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 When Do Long-Run Identifying Restrictions Give
 Reliable Results?

 Jon FAUST
 International Finance Division, Federal Reserve Board, Washington, DC 20551 (faustj@frb.gov)

 Eric M. LEEPER

 Department of Economics, Indiana University, Bloomington, IN 47405 (eleeper@indiana.edu)

 Many recent articles have identified behavioral disturbances in vector autoregressions by imposing
 restrictions on the long-run effects of shocks. This article demonstrates that this approach will be
 unreliable unless the underlying economy satisfies three types of strong restrictions. Although many
 aspects of these issues have been raised before, this article draws out and illustrates the implications
 for inferences under the long-run scheme. Furthermore, it provides strategies for dealing with the
 problems.

 KEY WORDS: Identification; Long-run restriction; Vector autoregression.

 Vector autoregressions (VAR's) have become a popular
 tool since Sims (1980) labeled as "incredible" the iden-
 tifying assumptions of large structural econometric mod-
 els. He argued that many empirical questions could be an-
 swered with VAR's identified by more tenable assump-
 tions. Much of the VAR work that followed has focused

 on finding such assumptions. Initially, Sims proposed im-
 posing a recursive structure on contemporaneous interac-
 tions among the variables to identify the model. Because
 the implied lack of simultaneity generally is not tenable,
 Bernanke (1986), Blanchard and Watson (1986), and Sims
 (1986) suggested identifying VAR's by imposing economi-
 cally plausible restrictions on contemporaneous interactions
 among variables. This approach has proved useful, but the-
 ory often does not provide enough uncontroversial contem-
 poraneous restrictions to identify quantities of interest.

 More recently, Blanchard and Quah (1989), King, Plosser,
 Stock, and Watson (1991), and Shapiro and Watson (1988)
 advocated basing restrictions on long-run neutrality prop-
 erties. For example, in many models a shock to the level
 of the money supply has no long-run effect on output, but
 a shock to output may affect the long-run level of money.
 Because many economists find such restrictions plausible a
 priori, long-run restrictions have been widely used to study
 the sources of business cycles (Bayoumi and Eichengreen
 1993; Rogers and Wang 1993), money supply and demand
 shocks (Lastrapes and Selgin 1995), and the international
 transmission of shocks (Hutchison and Walsh 1992; Ahmed,

 Ickes, Wang, and Yoo 1993).
 Sims's critique of large structural models is based on his

 view that the macroeconomy is a high-dimensional system
 with rich dynamics and complicated feedbacks among the
 variables. This view also has strong implications for struc-
 tural VAR inference, as Sims and others have argued. In
 this article, we draw on such arguments to assess whether
 imposing long-run restrictions on small VAR models will
 give rise to reliable structural inferences.

 We discuss three reasons why structural inferences un-
 der the long-run scheme may not be reliable. First, the
 long-run effect of shocks is imprecisely estimated in finite

 samples, and the long-run identification scheme transfers
 this imprecision to the estimates of other parameters of the
 model. We show that, unless strong restrictions are applied,
 conventional inferences regarding impulse responses will
 be badly biased in all sample sizes. Two additional rea-
 sons come from familiar identification problems inherent
 in models that aggregate across variables and those that ag-
 gregate across time. Although these two issues do not apply
 exclusively to work under the long-run scheme, we focus
 on the scheme for concreteness. Each of the three issues has

 been raised before. This article draws out the implications
 of these theoretical issues, illustrates their importance, and
 provides strategies for dealing with the problems.

 1. IDENTIFYING VAR'S USING

 LONG-RUN RESTRICTIONS

 This section lays out the basic issues of identification in
 VAR's and describes the long-run identification scheme. If
 Xt = (Xlt,... , Xnt)' is covariance stationary, then, ignor-
 ing deterministic components, it has a Wold representation,

 Xt = F(L)ut. (I)
 The disturbance term, ut, has zero mean and is serially un-

 correlated with covariance matrix E[utu] = E for all t.
 The term F(L) is an (n x n) matrix whose typical ele-
 ment, fij (L), is a polynomial in the lag operator: fij (L) =

 Zk%=o fijkLk, and LkXt = Xt-k. In the Wold representa-
 tion, Fo = I, the identity matrix.
 If F(L) is invertible, there is also a VAR representation,

 R(L)Xt = ut, where R(L) = F(L)-1 and Ro = I. This rep-
 resentation is known as the reduced form, and the Wold rep-
 resentation is the final form. In this article we only consider
 structures with invertible moving average representations;
 thus, none of our results stem from the nonfundamental
 representations that Lippi and Reichlin (1993) studied.

 ? 1997 American Statistical Association
 Journal of Business & Economic Statistics

 July 1997, Vol. 15, No. 3

 345

This content downloaded from 
������������140.182.176.13 on Thu, 23 Sep 2021 00:05:58 UTC������������� 

All use subject to https://about.jstor.org/terms



 346 Journal of Business & Economic Statistics, July 1997

 An observationally equivalent representation of the pro-
 cess (1) can be formed by taking any nonsingular matrix
 Ao and writing

 Xt = F(L)AoAolut = A(L)et, (2)

 where A(L) = F(L)Ao and et = Aolut. The matrix of
 coefficients on Lo in A(L) is Ao. Corresponding to each Ao
 is a different structure consistent with the final form and a

 different set of structural shocks, et.
 Identification requires choosing n2 elements of A0. The

 first n restrictions are normalizations, fixing the units for
 each equation. Typically the standard deviations of the
 shocks are normalized to 1. An additional n(n - 1)/2
 restrictions come from the assumption that the structural
 shocks are mutually uncorrelated. Together, these restric-
 tions on Ao imply

 Ao'EAo = I. (3)

 1.1 The Long-Run Identification Scheme

 Blanchard and Quah (1989), King, Plosser, Stock, and
 Watson (1991), and Shapiro and Watson (1988) suggested
 that some or all of the restrictions required to complete the

 identification could come from long-run neutrality proper-
 ties. For example, suppose that one believes that nominal
 shocks have no long-run effect on output. If output is the
 ith variable in a VAR and the jth shock is nominal, then the

 neutrality restriction can be written aij(1) = k=0 aijk =
 0, or

 [F(1)Ao]i,j = 0. (4)

 The restrictions discussed so far identify the shocks only
 up to a sign transformation. The identification is completed
 using a priori views about the sign of the impacts or the
 long-run effects of the structural shocks.

 1.2 Illustration: The Blanchard-Quah Model

 Throughout the article we use the bivariate model of
 Blanchard and Quah as an illustration. In this model Xt =
 (Yt, Ut)', where Y is the growth rate of gross domestic prod-
 uct (GDP) and U is the unemployment rate among males
 20 years or older. The data are quarterly from 1948:2 to
 1992:4. Following Blanchard and Quah, output growth has
 had means extracted for the period through 1973:4 and from
 1974:1 onward; unemployment has been linearly detrended.
 The VAR has eight lags. Three identifying restrictions come
 from normalizing and orthogonalizing the shocks, and the
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 Figure 1. The Vertical Axes Measure the Log of Real GDP or the Rate of Unemployment; the Horizontal Axes Denote Quarters Following
 the Shock. Point estimates lie inside the empirical 5th and 95th percentile bands taken from 10,000 replications using the Bayesian Monte Carlo
 procedure in RATS.
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 Table 1. Percent of Forecast Error Variance Due to Demand
 in the YU Model

 Y error U error

 Quarter Lower Point est. Upper Lower Point est. Upper

 1 52.8 99.9 100.0 2.4 43.9 93.6
 2 51.3 99.4 99.6 5.8 53.8 96.3
 3 52.2 99.5 99.4 11.1 63.3 97.2
 4 52.0 99.0 99.2 16.6 71.0 96.7
 8 36.4 84.7 94.9 34.1 82.9 93.4
 12 27.1 73.2 91.5 38.7 84.1 92.4
 24 17.7 55.3 80.8 40.1 84.3 92.3
 40 12.5 42.6 67.6 40.1 84.3 92.3

 NOTE: The lower and upper bounds are as in the notes to Figure 1.

 final restriction comes from the assumption that nominal
 shocks have no long-run effect on the level of output. If
 output is the first variable and the second shock is the nom-
 inal disturbance, this implies that a12(1) = 0.
 Under these assumptions neither shock affects the unem-

 ployment rate in the long run, so the assumptions are con-
 sistent with a natural rate of unemployment. Positive nomi-
 nal shocks can shift out aggregate demand and raise output
 in the short run. The long-run aggregate supply curve is
 vertical: Output ultimately returns to its original level with
 either an increase in prices or an inward shift in demand.
 Our estimated impulse response functions for supply and

 demand shocks are nearly identical to those reported by
 Blanchard and Quah (Fig. 1). Positive nominal shocks have
 the familiar hump-shaped effect on the level of GDP, peak-
 ing after a few quarters and dying out after five years. The
 output effect of supply shocks grows for two years, then sta-
 bilizes at a permanently higher level. The point estimates of
 the forecast error decompositions (Table 1) imply that de-
 mand shocks are the dominant source of output fluctuations
 for horizons as long as six years. The remainder of the arti-
 cle discusses ways to assess the reliability of structural con-
 clusions such as these and uses this output-unemployment
 (YU) model to illustrate the issues.

 2. LONG-RUN RESTRICTIONS IN FINITE DATA

 The long-run restriction, (4), is implemented based on the
 estimated long-run effects matrix, F(1). The reliability of
 the resulting structural conclusions rests on the quality of
 the VAR estimate of F(1). This section discusses problems
 associated with inference under the long-run scheme arising
 from well-known problems with estimating F(1).

 2.1 Problems With Inference Regarding F(1)

 VAR work generally relies on weak assumptions on the
 underlying model generating the data. Often no explicit as-
 sumptions are made about the underlying model beyond
 invertibility of F(L) and summability of the coefficients of

 fij(L): '_o fijkl < OO.
 There is a long literature demonstrating that, if the main-

 tained model imposes only weak dynamic restrictions, then
 estimates of F(1) are unreliable. Sims (1972) showed that,
 if the only restriction on F(L) is that the coefficients of each
 element are summable, then one cannot even form asymp-
 totically correct confidence statements about the value of

 F(1) [Blanchard and Quah (1989) noted this problem]. Un-
 der certain standard restrictions (e.g., see Hannan 1970),
 one can form consistent and asymptotically normal esti-
 mates of F(1). It is tempting to assume that the asymptotic
 normal distribution can form the basis for inference about

 F(1). Following Sims, however, Faust (1996a) showed that,
 under the standard assumptions giving rise to consistent,
 asymptotically normal estimates, one still cannot form valid
 confidence intervals for F(1). This issue is closely related
 to the literature on the near observational equivalence of
 difference-stationary and trend-stationary processes (Chris-
 tiano and Eichenbaum 1990; Cochrane 1991; Blough 1992;
 Faust 1996b).

 The source of problems with inferences about F(1) is
 quite complex, getting one into, as Sims (1972, p. 174) put
 it, "deep mathematical waters." We state a limited result
 regarding the long-run scheme that, we believe, commu-
 nicates the most important aspects of the problem in this
 context.

 Frequently in the VAR literature, we are interested in
 learning about impulse response functions. It is conven-
 tional to provide standard errors on impulse response func-
 tions and interpret them as confidence intervals. As Sims
 and Zha (1995) noted, the classical confidence-interval in-
 terpretation is generally not correct when there is uncer-
 tainty about unit roots. In this section, we demonstrate a
 problem with inference about impulse responses under the
 long-run scheme that occurs even if the assumption of sta-
 tionarity of all the variables is correct.

 Returning to the bivariate, YU model, assume that both
 the output growth rate and the unemployment rate are sta-
 tionary. The identified impulse response function is ob-
 tained by estimating the final form, F(L), and then choosing
 Ao to orthogonalize the errors and to satisfy the long-run
 restriction: [F(1)A0]12 = 0. This gives the identified mov-
 ing average polynomial, A(L) = F(L)Ao.

 Suppose we want to test the hypothesis that the response
 of the ith variable to the jth shock at lag k is equal to 0:
 Ho: aijk = 0. The impulse response aijk is the kth coeffi-
 cient of aij(L). Under the long-run scheme, every test of
 this hypothesis has some very undesirable properties:

 Proposition 1. Any test of Ho: aijk = 0 has significance
 level greater than or equal to maximum power.

 Proofs are in the Appendix. The term maximum power
 in this proposition means the largest rejection probability
 attainable under the test, considering all models for which
 aij k 0.

 What does this result mean? Suppose we limit consid-
 eration to tests with a fixed significance level of, say, 5%
 so that the test rejects Ho no more than 5% of the time
 when it is true. The proposition says that the test also re-
 jects the null hypothesis no more than 5% of the time when
 it is false: The false rejection rate for some models must be
 greater than the best true rejection rate.

 Note further that the rejection probability when Ho is
 false must remain less than 5% no matter what the sample
 size: More data does not increase the power of the test. Gen-
 erally in econometrics, we work with consistent tests--that

 is, tests that reject a false null with probability 1 in large
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 samples. Proposition 1 establishes that there are no consis-
 tent tests of Ho [Faust 1996b gave the analogous result for
 unit-root testing].
 The simplest reason for this result is that the estimate of

 F(1) is very uncertain, even in large samples. The long-run
 restriction transfers this uncertainty to all the coefficients
 of the impulse response function.
 To understand the basics of the proof, take a process

 Xt = A(L)et, EEtE' = I, that satisfies the long-run scheme
 and for which aijk O0. Suppose that the test in question has
 maximum power against this model, rejecting it with greater
 probability than any other model. Call the rejection proba-
 bility 0. The proof proceeds by altering the process for Xt
 in two steps. These alterations leave the rejection probabil-
 ity unchanged but result in a process consistent with the
 null hypothesis and the long-run scheme.
 First, alter the Xt process so that it is consistent with

 Ho. Specifically, form the model Zt = B(L)et, where
 B(L) = A(L)B, et = B-1et, where B is chosen such that
 bijk = 0 and B-1B-1' = I. Because this model is obser-
 vationally equivalent to the original, the test must reject
 Ho with probability P when this model is true. Although
 the new model satisfies H0, it does not satisfy the long-run
 scheme: B(1)12 = [A(1)B]12 = 0. The second alteration
 makes the process consistent with Ho and the long-run re-
 striction. Construct Wt = C(L)et, forming C(L) by tak-
 ing B(L) and subtracting B(1)12/m from m coefficients of
 b12(L) (starting with coefficient k + 1). Now C(1)12 = 0, SO
 the process for Wt satisfies Ho and the long-run restriction.
 The only remaining step is to show that (for sufficiently
 large m) this last alteration did not alter the rejection prob-
 ability. The intuition is that, for large m, we have modified
 m coefficients of B(L) by a tiny amount in forming C(L).
 The effect of these tiny alterations on the finite-sample be-
 havior of Wt will be negligible, and the test will reject the
 process for Wt with probability 0, just as it does the pro-
 cess for Zt. Overall, for each process that violates Ho, there
 is a process consistent with Ho that the test rejects just as
 often: size is less than or equal to power.
 Given the analogy between tests and confidence inter-

 vals, the proposition implies that any valid, say, 95% in-
 terval for aijk must contain 0 at least 95% of the time. It
 is important to note that conventional methods for comput-
 ing standard errors on impulse responses-for example, the
 asymptotic normal approximation and the Bayesian Monte
 Carlo methods-generally will not reflect the true uncer-
 tainty even in large samples. (This applies to the intervals
 we report in the figures and tables; these are reported for
 comparability to earlier work.) These methods condition on
 the VAR specification, including maximum lag length, and
 thereby eliminate from the outset the vast majority of mod-
 els consistent with the maintained model. Similarly, most
 standard tests of aijk = 0 based on asymptotic critical val-
 ues will not have the proper size.
 There is no known way to compute valid critical values

 for tests of Ho or meaningful confidence intervals for work
 under the long-run scheme. The clearest solution is to im-
 pose further restrictions.

 2.2 Resolving the Problems

 There are two obvious sources of additional restrictions.

 First, one can maintain the long-run restrictions but place
 sufficient restrictions on the form of F(L) such that esti-
 mates of F(1) with meaningful confidence intervals can be
 obtained. Second, one can give up long-run neutrality re-
 strictions in favor of traditional short-run restrictions.

 Sims (1971, 1972) and Faust (1996a,b) discussed the sorts
 of restrictions that allow meaningful inference regarding
 F(1). The simplest solution they demonstrate is to assume
 that the model driving the data is a VAR with known maxi-
 mum lag order, K. There is surely some K large enough to
 accommodate most models of interest. In any finite sample,
 however, as K grows, the confidence intervals for estimates
 of F(1) grow, as do the confidence intervals for impulse
 response estimates under the long-run scheme. Thus, this
 approach will be most useful when one can impose a pri-
 ori that the true model is exactly a VAR with an order that
 is small relative to the sample size. Just how small the or-
 der of the VAR must be would have to be discovered by
 simulation.

 An alternative approach to strengthening the long-run re-
 striction is to restate the restriction as a finite-horizon re-

 striction, imposing, for example, that the effect of some
 shock is 0 at 40 quarters and beyond. This will involve
 overidentifying restrictions. (A different approach is to im-
 pose that the effect of the shock is 0 at 40 quarters but to
 impose no restriction for periods after 40 quarters. This is
 not consistent with long-run neutrality, however, because
 this restriction only requires that the net effect of the shock
 cross 0 at 40 quarters, saying nothing about the effect at
 longer horizons.)

 The second suggestion is to identify the model using stan-
 dard short-run (finite-horizon) restrictions and then to use

 the long-horizon responses as an informal diagnostic. King
 and Watson (1992) used this approach to study the rela-
 tion between money and output. They identified the money
 supply shock using a broad range of identifying assump-
 tions on impact elasticities and then examined the implied
 response of output to a nominal shock at various horizons.
 Having identified the nominal shock using finite-horizon
 restrictions, one is free to assess whether the speed with
 which and the extent to which the effect of the nominal

 shock on output dies out is consistent with one's view of
 money neutrality.

 Overall, complicated inference problems arise when im-
 pulse responses are identified under the long-run scheme.
 These can be avoided by imposing strong a priori restric-
 tions on the lag length of the underlying model or on the
 horizon at which the effect of the shock goes to 0. An alter-
 native is to use short-run restrictions and use the moderate-

 to-long horizon properties of the model as an informal di-
 agnostic.

 3. THE PROBLEM POSED BY MULTIPLE SHOCKS

 The VAR methodology is usually applied in low-
 dimensional models, so the identified shocks must be
 viewed as aggregates of a larger number of underlying
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 shocks. In the YU model, for example, the estimated supply
 shock must combine oil shocks, labor-supply shocks, and
 productivity shocks. As Blanchard and Quah (1989) noted
 this poses a problem. In general, even if none of the underly-
 ing demand shocks affects output in the long run, the long-
 run scheme will commingle the underlying demand and sup-
 ply shocks in both of the estimated disturbances, invalidat-
 ing the economic interpretation. Blanchard and Quah (1989,
 p. 670) provided a theorem specifying when this commin-
 gling will not occur and concluded on a priori grounds that
 the scheme gives reasonable and useful results for the YU
 model.

 In this section, we provide a stronger basis for assess-
 ing the usefulness of the long-run approach. In particular,
 we present a simple reformulation of Blanchard and Quah's
 theorem, draw out its theoretical implications, and recom-
 mend an approach for empirically assessing the implica-
 tions.

 3.1 Conditions for Valid Shock Aggregation

 We posit a model driven by many shocks and show the
 conditions under which a low-dimensional VAR identified

 with the long-run scheme will correctly identify the shocks.
 Suppose that the true system for Xt = (Yt, Ut)' is driven
 by m shocks (m > 2):

 Xt = A(L)Et, (5)

 where A(L) is (2 x m), E[5t] = 0, and E[Et9'] = I. Assume
 that each shock is either a supply shock or a demand shock

 and that 5t = ( t,' t)', where lit and 52t are (ml x 1)
 and (m2 x 1) vectors of supply shocks and demand shocks,
 respectively, with m = mi + m2.
 Assume that the long-run restriction holds so that no de-

 mand shock in the underlying model has a long-run effect

 on output: A13(1) = 0 if j > mi. If there were just one
 shock of each type, this restriction, combined with orthog-
 onality restriction, would identify both shocks.
 Now consider the two-shock representation of (5) consis-

 tent with the long-run scheme. There must be a two-shock
 final form, Xt = F(L)ut, where ut is (2 x 1). Take this
 form and choose Ao to satisfy the long-run scheme, giving

 Xt = A(L)et, (6)

 where EEtE' = I.
 Equation (6) is observationally equivalent to the represen-

 tation of Xt in (5). The question is: When will the identified,
 two-shock representation in (6) give an aggregate demand
 shock involving only underlying demand shocks and an ag-
 gregate supply shock made up only of underlying supply
 shocks? In general, the two identified shocks will be a mix-
 ture of all the underlying shocks. Part (1) of Proposition 2
 is a reformulation of Blanchard and Quah's theorem and
 states when the two categories of shocks will be properly
 sorted out, but the timing of shocks will be distorted. Part
 (2) states when both the shock categories and timing of
 shocks will be preserved.
 Proposition 2. Given the structure (5) and the two-shock

 representation (6), (1) for j = 1, 2, the shock 63t, will be a

 linear function only of the elements of jj,, s < t, only if

 A(L) = F(L) D(L),
 (2 x 2) (2 x m)

 and D(L) is block diagonal when partitioned conformably
 with the shock categories (i.e., Dij (L) = 0 if i = 1 and
 j > mi or if i = 2 and j < mi), and (2) for j = 1, 2,
 the shock Ejt, will be a linear function only of Ejt, only if
 part (1) holds and D(L) = D, a block diagonal matrix of
 scalars.

 Although Proposition 2 has important implications, the
 proof is trivial. Equate the two representations (5) and (6):
 A(L)Et = A(L)et. If each Ejt is a linear combination of
 the underlying category j shocks at and before t, then by
 definition there is a D(L) that is block diagonal such that

 Et = D(L)5t. Thus, A(L)5t = A(L)D(L)5t, which is the
 required result. When D(L) = D, part (2) follows.

 The part (2) conditions, under which the categories and
 the timing of shocks will be preserved, require that each un-
 derlying shock of a given type affects the economy in the
 same way up to a scale factor. This is implausible in most
 cases. In general, when estimating low-dimensional mod-
 els, the dynamic response of the economy to any particular
 underlying demand shock will differ from the estimated im-
 pulse response for the aggregate shock.

 For an economic interpretation of the part (1) restriction,
 consider shutting down all the shocks in the model except
 the kth supply shock. If the part (1) conditions hold, we
 can write, Yt = y11(L)dl k(L)kt and Ut = Y21(L)dlk(L)Ekt,
 implying

 Ut = 7Y21(L)-j 1(L)Yt. (7)

 Because dlk(L) drops out, (7) holds for every supply shock:
 The response of U to every supply shock can be expressed
 as a single distributed lag on Y. An analogous result holds
 for the demand shock.

 It is easy to check whether the implication in (7)
 holds in any theoretical model motivating the empirical
 work. For example, suppose that the lead coefficient of

 (Y21(L)-1711(L)) is negative. This implies that every sup-
 ply shock that increases output growth on impact must also
 decrease the unemployment rate. This may be inconsis-
 tent with standard reasoning about productivity and labor-
 supply shocks. A productivity shock probably will increase
 output and decrease unemployment on impact. An exoge-
 nous increase in female labor-force participation, however,
 may increase employment and output, but if employment
 initially increases by less than the labor force, unemploy-
 ment rises with output.

 3.2 Empirical Plausibility of the Part (1) Restrictions

 The problem in Proposition 2 stems from the fact that the
 underlying model has more sources of shocks than does the
 estimated model. One solution, advocated by Sims (1980),
 would be to estimate larger systems. When one wishes to
 maintain the convenience of small models, however, an al-
 ternative approach is to check for consistency of results
 across various small models.
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 Figure 2. The Vertical Axes Measure the Log of Real GDP or the Log of the GDP Deflator; the Horizontal Axes Denote Quarters Following the
 Shock. See note to Figure 1.

 Often there are several different variables on which a

 given analysis could be based. Instead of the YU model
 of supply and demand shocks, an output-price-level model
 might be equally appealing. The aggregation theorem may
 hold in neither, one, or both of these systems. If it holds for
 both, the supply shocks estimated in both models will be
 uncorrelated asymptotically with the demand shocks in both
 models, and vice versa. If the supply shock from one model
 is correlated with the demand shock from the other model,
 there is clear evidence that one or both of the models have

 commingled the underlying supply and demand shocks.
 We compare the YU results to those from an output and

 inflation (YP) model similar to that of Bayoumi and Eichen-
 green (1993). Inflation is measured as the quarterly growth
 rate of the GDP deflator, with means extracted for the pre-

 Table 2. Contemporaneous Correlation Among the Shocks in
 the YU and YP Models

 Demand shocks Supply shocks

 Shocks YU-D YP-D YU-S YP-S

 YU-D 1.00 .65 .00 .56
 YP-D 1.00 -.13 .00

 YU-S 1.00 .20
 YP-S 1.00

 and post-1974 periods. The VAR is estimated with eight
 lags. The identifying assumption is that demand shocks do
 not affect output in the long run. The impulse responses for
 the YP model appear reasonable, having the correct signs
 and the familiar humped shape (Fig. 2). There is clear ev-
 idence, however, that the YU and YP models have aggre-
 gated the underlying demand and supply shocks differently.
 The YU and YP supply shocks are weakly correlated with
 each other, and the demand shocks are only moderately cor-
 related (Table 2). More troubling is the fact that the YP sup-
 ply shock is more highly correlated with the YU demand
 shock (.56) than with the YU supply shock (.20). The prob-
 able commingling of underlying demand and supply shocks
 has important interpretational implications: Demand shocks
 in the YP model have a much smaller role in determining
 output over horizons of two to five years than in the YU
 model (Table 3).
 The models' estimated shocks shed some light on the
 differences in the models. For example, in the first quarter
 of 1951, a small drop in GDP coincided with a big spike in
 inflation, which was influenced by the Korean War. The YP
 model finds an extraordinary-three-standard-deviation-
 outward shift in demand and a similar magnitude inward
 shift in supply. The YU model does not have to account for
 inflation fluctuations and reports nothing extraordinary.
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 Table 3. Percent of Forecast Error Variance Due to Demand
 in the YP Model

 Y error P error

 Quarter Lower Point est. Upper Lower Point est. Upper

 1 1.9 46.4 96.8 3.7 56.5 98.5
 2 2.7 50.2 97.5 5.8 62.2 98.6
 3 3.0 51.0 97.5 7.1 66.3 98.8
 4 3.0 50.9 97.5 8.0 68.3 98.9

 8 3.3 37.2 90.4 8.3 69.4 99.0
 12 2.8 27.6 80.5 8.6 70.2 99.0
 24 1.6 15.7 57.4 9.0 71.6 99.2
 40 1.0 9.4 36.6 9.2 72.2 99.3

 NOTE: The lower and upper bounds are as in the notes to Figure 1.

 This example illustrates a simple consistency check on
 the results from small models. In the example, we see no
 strong a priori or empirical grounds for selecting between
 the two models and conclude that neither provides a reliable
 basis for structural inference.

 4. THE PROBLEM POSED BY HIGH-FREQUENCY
 FEEDBACKS

 In VAR modeling, long-run restrictions typically are cou-
 pled with the assumption that structural shocks are orthog-
 onal. The standard justification for this assumption is the
 view that the shocks originate in behaviorally distinct sec-
 tors of the economy. Even if this view is correct, however,
 the assumption of orthogonality may be inappropriate in
 time-aggregated or infrequently sampled data. For exam-
 ple, suppose we view the stock-market drop in October of
 1987 as a supply shock. The Federal Reserve Board reacted
 within hours, injecting reserves into the banking system. In
 quarterly data, these two changes will be contemporaneous;
 sorting out whether this is a nominal or a real shock will
 be impossible.

 There is a long literature on identifying continuous-time
 models from discrete data (Telser 1967; Sims 1971; Phillips
 1973; Geweke 1978; Hansen and Sargent 1991a). Hansen
 and Sargent (1991b) and Marcet (1991) took up this issue in
 the context of VAR inference. The general lesson from this
 work as it applies, say, to the YU model is that, even when
 the continuous-time structural shocks are uncorrelated, both

 shocks identified in discrete data under the orthogonality
 assumption will commingle the underlying supply and de-
 mand shocks. The results of this section are essentially a
 special case of Marcet's and Hansen and Sargent's results.
 This case comes from assuming that there is some discrete
 frequency of observation high enough that the identification
 assumptions hold.

 4.1 Time Aggregation and Identification

 Following the logic of Section 3, we specify a model
 operating at high frequency and check when a model es-
 timated on time-aggregated data will get the right answer.
 Although the following results would hold for any higher
 and lower frequency of observation, we consider quarterly
 and annual frequencies. Thus, take a quarterly version of
 the YU model that is driven by two shocks and satisfies the

 long-run restriction

 Xt = A(L)t, t = 1, 2,...,4T, (8)

 with [A(1)]12= 0 and E[iEtl] = I.
 Now assume that the data, Xt, are annual observations.

 In particular, Xt is a linear function of the four values of 'Xt
 making up the year, Xt = M(L),Xt, t = 4, 8,..., 4T, where
 M(L) is diagonal, of order 3, and known. The model for the
 observed data is Xt = M(L)A(L)5t, t = 4,8,...,4T. This
 expresses Xt in terms of all the underlying quarterly shocks.
 There must be a final form for Xt with only one shock per
 year that can be written Xt = F(L4)ut, t = 4,8,..., 4T.
 Application of the long-run scheme leads to

 Xt = A(L4)et, t = 4, 8,...,4T, (9)
 with E[Ete] = I and a21(1) = 0.

 As in Section 3, the central question regards when the
 annual demand shock will be a linear function only of the
 underlying quarterly demand shocks, and similarly for sup-
 ply. The relevant condition is derived just as in Proposi-
 tion 2.

 Proposition 3. Given the quarterly structure (8) and an-
 nual representation (9), (1) for j = 1, 2, the annual shock
 cjt will be a linear function only of the quarterly shock j.s,
 s = t, t - 1,..., only if M(L)A(L) = F(L4)D(L), where
 D(L) is diagonal, and (2) for j = 1, 2, the shock Ejt will
 be a linear function only of j 9, s = t, t - 1,..., t - 3,
 only if part (1) holds and the diagonal elements of D(L)
 are of order less than 4.

 Once again, part (1) shows when the demand and supply
 shocks will be properly sorted out but the timing will be
 distorted; part (2) shows when the shock types and shock
 timing will be preserved.

 The simplest case in which the conditions of Proposi-
 tion 3 are met is when A(L) is diagonal, implying that
 neither variable Granger-causes the other at the quarterly
 frequency. Proposition 3 does allow feedbacks, but only
 of a very limited variety. Following the same procedure
 used to derive (7), we can show that the response of Ut to

 any supply shock must satisfy Ut -y21(L4)-1y11(L4)Yt,
 t = 1, 2,...,4T. Although few plausible models would de-
 liver this prediction that the response of quarterly Ut to a

 supply shock is expressible simply in terms Yt, Yt-4, ...,
 this restriction may approximately hold in practice.

 4.2 Assessing the Empirical Relevance of Proposition 3

 To assess the practical importance of Proposition 3, we
 estimate the YU and YP models discussed previously us-
 ing annual average data. Many of the broad features of the
 quarterly models carry over to the annual models. In the
 YU system, much of the forecast-error variance in output
 is attributed to demand at business-cycle frequencies, but
 the YP model gives much less importance to demand.

 One way to characterize how similarly the quarterly and
 annual models separate supply and demand is to assume that
 the estimated quarterly models are correct and to ask how
 the annual models aggregate the quarterly ones. It follows
 from the quarterly and annual representations (8) and (9),
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 that the annual shocks are related to the quarterly shocks
 by et = A(LP)-1M(L)A(L)jt = Z(L)e, t = 4, 8,...,4T.
 The shock types are commingled if Z(L) is not diagonal,
 and we can evaluate how close the matrix is to diagonal by
 substituting the estimated quarterly and annual lag polyno-
 mials for A(L) and A(L), respectively.
 We summarize the results by reporting the proportion

 of the overall variance of the annual demand shock and

 supply shock that is caused by the underlying quarterly
 demand and supply shocks. In the YU model, the annual
 supply shock involved substantial commingling, with 27%
 of the variance of the annual supply shock accounted for
 by the quarterly demand shock. The annual YU demand
 shock is somewhat less confounded, with only 9% of the
 variance caused by the quarterly supply shock. The annual
 YP model involves almost no commingling of the quarterly
 shocks: About 95% of the variance of each annual shock is

 accounted for by the corresponding quarterly shock. This
 result emerges in part because there are few feedbacks from
 Y to P (Y does not Granger-cause P in the quarterly data).

 Given the ubiquitous feedbacks present in most general
 equilibrium models and the tight restrictions imposed by
 Proposition 3, it might seem likely that time aggregation
 would greatly muddle the results. In the YP and YU models,
 however, the muddling was only moderate.

 5. SUMMARY

 The explicit assumptions of the long-run identifying
 scheme have been viewed as weak and innocuous and,
 thereby, as protected from the "incredible" label applied to
 other approaches. This article shows that structural infer-
 ence under the long-run scheme will be reliable, however,
 only if the underlying structure being approximated by the
 VAR satisfies strong dynamic restrictions. The results of
 this article do not suggest that the long-run scheme should
 be abandoned. The results do not even provide a clear rank-
 ing of the scheme against other VAR, real-business-cycle,
 or Cowles Commission approaches. The results are further
 evidence that identification in macroeconomics is a dirty
 business and that care must be taken to assess the robust-

 ness of inference. We provide several approaches to evalu-
 ating and improving the robustness of inferences under the
 long-run scheme.
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 APPENDIX: PROOFS OF PROPOSITIONS

 Proof of Proposition 1. The following sketch fills out
 two details of the proof in the text. For technical details,

 see Faust (1996a,b). First, show that there is a B satisfying

 B-1B-'= I (A.1)

 such that bijk = 0. Define Ak as the matrix of coefficients
 of Lk in A(L). Now bijk = [AkB]ij so that the required
 restrictions are (A.1) and [AkB]ij = 0. These restrictions
 form four equations in four unknown elements of B, which
 can be solved directly.
 Now prove that, for any fixed sample size T, the rejection

 frequency under the process for Wt for sufficiently large m
 is f. To be clear, define WtI = Cm(L)et, where Cm(L) is
 the same as B(L) except that c (L) is modified as described
 in the text and the index m, giving the number of modified
 coefficients, is made explicit. Clearly, the process for each
 Wtm satisfies all assumptions of the long-run scheme. In
 forming Cm(L), we alter m coefficients of B(L) by the
 amount B(1)12/m. The sum of the squared alterations in
 the coefficients is B(1) 2/m, which goes to 0 with m. This
 implies, for example, by a variant of Bernstein's lemma that
 the random variable made up of a sample of size T from the
 Wm process converges in joint distribution to the analogous
 sample size T random variable from the Zt process. Under
 certain standard restrictions, this further implies that the
 rejection probability of the test when the Wm process is
 true must converge with m to 3, the rejection probability
 under the Z process.
 Proof of Proposition 2. The proof is in the text.
 Proof of Proposition 3. Part (1): From the two repre-

 sentations of Xt and assuming the conclusion, we have

 M(L)A(L)et = A(L4)et = A(L4)Z(L)gt for some diag-
 onal Z(L). Thus, M(L)A(L) = A(L4)Z(L), proving the
 point.

 Part (2): Repeat the proof of part (1) with the order of
 D(L) limited.

 [Received February 1994. Revised March 1996.]
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