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Tau is a microtubule-associated protein whose misfolding, hyper-phosphorylation, loss

of normal function and toxic gain of function are linked to several neurodegenerative

disorders, including Alzheimer’s disease (AD). This review discusses the role of tau in

amyloid-β (Aβ) induced toxicity in AD. The consequences of tau dysfunction, starting

from the axon and concluding at somadendritic compartments, will be highlighted.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder that causes an insidious decline in
cognitive function. The greatest risk factor for AD is age and the chances of developing the disease
increases two-fold every 5 years after age 65. As the population continues to live longer, the toll that
AD inflicts on healthcare costs for affected individuals will continue to rise. Thus, there is an urgent
need to improve our understanding and therapeutic treatment of AD.

One of the barriers preventing the expeditious treatment of AD is our inability to detect at-risk
individuals early enough for effective intervention. A diagnosis of AD can only be confirmed at
autopsy following the detection of extracellular plaques containing Aβ peptides and intracellular
neurofibrillary tangles composed of the neuron-enriched, microtubule-associated protein (MAP),
tau. Since mutations in the amyloid precursor protein (APP) gene are linked to AD onset, and
plaques often precede the formation of tau tangles, the amyloid cascade hypothesis, which states
that Aβ initiates hyper-phosphorylation and aggregation of tau, and overall AD pathogenesis, was
developed (Hardy and Higgins, 1992).

Although, it has been popular to focus primarily on Aβ in AD, tau plays an equally important
role in AD pathogenesis. For instance, individuals with substantial plaque loads but no evident
tau pathology can lead healthy lives with no symptoms of cognitive decline (Sperling et al.,
2009). Additionally, research has long supported the notion that tau is the major component of
neurofibrillary tangles that positively and robustly correlate with AD severity Grundke-Iqbal et al.,
1986; Nukina and Ihara, 1986; Kondo et al., 1988; Kosik et al., 1988; Braak and Braak, 1991; Götz
et al., 2001; Lewis et al., 2001). Tau depletion also protects against Aβ-associated neuron death
(Leroy et al., 2012; Nussbaum et al., 2012). Thus, it is generally accepted that tau dysfunction,
manifested as hyper-phosphorylation and aggregation, are major proximal causes of neuron loss
in AD (Bloom, 2014). This review emphasizes the role of tau as a central player in a pathogenic
signaling nexus that underlies AD.

BACKGROUND ON TAU

Tau was originally identified as a predominant MAP present in mammalian brain (Weingarten
et al., 1975). In the CNS, alternative splicing leads to the formation of six isoforms (Goedert et al.,
1989a). Variation among the six isoforms lies in the number of exons expressed at the N-terminus
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(0, 1, or 2) and microtubule binding repeat domains near the
C-terminal end of the protein (3 or 4). During early stages
of mammalian development, the 3 repeat domain tau isoforms
predominate and it is heavily phosphorylated (Goedert et al.,
1989b). A proposed function for elevated tau phosphorlyation
during development is that it contributes to synaptic plasticity
(Frandemiche et al., 2014). As the brain ages, however,
phosphorylation of tau decreases and the presence of 4 repeat
to 3 repeat tau reaches an approximate 1:1 ratio (Goedert et al.,
1989a,b; Himmler et al., 1989; Kosik et al., 1989; Goedert and
Jakes, 1990; Hong et al., 1998).

TAU FUNCTION

The first antibody generated against tau helped determine that
its expression is predominantly axonal (Binder et al., 1985).
Subsequent experiments using the same antibody identified tau,
and what would be later shown as hyper-phosphorylated tau,
as the primary component of neurofibrillary tangles (Grundke-
Iqbal et al., 1986; Wood et al., 1986; Kondo et al., 1988; Kosik
et al., 1988). The putative functions of tau include stimulation
of tubulin polymerization, stabilization of microtubules (Witman
et al., 1976), and a “speed bump” property whereby tau constrains
the fast transport of organelles along microtubules (Stamer
et al., 2002; Dixit et al., 2008). Tau is most concentrated in the
distal portions of axons, where it helps regulate microtubule
dynamics.

Methods designed to knockdown or knockout (KO) tau have
identified additional roles for the protein in the CNS. Early
work on tau depletion using antisense nucleotides suggested
that tau is required for proper axon development and neuronal
polarity (Caceres and Kosik, 1990). However, follow-up studies
in vivo using tau KO mice were less convincing (Harada
et al., 1994), and subsequent work in several tau KO strains
reported no change in reproduction, physical appearance, or
behavior (Dawson et al., 2001; Tucker et al., 2001). Nevertheless,
during mouse postnatal development reduction of tau alters the
migration and morphology of neurons, and also intracellular
mitochondrial transport (Sapir et al., 2012). In Drosophila, global
tau KO is developmentally lethal and targeted KO in neurons
or the eye results in progressive neurodegeneration (Bolkan and
Kretzschmar, 2014). However the lethality and neurotoxicity
of tau KO in Drosophila might reflect a general paucity of
microtubule-associated proteins in flies.

Much of the original work using tau KO mice extends to 6
months of age, leaving the long-term effects of tau depletion
uncertain. Recent work has attempted to investigate the effects
of prolonged tau ablation, with very inconsistent results. Work
from one group demonstrated that aged tau KO mice (older
than 6 months) develop iron accumulation, motor deficits,
Parkinsonism with dementia, significant brain atrophy, and
impaired Y-maze performance (Lei et al., 2012, 2014). Similarly,
others have reported motor deficits in aged tau KO mice (Ma
et al., 2014; Lopes et al., 2016), or decreased brain weight and
mild hyperactivity in aged tau KO homozygotes (Li et al., 2014).
Evidence of impaired learning, as determined by Barnes maze
performance, was also recently reported (Regan et al., 2015).

However, other studies reported no difference in iron
accumulation (Li et al., 2014), parkinsonian abnormalities in
dopamine levels (Li et al., 2014), dopamine-related motor deficits
(Morris et al., 2013; Ahmed et al., 2014; Li et al., 2014), or
impaired Y-maze performance in aged tau KO mice (Li et al.,
2014). Furthermore, results demonstrated that Morris water
maze performance is either improved or unaffected (Morris et al.,
2013; Ahmed et al., 2014) which presents conflict to other data
(Ma et al., 2014). Likewise, the literature reports inconsistent
fear conditioning results in aged tau KOs. One study showed no
difference in contextual fear conditioning (Li et al., 2014) while
another reported impaired cue and contextual fear conditioning
(Ahmed et al., 2014). The literature also reports contrasting
data on long-term depression (LTD), with severe impairments in
long-term potentiation and no effect on LTD shown by one group
(Ahmed et al., 2014), and deficits in LTD demonstrated by others
(Kimura et al., 2013; Regan et al., 2015).

These discrepancies might reflect strain-dependent
phenotypic differences among the various tau KO mouse
lines. Hence, as more studies are completed, and as methods
become more standardized, we will be better able to resolve what
consequences, or lack thereof, arise with prolonged tau ablation.
Understanding the effects of prolonged tau ablation is not only
important to elucidate tau function, but is also necessary to
ascertain the best therapeutic strategy to employ when treating
tau-related neurodegenerative disorders.

TAU IMPAIRMENT AT THE AXON IN AD

Among tau post-translational modifications its phosphorylation
is the best characterized. There are 80 serine or threonine and 5
tyrosine sites at which tau can theoretically be phosphorylated.
Once tau becomes aberrantly phosphorylated its functional
capacity to stabilize microtubules is reduced, contributing
to axon deficits in AD. Furthermore, axonal swellings, or
varicosities, that are frequently observed during early-stage AD,
are hypothesized to reflect tau-associated defects in transporting
cargo-containing vesicles (Krstic and Knuesel, 2012). Expression
of tau phosphomimics lends supporting data to this theory
by demonstrating that sustained tau (psuedo)phosphorylation
impairs its axonal transport and degradation (Rodríguez-Martín
et al., 2013). Other tau post-translational modifications, such
as cis or trans isomerization, also affect the ability of tau
to maintain microtubule assembly at axons (Nakamura et al.,
2012).

In support of the amyloid cascade hypothesis, Aβ oligomers
(AβOs) are reported to impair the ability for tau to stabilize
microtubules. Our lab previously reported that pre-fibrillar
Aβ stimulates tau-dependent disassembly of microtubules
(King et al., 2006). It was likewise reported that Aβ treatement
promoted tau hyperphosphorlyation, microtubule-related
deficits, and organelle dysfunction (Silva et al., 2011). Similarly,
tau is implicated to trafficking deficits in cell surface receptors,
particularly those that bind glutamate, following AβO treatment
(Li et al., 2009; Hoover et al., 2010). Thus, under atypical
conditions Aβ and tau interact to cause significant microtubule
and transport dysfunction.
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SOMADENDRITIC TAU

A conspicuous property of tau in AD is its ectopic mislocalization
to somatodendritic compartments (Götz et al., 1995; Hoover
et al., 2010). It is hypothesized that an Aβ and tau interaction
causes the synaptotoxicity commonly observed in AD. For
instance, double transgenic mice that overexpress the human
forms of APP (containing the Swedish and London mutations,
for example) and WT tau acquire significant dendritic spine
loss with age (Chabrier et al., 2012, 2014). Mechanistically,
Aβ exposure promotes complex formation between the non-
receptor tyrosine kinase, fyn, and PSD95, in a tau-dependent
manner, to mediate aberrant activation of the NMDA receptor in
dendritic spines (Ittner et al., 2010). Some synapse dysfunction
following Aβ exposure also requires formation of a complex
containing fyn and the cellular prion protein, and fyn-
dependent phosphorylation of tau (Larson et al., 2012). Tau
phosphorylation by other kinases, such as AMP-activated kinase
(AMPK) is further necessary for AβO synaptotoxicity (Mairet-
Coello et al., 2013). In addition to the requirement of tau
for the AβO-initiated activation of the NMDA receptor, recent
work has shown that AβOs elicit phospho-tau infiltration
to dendrites and AMPA receptor dysfunction (Miller et al.,
2014).

Importantly, cell-cycle re-entry (CCR) by post-mitotic
neurons preludes much of the massive neuron death that occurs
in AD (Arendt, 2012) and is also associated with impaired
synaptic plasticity (Arendt and Brückner, 2007). AβO treatment
of primary neurons results in activation of the kinases CaMKII,
PKA, and fyn, which induce ectopic CCR by a mechanism that
relies on site-specific tau phosphorylation catalyzed by those
kinases (Seward et al., 2013). Neuronal CCR is also present in
hAPPJ20 AD model mice at 6 months, but absent in comparable
tau KO littermates (Seward et al., 2013).

NUCLEAR TAU

Although, it is predominately expressed in the axon, tau can
also be found in other cellular compartments, including the

nucleus, under normal physiological conditions. Its nuclear role
is unresolved, but one theory proposes a protective role against
DNA damage for nuclear tau, depending on its phosphorylation
state (Sultan et al., 2011). Interestingly, tau was recently shown
to induce chromatin relaxation, which subsequently leads to
DNA damage and global changes in transcription (Frost et al.,
2014).

CONCLUSIONS

The current understanding of tau identifies its hyper-
phosphorylation and subsequent mislocalization as seminal
steps for AD pathogenesis. Once it becomes appropriately
phosphorylated, tau loses its affinity for microtubules and
becomes potently cytotoxic (Alonso et al., 2010). Over the
course of AD, hyper-phosphorylated tau ectopically enters
the somadendritic compartment, where in conjunction with

AβOs, it promotes excitotoxicity at synapses. Additionally, tau
phosphorylation modulates DNA integrity under cellular stress,
and global changes in protein transcripts. Inhibiting aberrant
tau phosphorylation may prove useful in the treatment of AD.
However, targeting tau phosphorylation will require a greater
understanding on how site-specific tau phosphorylation alters its
function.
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