
36

Most UNC-104/KIF1 kinesins are monomeric motors that
transport membrane-bounded organelles toward the plus ends
of microtubules. Recent evidence implies that KIF1A,
a synaptic vesicle motor, moves processively. This surprising
behavior for a monomeric motor depends upon a lysine-rich
loop in KIF1A that binds to the negatively charged carboxyl
terminus of tubulin and, in the context of motor processivity,
compensates for the lack of a second motor domain on the
KIF1A holoenzyme.
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Introduction
The kinesins form a superfamily of microtubule-stimulated
ATPases that share a variably conserved ~350 amino acid
‘motor domain’ that contains binding sites for microtubules
and adenine nucleotides [1,2,3•]. The prototypic (or con-
ventional) kinesin [4,5], as well as numerous more recently
discovered kinesins, contains two catalytic subunits, but
some kinesins contain just a single motor domain [1,2,3•].
Most kinesins serve as ATP-dependent motors for transport
of intracellular cargo along microtubules. Each specific type
of kinesin moves unidirectionally relative to microtubule
polarity [6,7], and most kinesins move toward microtubule
plus ends [1,2,3•]. On the basis of sequence variability
within the motor domain, kinesins can be classified into at
least ten families (see the Kinesin Home Page:
http://www.blocks.fhcrc.org/~kinesin/). One such family,
UNC-104/KIF1, is the subject of this review.

Mutations in the Caenorhabditis elegans gene, unc-104, have
long been known to cause uncoordinated and abnormally
slow movement in worms [8–10]. A transposon insertion
strategy was used to clone unc-104, and in 1991, the pre-
dicted protein sequence was reported to contain an amino
terminus that bore close resemblance to the motor
domains of all the kinesin superfamily members known at
that time [11]. Electron microscopic analysis of unc-104
mutant worms demonstrated exceptionally high levels of
synaptic vesicles in the cell bodies of neurons, coupled
with an abnormal paucity of synaptic vesicles in axon ter-
mini [12]. On the basis of this molecular and ultrastructural
evidence UNC-104 was proposed to be a novel kinesin for
anterograde fast axonal transport of synaptic vesicles
toward microtubule plus ends [12].

UNC-104 represents the first known member of a family of
closely related kinesins, most of which appear to be
monomeric, microtubule plus-end-directed motors for mem-
brane transport. The next family member to be discovered
was originally called KIF1, and it was one of many novel pro-
teins found by a PCR-based screen for kinesin motor-like
domains in mouse brain [13]. When a cDNA fragment of kif1
was used to screen mouse brain libraries, evidence for two
distinct forms of KIF1 protein emerged. The original KIF1
was renamed KIF1A, and on the basis of sequence and func-
tional studies, it appears to be a neuron-enriched protein and
the mouse equivalent of C. elegans UNC-104 [14]. The other
mouse protein was named KIF1B, and was initially proposed
to be a motor for moving mitochondria toward microtubule
plus ends in a broad variety of cell types [15]. Additional
members of the UNC-104/KIF1 family have since been
detected in C. elegans [16], Drosophila [17–19], humans
[20–22], rats [23,24], Dictyostelium [25•], striped bass [26], and
a thermophilic fungus [27].

The remainder of this review will focus on findings from
studies on UNC-104/KIF1 reported in the past year.
Most noteworthy in that regard has been an explanation
at the molecular level of the processive motor activity for
a fragment of KIF1A [28••,29•]. This unexpected behav-
ior for a monomeric motor is all the more interesting in
light of a report that a fragment of UNC-104, which is
also monomeric, is not processive [30••]. Additional
recent findings that will be reviewed include evidence
for a dimeric UNC-104/KIF1 family member in
Dictyostelium [25•], for multiple splice variants of KIF1B
[31•,32•], and for roles that UNC-104/KIF1 proteins may
play in disease [33,34].

Processivity of KIF1A
The processivity of a motor protein refers to how far, on
average, it can move along a cytoskeletal track before it
loses its grip and then diffuses away from the track.
Conventional kinesin is well known for its high proces-
sivity [35,36]. A recent study incorporating biophysical,
enzymatic and ultrastructural data led to an elegant
model that may explain conventional kinesin’s processiv-
ity in detailed molecular terms [37••]. Distilled to its
basic essence, the model states that when ATP exchanges
for ADP on a kinesin motor domain bound to a micro-
tubule, the neck-linker region of that motor domain
stiffens and enables its companion motor domain to
swivel past it and bind closer to the plus end of the same
microtubule. Stated more simply, conventional kinesin is
highly processive because it walks along a microtubule in
a manner that rarely results in both of its feet (motor
domains) detaching from the microtubule at the same
time. A vivid animation of this model can be found at the
web site, http://motorhead.ucsf.edu/valelab/.
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A reasonable prediction from this model is that monomeric
motors should not be processive, at least when studied at
the level of individual molecules. Mother Nature never
skimps on surprises however, and to aficionados of molec-
ular motors, an early 1999 report from the Hirokawa
laboratory [38••] that a recombinant fragment of the
monomeric kinesin KIF1A can move processively is one of
her more amusing recent revelations. The most convincing
evidence for this unexpected behavior came from studies
of C351, a fusion protein containing the first 356 amino
acids of KIF1A coupled to residues 330–351 of conven-
tional kinesin heavy chain. The entire core catalytic region
of KIF1A was present in C351, which was covalently cou-
pled to a red fluorescent Alexa dye. By comparison,
Alexa-red-labeled K351, which corresponds to the first 351
residues of the conventional kinesin catalytic subunit and
is known to be monomeric, was not observed to move
along microtubules in motility assays for single motor mol-
ecules. A sequence comparison of C351 and K351
suggested that a ‘K-loop’ (a cluster of six lysines uniquely
present in the catalytic core of C351) might be important
for its processivity. Bolstering this suspicion were the find-
ings that hexameric polylysine inhibited the micro-
tubule-stimulated ATPase activity of C351 and that a mod-
ified C351 lacking the K-loop did not bind to microtubules
in single motor assays [38••].

In January 2000, the Hirokawa laboratory published two
additional papers that shed light on how C351 can move
processively. For one of the papers, cryo-electron
microscopy was used to demonstrate attachment of the
K-loop, which is strongly positively charged, to the
‘E-hook’, or glutamate-rich, negatively charged carboxyl
termini of α-tubulin and β-tubulin [29•]. The second
paper provided evidence that the K-loop associates with
the E-hook only during the weak binding state of C351 for
tubulin, which follows hydrolysis of ATP. During this weak
binding state, the K-loop is thought to anchor C351 on the
microtubule until the motor domain can move closer to the
microtubule plus end, by either a power stroke or ratch-
eted Brownian motion. The motor domain then exchanges
its ADP for ATP, an event that triggers strong binding by
the motor domain and dissociation of the K-loop. The
cycle is completed when the ATP is hydrolyzed, the affin-
ity of the motor domain for the microtubule is weakened
substantially, and binding of the K-loop to the microtubule
is favored once again [28••]. A summary of this model for
KIF1A processivity is shown in Figure 1.

UNC-104 is not processive
Like KIF1A, UNC-104 contains a K-loop, and thus might
also be expected to move processively along microtubules.
Evidence from the Vale laboratory does not agree with this
prediction. In this case, a fusion protein (UNC-104635–GFP)
containing the first 653 residues of UNC-104 coupled to
green fluorescent protein (GFP) [39,40] was used in single
motor assays. The fusion protein was never observed to
move even 40 nm along a microtubule, the shortest distance

that could be detected [30••]. By comparison, C351 was
reported by the Hirokawa and colleagues [38••] to move an
average distance of ~840 nm.

What could account for the processivity of C351 but not
UNC-104635–GFP? Several explanations are possible, but
two come foremost to mind. First, the K-loop of KIF1A
(KNKKKKK) comprises six lysines, including five in succes-
sion, within a span of seven total amino acids. By comparison,
the K-loop of UNC-104 comprises only five lysines
(KKKKSNK) and a two residue gap between the fourth and
fifth lysines. Thus, the density of negative charge in the
K-loop is higher for KIF1A than for UNC-104 and may be
insufficient in UNC-104 to support processive motility.
Arguing against that viewpoint, Okada and Hirokawa [28••]
report that a modified C351, containing a K-loop of just four

Figure 1

A model for the processivity of KIF1A. C351, a truncated version of
the monomeric synaptic vesicle motor KIF1A, has been shown to
move processively along microtubules [38•• ]. This is thought to be
accomplished by weak binding of a positively charged, polylysine-rich
domain (K-loop) on C351 to the negatively charged, glutamate-rich
carboxyl terminus (E-hooks) of α-tubulin and β-tubulin. Binding to the
microtubule of the K-loop of C351 and dissociation of its motor
domain from the microtubule are believed to be triggered by
hydrolysis of ATP by the motor domain [28•• ,29•]. With the K-loop
maintaining an attachment to the microtubule, the motor domain is
able to move toward the microtubule plus end by either ratcheted
Brownian motion or a power stroke and then reattach to the
microtubule upon exchange of ADP for ATP. Repetition of this cycle is
thought to move the C351 motor processively toward the plus end of
the microtubule [28•• ].
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continuous lysines, was able to move processively, albeit not
quite as well as its unmodified counterpart.

A second possible explanation for the processivity of C351
but not UNC-104635–GFP is their different ATPase activi-
ties. Each C351 molecule reportedly hydrolyzes 110 ATP
molecules per second in the presence of microtubules [38••],
whereas the turnover rate for UNC-104635–GFP under com-
parable conditions was reported to be just 5.5 ATP molecules
per second [30••]. Such a slow rate of ATP hydrolysis may
signal that the duty ratio for UNC-104635–GFP (the propor-
tion of its ATPase cycle during which the motor is bound to
the microtubule) is so low that it precludes the possibility of
an individual molecule moving processively.

It is important to emphasize that processivity has not been
convincingly demonstrated for full length versions of either
KIF1A or UNC-104. Perhaps the processive motility exhib-
ited by C351 is non-physiological and reflects the absence
of the carboxyl terminus of KIF1A or the 22 amino acid
stretch of conventional kinesin sequence at the carboxyl
terminus of C351. Likewise, maybe modifying UNC-104
by replacing some of its carboxyl terminus with GFP con-
verted it from a processive to a non-processive motor.
Clearly, further investigation will be required to establish
whether full length KIF1A and UNC-104 are processive. In
the meantime, however, the example of the KIF1A-derived
protein C351 provides fascinating insight into mechanisms
by which molecular motors, even single-headed varieties,
can move processively.

A dimeric UNC-104/KIF1 family member
At least one member of the UNC-104/KIF1 family was
recently reported to be naturally dimeric. The protein in
question, DdUnc104, was purified from extracts of
Dictyostelium discoideum using a video-enhanced light
microscopic assay for organelle transport in vitro to monitor
purification [25•]. Five peptide sequences obtained from
DdUnc104 enabled corresponding cDNAs to be cloned,
and a full length predicted amino acid sequence to be
obtained. The subunit molecular weight was thus predicted
to be ~248,000, but the measured sedimentation coeffi-
cient and Stoke’s radius of the purified protein indicated a
native molecular weight of ~480,000. The logical conclu-
sion is that DdUnc104, in contrast to other UNC-104/KIF1
proteins (but see below), is dimeric [25•].

Another UNC-104/KIF1 family member, the human pro-
tein KIF1C, which is localized to the Golgi complex [21],
can also exist as a dimer [41], at least under some circum-
stances. A yeast two-hybrid screen, in which the
carboxy-terminal 350 residues of KIF1C was used as bait,
yielded 14-3-3 proteins and a carboxy-terminal fragment of
KIF1C itself as binding partners [41]. In addition, evi-
dence for KIF1C dimers was obtained by chemical
crosslinking and immunoprecipitation studies of cultured
human embryonic kidney 293 cells [41]. It must be noted,
however, that apparent dimerization was dramatically

enhanced in 293 cells that transiently overexpressed
KIF1C by transfection. It is therefore possible that KIF1C
dimerizes only when it is present at concentrations far
higher than those normally encountered in vivo.

Splice variants of KIF1B
Mouse KIF1B was heralded for years as a microtubule
motor specifically targeted to mitochondria [15]. In biology,
things rarely turn out to be as simple as they initially
appear, and KIF1B is no exception. The first published
clue that it would be more complicated was reported in
June 1999 by Conforti et al. [32•]. While searching for the
slow Wallerian degeneration mutation on mouse chromo-
some 4, they stumbled upon a kif1b exon that bore high
homology to a comparable region in kif1a. RT-PCR and
screening of a cDNA library confirmed that the novel kif1b
exon is expressed in mouse brain and encodes a protein with
a predicted molecular weight of ~204,000.

Just four months later, Gong and colleagues [31•] provided
evidence for far greater complexity of kif1b gene products.
The net result of their analysis is that kif1b may encode as
many as eight different splice variants that fall into 
two general classes of molecular weights, ~130,000
(KIF1Bp130) and ~204,000 (KIF1Bp204). The former
class corresponds to the originally described KIF1B [15],
and the latter is identical to the KIF1B isoform described
by Conforti et al. [32•]. Except for a six amino acid insert
unique to KIF1Bp204, KIF1Bp130 and KIF1Bp204 are
predicted to be identical for their first 706 amino acids.
Beyond that point, KIF1Bp130 and KIF1Bp204 have an
additional 491 and 1,110 amino acids, respectively. Two
additional exons were found within the nearly identical
706 amino acid sections of KIF1Bp130 and KIF1Bp204
but outside of the motor domain. These exons can be
expressed individually, together, or not at all for both
KIF1Bp130 and KIF1Bp204. Therefore, there may be four
different splice variants of each of the two classes of KIF1B
or eight KIF1B splice variants altogether [31•]. In light of
the idea that the originally described KIF1B (KIF1Bp130)
binds to mitochondria via its unique carboxy-terminal
region, a question that naturally arises is whether the cargo
for KIF1Bp204 is something other than mitochondria.

UNC-104/KIF1 proteins in disease
Two recent papers [33,34] raise the possiblity that underex-
pression or overexpression of UNC-104/KIF1 proteins may
lead to disease. Kageyama and colleagues [34] reported that
the kif1b gene, among many others, was found within a dis-
tal region of chromosome 1p, where loss of heterozygosity
is commonly observed in human neuroblastomas. They
also observed that low levels of mRNA expression for
KIF1B are correlated with subsets of particularly aggressive
neuroblastomas grown in primary culture [34]. In a study of
a transgenic mouse model for amyotrophic lateral sclerosis
(ALS), Dupuis and colleagues [33] reported upregulation of
mRNA expression for KIF1A. These data identify KIF1A
and KIF1B as proteins that may contribute to neuroblastoma



or ALS when expressed at improper levels, but much more
compelling evidence is required before either protein can
be elevated beyond candidate status.

Conclusions
The evidence that C351, a truncated version of the
monomeric synaptic vesicle motor from mouse KIF1A,
moves processively along microtubules represents a fascinat-
ing and unexpected discovery [28••,29•,38••]. What makes
this discovery all the more intriguing is the finding that
UNC-104635–GFP, a truncated version of the equivalent
C. elegans protein UNC-104, is not a processive motor [30••].
This contrasting set of results might indicate that require-
ments for synaptic vesicle transport motors vary according to
species or body size. Before any such conclusions can be
made, though, it will be necessary to determine whether the
full length versions of KIF1A and UNC-104 behave the
same as their truncated fusion protein derivatives.

The issue of KIF1B heterogeneity also represents an
important area for future investigation. The finding that
the kif1b gene encodes two classes of KIF1B protein, each
with a distinct carboxy-terminal tail [31•,32•], suggests
functional heterogeneity for KIF1B. Mitochondria were
originally proposed to be the cargo for KIF1B [15], but
there may be additional types of KIF1B cargo, and if so,
their identities remain to be discovered.
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