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Abstract Biometric latent growth curve models were

applied to data from the LTS in order to replicate and

extend Wilson’s (Child Dev 54:298–316, 1983) findings.

Assessments of cognitive development were available from

8 measurement occasions covering the period 4–15 years

for 1032 individuals. Latent growth curve models were fit

to percent correct for 7 subscales: information, similarities,

arithmetic, vocabulary, comprehension, picture comple-

tion, and block design. Models were fit separately to

WPPSI (ages 4–6 years) and WISC-R (ages 7–15). Results

indicated the expected increases in heritability in younger

childhood, and plateaus in heritability as children reached

age 10 years. Heritability of change, per se (slope esti-

mates), varied dramatically across domains. Significant

genetic influences on slope parameters that were indepen-

dent of initial levels of performance were found for only

information and picture completion subscales. Thus evi-

dence for both genetic continuity and genetic innovation in

the development of cognitive abilities in childhood were

found.

Keywords Cognitive development � Latent growth

curve � Longitudinal twin design � Louisville Twin Study �
Genetic continuity � Genetic discontinuity

Introduction

As the first longitudinal twin study of children in the

modern era, the LTS was often a leader in raising questions

about the nature of development and in creating methods

for addressing those questions. In his pivotal paper on

‘‘developmental synchronies’’ Wilson (1983) focused on

cognitive development and testing the hypothesis that the

‘‘distinctive developmental gradients should unfold in

synchrony’’ for monozygotic twins (p. 299). He found that

even though there were extensive individual differences in

patterns of cognitive developmental, starting at age

12 months MZ twins demonstrated greater concordance

than DZ twins in ‘‘both elevation and patterning of scores’’

over age (p. 305). Since then, behavior genetic analyses of

cognitive development in childhood have primarily

focused on the magnitude and continuity of genetic and

environmental effects on cognitive development (Logan

et al. 2013; Petrill et al. 2010; Wadsworth et al. 2014). Few

analyses of cognitive development in childhood have

focused on twin similarity for the developmental trajecto-

ries that were the target of Wilson’s approach. In the cur-

rent analyses, we attempt to return to Wilson’s original

purpose by applying biometric latent growth curve models

to twin data on cognitive development available from the

LTS.

In his interpretation of the LTS data, Wilson (1983)

referenced Waddington’s theories of genetic canalization

(Tucker-Drob and Briley 2014; Waddington 1942, 1971) to

conclude that a pre-programmed template that emerges
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over childhood guides cognitive development and as a

result development is generally buffered against environ-

mental influences. To more directly address the issue of

genetic and environmental continuity versus innovations

during cognitive development, Eaves et al. (1986) devel-

oped the simplex model and applied it to published LTS

data covering ages 3 months through 15 years. They con-

cluded that the demonstrated increase in heritability of

cognitive function throughout childhood results not from

any genetic innovations at later ages, but from a single set

of common genes that is active from birth. Persistence and

accumulation of these genetic effects result in rapid

increases in heritability of cognition during childhood.

Evidence for both continuous and age-specific shared

family environmental effects on cognitive development

was reported. In the same issue of the journal, McArdle

(1986) presented the latent growth curve method for

examining twin similarity in growth, also based on LTS

data. From ages 6–24 months, McArdle found evidence for

a linear change trajectory for general cognition arising

from common familial sources of variance. Subsequent

analyses have focused on applications of simplex and

Cholesky models to cognitive development and have pro-

duced mixed results, with reports of both a single common

genetic factor contributing to cognitive development across

childhood (Bartels et al. 2002; Bishop et al. 2003) and

evidence for genetic innovations at 2 and 7 years (Cardon

et al. 1992; Casto et al. 1995; Cherny et al. 1994; Fulker

et al. 1993). Similarly mixed results were reported for

shared environmental influences. Recent reviews have

reported evidence for both genetically mediated stability

(Wadsworth et al. 2014) and instability (Tucker-Drob and

Briley 2014) in cognition during early development.

As in Wilson’s original analysis, most twin studies of

cognitive development focus on standardized scores: full

scale IQ, performance IQ, and verbal IQ. Standardized

scores provide a direct measure of whether the child is

ahead of or behind her age peers, but primarily standard-

ized scores allow researchers to avoid measurement issues

when combining data across tests. In adulthood, the same

measures of cognitive functioning can be used from age

16 years to the end of the lifespan (barring dysfunction). In

childhood, however, qualitative changes in development

coincide, necessarily but unfortunately, with qualitative

changes in instrumentation (McArdle et al. 2009). Com-

bining standardized data across different testing instru-

ments may introduce sources of nonrandom error and skew

results toward the appearance of discontinuity (Finkel and

Davis 2009). Conversely, analysis of non-standardized

individual subtests of the cognitive scales allows for the

examination of both (a) domain differences in genetic and

environmental influences and (b) true growth trajectories.

Genetic and environmental factors that impact specific

cognitive abilities may be more specific themselves and

may differ qualitatively from factors that influence broad

cognitive constructs (Reeves and Bonaccio 2011; Tucker-

Drob and Briley 2014). In fact, investigations of general

versus trait-specific genetic influences on measures of

specific cognitive abilities conclude that heritability of

cognition in childhood reflects both general genetic influ-

ences and distinct genetic influences specific to separate

abilities (Luo et al. 1994; Petrill et al. 1996).

In the current analysis, then, we focus on individual tests

of the Wechsler measures of cognitive ability in childhood

to support investigation of genetic and environmental

influences on latent growth curves and possible differences

in those influences across domains. Cross-sectional studies

of the Wechsler intelligence scale for children-revised

(WISC-R; (Wechsler 1974) indicate quite different heri-

tability estimates across tests, with generally higher heri-

tability for verbal subtests than for performance subtests

(LaBuda et al. 1987; Luo et al. 1994; Petrill et al. 1996;

Segal 1985). To date, the only reported growth curve

analyses of cognition including twin children have focused

on particular skills (such as components of reading) that

can be assessed with identical instrumentation (Logan et al.

2013; Petrill et al. 2010) or on latent constructs (McArdle

1986; Tucker-Drob and Briley 2014). Estimates of heri-

tability of rates of growth varied across measures of

reading ability from. 00 to .58 (Logan et al. 2013; Petrill

et al. 2010). In addition, sources of genetic influences on

growth in reading ability were mixed across tests, with

evidence for genetic influences on growth rates both unique

from (i.e., genetic innovation) and indistinguishable from

(i.e., genetic continuity) genetic influences present at the

initial level of performance. A recent meta-analysis of 15

longitudinal twin and adoption studies across the lifespan

found evidence for discontinuity in genetic factors influ-

encing general cognitive ability during childhood, although

genetic stability increases quickly and plateaus at a high

level (.80) around age 10 years (Tucker-Drob and Briley

2014). Given these findings, we expect to find differences

across cognitive subtests in rates of growth, genetic influ-

ences on growth, and evidence for genetic continuity ver-

sus innovation.

Method

Participants

Twins enrolled in the LTS were recruited from families

residing in the metropolitan Louisville, KY area at the time

of the twins’ birth. The LTS sample was a collection of

families who represented the full range of socioeconomic

status, race, and ethnic diversity within the Louisville
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metropolitan area. Approximately 80 % of the participants

were European–American, 18 % were African–American,

and the remaining 2 % were of mixed or Asian ancestry.

Occupations of heads of households, converted to Dun-

can’s scores for socioeconomic status (Duncan 1961),

represented the entire distribution of social class, with the

average score on the 100-point scale falling between 40

and 50 (score range typical for middle-level clerical

workers). Mean gestational age of the LTS sample was

37 weeks, which is just below the population mean of

40 weeks for single-born neonates. Special efforts were

made to retain recruited families in the study, and less than

10 % of the sample withdrew from the longitudinal study

during the first 3 years.

Data from cognitive testing at ages 4, 5, 6, 7, 8, 9, 12,

and 15 years were used in the current analyses; sample

characteristics are presented in Table 1. Total N indicates

the total number of individuals at each age and the number

of twin pairs indicates the number of complete monozy-

gotic and dizygotic pairs at each age. Twins were typically

tested within a week of their birthday; note that actual age

at measurement was used in the subsequent analyses.

Sample size is smaller at age 4 because three different

cognitive tests were used at that wave over the course of

the LTS; the current analyses included only twins who

received the Wechsler tests at age 4. Only a subset of the

sample was invited to participate in the age 12 visit;

therefore, the sample is reduced at that wave as well. Sixty-

two percent of the sample contributed data from 4 or more

waves. Zygosity was determined by blood sera analysis

made when the twins were 3 years old or older as part of

the LTS protocol.

Measures

The twins were administered the age-appropriate Wechsler

scales of cognitive ability individually by separate

examiners at each visit to the study center. The testing

schedule was arranged so that examiners did not test the

same twin on successive visits. The Wechsler preschool

and primary scale of intelligence (WPPSI; (Wechsler 1967)

was used to assess cognitive functioning at ages 4, 5, and

6 years of age; 78 % of the sample had WPPSI data from at

least 2 waves. Between ages 7 and 15 years, cognitive

ability was measured using the WISC-R; 51 % of the

sample had WISC-R data from at least 3 waves. Analyses

focused on 7 subtests common to both the WPPSI and the

WISC-R: items differed across the WPPSI and the WISC-R

to make the tests age appropriate, but the same types of

items were included in these 7 subtests on both the WPPSI

and the WISC-R. Information, Vocabulary, Similarities,

and Comprehension are typically considered measures of

verbal comprehension. Block Design and Picture Comple-

tion tap perceptual organization. The only test of freedom

from distractibility included here was Arithmetic. Scores

on all tests were converted to percent correct.

Statistical Method

Age-based biometric latent growth curve models (LGCM)

were used to examine genetic and environmental contri-

butions to development of cognitive ability (Neale and

McArdle 2000; Reynolds et al. 2005). The LGCM provides

estimation of fixed effects, i.e. fixed population parameters

as estimated by the average growth model of the entire

sample, and random effects, i.e. individual variation in

growth model parameters. With only 3 waves of data for

the WPPSI scales, a linear growth model was used with

centering at age 5. Because of the expected deceleration in

growth in cognitive functioning in later childhood (Tucker-

Drob and Briley 2014), a two-slope LGCM was used for

the WISC-R scales: one slope for early childhood

(age\10) and a separate slope for later childhood

(age[10). Although a quadratic model estimates deceler-

ating growth across the entire age range, the two-slope

model allowed for distinct modeling of age trends in early

and later childhood. Model-fitting indicated that centering

at age 10 years provided the best fit to the data, a con-

clusion supported by McArdle et al. (2009). Thus, the

intercept of the two-slope model is evaluated at the

inflection point: age 10. The two-slope version of the

biometric latent growth curve model is presented in Fig. 1.

Observed data are indicated by y0 through y4. Group mean

intercept (Mi) and slopes are estimated (Ms1 and Ms2) and

residual variances (u0 through u4) are set equal across

waves. The paths from the latent slope factors to the

observed scores are the age basis coefficients, B1(t) and

B2(t). The age basis serves as a marker for the age of the

subject at each time of measurement, adjusted for the

centering age.

Table 1 Sample characteristics

Wave Total N # MZ pairs # DZ pairs Mean Age (SD)

4 years 222 52 55 4.00 (0.02)

5 years 686 168 173 5.00 (0.05)

6 years 776 195 192 6.00 (0.04)

7 years 474 116 119 7.03 (0.09)

8 years 556 136 141 8.02 (0.07)

9 years 593 145 151 9.04 (0.08)

12 years 234 55 61 12.09 (0.13)

15 years 678 176 163 15.13 (0.16)

Total N indicates the total number of individuals at each age. #MZ

pairs and #DZ pairs indicate the number of complete monozygotic

and dizygotic pairs at each age
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The random effects, or variance, in latent growth curve

parameters can be divided into three components: additive

genetic effects (A), shared rearing environmental effects

shared (C), and nonshared environmental effects unique to

each individual and error associated with age-specific

residuals (E). A Cholesky decomposition of the variance is

used to estimate A, C, and E influences on each LGCM

parameter and on the relationships among them. For sim-

plicity, the model in Fig. 1 presents only the additive

genetic effects for the intercept (Ai) and slopes (As1 and

As2): paths a1 through a6. Shared and nonshared envi-

ronment were also included in the model. Biometric latent

growth curve models were fit with the structural equation

modeling program Mx version 1.67 (Neale et al. 2003).

The raw maximum likelihood estimation procedure was

used throughout. Nested models were tested using a dif-

ference Chi square test (i.e. subtracting the -2 log likeli-

hoods of the models being compared).

Results

Phenotypic Growth Curve

Intercept and slope parameters estimated by the phenotypic

latent growth curve models for WPPSI and WISC-R sub-

scales are presented in Table 2. Likelihood ratio tests

indicated that the two-slope model fit data from all 7

WISC-R subtests better than the one-slope model

(p\ .001). The expected deceleration in growth of cog-

nitive function is apparent in the relative magnitude of the

three slope estimates: ages 4–6, 7–10, and 11–15. At each

subsequent age range the slope estimate is smaller,

reflecting a slowed rate of growth. However, the particular

slope estimates and the extent of slowing varied dramati-

cally across subscales, and the pattern was not always

consistent within the domains of verbal comprehension and

perceptual organization. Block Design exhibited both the

highest mean at age 5 and the largest rate of increase from

age 4–6. With the change instrumentation at age 7, the

mean dropped but rates of increase remained the highest at

ages 7–10 and 11–15. In contrast, Picture Completion, also

a measure of perceptual organization, appeared to level off

by age 10 and slope 2 for the WISC-R was quite small.

Results for the 4 measures of verbal comprehension tended

to be more consistent, although mean intercept ranged from

30.47 to 49.06 at age 5 and slope estimates at ages 4–16

ranged from 0.96 to 1.45. Greater consistency in growth

curve parameters is seen for the WISC-R measures of

verbal comprehension.

Heritability Across Age

Twin correlations for each cognitive measure at each wave

are reported in Table 3. Several patterns of change in twin

correlations with age are evident, and they are generally

inconsistent within cognitive domain. Vocabulary, Com-

prehension, and Picture Completion demonstrated early

divergence in twin correlations that then remained fairly

stable in later childhood. In contrast, MZ correlations for

Information, Similarities, Block Design, and Arithmetic

generally increased across waves while DZ correlations

were generally stable or decreasing. Taken together, these

patterns of twin correlations suggest higher heritability for

cognitive function later in childhood, confirming results for

general IQ reported by Wilson (1983).

From previous research we expect genetic proportion of

variance to increase as reliable variance increases and error

variance decreases, at least up to age 8 years (Tucker-Drob

and Briley 2014; Wilson 1983). Estimates of age trends in

heritability and shared environmental variance calculated

from the biometric latent growth curve models are

I S1 S2

y0 y1

Ai As1 As2

u0 u1

Mi

Ms1

Ms2

U U

1

1

1 

B10

B11

B20

B21

y4

u4

U

B14
B24

…

a1 a2 

a3
a4 

a5 
a6 

Fig. 1 Two-slope biometric latent growth curve model. Observed

data are denoted by y0 through y4. Mi mean intercept, Ms1 mean

slope 1, Ms2 mean slope 2, U0 through U4 indicate random error. I, S1,

and S2 refer to intercept, slope 1, and slope 2. The paths from the

latent slopes to the observed scores are the age basis coefficients, B1t

and B2t, which define the intervals of change over age. The model

includes additive genetic effects for the intercept (Ai) and slopes (As1
and As2)
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presented in Fig. 2. Several trends are evident. First,

between ages 4 and 6, when the WPPSI was administered,

heritability is generally stable or increasing and shared

environment is generally stable or decreasing. Given

changes in total variance and reliable variance during this

age range, focusing on proportions of variance (e.g., heri-

tability) can mask changes in raw variance components.

Focusing instead on age changes in underlying genetic

variance, as estimated by the biometric LGC model, can

provide a clearer picture of age trends. As shown in Fig. 3,

all cognitive measures show an increase in raw genetic

variance between ages 4 and 6 years, with large differences

across domains. Block Design demonstrates a two-fold

increase in genetic variance, whereas for Comprehension

the increase in genetic variance in this age range is mini-

mal. Thus, all measures are showing the increases in stable

genetic variance for individual subtests predicted by

Tucker-Drob and Briley’s (2014) analysis of general

intelligence.

Second, starting at age 7 when the WISC-R was

administered, heritability and shared environment are fairly

stable (see Fig. 2). Heritability estimates for similarities,

vocabulary, comprehension, and block design are of the

same magnitude as those reported by cross-sectional

studies in the same age range (LaBuda et al. 1987; Petrill

et al. 1996). Heritability estimates for information, arith-

metic, and picture completion are fairly high; although it is

unlikely they are significantly different from earlier reports.

LGC models capture systematic age-related variance and

thus, any unreliability that may reduce cross-sectional

heritability estimates is contained in the residual variance

from the LGC model. As a result, estimates of genetic

influences based on longitudinal data can be greater than

estimates from cross-sectional data.

Third, although for many of the subtests we find a very

good correspondence (information, picture completion, and

arithmetic) or at least moderately good correspondence

(similarities and comprehension) between results for the

WPPSI and the WISC-R, for two subtests the results do not

accord well across the tests. Both Vocabulary and Block

Design demonstrate higher heritability in younger child-

hood (WPPSI) than middle and older childhood (WISC-R).

As shown in Fig. 3, Vocabulary and Block Design are the

two subtests that demonstrate the greatest rate of increase

in genetic variance, and the amount of genetic variance at

age 6 years is actually consistent with results for the

WISC-R at ages 7 and older. The LGCM of the WPPSI

data is trying to model these large increases in genetic

variance, resulting in a possible overestimation of heri-

tability, whereas the LGCM of the WISC is modeling more

stable variances and thus more stable estimates of pro-

portions of variance. Additionally, higher relative shared

environment for WISC-R Vocabulary and Block Design

may reflect changes in environment associated with

entering school.

Table 2 Parameters estimates (standard errors) from phenotypic latent growth curve models

WPPSI WISC-R

Cognitive measure Intercept (age 5) Slope (age 4–6) Intercept (age 10) Slope 1 (age 7–10) Slope 2 (age 11–15)

Information 49.06 (0.43) 1.43 (0.03) 47.65 (0.49) 0.65 (0.01) 0.28 (0.01)

Vocabulary 32.61 (0.39) 0.96 (0.03) 45.19 (0.44) 0.55 (0.01) 0.33 (0.01)

Similarities 30.47 (0.45) 1.16 (0.03) 47.78 (0.60) 0.62 (0.02) 0.28 (0.01)

Comprehension 38.06 (0.51) 1.45 (0.03) 48.29 (0.60) 0.64 (0.02) 0.38 (0.01)

Picture comp. 50.23 (0.47) 1.53 (0.04) 73.71 (0.55) 0.71 (0.02) 0.11 (0.01)

Block design 52.16 (0.59) 1.86 (0.04) 48.80 (0.77) 0.75 (0.02) 0.38 (0.01)

Arithmetic 49.36 (0.42) 1.51 (0.03) 67.68 (0.54) 0.84 (0.02) 0.21 (0.01)

Table 3 Twin correlations at each wave of testing

Cognitive measures WPPSI WISC-R

4 5 6 7 8 9 12 15

Information MZ .61 .73 .70 .73 .79 .77 .84 .81

Information DZ .59 .53 .50 .59 .54 .59 .69 .55

Vocabulary MZ .53 .47 .65 .63 .69 .75 .78 .87

Vocabulary DZ .44 .42 .49 .50 .59 .57 .68 .60

Similarities MZ .58 .52 .49 .49 .65 .60 .69 .68

Similarities DZ .46 .30 .38 .48 .47 .44 .46 .42

Comprehension MZ .69 .56 .67 .68 .53 .56 .66 .65

Comprehension DZ .61 .47 .40 .44 .48 .46 .51 .43

Picture comp. MZ .48 .61 .46 .56 .54 .57 .55 .51

Picture comp. DZ .36 .42 .24 .21 .33 .25 .26 .29

Block design MZ .50 .60 .60 .64 .63 .65 .76 .79

Block design DZ .14 .39 .38 .41 .51 .53 .61 .41

Arithmetic MZ .66 .57 .59 .56 .58 .66 .68 .65

Arithmetic DZ .33 .49 .38 .56 .46 .44 .24 .42

604 Behav Genet (2015) 45:600–609

123



Sources of Heritability

In addition to estimating changes in heritability over age,

LGC models allows for investigation of continuity and dis-

continuity in sources variance. Using the Cholesky decom-

position of genetic and environmental influences on the

LGCM parameters illustrated in Fig. 1, we can estimate the

extent to which heritability for the slope parameters is

associated with genetic influences on the intercept (paths a2

and a3), with genetic influences unique to slope 1 (a4 or a5),

or with genetic influences unique to slope 2 (a6). This

decomposition of the heritability of the slope from the linear

WPPSI LGCM and the two slopes from the WISC-R model

are presented in Table 4. Significance of total heritability for

the slope parameters was tested by comparing the full model

to models that dropped all genetic influences on the slope

parameters, considered separately. Significance of the por-

tions of total heritability associated with intercept or slopes

was indicated by 95 % confidence intervals for those

parameter estimates calculated in Mx. Regardless of the high

Fig. 2 Changes in heritability (h2; solid line) and shared environment (c2; dashed line) with age, as estimated by the biometric latent growth curve model
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level of heritability estimates reported in Fig. 3, genetic

influences on rates of change were quite modest and

achieved significance in only 8 of 21 instances, similar to

results reported by biometric LGCM analyses of reading

ability in children (Logan et al. 2013; Petrill et al. 2010) and

cognition in adulthood (Finkel and Reynolds 2009). In most

cases that the heritability of the slope parameter was sig-

nificant, the source of the significant proportion of that her-

itability was genetic influences associated with the intercept,

indicating continuity in sources of genetic variance. In two

instances, however, significant portions of heritability

independent of the intercept indicated discontinuity in

sources of genetic variance: WISC-R Information Slope 1

and WISC-R Picture Completion Slope 1. Fifty-six percent

of the heritability of Slope 1 for WISC-R Information acted

through the intercept parameters, but the remaining 44 %

was independent of the intercept; reflecting genetic innova-

tion. An even higher portion of the heritability of Slope 1 for

WISC-R Picture Completion (94 %) was independent of the

slope. This pattern of discontinuity was observed for 5

additional slope parameters, but failed to achieve signifi-

cance. Both significant and nonsignificant indications of

discontinuity of genetic etiology did not cluster within cog-

nitive domains, but occurred across domain boundaries.

Results for shared and nonshared environmental effects

indicated all influences were indistinguishable from influ-

ences shared with the intercept.

Discussion

The goals of the current analyses were to apply biometric

latent growth curve models to LTS data in order to repli-

cate and extend Wilson’s (1983) conclusions concerning

greater MZ twin than DZ twin similarity for trajectories of

cognitive development during childhood. Cognitive

development was examined at the level of individual sub-

scales of the cognitive measures to examine domain dif-

ferences in rates of growth, genetic and environmental

influences on growth, and evidence for genetic continuity

versus discontinuity in cognitive development.

Most applications of latent growth curve models to

cognitive development in childhood focus on latent factors,

including language and numeracy skills (Murayama et al.

2013; Skibbe et al. 2008; Willoughby et al. 2012). Focus-

ing on latent factors generally provides greater reliability in

measurement; however, nuances of cognitive development

can be overlooked. For example, because of the interest in

Fig. 3 Age changes in raw genetic variance from ages 4 to 6 years

Table 4 Proportion of genetic variance for slope parameters shared

with intercept and independent to slope

Heritability Through

intercept

(a2 or a3)a

Through

slope 1

(a4 or a5)

Through

slope 2

(a6)

Information

WPPSI slope 0.14 0.14 0.00 –

WISC slope 1 0.92b 0.61c 0.31c –

WISC slope 2 0.22 0.00 0.22 0.00

Vocabulary

WPPSI Slope 0.47 0.47 0.00 –

WISC Slope 1 0.41b 0.41c 0.00 –

WISC Slope 2 0.68 0.02 0.66 0.00

Similarities

WPPSI Slope 0.17 0.17 0.00 –

WISC Slope 1 0.35b 0.35c 0.00 –

WISC Slope 2 0.00 0.00 0.00 0.00

Comprehension

WPPSI slope 0.00 0.00 0.00 –

WISC slope 1 0.16 0.16 0.00 –

WISC slope 2 0.49 0.02 0.46 0.01

Picture comp.

WPPSI slope 0.17 0.17 0.00 –

WISC slope 1 0.87b 0.05 0.82c –

WISC slope 2 0.52b 0.51c 0.01 0.00

Block design

WPPSI slope 0.78b 0.78c 0.00 –

WISC slope 1 0.40b 0.30c 0.10 –

WISC slope 2 0.32 0.13 0.19 0.00

Arithmetic

WPPSI slope 0.70 0.70 0.00 –

WISC slope 1 0.60b 0.60c 0.00 –

WISC slope 2 0.31 0.14 0.15 0.02

a Relevant paths from Fig. 1
b p\ .05 based on model comparisons in Mx
c p\ .05 based on confidence intervals calculated in Mx
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isolating the exact locus of possible difficulties in devel-

opment of reading abilities, applications of LGC models to

reading often focus on individual components of the skill

and subsequently identify trait differences in growth tra-

jectories (Logan et al. 2013; Lonigan et al. 2013; Petrill

et al. 1996). Similarly, in the current analyses marked

differences in developmental trajectories were evident

across cognitive domains, particularly in early childhood

when cognition was developing most rapidly. Between

ages 4 and 6 years, Block Design scores increased twice as

fast as Vocabulary scores. This difference did not simply

reflect distinctions between verbal comprehension and

perceptual organization; other subscales of verbal com-

prehension demonstrated rates of growth that were inter-

mediate between these two subscales. Trait differences in

rates of growth likely reflect the distinct developmental

trajectories of various brain structures and neuronal circuits

throughout childhood (Chavarrı́a-Siles et al. 2014). To

focus solely on general intelligence factors may result in

overlooking the nuanced interplay between components of

brain development and aspects of cognitive development.

That same reasoning can be extended to genetic and

environmental influences on cognitive development. Lon-

gitudinal data from children consistently reports increasing

heritability for general cognitive function (Bishop et al.

2003; Tucker-Drob and Briley 2014; Wilson 1983); how-

ever, differential heritabilities identified for various brain

structures (Chavarrı́a-Siles et al. 2014) may lead to dif-

ferential heritabilities for various components of cognitive

function. It is important to note that Chavarrı́a-Siles et al.

(2014) clearly support the consensus is that there is no

direct correspondence between brain structure and perfor-

mance on particular tasks. In the current analyses, we have

extended Wilson’s (1983) original conclusion the MZ

twins become increasingly concordant for development

trends in general cognitive function throughout childhood

while DZ twin concordance remains relatively stable.

Results indicated that although heritability (and raw

genetic variance) generally increases throughout childhood

for individual cognitive traits, the rate of increase varies

across traits and instrumentation. Similar to results from a

recent meta-analysis (Tucker-Drob and Briley 2014), we

found that after increasing dramatically in early childhood,

heritability generally leveled off in middle childhood.

Finally, the focus on individual cognitive tests allowed

us to address the issue of genetic continuity and disconti-

nuity in cognitive development at the trait level. Significant

genetic influences on rates of change independent of

genetic factors associated with initial performance levels

were found for two of the seven cognitive subscales:

Information (a measure of verbal comprehension) and

picture completion (a measure of perceptual organization).

Other measures within these cognitive domains did not

demonstrate any genetic influences that were statistically

distinguishable from initial genetic influences on inter-

cepts. These results suggest that the Information subscale

differs from other components of the verbal comprehension

domain, at least with regard to genetic influences on rates

of growth. All four subscales tapping the verbal compre-

hension domain (Information, Vocabulary, Similarities,

and Comprehension) reflect crystallized abilities in that

they clearly result from acculturation processes and rep-

resent the accumulation of knowledge. The Information

subscale also reflects semantic memory (McRae and Jones

2013), and as a result may share common patterns of eti-

ology with other memory measures. In fact, the pattern of

genetic influences found for WISC-R Digit Span (not

reported here) were similar to results for Information,

although the genetic variance independent of the intercept

did not achieve statistical significance. Similarly, although

both Block Design and Picture Completion measure per-

ceptual organization, they measure different aspects of this

latent trait and subsequently demonstrate different genetic

etiologies.

It is possible, then, that the patterns of stability and

change in genetic and environmental influences on cogni-

tive development may be unresolved because focus on

general cognitive performance masks significant differ-

ences in etiologies at the trait level. Some theories of

cognitive development propose that cognitive functioning

begins as a fairly unstructured general quality that differ-

entiates into distinct aptitudes over the course of childhood

(Garrett 1946), although see Tucker-Drob (2009) for a

recent challenge to Garrett’s theory. Differentiation of

cognitive abilities in childhood may explain the domain

differences reported here in growth trajectories, heritability

across age, and sources of heritability.

The original goal of the current analysis was to replicate

Wilson’s (1983) results with current statistical methods.

Latent growth curve models calculate the mean trajectory

in the sample and biometric LGC models estimate the

genetic and environmental influences on deviations from

that mean trajectory (variance in growth curve parameters).

However, LGC models of nonstandardized scores cannot

tap the spurts and lags of development in the same way as

Wilson’s (1983) developmental synchronies index (DSI)

based on standardized scores. We did examine twin simi-

larity for residual variance from the LGC model (i.e.,

variance not related to age–based trajectories), but found

no significant differences in MZ and DZ similarity for

residual variances. It is possible to examine more complex

trajectories by including multiple turning points in the

growth model (Finkel and Davis 2009), incorporating

exponential growth trajectories (Tucker-Drob and Briley

2014), or modeling individual change points (Dominicus

et al. 2008) and then examining twin similarity. In addition,
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latent difference score models incorporate both latent

growth trajectories and the autoregressive parameters of

the simplex model (McArdle and Hamagami 2003). Many

of these approaches can be estimated in multiple pro-

gramming languages, including R (Ghisletta and McArdle

2012). These approaches would benefit both from more

data and from data that are harmonized across instrumen-

tation. Using item-level data from the cognitive measures,

it is possible to combine item response theory and latent

growth curve approaches to examine trajectories across

instrumentation and age (McArdle et al. 2009). This

method has yet to be applied to twin data, but remains an

aspiration as we continue to revive the LTS.
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