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Alzheimer disease 
A tale of two prions 
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Alzheimer disease (AD) has traditionally been thought to 
involve the misfolding and aggregation of two different 
factors that contribute in parallel to pathogenesis: amyloid-j3 
(Aj3) peptides, which represent proteolytic fragments of the 
transmembrane amyloid precursor protein, and tau, which 
normally functions as a neuronally enriched, microtubule­
associated protein that predominantly accumulates in axons. 
Recent evidence has challenged this model, however, by 
revealing numerous functional interactions between Aj3 and 
tau in the context of pathogenic mechanisms for AD. Moreover, 
the propagation of toxic, misfolded Aj3 and tau bears a striking 
resemblance to the propagation of toxic, misfolded forms 
of the canonical prion protein, PrP, and misfolded Aj3 has 
been shown to induce tau misfolding in vitro through direct, 
intermolecular interaction. In this review we discuss evidence 
for the prion-like properties of both Aj3 and tau individually, 
as well as the intriguing possibility that misfolded Aj3 acts as a 
template for tau misfolding in vivo. 

Introduction 

Alzheimer disease (AD) is a slowly progressing neurodegenerative 
disorder characterized by the misfolding, aggregation and gain 
of toxicity of amyloid-f3 (Af3) and tau in the brainY Aggregated 
Af3, in the form of densely packed fibrils, accumulates extracel­
lularly in structures known as amyloid plaques. The tau aggre­
gates also correspond to tightly packed filaments, but in contrast 
to plaques, they accumulate intracellularly in diseased neurons, 
where they are known as neurofibrillary tangles (NFTs). The 
term paired helical filament, or PHF, is often used to describe the 
individual tau filaments found in NFTs. 

Af3 comprises a family of ~40 amino acid long peptide cleav­
age products of the transmembrane amyloid precursor protein 
and has no known essential function in normal physiology, 
but has long been regarded as a primary cause of ADY The 
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original focus on large, fibrillar Af3 aggregates as possible caus­
ative agents for the memory and cognitive decline associated with 
AD has gradually shifted over the past decade to the realization 
that smaller, soluble Af3 oligomers are more relevant culprits. 
Compared with fibrillar Af3, soluble Af3 oligomers correlate bet­
ter with neurotoxicity in vivo and are far more toxic than Af3 
fibrils to cultured neurons.5-12 

Tau was discovered nearly 40 years ago as a microtubule-asso­
ciated protein (MAP) that stimulates tubulin polymerization,13 
but it was not until a decade later that its presence in NFTs was 
first described. 14-1G Surprisingly, beyond its generic MAP function 
as a stimulator of microtubule (MT) assembly, the only known 
specific function of tau is that it impedes the movement of kine­
sin MT motor proteins and their attached cargoes along MTs. 17-20 
Historically, tau has received much less attention than Af3 in the 
AD field, despite the fact that a spectrum of neurodegenerative 
disorders known collectively as non-Alzheimer tauopathies are 
invariably characterized by PHF accumulation in the brain and 
can be caused by any of dozens of tau mutations. 21 PHF tau is 
abnormally phosphorylated at dozens of sites,22 some of which 
appear in vivo in both human AD cases and transgenic mice 
before the tau assembles into filaments. 23 

About three decades after Prusiner first described prion driven 
infection in Creutzfeldt-Jacob disease24 and speculated that a 
similar infectious process may apply to AD,25 a recent wave of 
evidence has demonstrated striking biochemical and cell biologi­
cal similarities between AD and classical prion diseases. In con­
trast to PrP-based disorders, such as mad cow disease, scrapie and 
kuru, AD does not appear to be communicable between indi­
viduals, but a growing body of data indicate that misfolded, toxic 
oligomers of Af3 and tau spread through the brain from neuron 
to nearby neuron much much like misfolded Prp.25-32 For both 
Af38,33 and tau,34-38 moreover, misfolded forms of the peptide or 

protein can be taken up by neurons containing otherwise nor­
mal Af3 or tau, which as a result then misfold, become toxic and 
spread to other neurons. 

In addition to in vivo histopathology evidence,33,35,36.38 sev­

eral groups recently demonstrated biochemical mechanisms for 
prion-like propagation of Af3 and tau,9,39-42 and of additional 
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proteins whose misfolding into f3-sheet-rich structures under­
lies other well-known neurodegenerative diseases. 26.28,3o,32 Most 

intriguing in this regard is evidence for Af3-tau interactions, 
both physically43,44 and in cell signaling,5,9,11 ,39,45-52 AD can thus 

be regarded as a disease that requires prion-like behavior of two 
distinct proteins, 

Af3 and Tau Spread Stereotypically Through the 
Brain 

One line of evidence suggesting prion-like mechanisms in AD 
comes from histological studies showing that aggregated forms of 
both Af3 and tau spread through the brain by following typecast 
neuroanatomical patterns. Perceptions about the exact details of 
these patterns have evolved somewhat over the years, but plaques 
and tangles do not follow identical blueprints for dispersing 
through the brain. Plaques first appear in the basal temporal neo­
cortex, then advance to the entorhinal and hippocampal regions 
before finally spreading throughout the neocortx.53 This progres­
sion might be explained by the movement of Af3 through antero­
grade transport and synaptic exchange mechanisms from regions 
where Af3 aggregation is initiated into nearby areas receiving 
axonal input from contaminated regions, Consistent with this 
hypothesis is the recent demonstration that cultured neurons 
can accomplish direct cell-to-cell transfer of Af3 oligomers.8 This 
intercellular transfer mechanism, in combination with ongoing 
production of new Af3 monomers and the fragmentation of fibrils 
and large oligomers into smaller but more numerous seeds that 
can initiate Af3 aggregation, could fuel the growth of more Af3 
oligomers and fibrils. 

In contrast to plaques, abnormal tau first appears in proximal 
axons within the locus coeruleus,54 when it becomes immuno­
reactive with the AT8 monoclonal antibody, which detects tau 
phosphorylated at S202 and T205. 23 Evidently, tau at this stage 
has not yet assembled into PHFs, but instead is in a soluble, pre­
NFT state. As AD progresses from pre-symptomatic to clinically 
detectable stages, the pattern of AT8-positive tau expands first to 
distal axonal and somatodendritic compartments within affected 
locus coeruleus neurons, and then sequentially to the entorhinal 
cortex (EC), dentate gyrus, CAl region of the hippocampus and 
the neocortex, Superimposed on this spreading of abnormal tau 
is its gradual acquisition of additional phosphoepitopes that are 
diagnostic of diseased neurons, and its conversion into PHFs,34 

Interestingly, despite compelling evidence that Af3 is upstream 
of tau in AD pathogenesis,5,9, 11 ,39,45-52 abnormal, pre-NFT tau is 

usually detectable before plaques,55.56 This may symbolize that 
soluble, oligomeric Af3, rather than plaques, provoke tau pathol­
ogy, and that the pattern of plaque spreading simply reflects net 
rates of insoluble Af3 accumulation within various regions of 
brain over time. 

Two groups, using very similar approaches, recently published 
compelling experimental evidence that the spatiotemporal spread 
of tau in AD brain also involves transfer of tau from neuron to 
neuron along defined synaptic circuits,36,38 Both groups targeted 
expression of a human tau transgene specifically in the EC of 
mice. In both cases, the transgene encoded tau with a P30lL 
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mutation that adopts an AD-like phosphorylation profile, forms 
PHFs and causes the non-Alzheimer tauopathy, FTDP-17, with 
full penetrance in humans,57,58 As the mice aged, they showed 

progressive tau pathology that began in the EC and subsequently 
followed the same path of axonal circuitry into the hippocam­
pus as seen in human AD. Notably, this occurred without any 
detectable expression of human tau mRNA or protein outside of 
the EC. In other words, the toxic, mutant human tau that was 
expressed exclusively in the EC caused the endogenous mouse tau 
to misfold and become toxic, and then spread along synaptic cir­
cuits to the hippocampus, Besides confirming that tau pathology 
spreads along pre-determined, interconnected, neuroanatomical 
tracks, these data imply a prion-like process whereby misfolded 
"bad" tau can provoke the toxic misfolding of "good" tau, One 
important issue that remains to be determined is the mode of 
neuron-to-neuron transmission of misfolded tau, For example, 
the available data do not discriminate among models in which 
toxic tau is transferred from diseased to healthy neurons at syn­
apses, via cycles of exocytosis and endocytosis, via intercellular 
bridges or by some combination of these or other potential mech­
anisms that can be imagined, 

Af3 as a Prion 

While progression of Af3 aggregation in human AD brain has 
fueled speculation of prionlike mechanisms of misfolding, recent 
in vivo and in vitro data have provided direct evidence for prion 
activity of Af3, and have suggested specific biochemical and bio­
physical mechanisms to explain Af3 pathology, The strongest in 
vivo evidence comes from a large body of work demonstrating 
that injection of misfolded Af3 from either biological or synthetic 
sources at specific loci in the brains of AD model mice acceler­
ates the appearance of aggregated, transgenically expressed Af3 
throughout the brain.42 ,59-62 While these seed-induced Af3 depos­
its are initially observed in tissue directly surrounding sites of 
seeding, spreading eventually occurs along axonally connected 
regions and in separate locations, suggesting that both axonal 
transport and extracellular routes playa role in the spreading of 
Af3 throughout the brain. 

Building on this substantial body of in vivo data are sev­
eral lines of in vitro biochemical and biophysical investigation 
that have provided direct evidence for specific mechanisms in 
the propagation of Af3 misfolding. Researchers throughout the 
AD field have long noted anecdotally that purified Af3 often 
seems to behave in unpredictable ways that suggest an aggre­
gation mechanism capable of following multiple paths, These 
suspicions were recently confirmed when aliquots of monomeric 
Af3 from a single pool were aggregated separately, leading to 
formation of many structurally and immunologically distinct, 
aliquot-specific Af3 oligomers,63 These experiments also dem­
onstrated that exposing specific preformed Af3 oligomer species 
to monomeric Af3 promotes the aggregation of monomers into 
oligomeric species of the same size range and immunoreactivity. 
A straightforward interpretation of these data suggests a model 
in which the specific folding patterns of oligomers formed 
early in the aggregation process self-propagate by increasing 
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the probability of similar folding patterns occurring in newly 
formed oligomers. 

While numerous studies of A[3 have relied on the use of oligo­
mers made from synthetic versions of the conventional peptides, 
A[3l-40 and A[3l-42, A[3 isolated from biological samples, espe­
cially from AD brain, typically show much stronger bioactivity 
across a wide range of assays.47,64.66 This may be due, at least in 

part, to biologically produced A[3 comprising a rich variety of 
peptide species, including A[3l-40 and A[3l-42, that are dis­
tinguished from each other by their bioactivities and potency, 
N-terminal truncations, C-terminal truncations or extensions, 
and post-translational modifications of amino acids within the 
peptide backbone. Indeed, a recent study of the A[3 peptides pres­
ent in cerebrospinal fluid (CSF) samples revealed more than 20 
molecularly distinct peptide species.67 As described in the next 
paragraph, at least one naturally occurring variant of A[3 is both 
exceptionally toxic and prion-like. It is therefore possible that low 
abundance, highly potent, infectious forms of A[3 isolated from 
brain tissue or cell cultures can explain the enhanced potency of 
biologically produced, vs. synthetic A[3. 

We recently described a specific, prion-like mechanism of 
"intermolecular infectivity" involving A[33(pE)-42,9 which lacks 
the first two amino acids found in A[3l-40 and A[3l-42, and 
whose initial residue is enzymatically modified from glutamate 
to pyroglutamylate (pE) by glutaminyl cyclase.68 We found that 
A[33 (pE) -42 can induce A[3l-42 to form low-n oligomers that are 
-lO-fold more cytotoxic to neurons than otherwise comparable 
oligomers made from A[3l-42, alone. 

Formation of the cytotoxic oligomers typically involved co­
incubation of synthetic A[33(pE)-42 with a 19-fold molar excess 
of synthetic A[3l-42 for 24 h before dilution into primary neu­
ron cultures. Remarkably, if the two peptides were incubated 
separately for 24 h and then were mixed together at a 1: 19 molar 
ratio of A[33(pE)-42 relative to A[3l-42, the mixtures had negli­
gible cytotoxicity, like that associated with oligomers made from 
A[3l-42 alone. Furthermore, cytotoxic mixed oligomers could 
be serially diluted into freshly dissolved A[3l-42 monomers with 
only slight loss of cytotoxicity after each passage. Even after the 
A[33 (pE) -42 concentration was serially passaged three times 
to drop its level from 5% to 0.000625% of the total A[3 pres­
ent, the final product was nearly 2/3 as cytotoxic as the starting 
material containing 5% A[33(pE)-42. The cytotoxic oligomers, 
which appeared to be predominantly dimers and trimers, were 
immunologically distinct from comparably sized oligomers made 
exclusively from A[3l-42. These data signify template mediated 
protein-misfolding by a process in which the original template, 
A[33(pE)-42, can transfer its distinct conformation and cyto­
toxic properties to A[3l-42, which then can act as a template itself 
to induce further, prion-like propagation of toxic A[3 oligomers.9 

The in vivo relevance of these results was established by mul­
tiple lines of additional evidence. Most notably, putative dimers 
and trimers containing both conventional and pE-modified A[3 
species were detected more commonly in brain cytosol collected 
post-mortem from AD patients than from normal age-matched 
controls, and transgenic mice that produced A[33 (pE) -x experi­
enced massive gliosis and neuron death in the hippocampus by 
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three months of age. Strikingly, the A[33(pE)-x levels in these 
mice were just a few percent of what is commonly found in 
human AD brain, and neither gliosis nor neuron loss occurred 
in otherwise identical mice that lacked functional tau genes. The 
phenotype of the pE-A[3-producing, tau knockout (KO) mice 
mimicked the response of primary neurons obtained from tau 
KO, but otherwise normal mice to cytotoxic oligomers of 5% 
A[33(pE)-42 plus 95% A[3l-42. Unlike wild type (WT) neu­
rons, the tau KO neurons were not killed by the mixed oligo­
mers.9 These collective in vitro and in vivo results emphasize the 
exceptional potency of pE-modified A[3 and the tau requirement 
for its cytotoxicity. 

Tau as a Prion 

Several lines of evidence have recently demonstrated the ability 
of filamentous tau polymers to propagate by a nucleated assembly 
mechanism. Monomeric tau is a soluble, natively unfolded pro­
tein69 that does not readily form filaments in vitro unless induced 
to misfold and polymerize by strongly anionic agents, such as 
arachidonic acid/o heparin71 or RNA.72 Small oligomers, espe­
cially tau dimers, are intermediates in the filament assembly pro­
cess.44.73 Once filament polymerization has occurred, sonication 
can fracture the filaments into shorter, more numerous structures 
that can seed the assembly of additional tau monomers .?4 Tau 
filaments therefore have the ability to self-propagate. 

Pre-aggregated tau, comprising filaments and apparent oligo­
mers, is able to enter cultured cells and then cause the intracellu­
lar tau that they express to misfold and aggregate as well,75,76 This 
general principle has also been demonstrated in vivo through 
experiments showing that intracerebral injection of aggregation­
prone P301S mutant tau can induce the spreading ofNFT forma­
tion throughout the cortex of mice expressing wild-type human 
tau, which does not form NFTs spontaneously.35 Given the small 
amount of initially injected material in these experiments, the 
data indicate that WT human tau was able to adopt at least some 
critical properties of the aggregated, mutant human tau to con­
tinue propagation throughout the brain. The aforementioned 
studies of P301L tau being expressed exclusively in the EC of 
transgenic mice, but driving tau pathology into hippocampal 
structures36,38 constitute further evidence for prion-like behavior 
of misfolded tau. 

The possibility that tau oligomers serve as agents for the spread 
of tau pathology must be seriously considered as well. Such oligo­
mers have been detected immunologically in AD brain, most 
notably in neurons that had not yet accumulated NFTs.73.77 
Furthermore, intracerebral injection of tau oligomers, but neither 
monomeric nor fibrillar tau, has been shown to be neurotoxic, 
to cause synaptic and mitochondrial dysfunction, and to impair 
memory.78 

Are Tau Prions Seeded by A[3 Prions? 

Several groups have described adverse A[3 effects that depend 
on tau, thereby placing A[3 upstream of tau in AD pathogenesis 
and establishing tau as an essential protein in development of the 

16 



A~ 

! 
Oligomerization, 

Prion-like Propogation 

TQU~ \ 
Oligomers? "s Tau 

1 ~ -1\o.~ o{..\t-o.~ ~o.s"s 

disease.5.9.11 ,4G,48·50.79,80 At least some of these AI3-tau connections 

are indirect, such as AI3 induced activation of protein kinases, 
which then catalyze abnormal tau phosphorylation. ll.45.47,51,52 

There is also evidence, though, for a direct pathogenic connec­
tion between AI3 and tau. In the absence of any other proteins or 
peptides, AI3 can bind to tau43 and tau monomers can be induced 
to oligomerize in vitro after exposure to low substoichiometric 
levels of AI3 0ligomers.44 These findings raise the obvious pos­
sibility that, in vivo, AI3 oligomers seed the initial formation of 
tau oligomers, which can then self-propagate in the absence of 
additional input from AI3 (Fig. 1). If such a phenomenon were 
to occur in vivo, it would represent a seminal step in AD patho­
genesis. It might explain, moreover, why so many heroic efforts 
to target AI3 therapeutically in clinical trials have failed so far. 
This may be because all experimental patients in such trials must 
first have received a clinical diagnosis of AD, which can only 
be made long after tau pathology is already well underway and 
self-sustaining. 
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Figure 1. Prion-like mechanisms in Alzheimer disease. Amyloid-13 (AI3) 
peptides can form toxic oligomers that are able to propogate by a 
prion-l ike mechanism of template-mediated protein misfolding. AI3 
ol igomers can activate tau kinases, which then catalyze pathogen ic 
phosphorylation of tau (pTau), and may also serve as prion-like seeds 
that induce tau to oligomerize. Tau oligomers also self-propogate by a 
prion-like mechanism, and along with pathogenically phosphorylated 
tau, drive the degeneration and death of neurons involved in memory 
and cognition. The temporal and functional relationships between 
pathogenic phosphorylation and oligomerization of tau remain to be 
determined. 
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