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A B S T R A C T

Numerous studies have found interactions between socioeconomic status (SES) and the heritability of cognitive
ability in samples from the United States, with individuals from lower SES backgrounds showing decreased
heritability compared to those reared in higher SES environments. However, nearly all published studies of the
Scarr-Rowe interaction have been univariate and cross-sectional. In this study, we sought to maximize statistical
power by fitting multivariate models of gene (G) x SES interaction, including longitudinal models. Cognitive
ability data collected at up to five time points between ages 7 and 15 years were available for 566 twin pairs
from the Louisville Twin Study. We used multilevel and latent factor models to pool intelligence subtest scores
cross-sectionally. To examine interactions longitudinally, we fit latent growth curve models to IQ scores. Power
analysis results indicated that the multivariate approach substantially boosted power to detect G x SES inter-
action. The predicted interaction effect was observed at most ages in cross-sectional multivariate analyses. In
longitudinal analyses, we found significant G x SES interactions on mean-level (intercept) full scale IQ and
performance IQ (ps < .001), but not verbal IQ intercept (p = .08). SES did not significantly moderate the
heritability of change in IQ over time (slope). Interaction appeared to be driven by DZ twin correlations de-
creasing more substantially as a function of higher SES than MZ correlations.

1. Introduction

Low socioeconomic status (SES) is associated with negative out-
comes in a variety of important domains, including cognitive ability
(Bradley & Corwyn, 2002). Turkheimer, Haley, Waldron, D’Onofrio,
and Gottesman (2003) observed an interaction of SES and the herit-
ability of IQ in 7-year-old U.S. twins, wherein children from lower SES
families showed reduced heritability compared to more affluent peers.
This finding supported the Scarr-Rowe hypothesis, which holds that
environmental disadvantage hinders the ability of individuals reared in
lower SES households to realize their intellectual potential (Rowe,
Jacobson, & Van den Oord, 1999; Scarr-Salapatek, 1971).

Modification of cognitive performance heritability by SES has since
been observed in most studies using U.S. samples, and a recent meta-
analysis of such studies found a moderately sized interaction effect
(Tucker-Drob & Bates, 2016). Significant gene (G) x SES interaction has
been observed across the life span, including in early childhood

(Rhemtulla & Tucker-Drob, 2012; Tucker-Drob, Rhemtulla, Harden,
Turkheimer, & Fask, 2011), middle childhood (Turkheimer et al.,
2003), adolescence (Harden, Turkheimer, & Loehlin, 2007; Rowe et al.,
1999), and adulthood (Bates, Lewis, & Weiss, 2013). Several U.S. stu-
dies, however, have failed to find significant moderation (Grant et al.,
2010; Kremen et al., 2005), including a recent study by Figlio, Freese,
Karbownik, and Roth (2017). G x SES interaction is not typically pre-
sent in samples from Western Europe and Australia, where factors as-
sociated with environmental enrichment (e.g., quality education and
healthcare) are more widely accessible (Grasby, Coventry, Byrne, &
Olson, 2017; Tucker-Drob & Bates, 2016). There are, however, excep-
tions to this pattern as well, especially in cohorts from previous gen-
erations (Fischbein, 1980; Turkheimer, Beam, Sundet, & Tambs, 2017).

Despite the growing body of work on G x SES interaction on cog-
nitive ability, existing studies have been limited in several important
ways. First, many studies have lacked sufficient statistical power, de-
creasing the likelihood of detecting interaction effects (Tucker-Drob &
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Bates, 2016). Second, few studies have examined G x SES interaction
longitudinally. Tucker-Drob et al. (2011) observed significant interac-
tion on change in mental ability between ages 10 months and 2 years.
Rhemtulla and Tucker-Drob (2012) found that individual differences in
mathematics skills (but not reading) among four-year-olds were mod-
erated by SES, and that this interaction was not explained by interac-
tion effects on mental ability at age 2. However, Rhemtulla and Tucker-
Drob (2012) did not test for interaction effects on change in cognitive
ability between 2 and 4 years. We are unaware of previous studies that
have examined G x SES interaction longitudinally at later ages. Thus,
the extent to which SES may affect the heritability of change in cogni-
tive ability over time (in addition to performance at a given age) has
been largely unstudied.

In the present study, we sought to address these limitations by in-
vestigating heritability x SES interaction across middle childhood and
early adolescence using cross-sectional and longitudinal multivariate
techniques. Compared to univariate twin models, both cross-sectional
and longitudinal multivariate models offer increased power, as long as
observed measures are correlated (Schmitz, Cherny, & Fulker, 1998).
Using multiple observations increases the amount of information
available for each subject, thereby improving measurement reliability
and reducing error (Allison, Allison, Faith, Paultre, & Pi-Sunyer, 1997).
Put differently, the multivariate approach increases effect sizes (and
therefore power) by decreasing within-group variance. In theory,
pooling multiple measures of cognitive ability should increase power to
detect G x SES interaction effects, helping address the power limitations
that have plagued previous studies. However, previous studies have not
demonstrated this potential power boost empirically. We addressed this

gap by comparing three multivariate models of G x SES interaction (two
cross-sectional, one longitudinal) to a more traditional univariate
model, and to each other. Along with its possible power benefits, the
longitudinal model also enabled us to examine whether SES moderates
the heritability of change in cognitive performance over late childhood/
early adolescence.

Data were drawn from the recently revived Louisville Twin Study
(LTS; Rhea, 2015; Wilson, 1983). Although the LTS generated one of
the most comprehensive data sets on the early cognitive development of
U.S. twins ever collected (Rhea, 2015), G x SES interaction has not been
thoroughly explored in that sample. A preliminary univariate study
observed G x SES interaction in 7-year-old LTS twins that approached
but did not reach statistical significance (p < .07; Turkheimer, Beam,
& Davis, 2015). Since that report, additional cognitive data for other
ages (up to 15 years) have been recovered, increasing the overall
sample size by approximately 100 twin pairs. Furthermore, although
preliminary analyses used index-level cognitive performance scores
(i.e., full scale IQ, performance IQ, and verbal IQ), subtest scores are
also available for all LTS twins at all measurement occasions, making it
possible to conduct multivariate analyses of the common variance
across subtests. Finally, a large subset of LTS twins participated in
cognitive testing at multiple time points, enabling us to perform long-
itudinal analyses of cognitive performance heritability x SES interaction
across middle childhood and early adolescence.

By developing multivariate models and applying them to LTS data,
we intended to 1) investigate the Scarr-Rowe interaction comprehen-
sively in that important sample, substantially expanding upon the
previous preliminary report, and 2) demonstrate the utility and ro-
bustness of those models, particularly in comparison to traditional
univariate techniques. We hypothesized that we would observe modest
interaction effects at all ages; specifically, we expected the proportion
of variance in cognitive performance attributable to additive genetic
factors (A) and shared environmental factors (C) to increase and de-
crease, respectively, as a function of SES. We also predicted that mul-
tivariate models would be more statistically powerful than univariate
analyses.

2. Method

2.1. Participants

Data collection for the LTS ran from 1957 until the late 1990s
(Rhea, 2015; Wilson, 1983). Participants were all from the Louisville,
Kentucky area. Twin pairs were included in the current analyses if 1)
both twins in a set participated in at least one cognitive assessment at
ages 7, 8, 9, 12, or 15; and 2) family-level SES was available. We
analyzed data from 566 twin pairs in total (Table 1; 282 monozygotic
(MZ), 284 dizygotic (DZ); 236 same sex female, 210 same sex male, 120
opposite sex). Zygosity was determined by blood serum analysis. The
sample was of average intelligence and SES (Table 1; Table 2) and
90.37% Caucasian. Age 12 data were omitted from cross-sectional
analyses due to insufficient sample size. 80.04% of the sample partici-
pated in data collection at three or more ages. Missing data information
for longitudinal analyses is presented in Table 3.

Table 1
Demographic and descriptive information.

Age (years) n MZ/DZ Pairs n same/opp. sex pairs n pairs both female/both male/opp. sex % female % Caucasian FSIQ SES

7 235/236 374/97 204/170/97 53.61 88.85 98.34 (14.06) 47.99 (26.80)
8 250/253 401/102 215/186/102 52.88 90.95 101.80 (14.02) 47.53 (26.38)
9 191/199 297/94 160/137/94 52.94 88.87 102.82 (14.48) 46.84 (27.15)
12⁎ 71/82 113/40 55/58/40 49.02 81.37 100.76 (14.49) 44.75 (29.11)
15 191/184 304/71 164/140/71 53.20 93.07 99.87 (14.02) 46.41 (26.20)
All Ages 282/284 446/120 236/210/120 52.30 90.37 100.68 (14.25) 47.80 (26.56)

⁎ Cross-sectional analyses were not performed on age 12 data due to insufficient sample size. Opp: opposite. FSIQ and SES presented as mean (standard deviation).

Table 2
Correlations of full scale IQ across ages and SES.

IQ 7 IQ 8 IQ 9 IQ 12 IQ 15 SES

IQ 7 1 – – – – –
IQ 8 .88 1 – – – –
IQ 9 .88 .90 1 – – –
IQ 12 .85 .88 .88 1 – –
IQ 15 .78 .82 .83 .91 1 –
SES .39 .36 .37 .50 .36 1

Pearson's correlation coefficients. All pairwise correlations were significant
(p < .05).

Table 3
Missing cognitive data information for longitudinal analyses.

Age (years) 7 8 9 12 15

7 0.83 – – – –
8 0.74 0.89 – – –
9 0.55 0.66 0.69 – –
12 0.27 0.25 0.25 0.27 –
15 0.54 0.64 0.51 0.19 0.66

Values on the diagonal indicate the proportion of the total sample that had
cognitive data at each age. Off-diagonal values represent the proportion of the
total sample available to calculate a covariance between cognitive measures at
two ages.
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2.2. Measures

Three versions of the Wechsler Intelligence Scale for Children
(WISC) were administered during the LTS: the WISC, WISC-R, and
WISC-III (Wechsler, 1949, 1974, 1991). We used age-scaled index and
subtest WISC scores in cross-sectional analyses, and only index scores in
longitudinal analyses. SES at initial registration in the study was mea-
sured with the Hollingshead Four Factor Index of Socioeconomic Status,
which is a continuous zero to 100-point scale based on parental occu-
pation, education, sex, and marital status (Hollingshead, 1975). SES
was normally distributed in our sample (Q1, median, and Q3 = 24, 49,
and 70, respectively).

2.3. Procedure

We used R to calculate descriptive statistics and prepare the data (R
Core Team, 2018). Twin models were fit in Mplus Version 8 (Muthén &
Muthén, 2017) using full information maximum likelihood estimation
to handle missing data.

2.3.1. Univariate analyses
To build upon existing univariate, cross-sectional examinations of G

x SES interaction, and to provide a baseline against which to compare
our multivariate models, we first modeled MZ and DZ covariances for
each index and subtest score as a function of standardized SES at ages 7,
8, 9, and 15. We used a modified twin correlation model (MTCM; Fig. 1;
Turkheimer et al., 2017), which differs from the commonly used Purcell
model (Purcell, 2002) in several important ways. First, cognitive

variables are standardized within the MTCM, meaning that the twin
covariances are correlations. This is done by creating a latent variable
(Z) that has a variance of one and is indicated by the observed cognitive
measure (e.g., IQ, as depicted in the figure), which has its residual
variance fixed to zero. The internal standardization results in a factor
loading weight equal to the observed standard deviation of the phe-
notype (SD), which can then be examined for heteroscedasticity with
respect to the moderator using an exponential function.

Second, in the MTCM, SES linearly modifies the MZ and DZ twin
correlations (rMZ/rDZ). The twin correlations and their moderation can
then be linearly transformed into additive genetic (A), shared en-
vironmental (C), and non-shared environmental (E) variance compo-
nents. This contrasts the Purcell model, wherein SES modifies the paths
from the ACE components to the measured outcome. The Purcell model
is therefore implicitly a quadratic model of the ACE variances, which
are necessarily constrained to be greater than zero. The MTCM's focus
on moderation of the twin correlations allows the correlations to as-
sume moderated values that would result in negative C estimates,
which violates the ACE parameterization of the classical twin model.
Permitting the ACE parameters to be modeled as negative makes it
possible to model the twin correlations accurately, particularly when
the DZ twin correlation is less than half of the MZ correlation, as has
been observed in previous studies of cognitive ability (Turkheimer
et al., 2017). Finally, in addition to controlling for linear main effects of
SES on cognitive ability as in the Purcell model, we also controlled for
quadratic main effects in univariate analyses.

Consistent with the classical twin model, we constrained the means
and variances of cognitive measures to be equal across twins in a pair.

Fig. 1. Modified twin correlation model.
IQ: placeholder for the observed cognitive variables we ana-
lyzed. Z: latent variable that standardized the cognitive vari-
able to a mean of 0 and standard deviation of 1, thereby
transforming the twin covariances into correlations. rMZ/rDZ:
monozygotic/dizygotic twin correlations for cognitive ability.
SD: standard deviation of the cognitive variable. We fit sepa-
rate linear models of SES (b0 + b1 * SES) to rMZ and rDZ to
examine whether twin correlations changed as a function of
SES. A log-linear model of SES (e(0.5⁎bv0+ 0.5⁎bv1 ⁎ SES)) was fit
to the phenotypic variance to account for phenotypic hetero-
scedasticity. The 0.5 term in the exponential expression for the
variance is included because SD is a standard deviation, not a
variance.
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Expected MZ and DZ covariances were 1 and 0.5, respectively. We
tested for significant G x SES interaction (in both univariate analyses
and the multivariate models discussed below) using a Wald test with
two degrees of freedom, which examined whether the A and/or C
moderation parameters differed significantly from zero as a function of
linear SES.

2.3.2. Cross-sectional multivariate analyses
Within each age, we pooled information from all 12 WISC subtests

using two multivariate models, both of which were extensions of the
univariate model described above. The first was a multilevel model
(Fig. 2). The top part of the model is the same as the univariate MTCM
described above. The 12 observed subtest scores (represented as empty
squares) were treated as a repeated measure nested within a subject-
level cognitive ability latent variable (G). The MTCM was fit to all
available subtest scores simultaneously within each individual, and
standard errors were corrected to account for the fact that the subtest
scores came from the same individual.

The second was a latent factor model (Fig. 3) in which the MTCM
was applied to a common factor (G) that was estimated from the 12
WISC subtests (depicted as empty squares) for each twin. We fixed the
loading of the first subtest to one, thereby fixing the variance of the
latent factor, and then standardized the latent factor inside the model
using the same method as described for the univariate analyses.

Residual variances of the subtest scores were correlated across twins.
SES modified the MZ and DZ twin correlations for latent cognitive
ability in the same manner as in the univariate MTCM.

The multilevel model and the latent factor model differed in that the
former analyzed both common and unique variance across multiple
subtests for each participant, whereas the latter only analyzed common
variance. Because of this, the multilevel model was expected to result in
smaller twin correlations than the latent factor model. More theoreti-
cally, these models represent two ways of handling subtest scores. The
multilevel model treats subtest scores as multiple observations of a
participant's ability. The standard errors of the parameter estimates are
corrected to take subject-level covariation among the subtests into ac-
count. The latent factor model, in contrast, treats each subtest score as a
manifestation of a single underlying ability.

2.3.3. Longitudinal multivariate analyses
Next, we examined G x SES interaction longitudinally by fitting a

latent growth curve (LGC) model to full scale, performance, and verbal
IQ (FSIQ, PIQ, and VIQ, respectively) data from ages 7, 8, 9, 12, and 15
(Fig. 4). As with the cross-sectional multivariate models, our LGC model
is largely an extension of the univariate MTCM. In LGC analyses, in-
dividual differences in phenotypic change are modeled as random ef-
fects using two factors. The intercept factor uses information from all
available observations to estimate performance at the first age of

Fig. 2. Multilevel model.
Empty squares represent the 12 WISC subtests. G: general cognitive ability. The top part of the model is identical to the modified twin correlation model (MTCM)
presented in Fig. 1. For each participant, we fit the MTCM to the 12 subtests simultaneously and adjusted the standard errors.
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measurement, while the slope factor indexes rate of change from that
initial performance over time. In this study, we created latent IQ in-
tercept (I) and slope (S) factors for each twin and fixed the intercept at
the first time point (7 years). IQ loadings on the intercept factor were all
fixed to 1, while slope loadings were weighted to model the time
elapsed between observations. SES modified the intercept and slope
twin correlations directly, controlling for linear effects of SES. As in the
univariate MTCM, the modification parameters were linearly trans-
formed into equivalent values of the A and C components. Separate
Wald tests were performed for the intercept and slope factors. Thus, this
model tested whether SES modified 1) the heritability of IQ at the first
time point (intercept) and 2) the heritability of change in IQ over time
(slope). To model autoregressive effects (i.e., the extent to which the
variance of one observation explained the variance of subsequent ob-
servations), observed IQ at each age was regressed on IQ measured at
the previous age. IQ scores had residual variances (E), which correlated
across twins for corresponding measurement occasions.

2.3.4. Power analyses
To test whether our multivariate models were more statistically

powerful than the univariate MTCM, as hypothesized, we performed
power analyses of all four models. We simulated 1000 data sets that
each included 250 MZ and 250 DZ twins, roughly equivalent to our
sample sizes at each age. The structure of the covariance across subt-
ests, both within and between twins, was specified to reflect the cov-
ariance structure observed in the LTS data. SES values were randomly
drawn from a uniform distribution with a mean of zero and standard
deviation of one. MZ and DZ correlations in each data set were calcu-
lated as 0.6–0.01 * SES and 0.4–0.025 * SES, respectively. Thus, as SES
increased, the DZ correlation decreased more than the MZ correlation.
We then fit our univariate, multilevel, and latent factor models to the
1000 data sets. The univariate power analysis was run on simulated
data from a single, randomly-selected subtest. Power analyses of the
cross-sectional multivariate models used data from all 12 subtests.

The power analysis of the LGC model followed an analogous pro-
cedure. We generated an additional 1000 data sets (i.e., independent of
the data sets created for the univariate and cross-sectional multivariate

Fig. 3. Latent factor model.
G: latent cognitive factors generated from the 12 WISC subtests, which are represented by empty squares. The top part of the model is identical to the modified twin
correlation model (MTCM) presented in Fig. 1. We fit the MTCM to each individual's latent factor.
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power analyses), which had a covariance structure comparable to that
observed in the longitudinal data. We analyzed the LGC model's power
to detect a significant interaction effect on the intercept.

3. Results

3.1. Power analyses

Our multivariate models offered substantially more power to detect
significant G x SES interaction than the univariate MTCM (Fig. 5a).
However, multivariate analyses were still underpowered compared to
an 80% threshold, and results should be considered in light of this fact.
Specifically, lower power decreases confidence in observed null G x SES
effects. It also enlarges standard errors, increasing variability in the
observed magnitude of interaction effects, particularly across ages in
cross-sectional analyses. In the power analysis of the univariate MTCM,
the Wald test was significant in only 105 out of 994 converged models,
indicating that power was only 10.56%. This was less than half of the
power in the multilevel model, which equaled 22.30% (all models
converged, with 223 yielding a significant Wald test). Power in the
latent factor model was 60.98% (558 out of 915 Wald tests were sig-
nificant). In the LGC model, power to detect significant interaction on
the intercept was 37.00% (356 out of 962 Wald tests were significant).

3.2. Univariate analyses

In univariate analyses, significance of the Wald test fluctuated
across ages and cognitive measures in a manner that did not follow a
discernible pattern (Fig. 5b), likely because of power limitations. Re-
sults provided tentative evidence of G x SES interaction: modified twin
correlations tended to assume values that resulted in A increasing as a
function of SES while C decreased (Supplementary table 1; mean b1

A = 0.03, 57% positive; mean b1 C = −0.06; 72% negative). Overall,
the univariate results suggested that increasing power using a multi-
variate approach may be worthwhile.

3.3. Cross-sectional multivariate analyses

Complete multilevel and latent factor model results are presented in
Table 4 and Fig. 6.

3.3.1. Multilevel model
We did not observe significant G x SES interaction in multilevel

analysis of age 7 data (p > .05). However, SES modified twin corre-
lations for cognitive ability at ages 8 and 9 such that DZ correlations
decreased more than MZ correlations as a function of higher SES. When
twin correlations were transformed into ACE variances, the predicted
pattern of A increasing and C decreasing as a function of SES was ob-
served. Wald tests of the b1 A and C parameters were significant at both
ages 8 and 9 (age 8: χ2 (2, n = 503 pairs) = 11.12, p = .004; age 9: χ2

Fig. 4. Latent growth curve model.
I: latent intercept factor. S: latent slope factor. E: residual variance. rMZ/rDZ: monozygotic/dizygotic twin correlations for cognitive ability. For both I and S, we fit
separate linear models of SES (b0 + b1 * SES) to rMZ and rDZ to examine whether twin correlations changed as a function of SES.
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(2, n = 390 pairs) = 9.18, p = .01). Although the Wald test was also
significant at age 15 (χ2 (2, n = 375 pairs) = 12.15, p = .002), the b1 A
estimate was slightly negative, which did not conform to the predic-
tions of our model.

3.3.2. Latent factor model
As predicted, the latent factor model yielded larger twin correla-

tions than the multilevel model. Results of latent factor analyses sug-
gested that 7-, 8-, and 9-year-old DZ twins diverged in cognitive ability
as a function of higher SES more than MZ twins. As a result, A increased
and C decreased as a function of SES at all three ages. The Wald test of
the interaction was significant at age 7 (χ2 (2, n = 471 pairs) = 6.25,
p = .04), but not age 8 or 9 (ps > .05). Although age 15 twin corre-
lations and corresponding A and C variances did not follow the ex-
pected interaction pattern, neither A nor C was significantly different
from zero (p > .05).

3.4. Longitudinal multivariate analyses

Results of LGC models are presented in Table 5, Fig. 7, and Sup-
plementary tables 2 and 3. We observed significant SES modification of
cognitive performance intercept twin correlations for FSIQ (χ2 (2,
N = 566 pairs) = 17.02, p < .001) and PIQ (χ2 (2, N = 566
pairs) = 14.22, p < .001). As in most of the cross-sectional multi-
variate results, DZ correlations decreased more than MZ correlations as

a function of higher SES. This drove the interaction observed after
transformation into ACE variances, where A increased and C decreased
as a function of SES. SES did not significantly modify VIQ intercept twin
correlations, or slope correlations for FSIQ, PIQ, or VIQ (ps > .05).

4. Discussion

In this study, we conducted a comprehensive examination of G x
SES interaction of cognitive ability in LTS data using novel multivariate
models. Cross-sectional and longitudinal multivariate models were
considerably more statistically powerful than our univariate model, as
hypothesized, but multivariate analyses were still somewhat under-
powered. Collectively, results provide further evidence of G x SES in-
teraction on cognitive ability across middle childhood and early ado-
lescence among U.S. twins. In 7 of 11 multivariate analyses, SES
modified twin correlations for cognitive ability such that individuals
from more affluent families showed increased heritability compared to
less privileged peers. Significant interaction effects were observed in
both cross-sectional and longitudinal multivariate analyses, and all but
one were in the expected direction (i.e., A increasing and C decreasing
as a function of higher SES). Consistent with the results of Tucker-Drob
and Bates' (2016) meta-analysis, which reported an interaction effect of
0.074 for U.S. G x SES studies, we observed effect sizes in a similar
range. Our analyses provided a thorough documentation of the Scarr-
Rowe interaction in the LTS, an important study of twin development

Fig. 5. (a) Power analyses Wald results. (b) Univariate model Wald results.
5a) Density plot of Wald chi-square results from power analyses. X axis upper limit set at 30 for ease of visualization. Dotted and hashed lines: significance cutoffs of
p = .1 and p = .05, respectively. 5b) Points above dotted and hashed lines: significant at p < .1 and p < .05, respectively. Values < 2 are jittered slightly. Orange
dot: overall median Wald for all measures and ages. Pic: picture. Comp: comprehension. Arrange: arrangement. Obj: object. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

E.J. Giangrande, et al. Intelligence 77 (2019) 101400

7



that had only been preliminarily analyzed for G x SES interaction at one
age prior to this study (Turkheimer et al., 2015).

Algebraically, G x SES interaction on cognitive ability can arise from
MZ twin correlations increasing more rapidly with rising SES than DZ
twin correlations, DZ twin correlations decreasing quicker than MZ
correlations as SES increases, or a combination of those two mechan-
isms. The interaction effects that we observed were driven primarily by
DZ twin correlations decreasing more substantially than MZ correla-
tions as a function of greater SES; there was little evidence of greater
phenotypic convergence in MZ twins at higher levels of SES. When twin
correlations were transformed into ACE variance components, greater
DZ divergence resulted in A increasing more quickly or decreasing less
quickly with rising SES than C. In some analyses, greater divergence in
DZ twins resulted in C approaching zero or even taking negative values
at higher levels of SES. One possible explanation of this finding could
relate to the effects of phenotype-environment correlation (Beam &
Turkheimer, 2013); as SES rises, twins are able to self-select into in-
creasingly different environments. Because they are less genetically,
and therefore phenotypically, similar, DZ twins select into more dis-
crepant environments than MZ twins. Greater environmental disparity,
in turn, causes DZ twins to exhibit larger within-pair phenotypic dif-
ferences than MZ twins, creating a reciprocal feedback loop between
phenotype and environment. Ultimately, this process results in DZ
twins being less correlated for cognitive ability than MZ twins as a
function of increasing SES, driving G x SES interaction. However, we
did not test this hypothesis in the current study, and there are likely
other potential explanations in addition to phenotype-environment
correlation. Future studies should work to identify the specific me-
chanisms that underlie the interaction. Enabling twin correlations to
assume values that result in negative ACE components, as we did here
using the MTCM, may be an important step towards understanding
those mechanisms.

The multivariate models developed in this study serve as a sig-
nificant addition to the existing literature on the Scarr-Rowe interac-
tion, which has previously been examined almost exclusively with
univariate, cross-sectional models. Power analysis results indicated that
multivariate models of G x SES interaction were superior to more tra-
ditional univariate methods because they offer a substantial increase in
statistical power. Compared to our univariate model, our multivariate
models showed as much as a sixfold increase in power. Even the least
powerful multivariate model (multilevel) still was twice as powerful as
the univariate MTCM. This is the first study of which we are aware to
demonstrate that multivariate methods increase power to detect G x
SES interaction on cognitive ability. When thinking about how to boost
power, researchers tend to focus on enlarging sample sizes. While that
is one solution, recruiting additional participants can be a difficult
endeavor when funding is limited and/or data collection has ceased.
Therefore, when designing future studies of the Scarr-Rowe interaction,
it may be advantageous for researchers to plan on collecting more data
per available participant. Using multivariate approaches to re-analyze
data sets in which G x SES interaction has previously been examined
with univariate models may also be worthwhile.

Although the multivariate approach boosted power considerably,
our multivariate models were still underpowered compared to desirable
thresholds (e.g., 80%). This is likely due to the sizes of our simulated
samples; while these were consistent with LTS sample sizes and not
atypical for G x SES interaction studies, larger samples may have en-
abled power to surpass those thresholds. Power analysis results also are
affected by model fit. For example, the power of the LGC model de-
pended in part on how well the model fit the longitudinal pattern of
cognitive ability in the simulated data. Future work will be needed to
determine the extent to which the power of the multivariate G x SES
interaction models is influenced by various characteristics of the data
being analyzed. In the current study, power limitations likely decreased
our ability to detect significant interaction effects. The null effects we
observed should therefore be interpreted cautiously. Power limitationsTa
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also likely resulted in larger standard errors. This may partially explain
why the strength of observed G x SES interaction effects fluctuated
across age in cross-sectional analyses.

Trends of the moderated twin correlations and ACE components
were generally comparable across the cross-sectional multivariate ap-
proaches, although the multilevel model resulted in more significant
effects than the latent factor model. At ages 8 and 9 in multilevel
analyses and 7, 8, and 9 in latent factor analyses, moderated DZ cor-
relations were more negative than MZ correlations, resulting in A in-
creasing and C decreasing as a function of SES. Interaction effects were
significant at ages 8 and 9 in multilevel analyses and at age 7 in latent
factor analyses. Age 15 results from both models did not correspond to
the expected pattern—moderated MZ correlations were estimated to be
slightly more negative than DZ correlations—although the Wald test
was only significant in the multilevel model. Given that the age 15
sample was the smallest of the four ages included in cross-sectional
analyses, that power was still less than ideal in our multivariate models,
and that previous studies have observed G x SES interaction at age 15, it
is unlikely that this unexpected result is robust.

The fact that the multilevel model yielded more significant effects
than the latent factor model likely stems from substantial differences in
the variance analyzed in each model; the former analyzed both
common and unique variance across an individual's subtest scores while
the latter analyzed only common variance. This resulted in different
estimates for twin correlations and corresponding ACE variance com-
ponents. Given that the Wald test was performed on those components,
it is perhaps unsurprising that we observed different levels of statistical

significance across the models. Interestingly, more significant effects
were observed using the multilevel model even though it is less statis-
tically powerful than the latent factor model. This could underscore the
importance of including unique variance in multivariate G x SES in-
teraction models; if G x SES interaction occurs primarily on the unique
variance in cognitive ability, choosing not to model the unique variance
(as in the latent factor model) could have made it difficult to observe
significant interaction effects, even with increased power. More work
will be needed to resolve this question.

Importantly, decisions about which models to use should not be
made based solely on statistical significance or power, and differences
in the number of significant results observed using the multilevel and
latent factor models do not necessarily indicate that one is preferable to
the other. Given this, it may be acceptable to base the choice between
the models on theory. The multilevel model could be favorable in ap-
plications where subtests are regarded as multiple repeated observa-
tions of cognitive ability, each treated in the same way, whereas the
latent factor model may be more appropriate when subtests are treated
as indicators of a unitary latent ability and have individual loadings on
a general factor. In terms of the variance being analyzed, the multilevel
model may be more appropriate when unique variance is thought to
play an important role, while the power boost offered by the latent
factor model may make it preferable to a researcher focusing on
common variance. What is clear is that both the multilevel and latent
factor models are preferable to traditional univariate models.

To our knowledge, this was the first study to investigate G x SES
interaction on cognitive ability using a latent growth curve model, the

Fig. 6. Cross-sectional multivariate ACE results.Multilevel: results of multilevel cross-sectional model. Latent: results of latent factor cross-sectional model. Variance:
proportion of variance in cognitive ability attributable to A, C, and E (presented in red, green, and blue, respectively). SES is standardized to a mean of 0 and standard
deviation of 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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first longitudinal G x SES interaction study to utilize more than two
time points, and the first study to examine G x SES interaction long-
itudinally beyond early childhood. Pooling IQ measurements from up to
five time points between ages 7 and 15 years, we observed significant
SES moderation of the heritability of mean-level IQ and PIQ (intercept).
These findings are consistent with our cross-sectional multivariate re-
sults, and with the results of previous cross-sectional studies that found
significant interaction effects in middle childhood (Turkheimer et al.,
2003) and adolescence (Harden et al., 2007; Rowe et al., 1999). Also
consistent with Turkheimer et al. (2003), we did not observe a sig-
nificant effect on VIQ intercept. However, significant interaction of
verbal performance heritability and SES has been observed in another
previous study of American twins (Rowe et al., 1999), and we found a
significant VIQ effect at age 15 in univariate analyses. The extent to
which SES modifies the heritability of some facets of intelligence more
than others therefore remains unclear.

The fact that we did not observe a significant interaction of SES and
the heritability of IQ slope could stem from our use of age-scaled scores,
which are standardized to a mean of 100 and standard deviation of 15
at each age. In contrast to the variances of raw cognitive ability scores,
which would be expected to increase across development, scaled score
variances are by definition held constant over time. This invariance
could have obscured slope interaction effects, should they exist, by
limiting the extent to which children's scores could change between
ages. Alternatively, it is possible that SES modifies the heritability of IQ
starting point (intercept), but not the heritability of age-related changes
in IQ (slope). This would diverge from the results of a study that ob-
served significant interaction effects on change in mental ability in
infancy (Tucker-Drob et al., 2011), and perhaps indicate that G x SES
interaction effects on slope are present only in the early stages of cog-
nitive development. Future studies will be needed to resolve this defi-
nitively.

Using age-scaled scores in longitudinal models of cognitive ability
also introduces concerns about possible confounding via the Flynn ef-
fect, which holds that later generations exhibit systematically higher
cognitive ability performance compared to earlier ones (Flynn, 1984).
In the particular case of the LTS, wherein children were tested long-
itudinally for over a decade, one risk is that over time, the Flynn effect
created differences in cognitive ability between our study sample and
the historical WISC standardization sample such that the former's raw
scores were systematically higher than the latter. Age-scaling scores in
such a case could introduce cohort effects. This possibility is partially
mitigated by the use of three versions of the WISC over the course of the
LTS; age-scaled scores in each subsequent WISC version were normed
on contemporary samples, and new WISC versions were adopted by the
LTS shortly after their publication. Nevertheless, the use of scaled
scores in longitudinal analyses remains a limitation.

Several other limitations should be considered when interpreting
our results. First, our sample was of average SES, lacking substantial
numbers of children raised in poverty. Given evidence that G x SES
interaction may not be present in samples that have more universal
access to enriching environmental resources (Tucker-Drob & Bates,
2016), analyzing a lower SES sample may have increased our likelihood
of observing significant interaction effects. Second, the SES measure we
used is a broad composite measure of environmental quality. The re-
sults of this study therefore do not clarify which specific environmental
factors drive G x E interaction on cognitive ability, although others have
investigated that exact question (for a review, see Hackman, Farah, &
Meaney, 2010). Finally, even with the power boost offered by a mul-
tivariate approach, our power was less than ideal due to limited sample
size, and we were unable to perform cross-sectional analyses at age 12.

This study adds to the substantial body of literature on G x SES
interaction on cognitive ability among U.S. samples. It is now clear that
merely partitioning the variance of cognitive performance into ACE
components does not appreciate the complex interplay of genetic and
environmental factors driving cognitive development. Existing G x ETa
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interaction studies, however, have not been as statistically robust as
desired (Tucker-Drob & Bates, 2016). Utilizing multivariate methods as
we have done here may help address this limitation and, in the case of
longitudinal analyses, provide valuable insight into how G x SES in-
teraction unfolds over the life course.
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