξ reduces to −0.1, � = 31.

What is a reasonable sign for this correlation? If we assume that capacity is fixed
when the state of the economy changes, it seems more reasonable that ρuξ is positive
because it would be more difficult to observe a more volatile economy given fixed
capacity. However, if we relax the assumption that κ is fixed, some capacity from
other sources will be reallocated to monitor the state of the economy to increase the
economic efficiency because an increase in the underlying uncertainty leads to larger
marginal welfare losses due to RI. In this case, ρuξ could be negative as the Kalman
gain θ will increase with capacity κ .

3.2 Nontradable Labor Income

It is known that some of the anomalous predictions of the portfolio model can
be reduced, though not eliminated, by the introduction of nontradable labor income.
Following Viceira (2001), Campbell and Viceira (2002), and Luo (2015), we assume
that labor income Yt is uninsurable and nontradable in the sense that investors cannot
write claims against future labor income; thus, labor income can be viewed as a
dividend on the implicit holdings of human wealth. We will only sketch the results
here; formal derivations are a straightforward extension of our existing results and
are omitted.

We assume that the process for labor income is

Yt+1 = Yt exp (νt+1 + g) , (45)

where g is a deterministic growth rate and νt+1 is an i.i.d. normal random variable
with mean zero and variance ω2

ν . Log labor income therefore follows a random walk
with drift; to keep the exposition simpler, we abstract from any transitory income
shocks. In order to permit the risky asset to play a hedging role against labor income
risk, we suppose that the two shocks are potentially correlated contemporaneously:

covt (ut+1, νt+1) = ωuν .

If ωuν = 0, then labor income can be viewed as purely idiosyncratic. The flow budget
constraint then becomes

At+1 = Rp,t+1 (At + Yt − Ct ) . (46)

Log linearizing (46) around the long-run means of the log consumption-income
ratio and the log wealth-income ratio, c − y = E[ct − yt ] and a − y = E[at − yt ],
and defining a new state variable, st = at + λyt , where λ = (1 − ρa + ρc)/(ρa − 1),
we adopt the same solution method in our benchmark model to solve this model with
uninsurable labor income. The following proposition summarizes the results on the
optimal consumption and portfolio rules under RI:
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PROPOSITION 7. Suppose that γ is close to 1 and Assumption 2 is satisfied (see below).
The optimal share invested in the risky asset is

α∗ = 1

ς̃

[
1

b1

(
μ− r f + 0.5ω2

ω2

)
+
(

1 − 1

b1

)
ς̃ωuν

ω2

]
, (47)

where ς̃ = (ρ/σ )ς + 1 − ρ > 1, b1 = (ρa − 1)/ρc ∈ (0, 1], ρa = exp(a − y)/(1 +
exp(a − y) − exp(c − y)) > 0, and ρc = exp(c − y)/(1 + exp(a − y) − exp(c −
y)) > 0; the consumption function is

c∗
t = b0 + b1̂st , (48)

where b0 = −[(1/γ − b1)E[rp,t+1] + 1
γ

logβ + 1
2γ �− ρ − (1 − b1)g]/(ρa − 1),�

is an irrelevant constant term; the true state evolution equation is

st+1 = ρ0 + ρast − ρcct − g + εt+1 + 1 − ρa + ρc

ρa − 1
νt+1 + rp,t+1, (49)

where ρ0 = −(1 − ρa + ρc) log(1 − ρa + ρc) − ρa log(ρa) + ρc log(ρc); and the es-
timated state ŝt is characterized by the following Kalman filtering equation

ŝt+1 = (1 − θ ) ŝt + θ (st+1 + ξt+1) + ϒ, (50)

whereψ = log(φ) − (1 − 1/φ) log(1 − φ), θ = 1 − 1/ exp(2κ) is the optimal weight
on a new observation, ξt is an i.i.d. idiosyncratic noise shock with ω2

ξ = var[ξt+1] =
/θ ,  = α∗2ω2/[exp(2κ) − (1/φ)2] is the steady-state conditional variance, and
ϒ is an irrelevant constant term.

PROOF. See online appendix. �
Note that to obtain these results, we require the following assumption.

ASSUMPTION 2.

1 − (1 − θ ) ρa > 0. (51)

Comparing with the assumption used in the benchmark model, here ρa has replaced
β−1, but otherwise equation (51) is the same as equation (18). When ρ = 1 (or
γ = 1/σ ), the RU solution reduces to the expected utility solution:

α∗ = 1

ς

[
1

b1

(
μ− r f + 0.5ω2

ω2

)
+
(

1 − 1

b1

)
ςωuν

ω2

]
, (52)

where ς = θ/[1 − (1 − θ )ρa] > 1.
ς̃ > 1 measures the long-run (accumulated) impacts of financial shocks on con-

sumption. It is clear that our key result—that the presence of RI combined with a
preference for early resolution of uncertainty will dramatically reduce the share of
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risky assets and increase the required equity premium—survives the introduction of
labor income risk. Expression (47) contains two components. The first part is the
so-called speculative asset demand, driven by the gap between the return to equity
and the risk-free rate. Note that without labor income risk, the optimal asset allocation
is solely determined by the speculative demand; that is, the allocation is proportional
to the expected excess return of the risky asset and is inversely related to the variance
of the equity return and to the elasticity of consumption to perceived wealth, b1. The
second part is the hedging demand, governed by the correlation between returns and
labor income. Given that ρa > 1 and θ ∈ (0, 1), RI affects the optimal allocation in
the risky asset via the following two channels:

(i) Reducing the speculative demand and the income-hedging demand by the
long-run consumption risk parameter ς̃ .

(ii) In addition, as shown in the second term in the bracket of (47), RI increases the
income hedging demand by ς̃ because ut and νt are correlated and consumption
reacts to the shock to total wealth ζt = αut + λνt gradually and indefinitely.

To make these points clear, we rewrite (47) as

α∗ = 1

ς̃b1

(
μ− r f + 0.5ω2

ω2

)
+
(

1 − 1

b1

)
ωuν

ω2
. (53)

This expression clearly shows that RI increases the relative importance of the income-
hedging demand to the speculative demand via the long-run consumption risk ς̃ ; under
RI, the ratio of the income hedging demand to the speculative demand increases by ς̃ .
As inattention increases (θ declines), the hedging aspect of the demand for risky assets
increases in importance, because ∂ς̃/∂θ < 0. To see where this positive relationship
derives from, results from Luo (2008) and Luo and Young (2010b) imply that the
welfare cost of labor income uncertainty is increasing in the degree of inattention (as
θ falls, the cost rises). If equity returns are positively correlated with labor income, the
agent will decrease demand for the asset as an insurance vehicle; similarly, a negative
correlation will increase hedging demand. The data suggest that this correlation is
negative but so small as to be quantitatively unimportant.31 In addition, the second
term in (53) also shows that RI has no effect on the absolute value of the income
hedging demand. The reason is simple: under RI, the innovation to the equity return
affects not only the amount of long-run consumption risk measured by 1/ς but also
the long-run correlation between the shocks to the equity return and labor income
measured by ςωuν as both shocks affect consumption growth; consequently, RI does
not change the hedging demand of labor income. It is clear from expression (52) that
ς in the terms 1/ς and ςωuν cancels out.

As in Section 2.3, we can examine the asset pricing implications of the twin
assumptions of RU and RI in the presence of nontradable labor income. Given that

31. For example, Heaton and Lucas (2000) find that individual labor income is weakly correlated with
equity returns, with support for positive and negative correlations. Aggregate wages have a correlation of
−0.07 with equity returns.
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every investor has the same degree of RI, the following pricing equation linking
consumption growth and the equity premium holds when γ 
 1:

π = α∗ς̃b1ω
2 − ς̃ (b1 − 1)ωuν − 0.5ω2. (54)

Under the same assumptions made above (zero net supply of bonds so that α∗ = 1),
(54) becomes

π = ς̃
[
b1ω

2 + (1 − b1)ωuν
]− 0.5ω2, (55)

which clearly shows that the positive correlation between the equity return and
labor income, ωuv > 0, increases the equilibrium equity premium. Specifically, the
magnitude of the hedging demand, (1 − b1)ωuv , is increased by ς in the presence of
information-processing constraints. In sum, the interaction between RI and positive
correlations between the equity return and labor income will increase the equity
premium in equilibrium by

� = ς̃

[
1 +

(
1

b1
− 1

)
ρuvων

ω

]
. (56)

Note that in the case without RI and ρuv = 0, π + 0.5ω2 = b1ω
2.

Following the same procedure adopted in the benchmark model, we can obtain the
expression for aggregate consumption by aggregating over all consumers:

�c∗
t+1 = θb1

λνt+1 + α∗ut+1

1 − (1 − θ ) ρa · L
, (57)

where the i.i.d. idiosyncratic noises in the expressions for individual consumption
dynamics have been canceled out. The following proposition summarizes the results
of the joint dynamics of aggregate consumption and the equity return.

PROPOSITION 8. Given finite capacity κ (i.e., θ ) and optimal portfolio choice α∗, the
relative volatility of consumption growth to the equity return is

rv = sd
[
�c∗

t

]
sd [ut ]

= θb1√
1 − (1 − θ )2 ρ2

a

ωζ

ω
, (58)

where ωζ = √α∗2ω2 + λ2ω2
ν + 2α∗λρuνωων , the first-order autocorrelation of con-

sumption growth is

ρ�c = corr
[
�c∗

t ,�c∗
t+1

] = θ (1 − θ ) ρa
1 − (1 − θ ) ρ2

a

1 − (1 − θ )2 ρ2
a

, (59)
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TABLE 2

EFFECTS OF RU AND RI ON CONSUMPTION AND THE EQUITY PREMIUM IN THE PRESENCE OF LABOR INCOME

U.S. data Full information θ = 25% θ = 35% θ = 45% θ = 55%

π (σ = 0.9982) 0.06 0.023 0.060 0.038 0.029 0.025
rv 0.07 1 0.541 0.470 0.475 0.493
ρ�c 0.22 0 0.059 0.112 0.146 0.166
corr(�c∗

t+1, ut+1) 0.21 1 0.356 0.566 0.715 0.836

and the contemporaneous correlation between consumption growth and the equity
return is

corr
[
�c∗

t+1, ut+1
] =

√
1 − (1 − θ )2 ρ2

a

(
α∗ + λ

ρuνων

ω

)
. (60)

PROOF. See online appendix. �

Table 2 reports how RI affects the joint behavior of aggregate consumption and the
equity return and the equity premium in the presence of nondiversified labor income
in general equilibrium. When computing the equilibrium equity return and the key
moments of the joint dynamics of aggregate consumption and the equity return,
we follow Viceira (2001) and Campbell and Viceira (2002) and set R f = 1.02,
Et [Re,t+1/R f ] = 1.06, ω = 0.153, Et [Yt+1/Yt ] = 1.03, ων = 0.15, ρuν = 0.35, and
W/Y = 15. From this table, we can see that in the presence of nondiversified labor
income, the interaction of RU and RI has the similar effects on these key moments
as in the benchmark model and can significantly improve the model’s predictions
on these important aspects. For example, if θ is reduced from 1 to 0.25, we choose
σ = 0.9982 to match the equilibrium equity premium perfectly; at the same time,
the model generates much lower relative volatility of aggregate consumption (from 1
to 0.541) and contemporaneous correlation between aggregate consumption and the
equity return (from 1 to 0.356), and positive autocorrelation of aggregate consumption
(from 0 to 0.059).

4. CONCLUSION

In this paper, we have studied the portfolio choice of a household with Kreps–
Porteus/Epstein–Zin preferences and limited information-processing capacity (RI).
RI interacts with a preference for early resolution of uncertainty to generate significant
decreases in the demand for risky assets; small deviations from indifference over
timing and infinite channel capacity are magnified over the infinite future to produce
empirically reasonable portfolios with actual risk aversion essentially equal to 1,
whether the agent has nontradable labor income. This result raises important questions
about empirical assessment, such as how to identify risk aversion separately from
channel capacity, that we will not pursue here.
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We have focused on solutions in which ex post uncertainty is Gaussian. Recent
results in the RI literature (Matejka and Sims 2010) have noted that there exist discrete
optimal solutions to the decision problem when the state space is bounded that may
dominate the Gaussian one; the intuition for this result is that information costs can
be reduced by dividing the state space into regions and only permitting solutions
to differ across these regions instead of inside them. With these solutions in mind,
Batchuluun, Luo, and Young (2008) show that fully nonlinear portfolio decisions
are discrete in a simple two-period economy; these solutions have the property that
agents will place positive measure on only a small number of different portfolio
shares. For reasonable degrees of risk aversion and low enough channel capacity,
one group of these points involves zero equity holdings because agents who want to
borrow from future income will do so using the risk-free asset, and there is always
a positive probability that wealth is actually such that borrowing would be optimal.
A second group of points involves a small amount of risky assets (and generally this
set of points has the most mass), whereas a third group has a significant amount of
risky assets. Extending these results to study portfolios in long-horizon models has
the potential to rationalize why few households hold assets that do not appear very
risky (in terms of consumption or utility), why those that hold these assets hold so
few of them, and why these assets pay such high rates of return. The mechanism
identified here will still be present, if somewhat obscured by the numerical solution.

APPENDIX A

A.1 Deriving an Approximate Loss Function

Given the optimal consumption and portfolio rules derived in the FI case, it is
straightforward to show that the value function under full information about the state,
V (At ), corresponding to the RU model (1), takes the following form:

V (At ) = �At ,

where � is a coefficient determined by the model parameters and is not relevant to
our analysis.32 Now we assume that the agents cannot observe the true state. In this
case, we approximate the value function around the perceived value for the true state
variable (at = ln At ), ât , as follows:

Vt = � exp (at )

∼= V̂t +�

[
exp (̂at ) (at − ât ) + 1

2
exp (̂at ) (at − ât )

2

]
,

where V̂ = � exp(̂at ). Therefore, minimizing the expected welfare loss due to im-
perfect observations, Et [Vt − V̂t ], is equivalent to minimizing

min
ât

Et
[
(at − ât )

2] .
32. When σ is close to 1, � = 1 − δ. Please see Appendix D of Giovannini and Weil (1989) for a

detailed derivation.
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In other words, when the approximation is accurate, the best estimate of the true
state, ât , should be its conditional mean based on the available information, Et [at ]. In
addition, when σ is close to 1, V̂t

∼= (1 − β) exp(̂at ) is just the value function under
RI. The key reason for this result is that the original state transition equation and
the Kalman filtering equation are homeomorphic, and the values of φ and b0 in the
consumption functions under FI-RE and RI are approximately the same when σ is
close to 1.33

A.2 Deriving the Perceived State Evolution Equation

Here, we detail the straightforward steps omitted in the main part of the paper that
derive the perceived state evolution equation. The Kalman filtering equation can be
written as:

ât+1 = (1 − θ )

[
1

φ
ât +

(
1 − 1

φ

)
ct

]
+ θa∗

t+1.

Combining this Kalman filtering equation with the true state evolution equation
yields:

ât+1 = 1

φ
ât +

(
1 − 1

φ

)
c∗

t + ψ + ηt+1,

where ηt+1 is the innovation to the perceived state:

ηt+1 = θ

[
α∗ (re,t+1 − r f

)+ r f + 1

2
α∗ (1 − α∗)ω2 + ξt+1

]
+ θ

φ
(at − ât ) ,

and at − ât is the estimation error:

at −ât =
(1 − θ )

[
α∗ (re,t+1 − r f

)+ r f + 1
2α

∗ (1 − α∗)ω2
]

1 − ((1 − θ )/φ) · L
− θξt

1 − ((1 − θ )/φ) · L
.

A.3 Deriving Long-Term Euler Equation within the Recursive Utility Framework

Within the RU framework, when wealth is allocated efficiently across assets, the
marginal investment in any asset yields the same expected increase in future utility,

Et

[
U2,tU1,t+1

U1,t

(
Re,t+1 − R f

)] = 0,

which means that

Et
[
U1,t+1

(
Re,t+1 − R f

)] = 0, (A1)

33. Note that in our key quantitative analysis, we set σ = 0.99999.
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where Ui,t for any t denotes the derivative of the aggregator function with respect to
its i th argument, evaluated at (Ct , Et [Ut+1]).

Using the Euler equation for the risk-free asset between t + 1 and t + 1 + S,

U1,t+1 = Et+1

[
(βt+1 · · · βt+S)

(
R f
)S

U1,t+1+S

]
= Et+1

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S

]
, (A2)

where we denote βt+1+ j = U2,t+ j , for j = 0, · · ·, S. Substituting (A2) into (A1)
yields

Et

[
Et+1

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S

] (
Re,t+1 − R f

)]
= Et

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S
(
Re,t+1 − R f

)] = 0.

Hence, the expected excess return can be written as

Et
[
Re,t+1 − R f

] = −
cont

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S, Re,t+1 − R f

]
Et

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S

]

= −
cont

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S, Re,t+1 − R f

]
Et
[
U1,t+1

]
= −

cont

[(
U2,t+1 · · · U2,t+S

) (
R f
)S

U1,t+1+S, Re,t+1 − R f

]
U1,t/

(
U2,t R f

)
= −cont

[(
U2,t · · · U2,t+S

) (
R f
)S+1 U1,t+1+S

U1,t
, Re,t+1 − R f

]
= −cont

[(
R f U2,t

U1,t+1

U1,t

)
· · ·
(

R f U2,t+S
U1,t+1+S

U1,t+S

)
, Re,t+1 − R f

]

 cont

[(
θ

ρ
�ct+1+(1−θ ) rp,t+1

)
+· · ·+

(
θ

ρ
�ct+1+S + (1 − θ ) rp,t+1+S

)
, ut+1

]
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ρ
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⎛⎝ S∑
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⎞⎠ , ut+1
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Maćkowiak, Bartosz, and Mirko Wiederholt. (2009) “Optimal Sticky Prices under Rational
Inattention.” American Economic Review, 99, 769–803.

Maenhout, Pascal. (2004) “Robust Portfolio Rules and Asset Pricing.” Review of Financial
Studies, 17, 951–83.

Matejka, Filip, and Christopher A. Sims. (2010) “Discrete Actions in Information-Constrained
Tracking Problems.” Mimeo, Princeton University.

Melosi, Leonardo. (2009) “A Likelihood Analysis of Models with Information Frictions.”
Penn Institute for Economic Research Working Paper 09-009.

Merton, Robert C. (1969) “Lifetime Portfolio Selection under Uncertainty: The Continuous
Time Case.” Review of Economics and Statistics, 51, 247–57.

Mondria, Jordi. (2010) “Portfolio Choice, Attention Allocation, and Price Comovement.”
Journal of Economic Theory, 145, 1837–64.

Nechio, Fernanda. (2014) “Foreign Stock Holdings: The Role of Information.” Federal Reserve
Bank of San Francisco Working Paper 2010-26.

Parker, Jonathan. (2001) “The Consumption Risk of the Stock Market.” Brookings Papers on
Economic Activity, 2, 279–48.

Parker, Jonathan. (2003) “Consumption Risk and Expected Stock Returns.” American Eco-
nomic Review, 93, 376–82.

Parker, Jonathan, and Christian Julliard. (2005) “Consumption Risk and the Cross-Section of
Expected Returns.” Journal of Political Economy, 113, 185–222.

Reis, Ricardo. (2006) “Inattentive Consumers.” Journal of Monetary Economics, 53, 1761–
800.

Sims, Christopher A. (2003) “Implications of Rational Inattention.” Journal of Monetary
Economics, 50, 665–90.

Sims, Christopher A. (2006) “Rational Inattention: A Research Agenda.” American Economic
Review, 96, 158–63.

Sims, Christopher A. (2010) “Rational Inattention and Monetary Economics.” In Handbook
of Monetary Economics, edited by Benjamin M. Friedman and Michael Woodford, pp.
155–181. Philadelphia, PA: Elsevier.



362 : MONEY, CREDIT AND BANKING

Sun, Yenen. (2006) “The Exact Law of Large Numbers via Fubini Extension and Characteri-
zation of Insurable Risks.” Journal of Economic Theory, 126, 31–69.

Uppal, Raman, and Tan Wang. (2003) “Model Misspecification and Underdiversification.”
Journal of Finance, 58, 2465–86.

van Nieuwerburgh, Stijn, and Laura Veldkamp. (2010) “Information Acquisition and Under-
Diversification,” Review of Economic Studies, 77, 779–805.

Viceira, Luis. (2001) “Optimal Portfolio Choice for Long-Horizon Investors with Nontradable
Labor Income.” Journal of Finance, 56, 433–70.


