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1. Introduction

My research is at the interface of higher category theory and algebraic topology. In particular,
I apply higher categorical techniques to equivariant homotopy theory, the study of spaces with a
group action using methods from algebraic topology.

In the equivariant setting, analogues of algebraic invariants of spaces such as homotopy and
homology groups gain richness and subtlety from the structure of the acting group. Instead of
assigning a single group or ring to a space, the invariants instead assign to a G-space a system of
objects indexed by the subgroups of G. These systems often have an intricate structure of maps
between the objects assigned to the subgroups, reminiscent of the operations of induction and
restriction of group representations. The abstract study and formalization of these systems is the
primary focus of my work.

The theories ofMackey functors and Tambara functors describe some of these underlying structures.
Let R(G) denote the representation ring of a finite group G. If K≤H≤G, there are operations
of restriction RH

K : R(H)→ R(K) and induction TH
K : R(K)→ R(H), with TH

K (V ) =
⊕

hK∈H/K V .
These operations satisfy certain identities such as the Mackey double coset formula, which abstract
to the axioms defining R(-) as a Mackey functor for the group G. Replacing the direct sum with a
tensor product defines the multiplicative induction NH

K and a multiplicative Mackey functor structure
on R(-). The maps TH

K and NH
K are additive and multiplicative homomorphisms, respectively.

Refining R(-) to a Tambara functor reveals a twisted distributive law between the two forms of
induction. Tambara’s insight in [15] was to encode inductive distributivity by a construction in the
category of finite G-sets. With regard to the running example, let KG(X) denote the Grothendieck
ring of G-equivariant complex vector bundles over a G-set X. Then KG(G/H) ∼= R(H), and if X is
the disjoint union of orbits, then KG(X) is the direct sum of representation rings. Maps of G-sets
induce operations of transfer, norm and restriction between equivariant K-theory rings, extending
the operations defined for R(-) and endowing KG(-) with the structure of a Tambara functor for G.

If H≤G and Y is a finite H-set, let G×H Y be the induced G-set. Then KH(Y ) ∼= KG(G×H Y ),
and the transfer, norm and restriction for KH agree with the corresponding operations on KG. This
behavior exemplifies the concept of a global Tambara functor, a collection of compatible Tambara
functors for all finite groups. The theory of global Mackey functors has been studied, notably in
Schwede’s book [13], but the various formulations lack a categorical framework for expressing global
distributivity. In my thesis [7], I solve this problem: I construct global Tambara functors and initiate
a development of a rigorous and comprehensive theory of these structures.

A key point in the construction necessitated the use of quasicategories as a model for∞-categories,
as developed in the work of Lurie [9]. Given a suitable ∞-category C, I construct an ∞-category
Bispan(C) of bispan diagrams in C. I then define a global Tambara functor as a product-preserving
functor from the homotopy category of Bispan(FinGpd) to the category of sets, where FinGpd is
the bicategory of finite groupoids. A global Tambara functor restricts to a Tambara functor for all
finite groups, and variations of my construction recover Tambara’s definition for a fixed finite group,
as well as models for global commutative ring spectra, global analogues of the equivariant spectra
admitting all norm maps as in [6]. Further variations may provide new insights into the theory of
∞-categorical polynomial functors as first considered in [5].
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2. Background and context

Before discussing Tambara functors, it is helpful to consider the simpler construction of Mackey
functors. Lindner [8] shows that the category of Mackey functors for a finite group G is the ordinary
category of product-preserving functors Span(FinG) → Set, where Span(FinG) has objects finite
G-sets, and morphisms equivalence classes of spans [X ← A→ Y ]. The composition is illustrated
in diagram (a) below: the resulting span is represented by the curved arrows, defined using an
auxiliary pullback (P ).

Any morphism ω = [X f←− A
g−→ Y ] in Span(FinG) factors as a composition ω = TgRf of two

spans of a distinct form: Tg = [X =←− X
g−→ Y ] and Rf = [Y f←− X

=−→ X]. The images of Tg

and Rf under a Mackey functor are the transfer and restriction associated to g and f . While
previous constructions of Mackey functors conveniently packaged the axioms governing induction and
restriction — most interestingly, the rather complicated Mackey double coset formula is expressed
through a simple axiom involving pullback diagrams of G-sets — Lindner’s formulation lifts all the
axioms to properties of the category Span(FinG) and presheaves on (the opposite of) this category.

First defined in [15], a Tambara functor for a group G is a product-preserving functor from
Bispan(FinG) to sets, where the objects of Bispan(FinG) are finite G-sets and the morphisms are
equivalence classes of bispan diagrams of G-sets. A morphism from X to Y is an equivalence class
ω = [X f←− A g−→ B

h−→ Y ], which can be written as a composition ω = ThNgRf of three bispans of
special form: Th = [B =←− B =−→ B

h−→ Y ], Ng = [A =←− A g−→ B
=−→ B] and Rf = [X f←− A =−→ A

=−→ A]
(transfer, norm, restriction). The composition of two bispans in canonical TNR form, shown in
diagram (b), is a three step construction, involving a pullback (P ), then an exponential diagram
(pentagon PCDGF , see §3.1) and another pullback (E).

(a)
P

A B

X Y Z

y (b)

E F G

P

A B C D

X Y Z

y y

When taking bispans in ordinary categories, showing that the composition is well-defined with
respect to the equivalence relation, as well as associative and unital, is onerous, but manageable
due to the use of universal properties to construct the composite diagrams. These direct methods
do not work when attempting to construct a theory of bispans in higher categories, which my work
provides.

There are a number of constructions of global Mackey functors. One approach is via bisets as
in [13], while another is to consider the ∞-category of admissible spans of finite groupoids, as in
[2, 10], where the legs of the spans inducing the transfers must be discrete fibrations, or coverings,
of groupoids.

My approach to global Tambara functors is via bispans of finite groupoids. There are a number
of predecessors: [11], drawing influence from biset functors, and [5] which develops a theory of
polynomial functors in spaces. In [16], a tricategory of bispans in a strict 2-category is constructed,
but composition in the bicategory of finite groupoids is only well-defined up to natural isomorphism,
and applying the construction of [16] leads into a thicket of homotopy coherence issues. In his thesis
[4], supervised by Strickland, author of [14], Cranch constructs an ∞-category of bispans in the
category of finite sets, and this is the construction I generalize, obtaining an ∞-category of bispans
in any suitable ∞-category. Specializing to the bicategory of finite groupoids attains the desired
definition of global Tambara functors.
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3. My work

3.1. Overview. The bicategory FinGpd of finite groupoids is a convenient setting for global
constructions. Every finite groupoid is isomorphic to the action groupoid BG(X) associated to
some G-set X, whose objects are the elements of X and morphisms are of the form (g, x) : x→ gx.
A single group takes many guises in FinGpd, for the action groupoid BH(H/H) is equivalent to
BG(G/H) for any G containing H, and the collapse map BG(G/H) → BH(H/H) is a discrete
fibration. Since diagrams in FinGpd only commute up to natural isomorphism, constructing a theory
of bispans in FinGpd calls for the use of ∞-categories to efficiently and gracefully handle the data
of the large diagrams involved in bispan composition with weakened commutativity assumptions.

The composition of bispans is determined by the existence and properties of certain classes of
diagrams. Thus, at this juncture it is reasonable to generalize and consider bispans in a suitable
∞-category C. An ∞-category of bispans in C consists of a collection of diagrams in C encoding
n-fold composites of bispans as n varies. Let TNR(n) denote the shape of the diagram encoding
an n-fold composite of bispans, so that TNR(0) is a point and TNR(1) is a single bispan. The
following figure depicts TNR(2) and TNR(3):

• • •

• • • •

• • •

• • • •

• • • • • •

• • • • • •

• • • •
Observe that TNR(2) lacks the explicit choice of auxiliary pullback (P ) as seen in Figure (b) in §2.
This amounts to replacing the exponential diagrams with a similar universal construction tailored to
the composition of bispans, the cromulent diagrams of [4], discussed and generalized to the setting
of ∞-categories in §3.2. These appear in the construction of Theorem 3, from which Theorem 1
follows.

The main theorem of my work is the following, establishing an ∞-categorical bispan construction.

Theorem 1. [7] Let C be a suitable ∞-category. There exists an ∞-category Bispan(C) whose
n-simplices are diagrams of shape TNR(n) in C.

Setting C = FinGpd and requiring that the legs of the bispan diagrams corresponding to the
norms and transfers are discrete fibrations of groupoids makes FinGpd suitable for the theorem.
Applying the bispan construction to FinGpd and taking the homotopy category of the ∞-category
Bispan(FinGpd) produces an ordinary category ho(Bispan(FinGpd)) and a global Tambara functor
is a product-preserving functor ho(Bispan(FinGpd))→ Set. The ordinary category Bispan1(FinG)
is recovered as ho(Bispan(FinG)).

Corollary 1. [7] The action groupoid construction defines a restriction functor from the category
of global Tambara functors to the category of Tambara functors for any fixed finite group.

Corollary 2. [7] There are two inclusions of the twisted arrow category of the ordinal [n] into
TNR(n), each inducing a restriction Bispan(C)→ Span(C), where Span(C) is the effective Burnside
category of [2]. As a consequence, global Tambara functors restrict to additive and multiplicative
global Mackey functors.

A more sophisticated direction is to consider homotopical Tambara functors, where product-
preserving functors of ∞-categories Bispan(FinGpd)→ D are considered for various choices of D,
taking full advantage of the homotopy coherent properties of my bispan construction. Natural
generalizations beyond Tambara functors in sets may take D to be the ∞-categories of spaces or
spectra.
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3.2. Exponential and cromulent diagrams. The composition of bispan diagrams involves a
universal construction known as an exponential diagram, depicted in (c) below, while the ∞-
categorical bispan construction uses the related cromulent diagrams, depicted in (d).

(c)
M N

A X Y

ε

h

y v

p f

(d)
A M N

X Y Z

p y

f g

Exponential diagrams encode the distributivity of multiplicative induction over additive induction.
An exponential diagram like (c) above induces an equality NfTp = TvNhRε of bispans. These
diagrams satisfy a universal property: they are terminal amongst all diagrams of the same shape
whose bottom row is (p, f) and where the square above f is a pullback square. Cromulent diagrams
about (p, f, g) are terminal with respect to the solid arrows and the square above g being a pullback,
and arise by pasting pullbacks of p along f to exponential diagrams whose bottom row is the
resulting pullback and g. In the following, the base of an exponential or cromulent diagram will
refer to the subdiagrams on the solid arrows.

The suitability of an ∞-category C for the bispan construction is conditional on the existence of a
right adjoint Πf to the pullback functor ∆f : C/Y → C/X for certain classes of morphisms in C. The
following theorem is crucial, combining the general theory of Lurie [9] and work of Riehl and Verity
[12] on adjunctions of ∞-categories, as well as my construction of a slice ∞-category for functors of
∞-categories. The first part establishes the existence of exponential and cromulent diagrams in a
rigorous homotopy-coherent context while the second characterizes them in terms of an adjunction.
Theorem 2. [7] Let C be a suitable ∞-category, and let π be the functor restricting diagrams of
exponential or cromulent shape in C to their base.
(a) The fibers of π vary functorially with respect to the base, and each fiber has a terminal object.

The terminal objects of each fiber are the exponential or cromulent diagrams in C, and the
sub-∞-category spanned by these diagrams is equivalent to the the codomain of π.

(b) A diagram in the fiber π−1(p, f) or π−1(p, f, g) is terminal if and only if it is equivalent in the
fiber to the diagram

∆f Πf (A) Πf (A)

A X Yp f

or
A ∆gΠg∆fA Πg∆fA

X Y Z

p y

f g

3.3. A distributive law for bispans. To prove Theorem 1 it is necessary to first construct an
alternate bispan construction generalizing Theorem 6.9 of [4]. This alternate construction is subtly
different from that of Theorem 1, as the n-simplices of the alternate bispan ∞-category are no
longer diagrams of shape TNR(n), but instead compatible collections of subdiagrams of simpler
shapes. The following theorem provides the foundation for establishing Theorem 1.
Theorem 3. [7] Let C be a suitable ∞-category. There is a bisimplicial set D+

×(C) and a sequence
of bisimplicial sets {Ξn}n≥0 called distributahedra such that the simplicial set whose n-simplices are
suitable maps of bisimplicial sets Ξn → D+

×(C) is an ∞-category equivalent to Bispan(C).
Distributahedra are polytopes modeling the coherent distributivity of morphisms between two

sub-∞-categories. The bisimplicial set D+
×(C) has (m,n)-simplices given by diagrams of shape

∆m × TwAr(∆n) in C with certain subdiagrams being pullback squares and cromulent diagrams.
Theorem 3 is proved by finding arrows filling in the dashed parts of the following diagrams:

Λk−i,n−(k−i)
k−i,i D+

×(C)

∆k−i,n−(k−i)

and
Λk+j,n−(k+j)

k,0 D+
×(C)

∆k+j,n−(k+j)
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for all n ≥ 2, 0 < k < n, 0 ≤ i ≤ k and 0 ≤ j ≤ n − k, where Λa,c
b,d and ∆a,c are defined as in

Chapter 6 of [4]. These are bisimplicial analogues of the horns Λn
k and n-simplices ∆n in simplicial

sets. I show D+
×(C) is a (horizontally) Reedy fibrant simplicial set, ensuring the existence of all

fillings. Cromulence is automatic for all cases except for when all superscripts are at most 2, due to
dimensional reasons. This leaves 7 cases which can be individually checked, applying Theorem 2
and the Beck-Chevalley conditions for ∞-categories in [5].

4. Future work

I plan to further develop the theory of global Tambara functors and bispan categories, as well as
to explore new projects using my background in higher category theory and homotopy theory.

(1) Establish a comparison theorem between global Tambara functors and global power functors,
defined by Schwede in [13] as global Mackey functors with power operations. Then, provide
new constructions for global power functors, e.g. those arising from the generalized character
rings for Morava E-theories as in [1]. This is my main priority and the primary motivation
for the current work.

(2) Investigate the relationship between global Tambara functors and Tambara functors for finite
groups: are there examples of Tambara functors for a group G which cannot be realized as
restrictions of global ones? Such examples exist for Mackey functors.

(3) If S is a Mackey functor, then transfer along the fold map X t X → X gives S(X) the
structure of a commutative semigroup, while the transfer and norm of Tambara functor make
S(X) a commutative semiring. Bispan constructions can thus encode ring-like objects in
higher categories. Work of Berman on higher Lawvere theories in [3] suggests that spectrally-
valued functors from various bispan categories provide models for highly structured ring
spectra with less theoretical overhead than in other models.

(4) Develop the “commutative algebra” of global Tambara functors, analogous to the equivariant
theory developed in [14] and work of Nakaoka as well as Blumberg, Hill and Hopkins.
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