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         3.1   GWAS and Its Discontents 

 More than a decade ago, as a half-century of population-based modeling of twin and 
adoption studies was giving way to the Human Genome Project and the era of mea-
sured DNA, I wrote:

  Population-based behavioral genetics has demonstrated that genotype and behavior can be 
expected to covary. Although the epigenetic developmental pathways linking gene products 
to complex behavior will in general be almost unimaginably complex, modern molecular 
genetics has made it possible to detect small covariations between alleles and behavior that 
span the complexity of the causal network….. Such associations are real and potentially 
interesting, but they remain correlations— and small ones— not evidence of substantial 
causal pathways between individual alleles and complex behavior or evidence of genes for 
extroversion or intelligence or evidence that future scientifi c efforts will be most produc-
tively applied at a genetic level of analysis. If the history of empirical psychology has taught 
researchers anything, it is that correlations between causally distant variables cannot be 
counted on to lead to coherent etiological models. (Turkheimer, 1998, p. 789)   

 At the time, my prediction had a distinctly Luddite ring to it. Why would anyone 
bet against the inexorable progress of science? My gloominess on the topic was in 
sharp contrast to the optimistic, not to say hegemonic, claims of most researchers at 
the time. Here, for example, is Plomin and Crabbe  (  2000  )  in an article entitled, 
“DNA”: “The authors predict that in a few years, many areas of psychology will be 
awash in specifi c genes responsible for the widespread infl uence of genetics on 
behavior.” (p. 806) 

 These predictions were made at the turn of the present century, as the Human 
Genome Project was realized, as human genetics made the transition from statistical 
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accounting of biologically related family members to the analysis of actual DNA. 
We are now at the end of that era, or at least it’s fi rst chapter. The technology 
 available to genomic scientists has increased exponentially, and lately reached an 
apotheosis in the form of Genome Wide Association Studies, or GWAS, which 
allow us search through the entire genome for the bits of DNA that are more closely 
associated with disease or variation in normal behavior. GWAS, like so much human 
genomics before it, has produced somewhat paradoxical results: we are indeed, as 
Plomin predicted, awash in associations between human characteristics and genetic 
variation. At the same time, as I predicted, it is widely agreed that real scientifi c 
progress has been far more diffi cult than anyone expected; most, I think, would 
agree that new era of human genomics has been a disappointment so far. This essay 
will attempt to resolve this paradox, to understand how human genomics can fi ll 
libraries with “results” that nevertheless seem to fail to make progress toward the 
goals they were designed to reach.  

    3.2   Background 

 Genome wide association studies cannot be understood without seeing them in the 
historical context of behavioral genetics, which has its origins in the practical sci-
ence of animal breeding. People have been breeding animals for complex character-
istics, including behavioral ones, for thousands of years. The fi rst comprehensive 
text about behavioral genetics, Fuller and Thomson (1960) was primarily about 
temperament in dogs. 

 Animal breeding predates both Darwin and Mendel, so much of it, whether on 
the farm or in the lab, was conducted without reference to anything like modern 
genetics. That started to change in the 20 th  century, although most of the traits bred 
in lower animals do not fi t a Mendelian model of inheritance. The characteristics in 
Mendel’s peas segregated from generation to generation: crossing wrinkled peas 
with smooth peas did not produce moderately wrinkled peas, but rather a mix of 
wrinkled and non-wrinkled, in proportions determined by the laws of classical 
genetics. Crossing cows high in milk production with cows low in milk production 
 does  produce cows with moderate levels of milk production, and selecting the highest 
milk producers for reproduction produces a steady increase across generations. 

 The classical genetics of Mendel and the genetics of complex characters like 
milk production was integrated (still long before anything was known about DNA) 
by R. A. Fisher  (  1918  ) , who showed that a large number of independently segregat-
ing genes of small effect could be summed to produce a normally distributed trait 
that was inherited but which did not segregate. The statistical underpinning of the 
synthesis was based on the concept of variation. Differences among animals in milk 
production are associated with the degree of genetic similarity among them, as 
opposed to where they are raised or how they are fed, which would normally be held 
constant by the experimenter. The proportion of observed variation in a trait that is 
associated with variation in genetic relatedness is known as heritability. Heritability 



453 Genome Wide Association Studies of Behavior are Social Science

is a useful concept to animal breeders, because it is related to the rate of change 
produced by selective breeding. 

 The concept of heritability can be extended to the study of humans, with some 
important caveats. The basis for the extension is the study of groups of people with 
known differences in degree of genetic relatedness, most famously identical and 
fraternal twins, but also siblings, parents and children, adopted (and therefore genet-
ically unrelated) siblings, cousins, and so forth. Just as in farm animals, one can 
estimate a proportion of variation associated with genetic differences to the total 
proportion of a trait, and compute heritability between zero and one. 

 The crucial difference between notions of heritability in controlled studies of 
lower animals and studies of natural variation in humans is that for animals, the 
genetic and environmental variances are under the experimenter’s control, and 
therefore fi xed and uncorrelated with each other; in humans variation cannot be 
controlled, for obvious ethical reasons. Once variances become uncontrolled and 
correlated with each other, heritability coeffi cients no longer depend exclusively 
(not even primarily) on the biological characteristics of the trait in question. Instead 
they depend on the variability of the trait and the variation and covariation of the 
genes and environments that underlie it, in the particular population being studied. 
Having two arms notoriously has a heritability of zero, for example, because the 
genetic mechanisms that cause us to have two arms don’t vary among individuals. 
Although developing two arms is intuitively and sensibly a biological process, 
variation in arm-number is primarily due to environmental events like accidents. One 
could not selectively breed cows for three-leggedness, and the reason is not that 
leg-number in cows is somehow essentially environmental. Rather, the genetic 
mechanisms involved in leg-number do not vary among cows, so it is not possible 
to select for them. 

 It is therefore not a good idea to cite heritability coeffi cients as a measure of how 
“genetic” or “environmental” something is, height included, and the high heritabil-
ity of height in modern populations does not mean that it is genetically determined. 
One can imagine circumstances under which the heritability of height would be 
substantially lower (for example, under circumstances in which there were radical 
differences in access to adequate nutrition), and height has undergone obvious 
changes in recent historical time that cannot be the result of genetics. I cite the heri-
tability of height here simply to say that height has the characteristics that lead 
people to think that it  ought  to be amenable to GWAS. 

 In any case, once the statistical means for computing the heritability of human 
characteristics was established, it was open season. Thousands upon thousands of 
family studies (mostly twin or adoption studies) were conducted, and heritabilities 
were computed for the usual behavioral suspects: intelligence, personality and mental 
illness. And to the surprise of all concerned, the studies all came out the same way: 
everything was heritable. Not perfectly heritable, of course, but substantially and sig-
nifi cantly heritable. Ignoring the caveats about the interpretability of heritability coef-
fi cients in free-ranging humans, this outcome was generally taken as a great victory 
for genetic explanations of behavior, either to be celebrated or lamented, depending 
on the predisposition of the writer. I have written elsewhere (Turkheimer,  2000  )  about 
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why such conclusions turned out to be premature. The reasons can be summarized as 
follows, and they have resonance for the contemporary problem at hand:

    1.    Not only the major and established dimensions of behavior turned out to be 
 heritable, but so did everything else. Depression is heritable, but so is marital 
status; intelligence is heritable, but so is how much TV people watch.  

    2.    Heritabilities, as one might have predicted from the forgoing discussion, didn’t 
replicate very well from study to study. They were almost never zero, but whether 
they were relatively high or low seemed to vary from study to study and situation 
to situation.  

    3.    Largely as a consequence of (2), it is diffi cult to identify any major scientifi c 
advances that were produced by the twin studies, beyond the establishment that 
heritability is greater than zero. For example, what do we know about personality 
on the basis of twin studies that we did not know without them? We know that 
personality is moderately heritable, a fact that is not without consequences 
(Turkheimer,  2000  ) , but hopes that twin studies would elucidate the causal pro-
cesses underling the development of personality went mostly unfulfi lled.     

 Such was the state of behavioral genetics at the dawn of the human genome project, 
which was widely viewed as a panacea for the epistemological shortcomings of twin 
studies. We may not have learned all that much from partitioning variance in family 
data, we were told, but wait until we get our hands on the actual DNA! With heritabil-
ity computed in family studies as a guide (a mistaken strategy, by the way, given the 
inherent variability of heritability coeffi cients) we can now proceed to piece together 
the genetic processes leading to complex human traits from the ground up. 

 There were two main research strategies available at the outset. Linkage studies 
search through the genome in family pedigrees for genetic markers (locations on the 
genome smaller than a gene) that segregate within families in the same way as a trait 
of interest. Linkage studies have the advantage of being able to search the entire 
genome, and the disadvantage of only identifying regions, as opposed to specifi c 
locations, of interest. Association studies target specifi c and pre-identifi ed genetic 
markers, called candidate genes, and ask whether they are correlated with the 
expression of a trait in the population. Association studies have the advantage of 
identifying relations with specifi c genes as opposed to regions, but are limited by 
our ability to decide on the candidate genes to investigate. 

 The newest technology, genome wide association studies, are what everyone had 
in mind when the genome project got underway. GWAS is the apotheosis of contem-
porary gene-hunting, combining many of the features of linkage and association 
studies. Inexpensive chips now make it easy and cheap to test for a million genetic 
markers in the form of single nucleotide polymorphisms, or SNPs, individual units 
of DNA that only take two of the four possible values of ACGT. It is thus possible to 
scan practically the entire genetic sequence for associations between alleles and 
complex traits, with a simplicity and low cost that makes it possible to include tens 
of thousands of research participants. Because there are so many markers across the 
genome, the poor focus of linkage studies has been greatly (but not completely) ame-
liorated, and for better or for worse one does not have to make prior identifi cation of 
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the candidate genes. All that needs to be done is to fi nd a sample of people with 
schizophrenia, a control group without schizophrenia, print out their genomes and 
look for the differences. Why wouldn’t that work? But progress has been, it is safe to 
say, disappointing. It is not that no associations between individual alleles and spe-
cifi c behaviors have been found. To the contrary, we are indeed awash in them: thou-
sands have been identifi ed. However, the “specifi c” and “responsible for” clauses in 
Plomin and Crabbe’s daring prediction have proven more diffi cult: despite the myr-
iad linkages and associations between alleles and complex human traits that have 
been reported, three persistent limitations have proved very diffi cult to overcome, 
and they should sound familiar:

    1.    The reported associations are very small, in the sense that they each explain a tiny 
proportion of the overall variability, and collectively not much more than that;  

    2.    The associations don’t replicate very well; and  
    3.    In part as a consequence of the fi rst two, the various small associations between 

genes and behavioral outcomes haven’t added up to etiological  explanations  of 
behaviors and especially behavioral disorders.     

 In other words, we are back where we started.  

    3.3   The Missing Heritability Problem 

 Others may take a rosier view than I do of the general progress that has been made 
toward genetic theories of behavioral syndromes, but I will save that argument for 
another paper. Here, I would like to discuss a remarkable series of papers published 
recently in  Nature Genetics , concerning not depression or schizophrenia, not IQ or 
extraversion, but height. Height, that is, with near-perfect reliability of measure-
ment and a heritability of .9 (Silventoinen et al.,  2003  ) . Height, for which there 
should be little problem with complex causal feedback loops. (Tall parents don’t 
expose their children to special height-inducing environments.) Height, which has 
obvious biological analogs in the simplest of organisms. The genomic research 
paradigm, in which heritability is the gateway to identifying the specifi c genes com-
posing the genetic etiology of a trait, may have turned out to be more complex than 
expected for juvenile delinquency, but surely it ought to work for height? 

 A single issue of  Nature Genetics  contained three empirical reports of genome 
wide association studies of height (Gudbjartsson et al.,  2008 ; Lettre et al.,  2008 , 
Weedon et al.,  2008  )  and a summary article describing their conclusions (Visscher, 
 2008  ) . At bottom, GWAS is a search algorithm for correlations. The height studies 
each produced something under a half a million of them. From the outset, consider-
ation of such results poses a problem that has been faced many times by any non-
experimental social scientist: given a vast array of results that are presumably a joint 
refl ection of some underlying process of interest, other processes of less interest that 
have not been controlled experimentally, and some amount of sampling error, how 
do you tell them apart? 
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 The answer, of course, is null hypothesis signifi cance testing (NHST). For any 
given individual association, one can compute the probability that an effect of that 
magnitude would occur in the sample, given a null hypothesis of no association in 
the population. If that probability is lower than some agreed upon “alpha” probabil-
ity, one declares the null hypothesis of no association false. The alpha probability is 
therefore an error rate, the proportion of errors one is willing to tolerate when declar-
ing null hypotheses false. There is, of course, another error rate involved, the “beta” 
or “Type-II” error rate, which describes the probability of being in error when failing 
to declare a null hypothesis false. 

 NHST is greatly complicated when there is more than one result (in this case, 
400,000 results) to test. If the probability of being incorrect about any single hypoth-
esis test is equal to  a , then the probability of being incorrect on at least one of  k  
hypothesis tests equals 1-(1- a  k ), which approaches 1.0 very quickly. Social science 
has developed modest technologies for dealing with the problem, like the familiar 
Bonferroni correction 1 , but such methods do not begin to apply to the enormous 
number of tests conducted in GWAS, for which somewhat more sophisticated 
methods have been developed. 

 Signifi cance testing in GWAS incorporates several steps. First, the full distribution 
of test probabilities is plotted against the expected distribution under the null hypoth-
esis, to establish that  something  is disturbing the null distribution. In Weedon et al. 
 (  2008 ; see their Figure 1) there was an unmistakable overrepresentation of low 
probabilities. In the largest sample (combined meta-analytically across several 
studies), for example, there were 27 tests with signifi cance levels less than 10 -5 , 
compared to the four that would be expected on the basis of sampling error under 
the null hypothesis of no association. Weedon et al. conclude, “Approximately 23 of 
these loci are therefore likely to represent true positives.” (p. 576) 

 The associations are then subjected to an even more stringent test. Thirty-nine of 
the original 400,000 SNPs (the 27 that exceeded the 10 -5  criterion plus 11 that 
exceeded a 10 -4  criterion, plus one more identifi ed as a candidate in another study) 
were retested in an independent sample of 16,482 participants. Twenty of these 39 
achieved  p<.005  in the independent test. Combining the screening and the cross-
validation, twenty SNPs had  p  values lower than 5 x 10 -7 , 17 were lower than 10 -8 , 
and 10 were lower than 10 -10 . That’s pretty signifi cant! 

 But as we proceed through Weedon et al. or the other empirical reports, we fi nd 
there is a second problem lurking behind the familiar one of signifi cance testing. 
The statistically signifi cant associations are further tested for something called 
“population stratifi cation,” and once it is found to be absent, Weedon et al. can 
declare, “This means that the associations are likely to refl ect true biological effects 
on height.” (p. 580) Now we would appear to be getting somewhere, although it will 
turn out to be problematic that no one pauses to explain what “true biological 
effects” are, and how they can be distinguished from biological effects that are not 
true or true effects that are not biological. 

   1   In which the required signifi cance level, usually p<.05, is divided by the total number of tests to 
be conducted in the experiment.  
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 What is population stratifi cation? The classic example of population stratifi cation 
involves the discovery of a “chopsticks gene” (Hamer & Sirota,  2000  ) . Suppose you 
are seeking a gene contributing to the use of chopsticks in a sample that happens to 
include both Asian and American participants. Any gene that differs in frequency 
between the Chinese and American populations will be associated with use of chop-
sticks, but the associations will be causally spurious. Chopstick use is  caused  by 
exposure to the rearing practices of Asian families; exposure to the rearing practices 
is  correlated with  gene frequencies, and this correlation induces a spurious one 
between the genes and chopstick use. 

 As is often the case when diffi culties of this kind arise in situations where genetic 
methods are employed in the service of social scientifi c ends, the technical-sounding 
name that is given to the problem and to the various statistical methods that are 
developed to cope with it foster the impression that population stratifi cation is 
essentially a technical problem in molecular genetics, to be overcome in the same 
way that so many other problems in genetics have been overcome, by burying them 
under the relentless forward momentum of contemporary genomic technology. If 
we can put half a million SNPs on a single chip, how big a problem can population 
stratifi cation be? 

 But in fact, population stratification is a very old problem, and has little to 
do with genetics per se. Notice that population stratification doesn’t arise in 
studies of non-human animals. That is because we have experimental control 
over the environments to which laboratory organisms are exposed, so we can 
determine that environments are either invariant or random, and there are no 
potential correlations between the occurrence of alleles and exposure to environ-
ments. In a horrifi c world in which it were possible to control the environments 
of humans so they could be raised identically, or randomly assigned to environ-
ments of the experimenter’s choosing, population stratifi cation would not be as 
severe a diffi culty. 

 Population stratifi cation is a problem in non-experimental causal inference, 
and as always, defi nitive attribution of causation is a matter of experimental 
design, not statistical analysis. A wide variety of tests, corrections and work-
arounds have been developed to ameliorate the effects of population stratifi cation 
on GWAS. Like the original problem itself, these fi xes are overlaid with a veneer 
of genetic technology that may lead the unwary interpreter to believe that the 
problem has been licked, that the science of genomic association has moved on 
from population stratifi cation just as the newest SNP chip is bigger and cheaper 
than the last. But methodological problems in scientifi c inference are not so eas-
ily overcome by the next wave of technology. The fi xes, moreover, are reworkings 
of statistical methods that have been available to social scientists for many years. 
And as any working social scientist is all too well aware, although the methods are 
sophisticated and interesting as statistical devices and useful enough as halfway 
measures, they don’t work to discriminate true causal effects from extraneous 
processes that have not been controlled by the experimental method. In the long 
run, statistics cannot replace the causal rigor of the experimental method, no more 
so in genomics than in sociology.  
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    3.4   Why not EWAS? 

 To a remarkable degree, GWAS was foreshadowed in a domain that might at fi rst 
seem quite remote: the human social environment, and the quasi-scientifi c methods 
that have been developed to study it. The twin inferential issues in GWAS– distin-
guishing “true” associations from those expected on the basis of sampling error, and 
then distinguishing “true” causal processes from mere associations– are the bread 
and butter of social scientists working as far from genomics as it is possible to work. 
If you are a developmental psychologist trying to identify the environments that 
 predispose some adolescents to become delinquents, what do you do? Most of the 
time, random assignment to environmental conditions is out of the question. So you 
gather as much data as possible about neighborhoods, schools, families and peers, 
measure delinquent outcomes in the children, and endeavor to show that some aspects 
of the environment  predict  (read:  are correlated with ) delinquent behavior. If you are 
comprehensive in your measurements of relevant environments, you might be tempted 
to say that you conducted an Environment Wide Association Study, or EWAS. 

 Of course, no self-respecting social scientist would announce such a thing 
because the methodological connotations are so dreadful, conjuring images of vast 
correlation matrices with circles around the few of them that have exceeded some 
magical level of statistical signifi cance. But there is no need to be unduly derogatory 
about the fundamental state of affairs: in most of human behavioral science experi-
mentation is not possible, and because it is not, scientists resort to other means, most 
prominent among them the analysis of systems of statistical associations. Presented 
with an interesting association between an environmental risk factor and a behav-
ioral outcome, but lacking possibilities for randomized experimentation that might 
establish the association as causal, what would the traditional social scientist do? 

 The fi rst the thing the scientist would do, of course, is to test the association for 
signifi cance. For the better part of a century, far from the high-tech world of the 
Human Genome Project, psychologists of all persuasions have been testing their 
associations with NHST. From social psychologists running college students 
through elaborate randomized experimental conditions, to developmentalists ana-
lyzing enormous uncontrolled correlation matrices arising from observations of 
families, to cognitive psychologists giving repeated trials of memory tasks, to psy-
chobiologists taking single-neuron recordings from hamster brains, to clinicians 
trying to establish the effi cacy of psychotherapy, only two things have tied together 
the impossibly diverse collection of researchers that make up a psychology depart-
ment: a commitment to collecting data one way or another, and an intention to test 
the resulting associations with NHST. 

 The reasons NHST has failed as a basis for scientifi c psychology are deep, wide, 
no longer a matter of serious controversy, and not the main point of this paper (see, 
among many others, Cohen,  1994 ; Schmidt,  1996  ) . The probability levels that are 
computed compulsively to fi ve decimals depend on assumptions that cannot be tested, 
let alone confi rmed; their binary, reject or fail-to-reject formalism does  violence to the 
subtleties of actual evaluation of scientifi c hypotheses in the laboratory; the tests 
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depend ineluctably on sample size; they encourage attention to Type I errors at the 
expense of attention to statistical power; the probabilities themselves represent the 
converse of what we really want to know, telling us the likelihood of our data given 
our hypothesis, when we really want the likelihood of our hypothesis being correct, 
given our data. These failures have been well-catalogued elsewhere and I won’t do so 
again here (see Cohen,  1994 ; Harlow, Mulaik & Steiger,  1997  ) . 

 In the end, the failure of NHST can be seen as a failure to solve the central 
dilemma of scientifi c psychology: for researchers working in one of the many psy-
chological domains where randomized experimentation is impossible for practical 
or ethical reasons, NHST has not succeeded in discriminating actual causal pro-
cesses from spurious correlations and non-causal associations. And even when 
experimentation  is  possible, the causal pathways leading to complex human behav-
ior are often so diverse that empirical science seems all but helpless to unpack them, 
and here too NHST has provided no help. 2   

    3.5   Searching for Causes in Social Science 

 This brings us to the next and more important, because less examined, step in the 
inferential chain. Given an association that passes a test of signifi cance, how do we 
know if it is really causal, as opposed to the result of spurious confounds, of “popu-
lation stratifi cation”? The two broad classes of methods that are brought to bear are 
multivariate statistics and quasi-experimental research methods. The most basic sta-
tistical approach is multiple regression, in which possible confounds are measured 
and included as predictors along with the alleged causal factor. Under some restric-
tive conditions, the estimated regression coeffi cient for the factor of interest then 
represents its association with the outcome with values of the measured covariates 
“held constant” statistically. In some contexts (traditionally including situations 
where the effects of interest are categorical, and the potential confounds are con-
tinuous) this method is referred to as Analysis of Covariance or ANCOVA. The 
biggest shortcoming of multiple regression is that it requires measuring (and mea-
suring well) all of the potential confounds of the alleged causal relationship. It is not 
generally possible to know if this has been accomplished successfully. Most of the 
multivariate alternatives to multiple regression can be characterized as attempts to 
circumvent the need to measure every single individual variable that might con-
found a causal relationship. 

 Principle Component Analysis, or PCA, uses the multivariate structure of the 
covariances among uncontrolled variables to defi ne one or several dimensions that 
jointly determine the multivariate domain. So if one has measures of parental 

   2   The greatest proponent of such ideas was the great theoretical psychologist Paul Meehl. The 
interested reader is directed to his many papers on the subject, most especially, Meehl,  1978 , which 
should be required reading for GWAS researchers.  
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income, housing quality, neighborhood quality, and academic levels of local schools, 
one could use the positive associations among them to defi ne a “latent variable” 
called  poverty . 3  Once again under fairly restrictive assumptions, controlling for the 
multivariate construct succeeds in including not only the measured variables that 
were used to estimate it, but also the unmeasured indicators that could have been 
measured but weren’t. 

 A more advanced classical method is called instrumental variable regression 
(Angrist, Imbens & Rubin,  1996  ) . Given an observed association between a pur-
ported cause and an outcome, an instrument is a third variable which is correlated 
with the purported cause and the potential confounds, but not with the outcome, 
conditional on the cause and the confounds. Suppose a scientist observes an asso-
ciation between father-absence in families and delinquency in children: Is the rela-
tionship causal? One way to answer the question is by fi nding an  instrument . In the 
classic example, the government might establish a new tax policy that has the effect 
of keeping families intact, but which would not plausibly affect rates of delinquency 
on its own, except by way of its correlation with intact families. Under these condi-
tions and several other assumptions, it is possible to estimate the causal effect of 
intact families independent of the confounds. 

 A third statistical method is called propensity score analysis (Rosenbaum & 
Rubin,  1983  ) . Propensity scores are a method for summarizing all of the available 
information about confounds of a potential cause. Returning once again to the 
absent father example, one way to state the problem is that because we cannot ran-
domly assign children to absent father conditions, children with an absent father 
differ in many uncontrolled ways other than the father absence itself. If we collect 
as many possible predictors of father absence that we can think of and load them all 
into an equation predicting father absence, the modeled probability summarizes the 
overall tendency for father-present and father-absent families to be non-randomly 
assigned. We can match families for the overall  propensity  to have an absent father, 
allowing us to estimate the causal effect of absence without bias.  

    3.6   Within Family Designs and the Nonshared Environment 

 An alternative to statistical methods for establishing causation in non-experimental 
data is to use  quasi -experimental designs. The range of possibilities is vast and 
beyond the scope of this paper (Campbell, Stanley & Gage,  1963 ; Rutter et al.,  2001  ) . 
One particular form of quasi-experimentation is particularly relevant to GWAS and 

   3   A latent variable is a hypothetical process that cannot be observed directly, but which serves to 
explain relationships that can be observed among actual measurements. If one observes that many 
aspects of deprived environments—crime, poor schools, inadequate nutrition, unstimulating sur-
roundings—tend to co-occur, the latent variable  poverty  can be invoked to explain why. The rele-
vant statistical procedure is known as factor analysis. See MacCorquodale and Meehl  (  1948  ) , or 
for an accessible statistical treatment, Loehlin  (  1992  ) .  
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EWAS: within-family comparisons. Suppose you have a large sample of pairs of 
monozygotic (identical) twin children. Among these twins you will be able to fi nd the 
occasional pair for which one member is exposed to a risk factor for delinquent behavior 
and the other is not. Suppose the twin who is exposed to the risk factor is indeed engag-
ing in delinquent behavior. Is delinquency a causal consequence of the risk factor? Now 
at least you have an interesting control group: What is the non-exposed co-twin doing? 
If he is engaging in delinquent behavior to the same extent as the exposed twin, it doesn’t 
seem likely that the risk factor  per se  is the decisive causal factor; on the other hand, if 
the non-exposed cotwin is not delinquent, then there may reason to expect that the risk 
factor  is  causing the delinquency, although as we will see below, twin designs are not 
capable of producing true causal inference from non-experimental data. 

 Within-family designs are important in many areas of psychology (Rodgers et al., 
 2000  ) , and play an especially important role in behavioral genetics (Dick, Johnson, 
Viken & Rose,  2000  ) , although it might be more accurate to say that within-family 
designs are the link between traditional behavioral genetics and the mainstream of 
developmental psychology. When twin studies fi rst convinced the world of the 
importance of genetics in the development of human behavior (e.g., Bouchard et al., 
 1990  ) , genetic variation shared supremacy with another biometric component. 
Although identical twins are universally more similar in behavior than fraternal 
twins, it is also the case that identical twins are substantially less than perfectly simi-
lar. This residual variability cannot be genetic, as identical twins are just that geneti-
cally, and it cannot be the result of differences in rearing environment, since twin 
pairs in these studies are raised together. The term came to be called the “nonshared 
environment,” denoting differences among siblings or twins that arise because of 
environmental  differences  among children raised in the same family, as distinguished 
from the more intuitive “shared environment” which represents traditional socioeco-
nomic and familial forces making family members more similar to each other. (For a 
philosophical treatment of the nonshared-shared environment distinction, see 
Plaisance, unpublished dissertation.) 

 In 1987, Robert Plomin and Denise Daniels published a paper with the title, “Why 
are Children Raised in the Same Family So Different from One Another?”, in which 
they tried to formulate the causal processes that might underlie this variance compo-
nent. Plomin and Daniels hypothesized, straightforwardly, that the characterization 
of the residual variance component as the nonshared environment was apt, that chil-
dren raised in the same family were different from each other because their environ-
mental experiences were different, and moreover that the specifi cation of those 
differences should form the basis of environmentalist developmental psychology. 
They formulated a three-step program that succeeded in becoming the basis of a 
research program that extended over more than a decade and continues to this day:

    1)    Quantify the magnitude of the nonshared environmental variance component at 
the population level.  

    2)    Identify environmental events that are experienced differently by children in the 
same family.  

    3)    Specify the causal relations between nonshared environmental events and devel-
opmental outcomes.     
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 In research of this kind, environmental differences between pairs of siblings or 
twins are used to predict differences in outcome. Perhaps most clearly in identical 
twin pairs, any relations that are identifi ed cannot be attributed to genetic differ-
ences either between or within families, since the twins are genetically identical, or 
to environmental differences between families, like culture (chopstick use!) because 
the twins were raised in the same family, in the same cultural milieu. Another way 
of saying this is that quasi-experimental within-family designs control (imperfectly, 
of course) for population stratifi cation. So the research mandated by Plomin and 
Daniels had two aspects that parallel the goals of contemporary GWAS. On the one 
hand, it was an attempt to decompose a population level variance component– the 
nonshared environment– into the actions of the individual environmental events it 
comprised; on the other, it was a quasi-experimental attempt to sift the myriad and 
easily-observed  associations  between environment and outcome for some smaller 
set that are potentially causal.  

    3.7   The Missing Environment Problem 

 In a way that once again foreshadowed the recent diffi culties of the genome project, 
the outcome of the research mandated by Plomin and Daniels’ program was 
 disappointing. Mary Waldron and I (Turkheimer & Waldron,  2000  )  conducted a 
comprehensive meta-analysis of the research that had been conducted under the ban-
ner of the nonshared environment. In the studies we reviewed, the environment was 
 actually measured for each member of a twin pair, rather than inferred from the twin 
design; just as in GWAS, DNA is now measured, as opposed to inferred from popu-
lation genetics. So, for example, one might measure differences in the harshness of 
communications directed at siblings by their parents, and use these differences to 
predict differences in delinquency in the siblings. Plomin and Daniels’ hypothesis 
can once again be stated in terms of the two aspects of the research. They hypothe-
sized that the population-level nonshared environmental variance component could 
be decomposed into individual effects such as these, or equivalently, that the many 
non-experimental associations that are observed between risk factors and outcomes 
can be shown to be plausibly causal by exposing them the to within-family design. 

 Either way, our review demonstrated that the hypothesis could not be supported. 
Although the nonshared environment accounted for upwards of 50% of the variabil-
ity in the studies we reviewed, the median percentage explained by any individual 
measured environment was under 2%. The review showed that the nonshared envi-
ronmental variance component could not be decomposed into many small causal 
environmental events. There are substantial differences in delinquent behavior 
between pairs of siblings, even pairs of identical twins reared together in the same 
family, and the twin design can be used to establish that these differences are broadly 
environmental in origin. But when the investigator selects “candidate environments” 
that differ between siblings, for example the emotional quality of their interactions 
with mother, the individual effects of the candidate environments don’t come close 
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to adding up to the total effect of “the environment” as estimated by the twin studies. 
Another way of saying the same thing is that observed associations between environ-
ments and outcomes—in the population, without controlling for the between-family 
effects of genes and shared environment, children who have more negative interac-
tions with their mothers are more likely to be delinquent— do not stand up to the 
more rigorous quasi-experimental test of comparisons of siblings or twins raised 
together. Within families, the sibling with more negative maternal interactions is not 
more likely to be delinquent than the brother or sister with more positive interactions, 
at least not suffi ciently so to account for a substantial portion of the variance 
 component called nonshared environment. The problem of the missing variance in 
the nonshared environment, which was never christened as “the missing environment 
problem”, although that is exactly what it is, remains unsolved; I remain gloomy. 

 The answer to the question, “Why not conduct EWAS?” is that social scientists 
have been conducting EWAS for 100 years. I would go so far as to assert that the 
history of social science before the genomic era was essentially an extended attempt 
at EWAS. How has it come out? The answer depends on one’s opinion of the incom-
prehensibly large body of studies, results and evidence that environmentally- oriented 
social science has produced, a full evaluation of which would take us far afi eld. This 
much can be said: although environmental social science has made many interesting 
discoveries, and described innumerable developmental processes, some of them 
plausibly causal, it has not formulated comprehensive explanations of the kinds of 
complex human characteristics it set out to understand. There is much to learn from 
the thousands of environmentally-oriented studies of juvenile delinquency, divorce, 
depression– the list is endless– but the reader who seeks a  theory  of juvenile 
 delinquency, or put another way, who wishes to explain, to specify, a substantial 
chunk of the variability in juvenile delinquency that is broadly attributed to “the 
environment” will not be satisfi ed. 

 There is a subtle distinction to be made here about the kinds of explanations that 
are possible in social science. On the one hand, to the extent the goal is to explain the 
environmental etiology of something like juvenile delinquency in a general sense, to 
identify the specifi c factors that cause delinquency across a broad range of contexts, 
only the most general, if not platitudinous, explanations can be found: poverty is bad, 
stable families are good. But if the question then becomes, what is it about poverty 
that causes delinquency, is it schooling or peer groups or diet or environmental tox-
ins, the missing environment problem asserts itself: it is at once all of these things 
and none of them. Together, they all add up to the construct we call poverty, which 
has a demonstrably negative effect; but one at a time, their effects are too small, and 
too dependent on context, to be quantifi ed reliably or added together meaningfully. 

 Still, the content of social science would appear to comprise more than mere 
repetitions of associations among generalities, although there is certainly plenty of 
that. Any given study of delinquency, located in a particular time and place, pro-
duces its own set of fi ndings, in the form of particular associations among individual 
variables, the ones that happen to have made it over the hurdle of statistical signifi -
cance in this one particular study. They may have done so simply as a result of 
chance, or because they really were potent causes of delinquency in the particular 
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socio-temporal context embodied by the sample. We usually have no way of  knowing 
which, but either way, social science has seen so many of these signifi cant but 
ephemeral associations come and go that we no longer expect very much of them. 

 So in social science, we have a choice. We can characterize associations among 
very general constructs like poverty and delinquency, which may be expected to 
“replicate” from one situation to the next but don’t actually tell us very much about 
the specifi c causal processes that are involved. Alternatively, we can immerse our-
selves in the minutiae of the particular variables that seem to be associated with 
delinquency in a particular time and place, which offers a satisfying sense that we are 
actually explaining why something happened, but frustrates us with a maddening 
tendency not to replicate in the next study, conducted in a subtly different context. 
The result is either complacent satisfaction with predictable generalities, or endless 
Ptolemaic theorizing about fi ner and fi ner distinctions about the outcomes of  different 
studies, until the fi eld gets tired of the exercise and moves on to a new phenomenon. 
(See Meehl’s  1978  account of theorizing about the “risky shift” in the 1950s).  

    3.8   GWAS and EWAS 

 I hope that the parallels between this situation and modern genomics are now 
obvious. For many years in genomics, twin studies were used over and over again 
to re-establish the vague generality that variation in genes is correlated one way or 
another with variation in phenotype, with variation in  every  phenotype. After a few 
decades, it became clear that reasserting the heritability of something had no more 
actual causal content than asserting that children who live in deprived neighbor-
hoods do worse in school, or that older children do better on developmental tests 
than younger children. Then modern genomics arrived, fi nally permitting the attempt 
to break down the vague concept embodied by “heritability” into the tiny molecular 
processes that compose it, and in the human domain we are forced to do so without 
the methodological advantage of randomized experimentation. The unhappy returns 
of GWAS are the result. 

 The parallel failures of EWAS and GWAS suggest that these apparent shortcom-
ings of old-fashioned social science never did reside in the genetic naiveté of tradi-
tional environmentalists, as so many prideful behavioral geneticists have led us to 
believe. Instead, the problem lies in the nature of complex human behavior itself, 
and as such it is not really a shortcoming. We do not have a general theory of juve-
nile delinquency because in an important sense juvenile delinquency will not bear 
general theorizing. Obviously, every delinquent teenager is delinquent for some set 
of reasons, but the causes of one teenager’s delinquency do not generalize well to 
the delinquency of another. (For further discussion of these ideas, see the discussion 
of Meehl’s concept of “specifi c genetic etiology” in Turkheimer,  1998 , and the 
relevant Meehl papers referenced there.) 

 Considering the methodological parallels between the nonshared environmental 
and the genomic projects promotes a humbler appreciation of the possibilities for 
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the latter. There is, for starters, a deep irony underlying the genome project’s 
 obsession with tiny  p  levels. After a century of feckless application of NHST in the 
face of ever-increasing philosophical and statistical condemnation of the practice, 
traditional social science appears fi nally to be giving up the ghost on signifi cance 
testing. At the same time, at the outer limits of our extraordinary ability to quantify 
the genetic sequence, NHST is rising again. Why? Is there something about genom-
ics that we expect to vindicate a practice discredited by half a century of unsuccess-
ful social science? 

 The meager contribution of NHST to classical social science focuses our attention 
on exactly what is proved by the atomically small  p  levels achieved by the height 
researchers. They demonstrate, and this much we can take as conclusive notwith-
standing the attendant statistical assumptions, that the observed associations between 
SNPs and height are very unlikely to have occurred because of sampling error. The 
null hypothesis that human height is unrelated to SNPs, and by extension to allelic 
variation, has been busted. Unfortunately, nobody ever thought such a thing in the 
fi rst place, so it’s a pyrrhic victory. We stand reminded: associations between SNPs 
and distant outcomes are associations, that is to say correlations, and absent further 
evidence they are nothing more than that. NHST does not provide further evidence. 

 So after all of the extraordinary technology of modern genomics has done its 
work, the study of the genetics of complex human characteristics fi nds itself in the 
same unsatisfactory scientifi c stance as a sociologist in 1955, trying to make sense 
out of a vast catalog of non-experimental survey data that purports to explain why 
some juveniles become delinquents while others do not. Except that the geneticist’s 
database is even larger, and the individual associations are, if anything, smaller. The 
tool that is supposed to help fi x things doesn’t work, having been designed for 
the task of discriminating sampling error from population variation, rather than the 
identifi cation of causal needles lost in a haystack of correlations. The tool that might 
actually help—randomized experimention—isn’t available for ethical reasons. 

 In the same way, the methods of controlling for population stratifi cation in 
genomics correspond point by point to the statistical and quasi-experimental meth-
ods that social scientists have been using for a century: PCA (Price et al.,  2006  ) , 
instrumental variables (Lawlor et al.,  2008  )  and propensity scores (Epstein, Allen & 
Satten,  2007  ) . Like their social scientifi c counterparts they work, more or less, but 
are ultimately unable to solve the broad and deep problems of causal inference that 
necessitated them in the fi rst place. If a confound to an association between an allele 
and height is as well-behaved as the model confound of chopstick use by Asian 
culture, then the extant methods will identify and control for it. But what if the allele 
is part of a developmental process that produces a child who is more successful in 
demanding nutritional resources from his or her parents? Is that a height gene, a 
marker of a “true biological effect” on height? The variety of causal pathways that 
could potentially be involved in a tiny uncontrolled association is so enormous that 
focusing on one class of them that can be identifi ed with some reliability borders on 
the futile. The point is not that the relatively small magnitude of population stratifi -
cation effects should promote a sanguine view of the possibilities for raw, uncor-
rected GWAS, as some papers have recently suggested (Hutchison et al.,  2004  ) , but 
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rather that fi xed statistical procedures for controlling population stratifi cation are no 
more likely to correct the real problem than highly stringent signifi cance levels. 

 It would be unfair not to point out that these statistical methods have some advan-
tages when they are used in genomics, compared to their traditional use in the social 
sciences. The one parameter that is generally constrained by theory in twin studies- 
the correlation of either 1.0 or.5 between the latent genotypes of monozygotic or 
dizygotic twins - is exactly one parameter more than is constrained in non-genetic 
analyses of the same kind of behavior. The predictors, predictions, and outcomes of 
non-experimental social science can multiply virtually without constraint, and the 
modest correlational structure imposed on them by population genetic theory 
explains the appeal genetic modeling has for its practitioners. In addition, GWAS 
allows geneticists to approach an empirical standard that environmental researchers 
cannot match, i.e., to catalog a nearly complete record of the genetic material of 
individual research participants. (Contemporary methodology based on SNPs is still 
a step removed from the actual genetic sequence, but those remaining barriers will 
probably come down soon.) One reason EWAS is not possible is that the complete 
environmental inputs of real humans are unrecordable in principle, and also because 
there is no discrete environmental theory that corresponds to the intricate modern 
synthesis of molecular genetics, population genetics and evolutionary biology. It is 
hard to imagine there ever will be. 

 Finally, just as with the nonshared environment, within-family designs have a 
special place in the molecular genetics of complex phenotypes. Comparisons of 
parents and children or pairs of siblings offer the single most reliable way to control 
for population stratifi cation. If a pair of siblings reared in the same family differs at 
a genetic marker and also differs in chopstick use or delinquent behavior, the asso-
ciation between the allelic and the behavioral differences cannot be the result of a 
confound resulting from exposure to different cultural environments. 4  The analogy 
between social scientifi c and genomic applications of sibling difference designs 
helps to show population stratifi cation for what it is: a shared-environmental con-
found of an observed association. Unfortunately, the same papers that have declared 
population stratifi cation a “red herring” that can safely be ignored in GWAS have 
specifi cally concluded that sib-pair analyses are too demanding (Cardon & Palmer, 
 2003  ) . Collecting 65,000 individuals for a GWAS study is one thing; collecting 
30,000 sibling pairs is another. 

 Abandoning sib-pair comparisons would be a serious error. Environmentally-
oriented social science has demonstrated quite conclusively that the sibling design 
is a far more effective way to weed out non-experimental confounders than its statis-
tical competitors. That so many observed associations are discounted by the sibling 

   4   As was the case for within-family studies of the environment, however, the existence of within 
sib-pair genetic associations still do not  prove  a causal relationship between the gene and the out-
come. There still might be uncontrolled confounds within pairs (one member might be sent to a 
Japanese school where chopstick use is encouraged, while the other goes to an American school). 
The within-pair association controls for a class of confounds that vary between sibling pairs, which 
is a big help but not a panacea for the shortcomings of non-experimental science.  
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comparison is not a reason to discontinue its use, but is a measure of its success. It’s 
too bad that so many associations turn out to be non-causal when exposed to risk of 
disconfi rmation by the within-family design, but that’s the way it goes. Even the 
limitation on statistical power imposed by the less than astronomical size of sibling 
samples is probably a good thing. As the magnitude of associations gets smaller and 
smaller, so does the probability that we will be able to make any developmental 
sense out of them (Turkheimer,  2006  ) .  

    3.9   Genomic Social Science and Social Scientifi c Genomics 

 At several places in this essay I have compared GWAS to something called social 
science. What do I mean by that? Here is a working defi nition: social science is a 
domain of inquiry into human behavior is characterized by the following:

    1)    There are a large number of potential causes, individually small in their effects.  
    2)    The causes are non-independent and non-additive.  
    3)    Randomized experimentation is not possible.     

 It has been widely and sometimes triumphantly noted that to remain relevant, 
contemporary social science must be informed by genomics and affi liated biomedi-
cal sciences like neuroanatomy and pharmacology. It is less widely recognized that 
the road between social science and genomics runs both ways. Old modes of 
explanation in the social sciences have certainly been challenged by the introduc-
tion of genetic pathways into traditional causal models, but at the same time, the 
glittering technologies of modern genomics are fi nding their limits in the centuries-
old methodological complexities of human science. 

 The three defi ning characteristics of social science magnify each other in complex 
ways. It is not necessarily a problem, for example, that a scientifi c domain consists 
of many small causal elements. Certainly many parts of human and non-human 
biology are built up out of very intricate networks of small causal effects. But how 
are such causal processes established? They are established via randomized scien-
tifi c experimentation, much of it unspeakably gruesome if breathed in the same 
sentence as the word “human.” (William Wimsatt,  1997 , tells a story of a biophysi-
cist challenged to defi ne his fi eld. He said, “take an organism, homogenize it in a 
Waring blender, and the biophysicist is interested in those properties that are invari-
ant under that transformation.”) Much (it would be interesting to speculate about 
how much) of the mystery that is human behavior might be elucidated if the full 
experimental armamentarium of the biologist were available to the psychologist, 
but even considering the possibility borders on the horrifi c. 

 GWAS of complex human characteristics is social science. It is possible to 
conduct meaningful science under such conditions, but there are strict, and some-
times crippling, limitations on the scope of the conclusions that can be drawn. In 
traditional social science, successful outcomes have been produced not by mechani-
cal application of statistical procedures to vast correlation matrices in the hope of 
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fi nding “true” effects, but rather by careful administration of quasi-experimental 
methods across multiple domains to detect limited instances of local regularity. This 
is the strategy that will be successful in human genomics as well, but it is diffi cult 
to be optimistic based on current evidence. Most GWAS research remains intent on 
fi nding “genes for” one thing or another, based on the belief that there are “true 
biological effects” out there to be found. 

 On a more optimistic note, the recent popularity of GE interaction studies repre-
sents a step in the right direction. These studies begin with one of the small associa-
tions that are detected by GWAS, and proceed to refi ne it by identifying environments 
that modify it. In the paradigmatic study of the association between a gene encoding 
metabolism of MAOA and antisocial behavior (Caspi et al., 2002), for example, a 
variant known to be associated with antisocial behavior was shown to display the 
effect only in the presence of a stressful rearing environment. What is interesting in 
terms of the argument that has been made in this paper is that such a fi nding repre-
sents a  restriction  on the behavioral consequences of the allele, a step back from an 
attempt to promulgate a general theory of the causes of violent behavior or the con-
sequences of stressful environments or MAOA. Of such small steps successful 
social science is made. The extraordinary impact of this study and others like it is 
testimony to the need to get beyond “gene fi nding” and the false hope, discouraging 
in the long run, that genomics will bring change to the long record of slow and 
imperfect partial explanation in the social sciences. (For a philosophical discussion 
of G×E interaction, see Tabery  (  2009  ) .)  

    3.10   Conclusion 

 We have yet to conclude our account of the GWAS of height. When all was said and 
done, across the three papers, each comprising multiple studies totaling 65,000 par-
ticipants and 400,000 SNPs, assessing a trait with a heritability of.9 and a reliability 
of measurement greater than that, the three studies identifi ed 20, 10 and 21 “signifi -
cant” SNPs, jointly accounting for 2.9%, 2.0% and 3.7% of the total variation in 
height. Of the 51 SNPs identifi ed in at least one of the three studies, eight were 
found in two of them, and two were found in all three. Some of the SNPs replicated 
those found by earlier studies, some did not; some earlier linkages were replicated, 
some were not. 

 Yet despite what one might take to be fairly discouraging results, the study 
authors, and especially the accompanying editorial summarizing them, adopt an 
upbeat and even triumphant tone. In the editorial, Visscher concluded,

  The main conclusion emerging from the current studies is that GWAS are able to robustly 
identify common variants that are associated with height but that the effect sizes of indi-
vidual variants are small, so that very large sample sizes are needed to detect associations 
reliably. Single laboratories are unlikely to have suffi cient sample sizes to do powerful stud-
ies on their own, and the trend in human complex trait mapping has been to create consortia 
of research groups and even consortia of consortia. It remains unclear at this stage how 
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much genetic variation can be explained through the GWAS approach. However, if the 
samples in these three studies were combined together with other datasets that have been 
collected on height and genome-wide SNP data, then this question could be answered 
empirically. Genome-wide studies on, say, 100,000 individuals, unthinkable only a few 
years ago, will be soon be a reality. (2008, p. 490)   

 And what then, in the coming era of consortia of consortia? Will we be more 
successful in combining causally ambiguous associations each explaining a tenth of 
a percent of the variance than we are now when they each account for one percent? 

 This implacable scientifi c optimism has been typical of behavioral genomics 
since its inception. The prescribed cure for the vanishingly small effect sizes typical 
of genomics has always been more statistical power, in the form of ever-larger sam-
ple sizes. But at some point, the fi eld is going to have to grapple with the possibility 
that the diffi culty is not statistical power at all, and therefore cannot be remedied by 
enormous sample sizes and stringent  p  levels. No one is prone to think anymore that 
the answer to the environmental etiology of juvenile delinquency is to be found in 
larger and larger samples, allowing detection of tinier and tinier associations with 
environmental risks. Environmental social science has learned a bitter lesson: the 
explanation of behavior is diffi cult not because the relevant causes, though count-
able and essentially additive, are small and diffi cult to detect; rather, social science 
is diffi cult because causes are innumerable and essentially  non -additive (Turkheimer, 
 2004  ) . What causes juvenile delinquency in one place or even one person doesn’t 
necessarily cause it in another, and whether or not a particular environmental 
risk causes delinquency in a particular instance depends on so many other factors, 
environmental and genetic, that wide-ranging scientifi c explanations of important 
phenomena are not possible. 

 For most complex human characteristics, the optimistically expressed but largely 
unexamined claims of the discovery of “true biological effects” are quixotic. Effects 
can be true in the sense that they have a low probability of having resulted from 
sampling error, as demonstrated by signifi cance testing, but the null hypothesis that 
allelic variation is unrelated to complex variation is not the real issue in GWAS any 
more than it is in EWAS. Of course allelic variation is associated with complex 
outcomes: the null hypothesis is always wrong. 

 The claim that an effect is truly “biological” is more diffi cult to understand. In 
the limited context of population stratifi cation, the claim presumably means that a 
restricted set of competing causal claims related to the actions of other alleles or 
environmental exposures related to them has been ruled out or corrected for, but the 
range of competing causal claims that might actually be made is so wide that the 
remediations are unconvincing and (based on evidence to date) ineffective. But in 
practice, the claim of a “true biological effect” is intended to connote more than a 
careful exclusion of a few competing causal hypotheses. The unspoken claim is that 
assiduous attention to statistical signifi cance and population stratifi cation will lead 
to discovery of an allele with an  identifi able biological pathway  extending through 
the many levels of analysis separating the allele from the complex phenomenon it is 
purported to explain. If I am correct that this is what the GWAS researchers intend, 
it is no wonder that they don’t unpack the content of the claim, because on minimal 
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examination it is so obviously false, false even for something not-really-so-complex 
as height, never mind delinquency. 

 In the same paper that produced the quotation at the beginning of this paper 
(Turkheimer, 1996), I introduced a distinction between two forms of biological expla-
nation that I called weak and strong biologism. Weak biologism is the claim, which 
needs nothing more than a belief in philosophical materialism to establish it, that 
“biology” in one form or another (usually genes or brains) underlies all complex char-
acteristics of organisms. In the modern era, almost everyone recognizes that weak 
biologism is universally true: there are few vitalists or spiritualists left anymore. Weak 
biologism, I suggested, is why everything is heritable; it is also why everything shows 
a complex pattern of small associations with individual genetic markers. 

 Strong biologism is the claim that a complex characteristic is a consequence of a 
“true biological effect,” the specifi c result of a specifi c event at the genomic or neu-
rological level of analysis. The relationship between Trisomy 21 and Down 
Syndrome, or between a stroke lesion in the left hemisphere and a resulting aphasia, 
are instances of strong biologism. Strong biologism is rare and scientifi cally com-
pelling. Genetically oriented behavioral scientists (in those days mostly twin 
researchers) I argued, had identifi ed a fool-proof move: claim strong biological 
explanation on the basis of weak biological relations that depend only on the inevi-
table instantiation of behavior in the brain and genome. 

 GWAS is a reassertion of this old strategy at the molecular genetic level. The 
endless repetitions of genome scans that identify a few weak-to moderate signals 
which then don’t replicate very well in the next study is simply a rediscovery on the 
molecular level of what I (Turkheimer,  2000  )  have called the First Law of Behavior 
Genetics: everything is heritable. Everything is heritable because of weak biologism, 
GWAS is always bound to produce a few “results” because everything is heritable, 
and heritability is instantiated in the genome, in the same not very useful sense that 
cognition is instantiated in the brain. The solution to the missing heritability prob-
lem is to be found in the gaps between these universal but vague concepts of physi-
cal instantiation and actual mechanistic explanation of the complex characteristics 
of organisms.      
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