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Utility of atomic kicked-rotor interferometers for precision measurements
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We theoretically investigate a proposed scheme to use an atomic δ-kicked rotor resonance for high-precision
measurements of accelerations and the photon recoil frequency. Although the technique offers rapid scaling of
the measurement sensitivity with pulse number, it also features a high sensitivity to initial atomic momentum.
We find that for realistic atom sources, the momentum sensitivity significantly limits the achievable precision.
We consider several different variations on the technique, but find similar limitations in all cases.
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I. INTRODUCTION

The atomic δ-kicked rotor (ADKR) consists of a collection
of cold atoms subjected to a periodic sequence of impulses
from a potential which varies sinusoidally in space. The
resulting dynamics are equivalent to those of a rotating body
subjected to a sequence of impulsive torques, a system which
is classically chaotic. The ADKR has proven very useful for
exploring the notion of quantum chaos, and exhibits a wide
variety of interesting dynamical features [1–5].

Recently, the ADKR has also been considered for applica-
tions in precision measurements, because it exhibits dynamical
resonances that are highly sensitive to the photon recoil fre-
quency and to accelerations of the system, two important quan-
tities for practical and fundamental applications [6–9]. The
resonance widths can exhibit sub-Fourier scaling, where the
width decreases faster than the inverse of the number of applied
pulses [10,11]. A particularly attractive proposal by McDowall
et al. [12] suggested a type of interferometric measurement
that exhibits a width scaling as the inverse cube of the pulse
number. This rapid scaling was experimentally verified by
Talukdar et al. [13], and it suggests that high sensitivity could
be obtained with a relatively short measurement duration.

We show in this paper, however, that the utility of
McDowall’s approach is constrained by the sensitivity of the
measurement to the initial velocity of the atoms. Even if the
atom source is taken to be a condensate with momentum width
limited by the uncertainty principle, the achievable measure-
ment resolution for a practical condensate size is not competi-
tive with other techniques. Some indication of this was already
observable in the numerical calculations reported in [12].

In an attempt to improve on this result, we consider
several variant schemes featuring reduced velocity sensitivity.
However, the sensitivity to the recoil frequency and to
accelerations is similarly reduced, resulting in no net benefit.
We emphasize that these conclusions do not detract from the
value of the ADKR for studies of quantum dynamics and
chaos. Furthermore, other proposed measurement schemes
that use the ADKR may not have the same limitations [14–17].

II. ANALYSIS OF FIDELITY TECHNIQUE

The Hamiltonian for the proposed scheme has the form [12]

H = p2

2m
+ max + Vpulse (1)

with

Vpulse = h̄φ cos(2kx)

[
N−1∑
n=0

δ(t − nT ) − Nδ(t − NT )

]
. (2)

Here x and p are the atomic position and momentum, m is
the mass, k sets the spatial period of the pulse potential, φ

is the potential amplitude, T is the time between pulses, and
N specifies the number of pulses. The max term represents
a constant acceleration a, which could be either inertial or
gravitational [13].

In practice, the sinusoidal potential is implemented using
pulses from an off-resonant standing-wave laser with wave
number k [2]. The amplitude φ is determined by the intensity
and frequency of the laser. With careful selection of the laser
parameters, the possibility for spontaneous emission during a
pulse can typically be made negligible. The laser pulses can be
approximated by delta functions so long as the distance moved
by the atoms during a pulse is small compared to the spatial
period of the potential, or kvdt � 1 for atom velocity v and
pulse duration dt .

Each pulse of the laser causes the atomic wave function to
diffract, acquiring momentum kicks of 2nh̄k for integer n. The
distribution of momenta p produced by a single pulse is given
by Bessel functions [18],

|p〉 →
∞∑

n=−∞
(−i)nJn(φ)|p + 2nh̄k〉. (3)

If the the initial momentum of an atom pi is zero and the
acceleration a = 0, then the time evolution between pulses is
given by

|2nh̄k〉 → e−4in2ωrT |2nh̄k〉, (4)

where ωr = h̄k2/(2m) is the photon recoil frequency. The
measurement scheme is based on the fact that for ωrT = qπ/2
with integer q, the phases in (4) are all multiples of 2π and thus
the final state is identical to the initial state. The net effect of
the pulse sequence is therefore the same as if the pulses were
all delivered at once. Since the amplitudes of simultaneous
pulses are simply summed, the net effect will be that of a pulse
of amplitude

∑
φ − Nφ = 0, and the atoms will all return to

rest at the end of the sequence. The actual fraction of atoms
brought back to rest gives the fidelity of the operation, F .

When ωrT �= qπ/2, pi �= 0, or a �= 0, then the time
evolution will be more complicated and F will be less than one.

063613-11050-2947/2011/83(6)/063613(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.063613


R. A. HORNE, R. H. LEONARD, AND C. A. SACKETT PHYSICAL REVIEW A 83, 063613 (2011)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

×10-5

F
id

el
ity

ωr  − π/2

FIG. 1. Sensitivity of fidelity to pulse period. The fidelity is the
probability that an atom initially at rest is brought back to rest after
application of the Hamiltonian (2). Here T is the pulse period and ωr

is the photon recoil frequency. The calculation uses N = 50 pulses
with amplitude φ = 2.

Figure 1 shows a representative calculation of the dependence
of F on T . The full width at half maximum, �T , characterizes
the sensitivity to the pulse period and thus to the atomic recoil
frequency. Analytical calculations in Refs. [12,13] show that
the fidelity widths scale for Nφ � 1 as

�T → T0

N3φ2
, (5)

�pi → p0

N2φq
, (6)

�a → a0

N3φq2
, (7)

with constants T0 ≈ 3.3 ω−1
r , p0 ≈ 0.7 h̄k, and a0 ≈ 1.4 ω2

r /k.
The cubic dependence on the pulse number is attractive

for precision measurements. However, the usable number of
pulses is limited by the sensitivity to the initial momentum.
If the atom source has a momentum range δpi that is large
compared to the sensitivity �pi , the fidelity will be suppressed
and sensitivity to T or a will be lost. In order to avoid this, N ,
φ, and q must be chosen so that δpi <∼ �pi . For instance, given
a pulse number N and period multiple q, the pulse amplitude
must satisfy

φ <
1

N2q

p0

δpi

, (8)

which in turn implies

�T > T0Nq2

(
δpi

p0

)2

, (9)

�a >
a0

Nq

δpi

p0
. (10)

In the case of time measurements, the best resolution is
achieved for N = q = 1, where the fractional resolution
becomes

�T

T
≈ 4.3

(
δpi

h̄k

)2

. (11)

For a cigar-shaped condensate, the largest dimension is
typically ∼100 µm, which gives δpi ≈ 10−3h̄k for visible

light. The optimum �T/T is then of order 10−6, which does
not compete with other techniques for determining ωr that
reach 10−9 relative precision [8,9].

In the case of acceleration measurements, the sensitivity
improves linearly with N and q. However, according to
the condition (8), large Nq would require a small φ. Over
the course of the pulse sequence, the maximum momentum
transferred to the atoms is of order Nφ × h̄k. If Nφ � 1, then
most of the population will remain in the |pi〉 state and the
fidelity will tend to one, regardless of a. Sensitive operation
therefore requires Nφ greater than some nmin. Numerical
calculation indicates that nmin ≈ 1.0 in order to maintain a
variation in fidelity of at least 0.5. Together with (8), this gives

nmin < Nφ <
p0

Nqδpi

(12)

and thus Nq < p0/(nminδpi). Applying this constraint to (10)
yields

�a > nmina0

(
δpi

p0

)2

. (13)

For rubidium atoms with δpi ≈ 10−3h̄k, this yields �a ≈
10−5g for earth gravity g. This is again uncompetitive with
other techniques [6,7,19].

The physical basis for these constraints can be understood.
Typically, the initial state can be characterized by a spatial
coherence length � ≈ h̄/δpi . The first N pulses of the sequence
produce a superposition of wave packets with momentum
values up to ∼Nφh̄k. These packets will spread out in space,
and once they are separated by more than the coherence
length, they will no longer interfere when subjected to further
pulses. The measurement technique relies on this interference,
and will therefore fail. The spatial spread of the packets
is thus limited to a size ∼�. If each laser pulse provides
a momentum kick of order φh̄k, then the atoms undergo
an average acceleration α ≈ (φh̄k)/(mT ). The separation of
the packets thus grows as L = 1

2α(NT )2 ≈ 1
2φN2T (h̄k/m).

Setting L < � yields

δpi <
h̄k

N2φωrT
(14)

in agreement with (6).

III. VARIANT PULSE SEQUENCES

We attempted to circumvent this limitation by considering
variations on the sequence (2). Since the momentum depen-
dence arises from the inability of the sequence to recombine
momentum packets once they spread out, we investigated a
scheme that more completely reverses the atom dynamics,
using the sequence

Vpulse = h̄φ cos(2kx)

[
N

2
δ(t) −

N∑
n=1

δ(t − nT )

+ N

2
δ[t − (N + 1)T ]

]
. (15)
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FIG. 2. Fidelity as a function of initial momentum pi for the
original (2) and variant (15) pulse sequences. The broader peak is the
variant sequence. Both sequences use N = 20, φ = 1, and q = 2.

This consists of a sequence as in (2) preceded by its time
reversal. We hoped that the second half of the sequence would
recombine packets that spread out during the first half.

The additional complexity of the variant sequence makes
analytical calculations difficult, so we instead investigated
the behavior numerically. Matrix multiplication was used to
implement the pulse operator (3), and the time evolution
between pulses was evaluated using [20]

|2n + δ〉 → ei[(2n+δ)2τ−(2n+δ)κτ 2]|2n + δ − κτ 〉 (16)

with dimensionless variables δ = pi/(h̄k), τ = ωrT , and κ =
ka/(2ω2

r ).
The new sequence does successfully reduce the dependence

on the initial momentum, as illustrated in Fig. 2. Unfortunately,
this does not result in improved sensitivity to T and a. We find
the large-N scaling relations

�T → T ′
0

N3φ2
, (17)

�pi → p′
0

N3/2φ1/2q
, (18)

�a → a′
0

N3φq2
, (19)

with T ′
0 ≈ 12 ω−1

r , p′
0 ≈ 1.1 h̄k, and a′

0 ≈ 4.8 ω2
r /k. When the

momentum width is taken as a limiting constraint, this yields
optimum time and acceleration sensitivities of

�T > T ′
0N

3q4

(
δpi

p′
0

)4

, (20)

�a > a′
0

(
δpi

p′
0

)2

. (21)

The T dependence of (20) is interesting. The measure-
ment works best for N = 2 and q = 1, where we find
�T ≈ 150 ω−1

r (δpi/h̄k)4. Using δpi ∼ 10−3h̄k suggests that
a recoil frequency measurement with a relative precision
of order 10−10 might be possible. However, achieving this
precision requires the use of a very large φ ≈ (1/8)(h̄k/δpi)2,
which excites high momentum states with mv ∼ φh̄k. Various
constraints on the pulse amplitude can be considered, such

as spontaneous emission or photoionization. The most signif-
icant, however, is that such fast-moving atoms require a short
duration dt for the standing wave pulse in order to maintain
kvdt � 1, a condition which can also be expressed as dt �
(φωr )−1. Obtaining short pulses is technologically feasible,
but they will unavoidably comprise a range of light frequencies
ωL, with �ωL >∼ 1/dt . This in turn implies a range of recoil
frequencies, since ωr ∝ ω2

L. Thus, as the pulse duration is
decreased to permit a high-precision measurement, the recoil
frequency itself becomes uncertain. Optimum performance is
achieved when the two uncertainties are equal, for which we
obtain φ <∼ (ωL/10ωr )1/3. For typical atoms, this limits φ to
about 1000, for which a relative recoil precision of about 10−6

is obtained. This is unfortunately again uncompetitive with
other techniques.

The acceleration dependence is similar to that of (2), but
here fairly good sensitivity can be obtained even for low N .
At N = 2, q = 1, we find an acceleration sensitivity �a ≈
6 (ω2

r /k)(δpi/h̄k)2. This is not exceptional, but it is obtained
using a quite short measurement time of 1.5πω−1

r (= 200 µs
for Rb atoms). Such a technique could be useful when δpi is
small and rapid measurements are advantageous, either due to
a need for fast response times or the possibility of averaging
many measurements.

In addition to the variant sequence (15), we also
investigated sequences in which all pulses had the same
amplitude, specifically

Vpulse = h̄φ cos(2kx)

[
N−1∑
n=0

−
2N−1∑
n=N

]
δ(t − nT ) (22)

and

Vpulse = h̄φ cos(2kx)

⎡
⎣N/2−1∑

n=0

−
3N/2−1∑
n=N/2

+
2N−1∑

n=3N/2

⎤
⎦ δ(t − nT ).

(23)

These sequences behaved similarly to those of (2) and
(15), respectively. They might, however, prove simpler to
implement: For large N , the original sequences require
intensity modulation with both high dynamic range and
high peak amplitude. The more uniform sequences reduce
these requirements by a factor of N . In addition, the original
sequences are sensitive to fluctuations in the pulse amplitude,
since the amplitudes of the large pulses must accurately cancel
the sum of the small pulses. By using many small pulses at
each phase, amplitude fluctuations tend to average out.

Finally, we considered a sequence of equal-amplitude
pulses with alternating phase,

Vpulse = h̄φ cos(2kx)
N−1∑
n=0

(−1)nδ(t − nT ). (24)

We hoped that the pairs of canceling pulses would allow errors
to build up with N , effectively averaging over many two-pulse
sequences. Numerical analysis indicates sensitivity scalings of

�T → T ′′
0

Nφ2
, (25)

�pi → p′′
0

Nφq
, (26)
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�a → a′′
0

N2φq2
, (27)

with T ′′
0 ≈ 2.2 ω−1

r , p′′
0 ≈ 0.7 h̄k, and a′′

0 ≈ 2.0 ω2
r /k. These

scalings would be favorable if the measurement functioned for
Nφ > nmin, as was the case for the previous sequences consid-
ered. However, here the alternating phases inhibit the momen-
tum transfer from building up over multiple pulses, so in order
to drive the atoms out of the |pi〉 state, φ itself must be large.
We find that φ > nmin ≈ 1.1 is necessary to achieve a fidelity
variation larger than 0.5. Combining these constraints yields

�T > T ′′
0 Nq2

(
δpi

p′′
0

)2

, (28)

�a > a′′
0nmin

(
δpi

p′′
0

)2

, (29)

essentially the same as for the original sequence.

IV. CONCLUSIONS

On the basis of these investigations, we conclude that
fidelity measurements in an ADKR system are unlikely to
be of practical use in precision measurements of acceleration
or the photon recoil frequency. This does not detract from their
utility in advancing our understanding of quantum dynamical
systems. Indeed, further study of them may yield insights on
how to circumvent the limitations noted here. Such studies
might be facilitated by the reduced momentum sensitivity
exhibited in our variant sequences.
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