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Abstract

Prions consist of aggregates of abnormal conformers of the cellular
prion protein (PrPC). They propagate by recruiting host-encoded
PrPC although the critical interacting proteins and the reasons for
the differences in susceptibility of distinct cell lines and popula-
tions are unknown. We derived a lineage of cell lines with mark-
edly differing susceptibilities, unexplained by PrPC expression
differences, to identify such factors. Transcriptome analysis of
prion-resistant revertants, isolated from highly susceptible cells,
revealed a gene expression signature associated with susceptibility
and modulated by differentiation. Several of these genes encode
proteins with a role in extracellular matrix (ECM) remodelling, a
compartment in which disease-related PrP is deposited. Silencing
nine of these genes significantly increased susceptibility. Silencing
of Papss2 led to undersulphated heparan sulphate and increased
PrPC deposition at the ECM, concomitantly with increased prion
propagation. Moreover, inhibition of fibronectin 1 binding to inte-
grin a8 by RGD peptide inhibited metalloproteinases (MMP)-2/9
whilst increasing prion propagation. In summary, we have identi-
fied a gene regulatory network associated with prion propagation
at the ECM and governed by the cellular differentiation state.
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Introduction

Transmissible spongiform encephalopathies or prion diseases are a

family of fatal neurodegenerative diseases and include scrapie in

sheep, bovine spongiform encephalopathy (BSE) in cattle, and

Creutzfeldt-Jakob disease in humans. Prions, the transmissible

agents, consist of aggregates of abnormal conformers of the cellular

prion protein (PrPC), generally referred to as PrPSc, and replicate in

a self-perpetuating manner by conversion of host-encoded PrPC.

Whilst the physiological role of PrP, a cell surface protein highly

expressed in the central nervous system, is unclear, recent reports

suggest that it may act as a receptor for amyloid beta (Ab) in Alzhei-

mer’s disease (Lauren et al, 2009; Freir et al, 2011). To better

understand molecular events that lead to prion neurodegeneration,

it is critical to identify genetic factors that facilitate or impede prion

replication. Coding polymorphisms within Prnp, the gene encoding

PrP, are known to affect disease incubation times and susceptibility

in human, mouse, and sheep (Hunter, 1997; Collinge, 2001). The

most prominent example, codon 129 polymorphism in humans, has

major disease-modifying effects (Collinge, 2001) and homozygosity

for methionine at codon 129 confers susceptibility to variant CJD

(vCJD) (Collinge et al, 1996; Collinge, 2005). However, significant

differences in incubation times for scrapie in mice with the same

Prnp genotype indicate a major role of PrP-independent genetic

factors, and several genetic loci have been identified on different

chromosomes (Carlson et al, 1993; Lloyd et al, 2001, 2009b). A

number of knockout mice with disruptions in specific genes that

were believed to affect prion replication did not show any discern-

ible effect on the pathogenesis of prion disease (Tamguney et al,

2008). However, ablation of two genes, amyloid beta precursor

protein (App) and interleukin-1 receptor type I (Il1r1), and trans-

genic overexpression of human superoxide dismutase 1 (SOD1)

prolonged incubation times by 13, 16, and 19%, respectively

(Tamguney et al, 2008). Our recent genome-wide association study

identified two new common variants, the retinoic acid receptor beta

(RARB) and stathmin-like 2 (STMN2) that are associated with risk
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of vCJD (Mead et al, 2009). An E3 ubiquitin ligase, HECTD2, was

found to be associated with susceptibility to mouse and human

prion disease (Lloyd et al, 2009a).

Mammalian cell lines have proven invaluable to investigate aspects

of prion pathogenesis in vitro, such as infection and propagation

(Race et al, 1987; Krammer et al, 2009; Marijanovic et al, 2009;

Goold et al, 2011), prion strain selection (Li et al, 2010; Weissmann

et al, 2011), and prion dissemination (Fevrier et al, 2004; Gousset

et al, 2009). However, most PrP-expressing cell lines are resistant to

prion infection, indicating that factors in addition to PrP are required

to initiate and/or maintain chronic propagation of prions. To better

understand the molecular underpinnings of neurodegeneration in

prion diseases, we sought to study cognate susceptible and resistant

cells, an approach that provides a unique opportunity to identify

genetic factors that modulate prion replication.

We isolated rare prion-resistant revertants from highly suscepti-

ble mouse neuroblastoma N2a cells, determined the expression

differences between resistant and susceptible cells, and identified a

gene signature that was associated with inhibition of prion replica-

tion. Validation by RNA interference confirmed the inhibitory activi-

ties on prion replication of nine genes, most of which encode

proteins expressed at plasma membrane level or at the ECM, a

compartment where disease-associated PrP accumulates. Here, we

use the term ‘disease-associated PrP’ (PrPd), rather than PrPSc as the

latter is defined biochemically as proteinase K (PK)-resistant PrP,

and it is now established that there are important PK-sensitive forms

of disease-related PrP as well (Safar et al, 1998). We suggest that

fibronectin, which is highly expressed in prion-resistant revertants,

activates ECM-resident metalloproteinases in an integrin a8-depen-
dent manner. Notably, inhibition of integrin a8 signalling by the

fibronectin fragment inhibitor RGD increased prion susceptibility

and inhibited metalloproteinase activation. We furthermore show

that silencing of Papss2, a gene expressed in revertants, led to

undersulfation of heparan sulphate, increased PrPC deposition at the

ECM and an increase in prion replication rates. Although the ECM

has previously been implicated in modulating prion propagation

(Caughey & Raymond, 1993b; Gabizon et al, 1993; Caughey et al,

1994), here we identify key genes involved in this process. The

differential susceptibility of cell lines and different neuronal popula-

tions to prion infection has hitherto been unexplained, and these

findings may be critical to understanding prion pathogenesis and

selective vulnerability of different cell types to prion infection.

Results

Isolation of cognate prion-resistant revertants from highly
susceptible cells

Whilst most PrP-expressing neuronal cell lines are resistant to

prions, subclones of otherwise poorly permissive cell lines showed

marked differences in susceptibility to prion propagation (Bosque &

Prusiner, 2000; Enari et al, 2001; Klohn et al, 2003; Mahal et al,

2007). After extensive subcloning, we derived PK1 cells, a mouse

neuroblastoma cell line highly permissive to mouse RML prions

(Fig 1A and C), which we used to develop a sensitive cell-based

prion bioassay, the Scrapie Cell Assay (SCA) (Klohn et al, 2003).

We reasoned that the isolation of prion-resistant revertants from

highly susceptible PK1 cells may allow the identification of genes

associated with prion propagation by analysis of their respective

transcriptomes. By determining prion propagation rates of a thou-

sand PK1 subclones, three revertant clones (R2, R5, and R7) showed

markedly reduced prion propagation rates when compared to

susceptible PK1 cells (Fig 1B). To further characterise the degree of

kinship between cognate cell clones, we determined the global gene

expression profiles of individual N2a clones depicted in Fig 1C and

subsequently reduced the complexity of data sets using principal

component analysis (PCA) (Fig 1D). When mapped onto a 3D tran-

script profile space, all PK1-derived subclones clustered around PK1

cells and were more distant from the parental N2a cells and their

prion-resistant progeny, R33 and NN2a (Fig 1C and D). Given the

close kinship between PK1 and its progeny, we reasoned that gene

expression analysis of cognate cell clones may be favourable to reduce

the number of false-positive calls, that is, expression differences

unrelated to the phenotype of prion susceptibility. We therefore

excluded N2a, NN2a, and R33 cells and selected the six closely related

cell clones (PD88, PK1, S7, R2, R5, and R7) for further analyses.

Overexpression of PrP does not render revertants susceptible

Whilst accelerated disease progression was observed in prion-

infected Tga20 mice which express PrP at about 10 times the wild-

type level (Fischer et al, 1996), overexpression of PrP in a range of

mouse N2a sublines did not increase susceptibility to mouse prions

(Enari et al, 2001). To investigate whether the rate of prion propaga-

tion is a function of PrP expression, we stably overexpressed PrP in

a variety of cell clones and determined their susceptibility to prions

(Supplementary Table S1). To confirm that the expressed Prnp is

functional, we used it to stably reconstitute Prnp-silenced PK1 cells

(PK1 Prnp-kd) and challenged a heterogeneous pool of these cells

with mouse RML prions. Whilst prion susceptibility was recovered

by reconstituting PK1 Prnp-kd cells, revertants remained non-

permissive to mouse RML prions after PrP overexpression. In addi-

tion, no significant increase in susceptibility of prion-permissive

clones was observed at elevated PrP expression levels (Supplemen-

tary Table S1). To exclude the possibility that revertants express

polymorphic Prnp and thus inhibit prion propagation by interfer-

ence with the expressed Prnp transgene, we sequenced Prnp from

representative PK1 clones. However, all PK1 subclones expressed

Prnp allotype A (Prnpa), the allotype of the transgene. This indicates

that PrP expression is necessary, but not sufficient to confer suscep-

tibility to prion propagation.

Differential gene expression between prion-resistant revertants
and susceptible cells

We next determined differentially expressed genes between prion-

resistant revertants (R2, R5, R7) and susceptible cells (PK1, S7,

PD88) by non-parametric statistics using ‘Significance Analysis of

Microarrays’ (SAM) (Tusher et al, 2001) and corrected raw values

for multiple testing at high stringency with a false discovery rate

(FDR) (Benjamini & Hochberg, 1995) < 0.01. Genes significantly

expressed in prion-susceptible cells, and revertants are listed in

Supplementary Table S2. Unsupervised hierarchical clustering

clearly segregated genes from revertant and susceptible cells and

revealed gene clusters with similar expression patterns as depicted
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Figure 1. Characterisation of cognate prion-resistant revertants derived from highly susceptible cells.

A Schematic for the isolation of prion-resistant revertants.
B Susceptible cells (S7, PK1, PD88) propagate prions 2–3 orders of magnitude faster than revertants. Prion propagation rates of cells infected with mouse RML prions are

expressed as tissue culture infectious units (TCIU)/day.
C Lineage of susceptible and resistant cell clones isolated from parental N2a cells (grey: resistant, red: susceptible, blue: revertant resistant).
D Gene expression profiles of N2a cell clones were mapped onto a 3D transcript profile space after reducing dimensionality to three principal components. PK1-derived

susceptible and revertant clones cluster around PK1 cells.
E Hierarchical clustering of genes differentially expressed between prion-resistant revertants and susceptible cells. Genes with a fold discovery rate (FDR) < 0.01 and a

fold difference of at least two were included. Right legend: gene names, columns: samples of three biological repeats. Colour intensities based on expression level of
genes as specified by the bar code on the bottom. Green: low-intensity values, red: high-intensity values, black: no change. Dendrogram cluster analysis on the left side.
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in a heatmap (Fig 1E). Functional annotation clustering was used to

infer whether gene sets, annotated by gene ontology (GO) terms,

were overrepresented in the set of differentially expressed genes,

when compared to their representation in the whole mouse genome.

Two highly enriched gene sets, cellular differentiation (18 genes)

and development (16 genes), were identified in a list of 100 differen-

tially expressed genes (Supplementary Table S3). Notably, a set of

five genes with a role in negative regulation of differentiation were

expressed in revertants (Supplementary Table S3). Consistent with

this notion, revertant cells showed a less differentiated morphology

than prion-susceptible cells (Supplementary Fig S1).

A phenotypic switch from prion-resistant to susceptible cells
reveals putative prion susceptibility genes

The enrichment of genes with a role in negative regulation of cell

differentiation prompted us to test whether preincubation of rever-

tants with retinoic acid (RA), a well-characterised differentiation

agent, affected the rate of prion replication. Remarkably, preincuba-

tion of revertant clones with a single dose of 0.5 lM RA augmented

the rate of prion replication by up to 40-fold as compared to vehicle

alone (Supplementary Table S4). Under these conditions, the cellular

morphology and the cell doubling rates of revertants were unaffected

(Supplementary Fig S2). In contrast to this marked increase in suscep-

tibility, the rate of prion propagation only doubled for the weakly

susceptible clone PD88 and decreased for highly susceptible PK1 cells

with a concomitant decrease in cell doubling (Supplementary Fig S2).

These results suggest that cellular processes associated with the differ-

entiation state of cells modulate susceptibility to prion propagation, in

agreement with a nerve growth factor (NGF)-mediated increase in

prion susceptibility of PC12 cells (Rubenstein et al, 1990).

This RA-mediated phenotypic switch from prion-resistant to

prion-susceptible cells (Supplementary Table S4) provided us with

an experimental approach to identify gene candidates associated with

a gain of prion susceptibility. We therefore determined genes that

were differentially expressed in revertants in the presence and

absence of RA (Supplementary Table S5) and compared this set of

genes with the candidate list of previously identified differentially

expressed genes between revertant and susceptible cells (Supplemen-

tary Table S2). Remarkably, eighteen of the previously identified

genes were also differentially expressed upon RA treatment (Fig 2B

and C): sixteen genes expressed in revertants, but not in susceptible

cells, were downregulated upon RA treatment, whereas two genes,

Nckap1 l and Tshz1, downregulated in revertants, but expressed in

susceptible cells, were induced in revertants under these conditions.

To validate the microarray data, we determined gene expression

levels by quantitative real-time PCR (qPCR) using dual-labelled

probes. Qualitative changes in gene expression values were fully

confirmed with minor differences in gene expression levels (Fig 2C).

Together these data provide evidence for the identification of

differentially expressed genes that are associated with prion suscep-

tibility.

Identification of a gene regulatory network associated with
prion propagation

We next examined in a systematic gene silencing approach whether

the loss of function of single candidates of the gene signature could

recapitulate the gain of susceptibility observed upon RA differentia-

tion of revertants (Fig 2 and Supplementary Table S4).

Due to the substantial number of gene candidates, we decided to

transiently co-express short hairpin RNAs (shRNAs) alongside with

green fluorescent protein (GFP) using an internal ribosomal entry

(IRES)-based bicistronic vector (pGIPZ, Fig 3B) and to enrich for

GFP-expressing cells by fluorescent-activated cell sorting (FACS,

Fig 3A, C and D). To validate this assay, we transfected susceptible

PK1 cells with five distinct shRNAs against Prnp and enriched from

a heterogeneous pool of fluorescent cells (Fig 3C) highly fluorescent

cells in the 4th decade of the logarithmic fluorescence scale

(Fig 3D). As shown in cultured cells, the enrichment of GFP-fluores-

cent cells was associated with greatly reduced PrP expression levels

(Fig 3E). In a proof-of-concept experiment, we then demonstrated

that transient Prnp silencing of prion-susceptible PK1 cells signifi-

cantly reduced the rate of prion propagation (Fig 3F). This enrich-

ment procedure was used subsequently to examine whether gene

silencing of each of our candidate genes affects prion replication

rates.

Remarkably, a transition from a resistant to a susceptible pheno-

type could be recapitulated by single knockdown of any one of nine

distinct genes: fibronectin 1 (Fn1), integrin a8 (Itga8), chromogranin

A (Chga), IQ motif-containing GTPase-activating protein 2 (Iqgap2),

interleukin 11 receptor, alpha chain 1 (Il11ra1), Micalc C-terminal

like (Micalcl), regulator of G-protein signalling 4 (Rgs4), 30-phospho-
adenosine 50-phosphosulphate synthase 2 (Papss2), and galactosyl-

transferase (Galt) (Table 1). A complete list of gene silencing data is

documented in Supplementary Table S6. In summary, these data

verify the identification of a gene regulatory network associated

with prion susceptibility.

Since the identified gene candidates were also expressed in

susceptible cells, albeit at much lower expression levels, we exam-

ined whether gene knockdown in these cells might enhance their

prion propagation kinetics further. Since S7, the cell clone with the

fastest kinetics of prion propagation (Fig 1B), showed poor transfec-

tion efficiencies with the pGIPZ vector, we used instead small inhib-

itory RNAs (siRNAs) to transiently silence gene expression with no

subsequent cell enrichment to address this question. Remarkably,

gene silencing of Fn1, Micalcl and Papss2 significantly increased the

rate of prion propagation by about twofold in S7 cells (Supplemen-

tary Table S7). Of note, knockdown of Nckap1l, a gene highly

expressed in susceptible cells and overexpressed in revertants by

fivefold after RA treatment (Fig 2), significantly reduced prion

susceptibility of S7 cells. This result confirms Nckap1l, a gene that

was shown to be differentially expressed in brains of prion-diseased

mice (Hwang et al, 2009) as a prion susceptibility gene.

The increased susceptibility of revertants may be due to several

factors, such as the uptake of prions, their transport to replication

sites, and the steady-state rates of synthesis and degradation (Weiss-

mann, 2004). To examine whether the identified genes affect the

steady-state levels of prion turnover, we silenced gene candidates in

chronically prion-infected cells (iS7) and determined relative changes

of prion levels 3 days after transfection with siRNA or scrambled

control RNA (Supplementary Table S8). Remarkably, a significant

increase of prion conversion rates was determined for all genes.

To investigate whether the identified genes affect prion propaga-

tion in a strain-specific manner, we challenged R7 cells with 22L

and determined changes in susceptibility (Supplementary Table S9).

The EMBO Journal Vol 33 | No 14 | 2014 ª 2014 The Authors

The EMBO Journal A gene regulatory network associated with prion replication Masue M Marbiah et al

1530

Published online: May 19, 2014 



Whilst a trend to increased prion propagation rates was observed

for all genes studied, except for Galt, statistically significant results

were obtained for more than half of the genes, including Fn1, Itga8,

Papss2, Chga, Il11ra1, and Lrrn4. We conclude that some of

the identified genes may control prion susceptibility in a strain-

independent manner.

To examine whether the increase in prion susceptibility by loss of

gene function is restricted to N2a-derived cells, we silenced a selec-

tion of candidate genes in CAD5 cells, a cell line derived from CNS

catecholaminergic-differentiated (CAD) cells (Mahal et al, 2007)

prior to RML infection. Knockdown of four out of eight candidate

genes (Fn1, Galt, Il11ra1, and Itga8) resulted in a significant increase in

susceptibility (Supplementary Table S10), indicating that control of

prion propagation by the identified genes is not restricted to N2a cells.

Prion modifiers are expressed at the extracellular matrix and
plasma membrane level

To characterise the subcellular location of prion modifier proteins,

we sourced suitable commercial anti-rabbit antibodies and

A

C

B

Figure 2. Identification of genes associated with a gain of prion susceptibility.

A Increased susceptibilities of revertant cell clones R2, R5 and R7 after retinoic acid (RA) treatment, replotted from Supplementary Table S4 for clarity.
B A Venn diagram shows the relation between gene candidates derived from two independent microarray studies. The number of genes differentially expressed

between susceptible and revertant clones (sus versus rev, Microarray 1) and revertant R7 cells in absence and presence of RA (RA versus vehicle, Microarray 2) is
shown. The intersection in red represents 18 genes that are common to both gene candidate lists.

C Gene expression values of 18 putative prion susceptibility genes are shown. Fold expression changes (FC) of differentially expressed genes between susceptible and
revertant cells and between mock- and RA-treated revertant R7 cells are shown for microarray (FDR < 0.01) and qPCR analysis, respectively, and ranked according to
their FC values on microarray. The statistical significance of gene expression differences by qPCR are presented as discrete P-values (Student’s t-test). Genes expressed
in revertant and susceptible cells are represented as positive and negative FC values, respectively. Genes downregulated and upregulated upon RA treatment are
presented as negative and positive FC values, respectively.
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co-immunolabelled candidate proteins and PrP (ICSM18) in fixed

and permeabilised S7 and R7 cells (Fig 4). All co-labelling studies

were conducted with highly cross-absorbed secondary antibodies to

exclude cross-reactivity. Protein expression levels of Fn1, Chga,

Lrrn4, and Il11ra1 were elevated in prion-resistant R7 compared to

susceptible S7 cells as anticipated from the corresponding gene

A

C D

E F

B

Figure 3. A gene silencing approach to validate genetic modifiers of prion propagation.

A Schematic representation of RNAi validation.
B pGIPZ vector used for bicistronic expression of shRNA and GFP.
C, D Enrichment of shRNA-expressing cells by gating highly GFP-positive cells using FACS. Fluorescence profiles of transfected cells before (C) or after (D) FACS

enrichment of GPF-positive cells are shown.
E Gene silencing of Prnp abrogates PrP protein expression at the plasma membrane. Revertant R7 cells were silenced with control shRNA (scrambled shRNA) and

shRNA Prnp, enriched for GFP-positive cells and plated into chamber slides for immunofluorescence labelling. After 3 days cells were fixed and labelled with anti-
PrP antibody ICSM18. Scale bar: 20 lm.

F Transient gene silencing of Prnp inhibits prion propagation. Prion-susceptible PK1 cells were transfected with shRNA against Prnp or non-silencing control (NSC),
enriched by flow cytometry, plated into 96-well plates at a cell density of 2 × 104 cells/well and 24 h later infected with a 10�5 dilution of RML mouse prions. After
three serial cell passages every 3–4 days, the number of PrPSc-positive cells was determined by ELISA. Mean values � SD are shown; a significant decrease in prion
propagation was observed for all shRNAs tested (P < 0.01).
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expression data (Fig 2). Furthermore, the expression of candidate

proteins in R7 was greatly reduced upon treatment with 0.5 lM RA

(Fig 4A–E). Fn1, a protein expressed at the extracellular matrix

(ECM) with a major role in cell adhesion, migration, and differentia-

tion, showed punctate, but no fibrillar structures, reminiscent of

cells with defects in matrix assembly (Yoneda et al, 2007) (Fig 4A).

Similarly, Chga, a secretory protein with a role in regulation of

secretory granule synthesis (Kim et al, 2001), was deposited at the

ECM as depicted in R7 cells (Fig 4B). Neither Fn1 nor Chga showed

colocalisation with PrP at the ECM level as documented by their

corresponding Pearson correlation coefficients (PCC, Fig 4A and B).

In contrast, Lrrn4 and Il11ra1, which were expressed at the ECM

and the membrane level, showed partial colocalisation with PrP

with PCC values of 0.55 � 0.09 and 0.36 � 0.14, respectively

(Fig 4C and D). An antibody against integrin a8 confirmed higher

protein expression levels in R7 in comparison with S7 cells;

however, no expression difference could be detected in presence

and absence of RA (Supplementary Fig S3A), in agreement with

gene expression levels (Fig 2). Micalcl, a putative binding protein of

extracellular signal-regulated kinase 2 (ERK2) (Miura & Imaki,

2008), was expressed at the ECM as shown by N-terminal fusion of

Miclacl with YFP (Supplementary Fig S3B).

Iqgap2, a cytoskeletal scaffolding protein, was expressed at the

membrane level (Supplementary Fig S3C). Since antibodies against

PrP and Iqgap2 were both raised in mice, double-labelling experi-

ments could not be performed. The protein subcellular location of

Rgs4, Fst, Papss2, and Galt could not be determined due to the lack

of specificity of commercial antibodies.

Detection of aberrant PrPd deposits at the ECM after delipidation
with acetone

To investigate how the expression of prion modifiers might interfere

with prion formation on a subcellular level, we sought to determine

PrPd by immunofluorescence (IF) on formaldehyde-fixed cells

according to established protocols (Veith et al, 2008; Marijanovic

et al, 2009; Goold et al, 2011). However, whilst >95% of chronically

infected S7 cells (iS7) were PrPSc-positive on SCA, the proportion of

cells with aberrant PrPd deposits revealed by IF after guanidinium

or formic acid treatment (Veith et al, 2008; Goold et al, 2011) did

not exceed 20% in agreement with previous studies (Goold et al,

2011) (Supplementary Fig S4B). We reasoned that procedural differ-

ences between the two assay types might account for differences in

the proportion of PrPd. To investigate whether heat-treatment of

cells after transfer to Elispot plates during SCA (Klohn et al, 2003),

a treatment known to cause membrane delipidation, may explain

these inconsistencies, we treated fixed cells with delipidating

solvents prior to immunolabelling with anti-PrP antibody ICSM18.

Delipidation of fixed cells with acetone, a solvent that preferentially

dissolves neutral lipids, such as triacylglycerols and cholesterol

esters, but not with methanol a solvent that dissolves polar lipids,

such as phospholipids and glycosphingolipids, quantitatively

removed neutral lipids in cells, as evidenced by the loss of C1-

BODIPY 500/510 fluorescence (Fig 5A). C1-BODIPY-500/510 is a

fatty acid analogue, which is deposited in triacylglyceride-rich lipid

droplets. Similar results were obtained with BODIPY-cholesterol

(Supplementary Fig S5). Strikingly, acetone pretreatment followed

Table 1. Gene silencing of distinct gene candidates in revertants is associated with increased prion susceptibility. Revertant R7 cells transiently
expressing shRNA against distinct gene candidates using the bicistronic vector pGIPZ were enriched for highly GFP-fluorescent cells and
subsequently infected with a 2 × 10�5 dilution of RML mouse prions. Rates of prion propagation were determined by SCA and normalised against
cells transfected with non-silencing control vectors (NSC GIPZ). Relative rates of prion propagation expressed as fold change (FC) to controls
(NSC) � SD for at least three independent experiments are shown. The level of gene knockdown (% kd) was determined as described in Materials
and Methods.

Gene symbol shRNA construct

Rel. rate of prion propagation Gene silencing

FC SD t-test % kd SD

Chga shRNA-Chga.1 4.41 1.36 9.8 × 10�7 58 12

shRNA-Chga.2 4.30 0.80 4.3 × 10�8 55 21

Iqgap2 shRNA-Iqgap2.4 5.65 1.07 1.3 × 10�17 55 27

Fn1 shRNA-Fn1.2 3.15 0.66 5.6 × 10�5 72 12

shRNA-Fn1.6 3.39 0.42 3.5 × 10�10 89 17

Itga8 shRNA-Itga8.2 2.70 0.12 2.8 × 10�9 85 13

IL11ra1 shRNA-IL11ra1.1 2.46 0.92 5.6 × 10�5 54 8

shRNA-IL11ra1.2 3.15 0.79 2.6 × 10�7 84 18

Micalcl shRNA-Micalcl.1 2.85 0.59 5.9 × 10�9 95 15

shRNA-Micalcl.3 2.47 0.16 9.2 × 10�6 83 16

Rgs4 shRNA-Rgs4.5 3.44 0.99 1.5 × 10�7 80 16

shRNA-Rgs4.7 2.91 0.27 1.7 × 10�8 65 17

Papss2 shRNA-Papss2.1 2.32 0.13 1.6 × 10�9 48 9

shRNA-Papss2.2 2.36 0.30 4.7 × 10�9 70 17

Galt shRNA-Galt.1 1.60 0.32 2.2 × 10�3 42 20

shRNA-Galt.4 1.82 0.50 2.5 × 10�5 41 17
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by denaturation with guanidinium thiocyanate (GTC) revealed PrPd

deposits at the basement membrane level of iS7 cells, a phenotype

that was absent in uninfected cells (Fig 5B). Similar labelling

patterns were shown with Fab fragments of ICSM18, thus exclud-

ing the possibility of PrP redistribution upon binding of a divalent

antibody (Fig 5B). A colocalisation of PrPd with neural cell

adhesion molecule (NCAM) confirmed the deposition of PrPd at

the ECM (Fig 5C, Supplementary Video S1). In contrast to the

detection of abundant PrPd deposits at the ECM following acetone

and GTC treatment, PrPd was detected predominantly in endoso-

mal and perinuclear areas following formic acid or methanol/GTC

treatment (Supplementary Fig S4A). Punctate PrPd deposits in iS7

cells at the ECM are visible upon treatment with acetone and

GTC, but are absent in controls (Supplementary Fig S4C). Abun-

dant punctate PrPd-positive patches were also detected on

membranes above ECM level in delipidated iS7 cells (Supplemen-

tary Fig S4D). The detection of PrPd deposits following acetone

delipidation and GTC treatment is not restricted to N2a cells as

shown for chronically infected prion-permissive CAD5 cells (Mahal

et al, 2007) (Supplementary Fig S4E). In summary, our results

suggest that the cryptic ICSM18 epitope in PrPd deposits at the

ECM is masked by neutral lipids.

Distinct phenotypes of prion-modulatory proteins at the ECM of
chronically infected cells

The detection of PrPd deposits at the ECM of chronically infected

cells now enabled us to investigate the subcellular distribution of

prion-modulatory proteins in relation to aberrant PrPd. Remarkably,

cells expressing Fn1 at the ECM level were completely devoid of

PrPd deposits (Fig 6A), implying that Fn1 expression is negatively

correlated with PrPd deposition in susceptible iS7 cells. Similarly,

Chga, which is poorly expressed in iS7 cells, does not colocalise

with PrP (Fig 6B). Lrrn4 was expressed in chronically infected cells,

albeit with a low level of colocalisation with PrP at the plasma

membrane (Fig 6C). Of note, integrin a8 colocalised with aberrant

PrPd deposits at the ECM (Fig 6D), but not at the plasma membrane

(Supplementary Fig S3A).

Disruption of integrin a8 signalling inhibits Fn1-mediated
metalloproteinase activation and augments the rate of
prion replication

The question remained how the expression and deposition of

secreted proteins might inhibit prion replication and aggregate

formation at the ECM. Of note, RA-mediated remodelling of the

ECM mimicked a gain of susceptibility, suggesting that matrix

homeostasis and prion replication may be affected by common

signalling pathways. Cellular differentiation is associated with ECM

remodelling, regulation of matrix metalloproteinases (MMPs), reor-

ganisation of the actin cytoskeleton, and changes in cell shape.

These changes affect integrin signalling and the integrin-mediated

crosstalk with growth factors. In our study, gene silencing of Itga8

and Fn1 was associated with a gain of susceptibility (Table 1). To

examine whether prion replication is affected by Fn1-mediated

integrin signalling, we incubated revertants and susceptible cells

with RGD, a peptide that blocks the interaction between Fn1 and

integrins (Koivunen et al, 1995) (Fig 7A). Whilst two integrins of

the b1 subunit family, integrin a5 and integrin a8, harbour an RGD

domain (Margadant et al, 2011), only the latter is expressed in

susceptible and revertant cells. Remarkably, incubation of R7 cells

with RGD inhibited secretion of activated MMP2 and MMP9

(Fig 7B) and significantly increased the susceptibility of R7, but not

of S7 cells (Fig 7C). Furthermore, a loss of function of MMP2 and

MMP9 significantly increased the number of PrPSc-positive cells in

R7 cells (Fig 7D), but not in S7 cells (Fig 7E). This argues that the

integrin a8-dependent activation and secretion of MMP2/9 in revert-

ant R7 cells are mediated by Fn1 and associated with an inhibitory

environment for prion replication at the ECM.

Papss2 loss of function leads to undersulphation of heparan
sulphate proteoglycans and augments prion susceptibility

Papss2 (30-phosphoadenosine-50-phosphosulphate (PAPS) synthase

2), one of the principal enzymes required for the sulphation of extra-

cellular matrix molecules (Wang et al, 2012), catalyses the synthesis

of activated sulphate, PAPS, in cells. Papss2 is expressed in rever-

tants, and loss of function is associated with increased susceptibility

(Table 1, Supplementary Table S8). By using a sulphate-specific

anti-heparan sulphate (HS) antibody (David et al, 1992), we show

that loss of Papss2 function in prion-resistant revertants leads to

undersulphation of heparan sulphate proteoglycans (HSPGs,

Fig 8A). A similar effect was achieved by incubation of cells with

sodium chlorate, an inhibitor of sulfurylase, required for the forma-

tion of PAPS (Fig 8B). In agreement with loss of Papss2 function in

chronically prion-infected cells (Supplementary Table S8), the

number of PrPSc-positive cells significantly increased at 3 mM chlo-

rate (Fig 8D). The dose-response curve is biphasic due to a loss of

cell viability at concentrations higher than 3 mM chlorate. Treatment

of chronically infected cells with 30 mM chlorate in a previous study

led to an inhibition of PrPSc accumulation (Ben Zaken et al, 2003).

The discrepancy between this result and our study remain unex-

plained. To unambiguously examine whether the 10E4 epitope

colocalises with PrPC, we covalently conjugated anti-HS (mouse

IgM) and ICSM18 (mouse IgG1) with Alexa Fluor dyes (Fig 8E). Our

data suggest that the 10E4 epitope colocalises neither with PrPC in S7

and R2 cells, nor with PrPd deposits in chronically infected cells

(Supplementary Table S11). In addition, a monoclonal antibody

Figure 4. Prion modifiers are expressed at the extracellular matrix and plasma membrane level.

A–D Representative images of fixed and permeabilised cells labelled with antisera against (A) Fn1, (B) Chga, (C) Lrrn4, and (D) Il11ra1. Images for Lrrn4 (C) were
collected at mid-cell level, all other images at ECM level. Differences in protein expression levels between S7, R7 cells and R7 cells in presence of RA, respectively,
are shown and are in agreement with gene expression data (Fig 2).

E The relative abundance of cells positive for Fn1, Chga, Lrrn4, and Il11ra1 in susceptible S7 and revertant R7 cells, in presence and absence of RA, analysed using
Volocity image analysis software as described in Methods are shown. Mean numbers � SD for 20 frames are shown. The degree of colocalisation between
candidate proteins and PrP was determined in R7 cells and is represented as Pearson’s correlation coefficients (PCC): (A) 0.11 � 0.04, (B) 0.20 � 0.12, (C)
0.55 � 0.09, and (D) 0.36 � 0.14.
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against N-unsubstituted heparan sulphate residues (JM403) (Van-

denborn et al, 1992), which is unaffected by the sulphation state of

HSPGs (Supplementary Fig S6), was used to test whether PrPC

colocalises with HSPGs. As shown in Fig 8F and Supplementary

Table S11, no colocalisation was observed between JM403 epitope

and PrP in uninfected and chronically infected cells.
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Phenotypic differences in PrPC densities at the ECM upon loss of
Papss2 and Fn1 function

Heparan sulphate mimetics are potent inhibitors of prion propaga-

tion (Schonberger et al, 2003), and heparin was suggested to

displace PrPC from lipid rafts (Taylor et al, 2009). We therefore

examined whether Papss2 knockdown is associated with phenotypic

changes in PrPC deposition in cells. Remarkably, Papss2 as well as

Fn1 silencing markedly altered PrPC distribution at the ECM

(Fig 9A). Serial scans along the z-axis in knockdown cells showed a

higher granularity and fluorescence intensity of PrPC at ECM, when

compared to control (scrambled RNA) cells. In contrast, ectopic

expression of Prnp (Prnp (pLNXC2)) led to increased fluorescence at

plasma membrane, but not at the ECM level. To quantify these

phenotypic alterations, we recorded serial z-stacks, determined the

fluorescence intensity profiles of single cells, and computed the

mean fluorescence intensities (Supplementary Fig S7A–C). When

plotted against the distance from substrate, the mean fluorescence

intensities of PrPC in Papss2- and Fn1-silenced cells increased by

more than 2-fold (Fig 9B). A shift of the maximal intensity to larger

distances from substrate in Fn1-silenced cells indicates that the

amount of PrPC deposited is increased. A significant increase in PrPC

expression levels in Papss2- and Fn1-silenced, but not in Itga8-

silenced cells was confirmed on Western Blot (Fig 9C and D).

Discussion

We here present the first evidence for a gene regulatory network

associated with susceptibility to prion propagation and modulated

by the differentiation state of cells. Our data suggest that prion

conversion is controlled by expression of genes with a role in the

homeostasis of the ECM, a compartment characterised by abundant

deposition of aberrant PrPd in susceptible cells. Silencing of nine

gene candidates expressed in prion-resistant revertants, Fn1, Itga8,

Chga, Iqgap2, Il11ra1, Micalcl, Papss2, Galt, and Rgs4, significantly

increased the rate of prion propagation. The RA-mediated down-

regulation of prion modifier genes led to a marked gain of susceptibil-

ity, suggesting that the rate of prion propagation is associated with

transcriptional regulation of gene candidates. Loss of Papss2 func-

tion led to undersulphation of HSPGs, increased deposition of PrPC

at the ECM, and a concomitant increase in prion conversion, indicat-

ing that HSPG sulphation is negatively correlated with susceptibility.

Furthermore, inhibition of Fn1 binding to integrin a8 by the RGD

peptide inhibited secretion of MMP2/9 and was associated with an

increase in prion susceptibility. These data provide evidence that

the ECM plays a critical role in the control of prion conversion.

Prion diseases are a group of fatal infectious neuronal disorders

that are associated with the conversion of host-encoded PrP to

misfolded pathogenic conformers and neurotoxicity (Prusiner &

DeArmond, 1987). We here present the first in vitro evidence of an

aberrant deposition of PrPd at the ECM, a compartment that is

deemed critical for prion replication (Caughey & Raymond, 1993b;

Gabizon et al, 1993; Caughey et al, 1994). Delipidation with acetone

and denaturation are critical to reveal PrPd deposits at ECM and

membrane level of cells, suggesting that in their aggregated state,

the epitope is masked by lipids.

The ECM not only provides structural support for force transmis-

sion and tissue structure maintenance, but also plays a critical role

in the regulation of physiological processes such as differentiation,

migration, and intercellular communication. Transmembrane recep-

tor proteins of the integrin family mechanically couple the actin

cytoskeleton to the ECM by binding to Fn1 and other adhesion

molecules, such as collagen and vitronectin. A convincing body of

evidence suggests that MMP activation and expression is triggered

by interaction of the cell adhesion molecule Fn1 or its proteolytic

fragments with integrins (Esparza et al, 1999; Schedin et al, 2000;

Yan et al, 2000; Thant et al, 2001; Forsyth et al, 2002; Loeser et al,

2003; Jin et al, 2011). This interaction can be inhibited by the RGD

peptide (Koivunen et al, 1995), a tripeptide domain located in the

10th type-III module of Fn1 and site of cell attachment via b1 inte-

grins. Integrin a8 regulates cell adhesion and migration by binding

to Fn1, vitronectin, and tenascin-C in an RGD-dependent manner

(Muller et al, 1995; Schnapp et al, 1995; Denda et al, 1998; Benoit

et al, 2009). Remarkably, disruption of Fn1 binding to integrin a8
with the RGD peptide increased susceptibility and inhibited secre-

tion of activated MMP2/9.

Whilst expression of nine prion modulators in revertants is nega-

tively correlated with prion susceptibility, incubation of revertants

with RA downregulated 18 gene candidates and led to a significant

increase in prion propagation. In accord with this study, RA was

shown, in human arterial smooth muscle cells, to inhibit the

expression of Fn1 and MMPs, a phenotype that was associated with

inhibition of migration and cell invasion (Axel et al, 2001; Scarpa

et al, 2002).

A large body of evidence suggests that sulphated glycans and

heparan sulphate mimetics act as potent inhibitors of prion propaga-

tion (Caughey & Race, 1992; Caughey et al, 1993a, 1994; Schonber-

ger et al, 2003). Conversely, association of endogenous sulphated

glycosaminoglycans (GAGs) with PrPd deposits in vivo was taken as

evidence that they may facilitate PrPd formation (McBride et al,

1998). Inhibition of PAPS formation by two distinct approaches in

this study, Papss2 silencing and inhibition of sulfurylase, was associ-

ated with undersulphation of HSPGs and increased prion susceptibil-

ity. Our study does not support a direct interaction of sulphated

HS chains with PrPC in vitro, as shown with an anti-HS antibody,

10E4. In addition, no colocalisation between PrPC and HSPGs

was observed with the anti-HS antibody JM403. Heparin, a highly

Figure 5. Aberrant deposition of PrPd in the extracellular matrix of cells revealed after delipidation with acetone.

A Susceptible S7 cells were labelled with 1 lM C1-BODIPY 500/510 (green label) for 12 h, fixed, and treated for 1 min with ice-cold acetone, methanol or PBS. Cells
were counter-stained with ICSM18 (red label).

B Chronically infected iS7 cells and uninfected S7 cells were fixed, delipidated with acetone or treated with PBS. All samples were denatured with 3 M GTC and washed
at least five times with PBS before labelling with anti-PrP antibody ICSM18 or ICSM18 Fab fragment (Fab).

C Infected iS7 and uninfected S7 cells were fixed, delipidated with acetone, and denatured with 3 M GTC prior to labelling with anti-NCAM and ICSM18 (anti-PrP). The
degree of colocalisation, expressed as PCC values are 0.42 � 0.08 for iS7 cells and 0.56 � 0.08 for uninfected S7 cells.

Data information: Scale bar, 20 lm.
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sulphated glycosaminoglycan was shown to displace PrPC from rafts

in a previous study and to promote its endocytosis (Taylor et al,

2009).

To address the question of how the sulphation status of HSPGs

may affect prion propagation, we examined the distribution of PrPC

in Papss2-silenced R7 cells. Significantly more PrPC was deposited

in Papss2 knockdown cells compared to controls, a phenotype that

was also observed upon Fn1 silencing. Notably, whilst ectopic

expression of PrPC failed to increase the rate of prion replication in

revertants (Supplementary Table S1), silencing of Papss2 and Fn1

led to increased ECM deposition of PrPC (Fig 9) with a concomitant

increase in conversion rates (Table 1 and Supplementary Table S8).

A

B

C

D

Figure 6. Distinct phenotypes of prion-modulatory proteins at the ECM of chronically infected cells.

A–D Chronically infected iS7 cells were fixed, delipidated with acetone, and denatured with 3 M GTC. Cells were then co-labelled with ICSM18 and (A) anti-Fn1, (B) anti-
Chga, (C) anti-Lrrn4, and (D) anti-Itga8. After washing of primary antibodies with sterile PBS, cells were incubated with highly cross-absorbed anti-mouse (ICSM18)
and anti-rabbit (all other antibodies) Alexa Fluor-conjugated secondary antibodies. Representative images are shown. PCC values: (A) 0.03 � 0.03, (B) 0.08 � 0.03,
(C) 0.16 � 0.09 and (D) 0.28 � 0.07.

Data information: Scale bar, 20 lm.
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This implies that the subcellular deposition, rather than the relative

levels of PrPC expression, correlates with the corresponding prion

conversion rates and may be due to a decrease in ECM proteolysis

upon Fn1 downregulation ((Axel et al, 2001) and this study) and/or

a disruption of FN matrix assembly by undersulphated HSPGs

(Galante & Schwarzbauer, 2007). We therefore suggest that PrPC,

deposited as a result of perturbed ECM homeostasis, may be a suit-

able substrate for prion conversion. A perturbation of matrix assem-

bly has previously been reported in association with mutant

PAPSS2. Chondrodysplasias, severe bone disorders, are associated

with mutations in PAPSS2 and SLC26A2 and lead to reduced

sulphate uptake, undersulphation of GAGs, and defective FN matrix

assembly in cells (Ikeda et al, 2001; Galante & Schwarzbauer,

2007). Strikingly, a member of the Slc26a family of sulphate trans-

porters, Slc26a4, is present in the gene signature of prion modifiers

in our study, but its loss of function did not affect prion susceptibility,

most likely due to the functional redundancy of this protein family,

since Slc26a2, Slc26a4, Slc26a6, Slc26a8, and Slc26a11 are highly

expressed in revertants.

A loss of ECM proteins in gamma-aminobutyric acid (GABA)-

interneurons of Creutzfeldt-Jakob patients was suggested to precede

extracellular prion deposition (Belichenko et al, 1999).

Other prion modifiers identified in this study are associated

directly or indirectly to ECM homeostasis and remodelling. Chga, a

member of the granin family of neuroendocrine secretory proteins,

is located in secretory vesicles of neurons and neuroendocrine cells

with a suggested role as a modulator of cell adhesion. Proteolytic

processing of Chga to several bioactive peptides by plasmin (Metz-

boutigue et al, 1993; Colombo et al, 2002) and other proteases has

been linked to modulation of cell adhesion (Metzboutigue et al,

1993) and negative regulation of angiogenesis (Belloni et al, 2007).

Lrrn4, a transmembrane protein expressed in the hippocampus and

cortex, contains leucine-rich repeat (LRR) motifs and fibronectin

type-III-like repeats and is covalently linked to glycosaminoglycan

side chains in its extracellular region (Bando et al, 2012). Lrrn4 was

suggested to play an important role in hippocampus-dependent

long-lasting memory (Bando et al, 2005). Il11ra1 is a type I cytokine

receptor which contains two fibronectin type-III domains and one

Ig-like C2-type (immunoglobulin-like) domain. Ablation of Il11ra1 is

associated with defective decidualisation in the uterus of mice and

leads to alterations in ECM components (White et al, 2004), but its

role in ECM regulation is unknown.

In summary, we identified a gene regulatory network associated

with prion replication and present evidence for the control of prion

conversion at the ECM by an integrin-dependent activation of MMPs

and the sulphation state of HSPGs. That genes involved in ECM

homeostasis affect the kinetics of prion replication might help us to

better understand the selective vulnerability of different neuronal

populations during neurodegeneration (Guentchev et al, 1999;

Siskova et al, 2013).

Materials and Methods

Antibodies

Mouse monoclonal anti-PrP (ICSM18) was obtained from D-Gen

Limited (London, UK). Rabbit polyclonal anti-Fn1 (Cat# ab2413)

was obtained from Abcam. Rabbit polyclonal anti-Lrrn4/Lrch4

(Cat# GTX1 12459) was purchased from GeneTex. Rabbit polyclonal

antibody anti-IL11ra1 (Cat# 10264-1-AP) was purchased from

Proteintech. Rabbit polyclonal anti-Itga8 (Cat# sc-25713) and rat

monoclonal anti-NCAM (clone H28-123; Cat# sc-59934) were

purchased from Santa Cruz. Rabbit polyclonal anti-CHGA (Cat#

HPA017369) was obtained from Sigma. Mouse monoclonal anti-HS

antibodies JM403 (Cat# 370730-1) and 10E4 (Cat# 370255-1) were

obtained from Seikagaku (AMS Biotechnology, Abingdon OX14 4SE,

UK). Mouse monoclonal anti-IQGAP2 (clone A2) was kindly provided

by Prof. George S. Bloom. This antibody, a murine monoclonal IgG2a

antibody against IQGAP2, was produced by hybridoma cells derived

by fusion of Sp2/0-Ag14 myeloma cells with splenic lymphocytes

isolated from a male A/J mouse that was immunised with purified,

recombinant his-tagged human IQGAP2. The IQGAP2 was expressed

A

B

C

D E

Figure 7. Disruption of integrin a8 signalling inhibits Fn1-mediated
metalloproteinase activation and augments the rate of prion replication.

A Schematic representation of RGD effect.
B Incubation of R7 cells with RGD peptide inhibits secretion of activated

MMP2/9 as shown by gelatine zymography.
C Preincubation with RGD of R7, but not S7 cells significantly increases the

number of PrPSc-positive cells after prion infection.
D, E Transient gene silencing of MMP2 and MMP9 using siRNA significantly

increases the number of PrPSc-positive cells in R7 (D), but not in S7 (E)
cells.
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in baculovirus-infected high five insect cells and purified by nickel

affinity chromatography. The IQGAP2 coding sequence in the bacu-

lovirus was obtained by PCR amplification from a human brain

cDNA library.

Cell culture

N2a-derived cell lines were maintained in OptiMEM containing 10%

foetal calf serum and 1% penicillin/streptomycin (OFCS). Cad5 cells

A B

C D

E F
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were maintained in OptiMEM, supplemented with 10% bovine

growth serum (HyClone) and 1% penicillin/streptomycin.

Quantification of prion infection and rates of prion replication

Differences in the kinetics of cellular prion propagation were deter-

mined by quantifying the number of prion-infected cells during the

course of three cell passages after infection using the Scrapie Cell

Assay (SCA) (Klohn et al, 2003). The SCA is based on the micro-

scopic detection of PK-resistant PrP (PrPSc) in prion-permissive cells

in an automated manner using spot detection software (Imaging

Associates, UK) and Zeiss KS Elispot system. Cells were infected

using serially diluted brain homogenates with known titres and the

number of PrPSc-positive cells expressed as Tissue Culture Infectious

Units (TCIU). Briefly, 1.8 × 104 cells were plated into wells of a

96-well plate. After 16 h, cells were incubated with 300 ll aliquots
of serially diluted RML brain homogenate for 3 days. Cells were

then split 1:8 for three subsequent passages, and aliquots of

2.5 × 104 cells transferred onto Elispot plates (MultiScreen HTS-IP

Filter Plate, Millipore). If not stated otherwise, the number of PrPSc-

positive cells was determined after digestion with 2.2 mU (0.5 lg)
recombinant proteinase K (Roche Diagnostics) per millilitre of lysis

buffer. The specific activity of PK (44 U/ml) was determined with

the Chromozyme assay (Roche Diagnostics). Infectious titres were

quantified from dilution series of RML brain homogenate I2424 (8.4

log LD50 units/g brain) and are expressed as tissue culture infec-

tious units (TCIU) (Klohn et al, 2003). To determine the rate of

prion replication, cells were infected with concentrated supernatants

from chronically prion-infected cells. Due to the small size of these

prion-infected nanoparticles, the inoculum does not have to be

diluted out by serial cell passages as compared to the standard

protocol (Klohn et al, 2003).

RNA isolation and quality control

RNA from 8 × 106 cells was isolated using RNeasy plus mini kit

(Qiagen) with an average yield of 100 lg. To remove DNA contami-

nations, aliquots of RNA (10–30 lg) were incubated with 7 U

RNase-free DNase I (Qiagen) in 50 ll RDD buffer at RT for 10 min.

This step was repeated twice followed by heat inactivation of DNase

at 70°C for 5 min. Subsequently, RNA was purified using RNeasy

MinElute cleanup kit (Qiagen) according to the instructions of the

manufacturer, and the RNA concentration was determined using a

NanoDrop spectrophotometer (Labtech International). The purity of

RNA samples was assessed using quantitative real-time PCR.

Briefly, GAPDH expression levels of RNA isolates from cells were

determined using one-step RT–PCR master mix (Applied Biosys-

tems) with a rodent GAPDH probe (Applied Biosystems) in presence

and absence of reverse transcriptase (RT). Differences between cycle

threshold (Ct) values of purified RNA samples in presence and

absence of RT were typically > 20, corresponding to a 40-fold differ-

ence between RNA over contaminating DNA concentration,

confirming the quality of RNA isolates. Subsequently, cDNA was

synthesised from 200 ng of total RNA from three biological repli-

cates per cell line with cDNA archive kit (Applied Biosystems)

according to the manufacturer’s instructions.

Microarray analysis

Relative gene expression levels were determined using GeneChip

Mouse Genome 430 2.0 arrays (Affymetrix). Hybridisation, scan-

ning, and microarray analysis were conducted at the Wolfson Insti-

tute for Biomedical Research and the UCL Cancer Institute.

Microarrays were scanned using Genechip scanner 3000 and images

analysed using GCOS version 1.2. Signal intensities were determined

using one-step Tukey’s biweight estimate with consideration of

mismatch values to account for stray signal. Internal array controls

were cross-checked for quality control. Log intensity ratios (M)

versus average log intensity (A) were determined using R and

Bioconductor and plotted before and after robust multi-array

average (RMA)-normalisation. Box plots of array distributions are

shown in Supplementary Fig S8. Pairwise significance analysis was

performed using t-test with P-value cut-off of 0.01. The raw micro-

array data are deposited at NCBI Gene Expression Omnibus (GEO,

accession number GSE56275).

Quantitative real-time PCR

Relative gene expression levels were estimated by quantitative real-

time PCR (qPCR) using 7500 Fast Real-Time PCR System (Applied

Biosystems). Gene-specific dual-labelled probes (50-FAM/30-
TAMRA) and primers were designed within the target sequence of

the corresponding Affymetix probes using Primer Express software

(Applied Biosystems) and synthesised by Eurofins MWG Operon

(Ebersberg, Germany). Duplex PCR was carried out using TaqMan

Gene Expression Master Mix (Applied Biosystems) in presence of

VIC-conjugated mouse actin B (Actb) or Gapdh (Applied Biosys-

tems). Cycling was at 50°C for 2 min, 95°C for 10 min, followed by

40–45 cycles of 95°C for 15 s, and 60°C for 1 min. Relative expres-

sion levels were calculated from serially diluted cDNA and were

normalised to Actb or Gapdh.

Overexpression of PrPc

To overexpress PrPc in PK1 subclones, 1.2 × 105 cells were

plated per well of a 6-well plate and transfected with 2 lg of

Figure 8. Loss of Papss2 function leads to undersulphation of heparan sulphate proteoglycans.

A, B R2 cells were transfected with siRNA against Papss2 and scrambled RNA control (A) or with 300 lM sodium chlorate and vehicle (PBS, (B)). After 3 days, cells were
labelled with an anti-heparan sulphate (HS, 10E4) antibody and fluorescence intensities recorded at different magnifications (top and bottom panel).

C Quantitative analysis of fluorescence intensities using Volocity.
D Dose-response effects of sodium chlorate on the number of PrPSc-positive cells in chronically infected cells (iS7) and cell viability, assessed by quantifying changes

in cellular ATP levels using Ultra-Glo luciferase assay (Promega) in parallel experiments. Statistically significant differences (P < 0.001) between control and
chlorate treatments are denoted (**).

E, F No colocalisation between PrP and the 10E4 epitope (E) and between PrP and the JM403 epitope (F) was observed using covalently Alexa Fluor-conjugating
antibodies ICSM18 and anti-HS in the cell types specified.
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a murine Prnp expression vector or empty pLNCX2 vector,

respectively, in presence of Lipofectamine 2000 (Invitrogen,

Paisley, UK) according to the manufacturer’s specifications. After

24 h, cells were expanded into 10-cm Petri dishes and selected

the following day with 400 lg neomycin per ml OFCS. To

exclude clonal effects on susceptibility levels, pools of antibiotic-

resistant cells were used for experiments after 7–10 days of

selection.

A

B

C D
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Cloning shRNAs into pGIPZ and pRetroSuper

Short hairpin RNA (shRNA) constructs were expressed as human

microRNA-30 (miR30) primary transcripts and contain a Drosha

processing site. The hairpin stem is a 63-nucleotide (nt) stretch and

consists of 22-nt sense dsRNA, a 19-nt loop (tagtgaagccacagatgta)

from human miR30, followed by the 22-nt antisense dsRNA, and is

flanked by miR30 flanking sequence on the 50 (tgctgttgacagtgagcg)
and 30 (tgcctactgcctcgga) end of the stem. The design of shRNA was

conducted with open-source algorithms from Thermo Scientific (si-

DESIGN Center tool) and the Hannon laboratory (shRNA retriever).

19-nt oligonucleotides were extended to 22nts using shRNA retriever.

Constructs were amplified using Vent polymerase, the forward

primer 50-cagaaggctcgagaaggtatattgct gttgacagtgagcg-30 and the

reverse primer 50-ctaaagtagccccttgaattccg aggcagtaggca-30, contain-

ing XhoI and EcoRI restriction sites, respectively, according to the

specification of the manufacturer Thermo Scientific. All 22-nt sense

shRNA sequences used for gene silencing of target genes in this

study are listed in Supplementary Table S12.

To silence Prnp expression in N2a cells a 19-mer, 50-taggagatctt-
gactctga-30, targeting the 30 UTR of Prnp, was annealed and ligated

into BglII and HinDIII sites of pRetroSuper vector and packaged into

retroviral particles using Phoenix eco cells. Prion-susceptible PK1-10

cells were infected with viral supernatants in presence of 8 lg
polybrene per ml OFCS, and antibiotic-resistant clones were selected

with 4 lg puromycin/ml medium. Clone PK1-10/Si8kd (PK1 Prnp-

RNAi) failed to propagate prions. Gene silencing by targeting of the

30UTR region of Prnp enabled the reconstitution of PrPc expression

with a construct harbouring the Prnp open-reading frame.

Generation of a Micalcl-YFP fusion protein

Micalcl (NM_027587) is poorly characterised, and Mammalian Gene

Collection (MGC) clones are unavailable. We therefore assembled

the full-length 2-kb coding sequence from synthetic gene fragments

using gBlocks (Integrated DNA Technologies, IDT). Briefly, five

gBlocks with a size ranging from 300 to 500 bp with flanking 20 bp

complementary overhangs were designed and synthesised by IDT.

Two and three gBlocks were assembled, respectively, using Gibson

assembly master mix (New England Biolabs) according to the

specification of the manufacturer. The product was amplified

with forward primer 50-atgaaccaaagagcaccatcgcctccaaagg-30, reverse
primer 50-tcaagtcctgctgagctgacagcctctgg-30 and AccuPrime Taq DNA

polymerase high fidelity (Life Technologies). Micalcl was then

cloned into the Gateway pCR8/GW/TOPO vector (Life Technologies)

and transformed into TOP10 chemically competent E. coli and grown

at 37°C overnight on agar plates, containing 100 lg spectinomycin

per ml agar. Five colonies were picked and expanded, and plasmid

DNA was isolated and purified using Qiagen spin miniprep kit. Plas-

mid-containing colonies were identified by EcoRI restriction diges-

tion and sequenced to confirm the correct orientation of the insert.

Micalcl was then transferred into a Gateway vector, pEYFP_C1

DEST, kindly provided by Prof. Stefan Wiemann (DKFZ, Germany)

by recombinational cloning using LR Clonase II (Life Technologies).

Gene silencing in cells and FACS enrichment

For gene silencing experiments, 1.1 × 106 R7 cells were plated into

6-cm dishes and grown for 16 h. Five lg of pGIPZ vector, harbour-

ing shRNA of the gene target, and 5 ll PLUS (Life Technologies)

were added to 500 ll FBS-free OptiMEM and incubated for 5 min at

RT. Seven microlitres of LTX (Life Technologies) were added, and

the DNA-lipid mix incubated for 20 min. Cell medium was then

replaced with DNA-lipid complex in a total of 3 ml OFCS. After

24 h, fluorescent cells were resuspended and enriched using a

MoFlo (Beckman Coulter) according to the instructions of the manu-

facturer. Briefly, shRNA-expressing cells were enriched from a

heterogeneous pool of fluorescent cells by gating GFP-positive cells

in the 4th decade of the logarithmic fluorescence scale (see Fig 3D).

FACS-enriched cells were counted using a Coulter Counter Z2 (Beck-

man Coulter) at an upper threshold of 36 and a lower threshold of

12 and plated into wells of a 96-well plate at 1.8 × 104 cells per well.

After 16 h, cells were infected with 2 × 10�5 RML and processed

according to the SCA protocol above.

Transient knockdown of gene candidates in cells without

enrichment was conducted with double-stranded RNA dicer

substrates (siRNAs) obtained from IDT. Briefly, 2 nmoles of siRNA

was reconstituted in 200 ll duplex resuspension buffer (IDT).

RNA-lipid complex formation was performed by adding 4 ll siRNA
and 5.3 ll DharmaFect 3 (Thermo Scientific) to 100 ll FBS-free

OptiMEM. After 20 min, RNA-lipid complexes were added to a total

volume of 2 ml OFCS and combined with 2 ml of cell suspension

at a concentration of 1 × 105 cells per ml. Aliquots of 300 ll were

then transferred out into 12 wells of a 96-well plate. After 2 days,

cells were infected with RML and split the following day at a split

ratio of 1:8. Cells were then processed according to the SCA proto-

col above.

Detection of PrPd deposits

Aliquots of 5 × 104 chronically infected or uninfected N2a cells were

plated into wells of 8-well chamber slides (Thermo Scientific) and

cultured for three to four days. Cells were fixed with 4% formalde-

hyde/PBS for 12 min and washed once with PBS. Prolonged fixation

greatly impedes PrPd detection and has to be optimised for each cell

line. To remove lipids, cells were incubated for 30 s with chilled

Figure 9. Phenotypic differences in PrPC densities at the ECM upon Papss2 and Fn1 loss of function.

A Gene expression of Papss2 and Fn1 was silenced in R7 cells prior to immunolabelling with ICSM18. In addition, Prnp was overexpressed using pLNCX2 vector.
Representative images of serial confocal z-stacks, acquired at identical laser setting, are shown.

B Mean fluorescence intensities of Papss2- and Fn1-silenced cells labelled with ICSM18 and anti-mouse Alexa Fluor 488 antibodies were acquired according to the
procedure described in Supplementary Fig S7. Mean fluorescence intensities of at least 40 intensity profiles � standard error of the means, as well as upper and
lower limits of 95% confidence intervals are shown.

C, D PrPC protein expression levels in R7 cells at 3 days after transfection with siRNA against Papss2, Fn1, Itga8, and scrambled RNA control are shown (C) and
quantified for three biological repeats with b-actin as an endogenous control (D; anti-actin, clone ACTN05 (C4), Abcam). Significant changes (P < 0.05) between
gene silencing of candidates and scrambled RNA control are shown (*).

◀
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acetone, methanol, or PBS and washed with PBS. Subsequently,

cells were incubated with 3M guanidinium thiocyanate (Sigma) for

10 min and washed at least five times with PBS. Cells were then

incubated with primary antibody in a 1:4 dilution of Superblock

(Pierce) solution/PBS (v/v) for 1 h at RT or overnight at 4°C.

Cells were rinsed with PBS twice and incubated with a 1:10,000

dilution of 40,6-diamidino-2-phenylindole dihydrochloride (DAPI,

2 mg/ml DMSO) and Alexa Fluor-conjugated secondary antibodies

(Life Technologies) at a dilution of 1:500 to 1:2,000 for 1 h. After

two washes with PBS, cells were stored at 4°C until further

processing. To exclude cross-reactivity of secondary antibodies

during co-labelling experiments, batches of highly cross-adsorbed

secondary antibodies were routinely tested using antibodies

against distinct targets, that is, a rabbit-anti-EEA1 antibody (CST,

#3288) or a rat anti-Lamp antibody (Santa Cruz, Cat# sc19992)

and mouse anti-PrP antibody (ICSM18), followed by incubation

with secondary antibodies. Immunofluorescence was analysed

with a Zeiss LSM 710 confocal microscope and Zen imaging soft-

ware (Carl Zeiss).

Determination of PrP surface expression levels

Relative PrP surface expression levels of PK1 clones were deter-

mined by FACS. Briefly, 1 × 106 cells were pelleted at 300 × g for

4 min and washed with PBS. Cell pellets were then fixed on ice with

4% paraformaldehyde/PBS for 30 min. After washing with PBS,

cells were incubated with 5 lg of ICSM 18 in PBS/0.1% bovine

serum albumin (BSA) for 30 min. Cells were washed again with

PBS/0.1% BSA, spun, and incubated with a 1:200 dilution of Alexa

Fluor 488-goat anti-mouse IgG (H+L) antibody (Invitrogen, Paisley,

UK) in PBS/0.1% BSA for 30 min. After washing, PrP surface

expression levels were determined using a FACS Calibur flow

cytometer (BD Biosciences). Background levels of fluorescence were

determined by labelling cells with secondary antibody only.

Determination of cell population doubling times

Effects of RA treatment on cell doubling times of revertants and

susceptible cells were determined using an automated cell counter,

Z2 coulter counter (Beckman Coulter). In preliminary experiments,

cell counting was compared to photometric determination with dyes

WS1 and MTT. Owing to a high dynamic range of up to 3 orders of

magnitude, cell doubling time was determined by automated cell

counting. Briefly, cells were plated into 96-well plates at a concen-

tration of 1.8 × 104 cells per well and 16 h later incubated with

various RA concentrations. Cells were harvested at 12, 24, 48, and

72 h after RA incubation by resuspending cell layers with multichan-

nel pipettes and combined aliquots of 3 to 4 wells were counted.

Analysis of confocal images

To collect confocal images of proteins expressed at the ECM, serial

scans along the z-axis were conducted. A marked increase in

fluorescence intensities at the level of the substrate delimits the

ECM as depicted in Fig 9. To quantify expression levels of candidate

proteins, confocal images were collected at a 630-fold magnification

(1.4 oil, Plan-Apochromat) and analysed using Volocity (Volocity,

version 6.1.1). Where proteins were expressed at the ECM with no

cell boundaries, data were analysed as follows. Nuclei were identi-

fied by DAPI in channel Ch-TS1 with an average size of 25 lm3. A

dilation of 10 iterations from the nucleus was taken to represent the

cell soma. Intensity values of candidate proteins, labelled with Alexa

Fluor 488-conjugated secondary antibodies, were detected in chan-

nel ChS1-T2 on a single cell level and average intensities calculated

with a cut-off of 5,000 units. The degree of colocalisation was

assessed using Volocity by computing background-corrected thres-

hold PCC values.

PrPC expression profiling at ECM

To assess the relative levels of PrPC expressed at the ECM, cells

were labelled with anti-PrP antibody ICSM18 and Alexa Fluor 488-

conjugated secondary antibody and profiles of single cells from

sequential z-stacks were analysed by Zen 2011 software (Zeiss,

Cambridge, UK). Briefly, serial z-stacks of 0.2 lm were acquired for

silenced and control cells at identical confocal settings. For image

processing, fluorescence intensity profiles of single cells were

acquired using Zeiss Zen software and incremental mean fluores-

cence intensities of sequential focal planes computed.

MMP zymography

To determine activities of MMP2 and MMP9, 3 × 106 cells were

plated into 15-cm dishes in OFCS. After 16 h, cells were incubated

with 1 lM RGD peptide (Santa Cruz Biotechnology) or vehicle

(DMSO). After 72 h, supernatants were collected and cleared of cells

and debris at 500 g for 10 min and 5,500 g for 20 min, respec-

tively, using an Allegra 25R centrifuge (Beckman Coulter). Subse-

quently, supernatants were concentrated at 5,500 g on VivaSpin

20 columns (GE Healthcare Life Sciences) for 30 min. Concentrated

samples were diluted 1:1 in Tris-glycine SDS gel loading buffer

(Novex, Invitrogen) and separated by electrophoresis on 10%

Tris-glycine gels containing 0.1% gelatine (Novex, Invitrogen) at

125 Volts for 90 min. Gels were incubated in 1× Zymogram

renaturation and developing buffer (Novex, Invitrogen) according to

the manufacturer’s specification. Subsequently, gels were stained

with SimplyBlue SafeStain (Novex, Invitrogen) for 6–12 h with 3–5

changes until protein bands were clearly visible.

Statistical analysis

Statistical significance of differential gene expression was computed

by non-parametric statistics using ‘Significance Analysis of Micro-

arrays’ (SAM) (Tusher et al, 2001), and raw values corrected for

multiple testing and expressed as false discovery rate (FDR) values

(Benjamini & Hochberg, 1995). All other data are expressed as

mean � standard deviation (SD), unless otherwise stated. Compari-

sons of mean values were conducted by Student’s t-test.

Supplementary information for this article is available online:

http://emboj.embopress.org
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