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Most natural populations are affected by seasonal changes in
temperature, rainfall, or resource availability. Seasonally fluctuat-
ing selection could potentially make a large contribution to main-
taining genetic polymorphism in populations. However, previous
theory suggests that the conditions for multilocus polymorphism
are restrictive. Here, we explore a more general class of mod-
els with multilocus seasonally fluctuating selection in diploids.
In these models, the multilocus genotype is mapped to fitness in
two steps. The first mapping is additive across loci and accounts
for the relative contributions of heterozygous and homozygous
loci—that is, dominance. The second step uses a nonlinear fit-
ness function to account for the strength of selection and epis-
tasis. Using mathematical analysis and individual-based simula-
tions, we show that stable polymorphism at many loci is possible
if currently favored alleles are sufficiently dominant. This general
mechanism, which we call “segregation lift,” requires seasonal
changes in dominance, a phenomenon that may arise naturally
in situations with antagonistic pleiotropy and seasonal changes in
the relative importance of traits for fitness. Segregation lift works
best under diminishing-returns epistasis, is not affected by prob-
lems of genetic load, and is robust to differences in parameters
across loci and seasons. Under segregation lift, loci can exhibit
conspicuous seasonal allele-frequency fluctuations, but often fluc-
tuations may be small and hard to detect. An important direction
for future work is to formally test for segregation lift in empiri-
cal data and to quantify its contribution to maintaining genetic
variation in natural populations.

temporal heterogeneity | cyclical selection | genetic diversity | marginal
overdominance | balancing selection

Ever since biologists were first able to detect population
genetic variation at the molecular level, they have been puz-

zled by its abundance in natural populations (1). Dispute over
the underlying reasons gave rise to two scientific schools (2, 3).
Proponents of the “(neo)classical” school claim that the bulk of
genetic variation is due to neutral or weakly deleterious muta-
tions present at an equilibrium between mutation, genetic drift,
and selection. The neoclassical view admits that selection may
maintain alleles at intermediate frequency at some loci, but
argues that such loci are exceedingly rare on a genomic scale
(2). By contrast, the “balance” school posits that a substan-
tial fraction of variation is maintained by some form of bal-
ancing selection [with some controversy over the meaning of
“substantial” (3)]—for example, heterozygote advantage (over-
dominance), negative frequency-dependent selection, and spa-
tial or temporal variability in selection pressures (4).

Fifty years later, the debate has not been conclusively set-
tled (5, 6), although the majority view is that (nearly) neu-
tral mutations cause most genetic variation, with overdomi-
nance playing a relatively minor part, perhaps acting at only
tens of loci per species (7–9). A mechanism considered more
common and powerful is spatial environmental heterogeneity.
Temporal heterogeneity, by contrast, is believed to be of lim-
ited importance (10), despite widespread temporal fluctuations
in the strength and direction of selection, both on phenotypes

(11) and genotypes (12). In fact, most organisms with multiple
generations per year experience a particular type of temporal
heterogeneity: seasonality, for example, in temperature, rainfall,
resource availability, or in the abundance of predators, com-
petitors, or parasites. Even tropical populations usually experi-
ence some seasonality. For example, flowering and fruiting in
tropical forests is often synchronized within and between tree
species, leading to seasonal changes in food availability for ani-
mals (13). Often, there are life-history trade-offs across sea-
sons (14, 15). For example, seasons with abundant resource
supply might select for investment in reproduction, whereas
stressful seasons may select for investment in survival. Since such
life-history traits are usually polygenic, many organisms should
experience seasonally fluctuating selection at a large number
of loci.

With discrete generations, the fates of genotypes under tem-
porally fluctuating selection depend on their geometric mean fit-
nesses over time (16). In haploids, two alleles generally cannot
coexist because one will have a higher geometric mean fitness
and eventually go to fixation (ref. 16, but see refs. 17 and 18).
In diploids, polymorphism at a single locus is stable if heterozy-
gotes have the highest geometric mean fitness (“marginal over-
dominance”), although in any particular generation, one of the
homozygotes might be fittest (16, 19, 20).

Significance

A key question in evolutionary biology is: What maintains
the abundant genetic variation observed in natural popula-
tions? Many organisms experience some seasonality in their
habitats, and, if they have multiple generations per year, sea-
sonally fluctuating selection is a potentially powerful mecha-
nism to maintain polymorphism. However, previous research
has argued that this occurs rarely. Inspired by recent empiri-
cal findings, we reevaluate the potential of seasonally fluctu-
ating selection to simultaneously maintain polymorphism at
many loci in the genome. We obtain a more general condition
for the maintenance of multilocus polymorphism by season-
ally fluctuating selection. This condition may plausibly be sat-
isfied for many species and does not suffer from problems of
previous models.
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Extending these results to the multilocus case is nontrivial,
and, so far, only two cases are well-understood: (i) multiplicative
selection across loci and (ii) temporally fluctuating selection on
a fully additive trait. Under multiplicative selection in an infinite
population with free recombination, the allele-frequency dynam-
ics at a focal locus are independent of those at other loci. Thus,
polymorphism is stable if heterozygotes have the highest geo-
metric mean fitness, as in the single-locus case. However, devi-
ations from multiplicative selection appear to be the rule. In
particular, beneficial mutations often exhibit diminishing-returns
epistasis (21–23). Additionally, there is the potential problem of
genetic load. Genetic load is commonly defined as the differ-
ence between the population’s average fitness and the fitness of
the fittest possible genotype. Lewontin and Hubby (1) noticed
that this value can become unsustainably high if there is strong
heterozygote advantage at many loci. This was a conundrum for
the neoclassical school, which was worried that with high genetic
load, single individuals would have to produce an astronomically
large number of offspring. Others have dismissed this concern,
arguing, for example, that selection does not generally act on all
loci independently or that only relative fitness differences within
the population are relevant, not fitness relative to some optimum
genotype that might not even exist (24–27). However, debate
continues over whether genetic load should be an important con-
sideration (28, 29).

The second previously studied scenario is seasonally fluctuat-
ing selection on a trait to which loci contribute additively (30,
31). These models generally assume additivity also within loci,
such that the contribution of heterozygotes is exactly intermedi-
ate between the contributions of the two homozygotes. Tempo-
rally fluctuating selection can then cause intermediate trait val-
ues to be best in the long run (32), i.e., select against variance
in fitness. Effectively, this is stabilizing selection on the temporal
average. As such, it can generally maintain polymorphism at only
one locus (33, 34), or two loci if their effect sizes are sufficiently
different (35) or if they are closely linked (30). The reason is that
with multiple loci and additivity within and between loci, there
are multiple genotypes with intermediate phenotypes. For two
loci, for example, there is the double heterozygote (“heterozy-
gous intermediate”) and the genotype homozygous at both loci,
but for alleles with opposite effects (“homozygous intermedi-
ate”). These genotypes may all have the same high fitness. How-
ever, matings between heterozygous intermediates produce a
range of different genotypes, some of which are less fit than their
parents. By contrast, matings between homozygous interme-
diates only produce new homozygous intermediates. Homozy-
gote intermediates can therefore go to fixation and eliminate all
polymorphism.

In summary, multiplicative seasonal selection is a power-
ful mechanism to maintain multilocus polymorphism, but the
assumed independence across loci and the associated load call
into doubt its plausibility. On the other hand, selection on addi-
tive traits can maintain polymorphism at only a few loci. So
far, there has been little need for further exploration because
there were no clear empirical examples to challenge the view
that temporal heterogeneity rarely maintains variation. This is
now changing, however, as advances in sequencing technology
allow detailed studies of genetic variation across time and space.
For instance, by sampling the same temperate population of
Drosophila melanogaster at several time points, Bergland et al.
(36) detected seasonal allele-frequency fluctuations at hundreds
of sites in the genome. Many of the SNPs are also shared with
African populations of D. melanogaster and some even with the
sister species Drosophila simulans, indicating that some of them
may be ancient balanced polymorphisms. More generally, recent
population genomic data appear to suggest that balancing selec-
tion contributes more to maintaining genetic variation than pre-
viously assumed (37) and that mutation-selection-drift balance

alone is not sufficient to reconcile evidence from population
genomics and quantitative genetics (38). Thus, we need to recon-
sider the potential of temporally fluctuating selection to maintain
multilocus polymorphism.

As explained above, the conditions for multilocus polymor-
phism under seasonally fluctuating selection have been examined
mostly in two narrow cases. Here, we examine a more general
class of seasonal selection models with various forms of domi-
nance and epistasis. Using deterministic mathematical analysis
and stochastic simulations, we show that multilocus polymor-
phism is possible if the currently favored allele at any time is
sufficiently dominant, with dominance measured by using a scale
on which contributions across loci are additive. This mechanism,
which we call “segregation lift,” can maintain polymorphism at
a large number of loci across the genome, is robust to many
model perturbations, and does not require single individuals to
have too many offspring. Depending on the parameter values,
allele-frequency fluctuations can be large and readily detectable,
or subtle and hard to discern.

Basic Model
We consider a diploid, randomly mating population in a season-
ally fluctuating environment. While asymmetry in various model
parameters will be explored later, we start with a fully symmetric
model having a yearly cycle with g generations of winter followed
by g generations of summer. The genome consists of L unlinked
loci with two alleles each: one summer-favored and one winter-
favored allele. For a given multilocus genotype, let ns and nw

be the number of loci homozygous for the summer and winter
allele, respectively, and nhet the number of heterozygous loci,
with ns + nw + nhet = L.

In the basic model, loci are interchangeable in their effects
(see Stochastic Simulations for a more general model), and the
fitness of a multilocus genotype can be computed as a function
of ns , nw and nhet . In the simplest case, fitness depends only on
ns + 0.5 · nhet in summer and nw + 0.5 · nhet in winter, i.e., half
the number of currently favored allele copies. To allow for domi-
nance effects, we generalize this simple scenario and assume that
fitness in summer depends on the summer score

zs := ns + ds · nhet [1]

and fitness in winter depends on the winter score

zw := nw + dw · nhet . [2]

The parameters ds and dw quantify the dominance of the cur-
rently favored allele in summer and winter, not with respect to
fitness, but with respect to the seasonal scores zs and zw . Because
we are interested in whether temporally fluctuating selection can
maintain polymorphism in the absence of other stabilizing mech-
anisms, we only consider values of ds and dw between 0 and 1,
and do not allow values >1, which would correspond to standard
heterozygote advantage.

The relationship between the seasonal score z (z = zs in sum-
mer and z = zw in winter), and fitness, w , is given by a mono-
tonically increasing fitness function w(z ). This function specifies
the strength of selection and accounts for epistasis. With discrete
generations, the allele-frequency dynamics at a focal locus are
driven by the relative fitnesses of the three possible genotypes at
that locus—for example, the ratio of the fitness of homozygotes
and heterozygotes. We say that there is no epistasis if these ratios
and thus the strength of selection are independent of the number
of other loci and their contributions to z . This is the case when
fitness is multiplicative across loci:

w =

L∏
i=1

wi ⇔ ln(w) =

L∑
i=1

ln(wi), [3]
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where wi is the fitness value at locus i . In our model, this
is achieved by setting w(z ) = exp(z ) because then Eq. 3 is
fulfilled with wi = exp(1) if locus i is homozygous for the
currently favored allele, wi = exp(ds) or wi = exp(dw ) if it is
heterozygous, and wi = exp(0) = 1 if it is homozygous for the
currently disfavored allele. With v(z ) := ln(w(z )), the multi-
plicative model is characterized by v ′′(z ) = 0. We therefore use
the second derivative of the logarithm of fitness v ′′(z ) as a mea-
sure of epistasis (see ref. 39 for a similar definition of epistasis).
Under positive or synergistic epistasis (v ′′(z ) > 0), the logarithm
of fitness increases faster than linearly with z , and thus selection
at a focal locus increases in strength with increasing contribution
of the other loci to z . By contrast, under negative or diminishing-
returns epistasis (v ′′(z ) < 0), selection at a focal locus becomes
weaker with increasing contribution of other loci to z . We focus
on two classes of fitness functions (Fig. 1). The first is of the form

w(z ) = (1 + z )y [4]

with a positive parameter y . Although for y > 1 in Eq. 4, fit-
ness increases faster than linearly with increasing z (Fig. 1A),
transformation to the logarithmic scale v(z ) = y · ln(1 + z )
reveals that epistasis is negative for all y (Fig. 1B). Epistasis (v ′′)
becomes more negative with increasing y , but v ′ and thus the
selective advantage of having an additional favored allele still
increases with y for all z . Thus, larger y values correspond to
overall stronger per-locus selection.

The second class of fitness functions is of the form

w(z ) = exp(z q) [5]

with q ≥ 1. This function reduces to the multiplicative model
with q = 1 (cyan lines in Fig. 1) and has positive epistasis with
q > 1 (e.g., magenta lines in Fig. 1).

In summary, fitness is computed in two steps. The first maps
the multilocus genotype onto a seasonal score z to which loci
contribute additively, essentially a generalized counter of the
number of favored alleles (Eqs. 1 and 2), and the second maps z
to fitness (Fig. 1). This two-step process disentangles dominance
(step 1) from selection strength and epistasis (step 2).

In our model, genotypes with many summer alleles have a
high summer score but a low winter score and vice versa, a form
of antagonistic pleiotropy. Previous theoretical studies suggest
that antagonistic pleiotropy is most likely to maintain polymor-
phism if for each trait affected by a locus the respective bene-
ficial allele is dominant (40, 41). Such “reversal of dominance”
also facilitates the maintenance of polymorphism in single-locus
models for temporally fluctuating selection (42). Hypothesizing
that reversal of dominance would also help to maintain poly-
morphism under multilocus temporally fluctuating selection, we
assume that ds and dw in Eq. 1 and 2 take the same value,
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Fig. 1. Examples for fitness functions generated by Eq. 4 or Eq. 5 with
various parameters. In A, fitness is shown on a linear scale, and in B, on a
logarithmic scale.

Fig. 2. Values of the seasonal score, z, as a function of the dominance
parameter, d, for two example four-locus genotypes: a heterozygous inter-
mediate (blue line) and a homozygous intermediate (black solid line).

d , which means that dominance switches between seasons (see
Stochastic Simulations for a more general model). For d < 0.5,
we have “deleterious reversal of dominance” (41), and the cur-
rently favored allele is always recessive, whereas for d > 0.5,
we have “beneficial reversal of dominance” (41), and the cur-
rently favored allele is always dominant. If d = 0.5, the seasonal
score z is additive, not just between loci, but also within loci.
Importantly, the value of d also determines the relative fitness of
heterozygous intermediates, multilocus genotypes with the same
number of summer and winter alleles and at least some heterozy-
gous loci, compared with homozygous intermediates, which also
have the same number of summer and winter alleles, but are fully
homozygous (Fig. 2). For d < 0.5, heterozygous intermediates
have a lower seasonal score, z , and therefore a lower fitness in
both seasons than homozygous intermediates. For d = 0.5, het-
erozygous and homozygous intermediates have the same score
and fitness. Finally, for d > 0.5, heterozygous intermediates
have a higher score and fitness. Interestingly, because d mea-
sures dominance not at the scale of fitness but at the scale of
the seasonal score, z , beneficial reversal of dominance for fit-
ness is neither sufficient nor necessary for d > 0.5 (SI Appendix,
Fig. S1).

Multiple mechanisms could underlie a seasonal reversal of
dominance. For example, metabolic control theory suggests that
deleterious mutations affecting multistep metabolic pathways
are generally recessive (43). If selection is fluctuating such that
each allele is favored during one season and deleterious in
the other season, we might thus expect a beneficial reversal of
dominance. Alternatively, changes in dominance could be medi-
ated by seasonal changes in gene expression. But even without
changes in the genotype–phenotype map, seasonal changes in
dominance are possible. In the example scenario in Fig. 3, the
additive seasonal score, z , is a composite phenotype, a weighted
average of two (also additive) traits—for example, starvation
tolerance and fecundity—and there is antagonistic pleiotropy.
Although the allelic effects on the two traits remain constant
throughout the year, d > 0.5 because the relative importance
of the traits changes between seasons. This scenario requires
changes (though not necessarily a reversal; SI Appendix, Fig.
S2A) in dominance with respect to the pleiotropic effects of a
locus on the two traits. For example, the winter allele (blue)
in Fig. 3 produces higher starvation tolerance and is dominant
for this trait, whereas it leads to smaller fecundity and is reces-
sive there. One specific way in which such changes in dominance
across pleiotropic effects can arise is via branched enzyme path-
ways with saturation or feedbacks (44).
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Fig. 3. Potential mechanistic underpinning for beneficial reversal of dom-
inance. There is antagonistic pleiotropy for two traits, and the seasonal
scores for winter and summer are computed as weighted averages of traits 1
and 2, with the relative importance of the two traits switching between sea-
sons. The dashed line indicates the average of the two homozygote traits. If
the heterozygotes are closer to the fitter homozygote with respect to both
traits 1 and 2, there is a beneficial reversal of dominance at the level of the
seasonal score, z. See SI Appendix, Fig. S2 for alternative scenarios.

Deterministic Analysis
In this section, we assume that population size is so large that
genetic drift does not play a role. We also assume that muta-
tions are rare enough that the allele-frequency dynamics will
equilibrate before a new mutation arises at one of the L loci. This
simple deterministic framework allows us to develop an intuitive
understanding of the conditions for stable polymorphisms for
various genotype-to-fitness maps. The intuitions developed here
will then be checked and extended with stochastic simulations in
the next section.

We will first confirm that the conditions under which season-
ally fluctuating selection can maintain polymorphism are restric-
tive when contributions to the seasonal score z are additive
within loci (d = ds = dw = 0.5 in Eqs. 1 and 2). Then, zs +zw = L
for all possible genotypes, and the mean z over time is z∗ = L/2.
The long-term success of a genotype depends on its geometric
mean fitness, or, equivalently, on the arithmetic mean of the
logarithm of fitness, v(z ). Jensen’s inequality or simple geomet-
ric considerations (Fig. 4) tells us that the arithmetic mean of
v(zs) and v(zw ) for a given genotype will be smaller than or
equal to v(z∗) if v ′′ < 0 everywhere (Fig. 4A), equal to v(z∗)
if v ′′ = 0 (Fig. 4B), and larger than or equal to v(z∗) if v ′′ > 0
(Fig. 4C).

The interannual allele-frequency dynamics (e.g., from summer
to summer or from winter to winter) with multiplicative fitness
(v ′′= 0) and d = 0.5 are thus neutral. No balancing selection
emerges. With positive epistasis (v ′′ > 0), extreme types with
either only summer or only winter alleles have the highest geo-
metric mean fitness. Therefore, the population ends up in a state
where all loci are fixed for the summer allele or all for the win-
ter allele. With negative epistasis (v ′′< 0), the genotypes with
the highest geometric mean fitness are those with the same num-
ber of summer and winter alleles and thus zs = zw . There are
always some genotypes heterozygous at one or more loci that
fulfill this condition (heterozygous intermediates; Fig. 2). For an
even number of loci, zs = zw is also true for genotypes homozy-
gous for the summer allele at half of the loci and homozygous for
the winter allele at the other half (homozygous intermediates).
When one of the homozygous intermediates fixes in the popu-
lation, it cannot be invaded by any mutant starting at small fre-
quency (under the assumptions of the deterministic model; see SI
Appendix, section S1 for a detailed proof), and all polymorphism
is eliminated. For an odd number of loci, homozygous interme-
diates do not exist, and some polymorphism may be maintained,
at least at one locus. This case, which we will examine in more

detail below, appears to be the only way in which seasonally fluc-
tuating selection can maintain polymorphism under additivity
(d = 0.5).

Next, we explore whether deviations from additivity (d 6=
0.5) can facilitate multilocus polymorphism. Under multiplica-
tive selection, i.e., without epistasis, the conditions for polymor-
phism at one locus are not affected by the dynamics at other loci.
Thus, given the fitness values for individual loci (exp(d) for het-
erozygotes, exp(1) and exp(0) for currently favored and disfa-
vored homozygotes, respectively, see text below Eq. 3), we can
conclude that polymorphism is possible if

exp(d)2 > exp(1) · exp(0)⇔ d > 0.5. [6]

That is, there must be a reversal of dominance with respect to z ,
such that at any time the currently favored allele is dominant.

Now, we explore whether such a beneficial reversal of domi-
nance can also maintain polymorphism in the presence of epis-
tasis. In each case, a necessary condition for polymorphism is
that a population fixed for the fittest possible fully homozygous
genotype can be invaded by mutants. As we have seen above,
with synergistic epistasis (v ′′ > 0), there are two fully homozy-
gous genotypes with maximum fitness, the one with the summer
allele at all loci and the one with the winter allele at all loci. In
both cases, the resident type has score L in one season and score
0 in the other season, whereas mutants differing in one posi-
tion have scores L − 1 + d and d . For mutants to invade, we
thus need

v(d) + v(L− 1 + d) > v(L) + v(0). [7]

Using our example class of fitness functions with positive epista-
sis, Eq. 5 with q > 1, we thus obtain the condition

dq + (L− 1 + d)q > Lq . [8]

The critical value of d , dcrit , at which extreme types become inva-
sible, satisfies (

dcrit
L

)q

+

(
1 +

dcrit − 1

L

)q

= 1. [9]

For q = 2, dcrit takes values 0.707, 0.954, and 0.995, with 1, 10,
and 100 loci, respectively. For q > 1 in general, dcrit approaches
1 as the number of loci increases. To see this, note first that the
condition in Eq. 9 is always fulfilled for d = 1 and thus dcrit ≤ 1.
Thus, as the number of loci, L, goes to infinity, (dcrit − 1)/L
becomes small, and we can approximate the second term on
the left-hand side of Eq. 9 by a Taylor expansion around 1
to obtain
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Fig. 4. The logarithm of summer fitness (red) and winter fitness (blue) and
the average logarithm of fitness (gray) as a function of a genotype’s summer
score, zs. Assuming d = 0.5, the winter score is zw = L − zs, leading to
the mirror symmetry around L/2. If the fitness function is concave on the
logarithmic scale, intermediate types have the highest average log-fitness
(A); if the fitness function is log-linear, then all types have the same average
log-fitness (B); and if the fitness function is convex on a logarithmic scale,
extreme types have the highest average log-fitness and thus the highest
geometric mean fitness (C).
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(
dcrit
L

)q

+ 1 + q · dcrit − 1

L
+O

(
1

L2

)
= 1. [10]

Multiplying both sides by L and letting L go to infinity, we can
conclude that dcrit is approximately 1 if the number of loci is
large. Thus, for fitness functions of the type in Eq. 5 with positive
epistasis, seasonally fluctuating selection can, in principle, main-
tain polymorphism at many loci, but the respective favored allele
would have to be almost completely dominant, requiring large
seasonal changes in dominance.

With diminishing-returns epistasis (v ′′ < 0), the fittest pos-
sible fully homozygous genotype carries the summer allele at
half of the loci and the winter allele at the other half of the loci
(assuming an even number of loci). Thus, a necessary condition
for polymorphism is that this homozygous intermediate type can
be invaded by mutants. The resident type has score L/2 in both
seasons whereas mutants differing in one position have scores
L/2+d and L/2−1+d . Thus, the resulting necessary condition
for polymorphism is

w(L/2 + d) · w(L/2− 1 + d) > w(L/2)2. [11]

Again, this condition is always fulfilled for d = 1. For fitness
functions of the form Eq. 4 with any exponent y , the critical
dominance coefficient dcrit at which homozygous intermediates
become invasible satisfies(

1 +
L

2
+ dcrit

)(
1 +

L

2
− 1 + dcrit

)
=

(
1 +

L

2

)2

. [12]

This quadratic equation has a negative solution, which is not rel-
evant for our model, and a positive solution

dcrit =
1

2

(
−1− L + (2 + L)

√
1 +

1

(2 + L)2

)
. [13]

From Eq. 13, dcrit decreases as L increases and approaches 0.5
as L goes to infinity. The intuition here is that the second deriva-
tive of the logarithm of fitness v ′′(z ) = −y(1 + z )−2 decreases
with increasing z . Therefore, for large L, epistasis around the
intermediate type with z = L/2 is weak, and the conditions for
polymorphism approach those without epistasis. In other words,
with increasing L, selection against temporal variation around
the intermediate type becomes weaker, and a smaller change in
dominance is sufficient to overcome it.

Our results so far suggest that for a broad class of fitness
functions, seasonally fluctuating selection can maintain polymor-
phism if in both seasons the respective favored allele is suf-
ficiently dominant. We call this mechanism “segregation lift”
because it is based on a positive aspect of two alleles segregat-
ing at the same locus, as opposed to the negative aspect of seg-
regation load. However, the preceding analysis does not tell us
whether polymorphism will be maintained at all loci, or just one
or a few of them. Also, it is still unclear how efficient segrega-
tion lift is at maintaining multilocus polymorphism in finite pop-
ulations with genetic drift and recurrent mutations and whether
genetic load is a problem. To address these questions, we now
turn to stochastic simulations.

Stochastic Simulations
We use Wright–Fisher type individual-based forward simulations
(see SI Appendix, section S2 for details). That is, for every individ-
ual in a generation independently, two individuals are sampled as
parents in proportion to their fitnesses. We focus on diminishing-
returns fitness functions of type Eq. 4 both because diminishing-
returns epistasis appears to be more common and plausible (e.g.,
refs. 21–23) and because the above theoretical arguments sug-
gest that it is more conducive to multilocus polymorphism than
synergistic epistasis. Specifically, the critical dominance parame-
ter, dcrit , for diminishing-returns epistasis in Eq. 13 is generally

Table 1. Overview of model parameters and the ranges explored

Parameter Explanation Range explored

g Number of generations per season; 1–20
a year has 2g generations

N Population size 100–10,000
L Number of loci 1–500
µ Mutation probability per allele copy 10−6 − 10−4

per generation
d Dominance parameter 0–1
y Exponent of the fitness function Eq. 4 0.5–4

smaller than the one for synergistic epistasis in Eq. 9. In addition,
we run some simulations for the multiplicative model.

Additional parameters in the stochastic simulations are the
symmetric mutation probability µ per allele copy per gener-
ation and the population size N . We generally keep popu-
lation size constant, but also run supplementary simulations
with seasonal changes in population size. Table 1 gives an
overview of the model parameters and the ranges explored.
In most simulated scenarios, selection and dominance effects
are strong relative to mutation [w ′(z ) and d − 0.5 are much
larger than the mutation rate µ]. Although natural populations
are often larger and mutation rates smaller than the values
used here, many population genetic processes depend only on
the product Nµ (e.g., ref. 45). Thus, large populations with
small mutation rates may be well approximated by computa-
tionally more manageable smaller populations with larger muta-
tion rates.

In addition to the basic model, we design a “capped” model
to assess the relevance of genetic load. In this model, each indi-
vidual can be drawn at most 10 times as a parent of individu-
als in the next generation, i.e., contribute at most 10 gametes.
Once an individual has reached that number, its fitness is set to
0 so that it cannot be drawn again. To better understand the role
of offspring-number capping, we also run supplementary simu-
lations with a cap of three, the smallest possible value that still
allows for differences in offspring number between individuals
in the population.

From the simulation output, we estimate an “effective strength
of balancing selection” (Materials and Methods and SI Appendix,
section S2), which tells us whether and how fast a rare allele
increases in frequency over a full yearly cycle. As expected from
the above theoretical arguments, additive contributions within
loci (d = 0.5) are not conducive to multilocus polymorphism
(Fig. 5). For even numbers of loci, i.e., situations where both
homozygous and heterozygous intermediates exist (Fig. 2), the
effective strength of balancing selection estimated from the sim-
ulations is negative, indicating that rare alleles tend to become
even rarer. For small odd numbers of loci, the effective strength
of balancing selection is positive, but only one or two loci at a
time fluctuate at intermediate frequency (SI Appendix, Fig. S4).
As the number of loci increases, the effective strength of balanc-
ing selection eventually becomes negative even for odd numbers,
decreases overall in absolute value, and finally approaches zero
(effective neutrality) from below (Fig. 5). This behavior is inde-
pendent of the exponent, y , of the fitness function Eq. 4. Also, as
expected, effective balancing selection (Materials and Methods)
emerges if the dominance parameter, d , is larger than a certain
critical value, which decreases with the number of loci and is only
weakly influenced by mutation rate (Fig. 6).

From now on, we will focus on scenarios with large numbers
of loci. For the case of 100 loci, Fig. 7 shows example allele-
frequency trajectories for three different dominance parameters,
d . For small d , each locus is almost fixed either for the summer
or winter allele. For large d , all loci fluctuate at intermediate
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Fig. 5. Effective strength of balancing selection (be in Eq. 14 in Materi-
als and Methods) in the additive case (d = 0.5) as a function of the num-
ber of loci. Solid lines indicate means and dashed lines indicate means ±
two standard errors. Simulations are always run for successive odd and even
numbers. N = 1,000, g = 15, µ = 0.0001.

frequency. The critical dominance parameter, dcrit , with 100 loci
is close to 0.5, independently of the exponent of the fitness func-
tion, y (Fig. 8A). For d < 0.5, i.e., if the currently favored allele is
recessive, the effective strength of balancing selection is negative
and polymorphism is unstable (Fig. 8A). As d increases beyond
0.5, i.e., as the currently favored allele becomes more dominant,
effective balancing selection becomes stronger (Fig. 8A). Both
the stabilizing and destabilizing effects increase with increasing
exponent y (Fig. 8A).

A tendency for rare alleles to increase in frequency does not
guarantee that the average lifetime of a polymorphism is larger
than under neutrality (42, 46). This is particularly interesting for
fluctuating selection regimes with positive autocorrelation where
alleles regularly go through periods of low frequency (42). We
therefore compute the so-called retardation factor (46), the aver-
age lifetime of a polymorphism in the selection scenario relative
to the average lifetime under neutrality (see SI Appendix, section
S2 for detailed methodology). The results for 100 loci are consis-
tent with those for the effective strength of balancing selection:
For d > 0.5, polymorphism under segregation lift is lost more
slowly than under neutrality (Fig. 8B).

To quantify seasonal fluctuations, we compute an effective
selection coefficient (Materials and Methods and SI Appendix,
section S2). We also compute the predictability of fluctuations
as the proportion of seasons over which the allele frequency
changes in the expected direction, e.g., where the summer-
favored allele increases over a summer season. Both the effective
selection coefficient and the predictability of fluctuations have a
maximum at intermediate values of d and increase with increas-
ing exponent y of the fitness function Eq. 4 (Fig. 8 C and D). For
even higher values of d , fluctuations are not as strong, presum-
ably because heterozygotes are fitter, and therefore more copies
of the currently disfavored allele enter the next generation. Also,
effective strength of balancing selection, effective selection coef-
ficient, and predictability of fluctuations increase with the num-
ber of generations per season (SI Appendix, Fig. S6).

With an offspring-number cap of 10, the results for the capped
model generally match the results for the uncapped model in all
respects, especially for d > 0.5 (Fig. 8). It appears that the cap-
ping mechanism only rarely takes effect because of relatively nar-
row distributions of the seasonal score, z , within a generation (SI
Appendix, Fig. S7), and consequent relatively low variance in fit-
ness (SI Appendix, Fig. S8). For example, for d = 0.7 and y = 0.5,

the fittest individual in the population was on average 1.2 times
fitter than the least fit individual and 4.9 times fitter for y = 4
(see SI Appendix, section S4 for a supporting heuristic analysis).
When the offspring-number cap is set to three, substantial quan-
titative differences between uncapped and capped simulations
are seen (SI Appendix, Fig. S9). However, 0.5 remains the crit-
ical dominance parameter. This result also holds for the multi-
plicative model (SI Appendix, Fig. S10), but with otherwise larger
differences between capped and uncapped model versions, even
with an offspring-number cap of 10. Also, the retardation fac-
tor for the multiplicative model is often below one, even when
the effective strength of balancing selection is positive. The rea-
son appears to be that there is larger variance in fitness under the
multiplicative model (SI Appendix, Fig. S11) and that fluctuations
are sometimes so large that alleles go to fixation (SI Appendix,
Fig. S12). Both of these effects are weakened by offspring num-
ber capping, so that the capped multiplicative model behaves
more similarly to the diminishing-returns model (SI Appendix,
Fig. S10).

Additional simulations for the diminishing-returns model sug-
gest that the finding of stable multilocus polymorphism for
d > dcrit ≈ 0.5 still holds under various forms of asymmetry,
e.g., when one season has more generations than the other (SI
Appendix, Fig. S13); when the exponent of the fitness function, y ,
differs between summer and winter (SI Appendix, Fig. S14); and
when there are seasonal changes in population size (SI Appendix,
Fig. S15). To explore the effects of asymmetry in the dominance
parameters, we fixed the winter dominance parameter, dw , at 0.4
and varied the summer dominance parameter, ds . Stable poly-
morphism then arises for ds > 0.6 (SI Appendix, Fig. S16), sug-
gesting that stable polymorphism requires an arithmetic mean
dominance parameter >0.5. Compared with the diminishing-
returns model, the multiplicative model seems less robust to
asymmetry (SI Appendix, Fig. S17).

With an increasing number of loci under the diminishing-
returns model and with d > 0.5, the strength of balancing selec-
tion, the retardation factor, and the magnitude and predictabil-
ity of fluctuations all decrease (Fig. 9). Population size hardly
influences effective strength of balancing selection and effective

Fig. 6. Critical value of the dominance parameter, dcrit , such that the effec-
tive strength of balancing selection (be in Eq. 14 in Materials and Methods),
is positive (stable polymorphism) if d > dcrit , and negative (unstable poly-
morphism) if d < dcrit . Symbols represent means across replicates, and lines
represent averages ± two standard errors. Since the pattern for odd num-
bers of loci is more complex (Fig. 5), only even values for the number of loci
are included here. N = 1,000, y = 2, g = 15.
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Fig. 7. Three examples of allele-frequency trajectories for N = 1,000,
L = 100, g = 15, y = 4, µ= 10−4, and d = 0.15 (A), d = 0.5 (B), and d = 0.65
(C). Only 10 randomly selected loci (shown in different colors) out of 100 loci
are shown for 5 years (150 generations) in the middle of the simulation run
(years 301–305).

selection coefficient, measures which are based on average
allele-frequency changes (Fig. 9 A and C), but large populations
maintain polymorphism for longer (Fig. 9B) and have more pre-
dictable allele-frequency fluctuations (Fig. 9D). In small popula-
tions, polymorphism can even be lost slightly faster than under
neutrality (Fig. 9B).

Finally, we consider a generalized model where parameters
vary across loci and may be asymmetric between seasons. Inde-
pendently, for each locus l , we draw four parameters: Summer
effect size ∆s,l and winter effect size ∆w,l are drawn from a log-
normal distribution. For this, we draw a pair of parameters from
a bivariate normal distribution with mean 0, SD 1, and corre-
lation coefficient 0.9, and then apply the exponential function
to each of them. Summer and winter dominance parameters,
ds,l and dw,l , are drawn independently from a uniform distribu-
tion on [0,1]. Seasonal scores are then computed as z =

∑L
l=1 cl ,

where the contribution cl of locus l in summer is 0 for winter–
winter homozygotes, ds,l∆s,l for heterozygotes, and ∆s,l for
summer–summer homozygotes. Winter contributions are com-
puted analogously. Because all effect sizes ∆ are positive, all loci
exhibit a trade-off between summer and winter effects. We use
y = 4 here because it led to the most stable polymorphism in the
basic model.

The results indicate that polymorphisms with different param-
eters can be maintained in the same population, with their allele
frequencies fluctuating on various trajectories (Fig. 10A). With
a sufficiently high total number of loci, hundreds of stable poly-
morphisms (positive expected frequency change of a rare allele;
see SI Appendix, section S2 for details) can be maintained in pop-
ulations of biologically plausible size (Fig. 10B). The number of
loci classified as stable depends only weakly on population size.
However, only a small proportion of the polymorphisms clas-
sified as stable also exhibit detectable allele-frequency fluctua-
tions, defined as changes in the expected direction by at least 5%
in at least half of the seasons (Fig. 10 C and D). The number
of detectable polymorphisms is highest at an intermediate total
number of loci and increases with population size (Fig. 10D).
Detectable polymorphisms tend to have larger summer and win-
ter effect sizes than polymorphisms that are only stable (Fig.
10E). Compared with unstable polymorphisms, stable polymor-
phisms are more balanced in their summer and winter effect sizes
(two-sample t-test on | ln(∆s,l/∆w,l)|, p < 2.2 · 10−16; Fig. 10E;
see also SI Appendix, Fig. S18). Many stable polymorphisms have
asymmetric dominance parameters, but for almost all of them,
detectable or not, the average dominance parameter across sea-
sons is >0.5 (Fig. 10F).

Discussion
We study a simple model for seasonally fluctuating selection that
maps the multilocus genotype to fitness in two steps. First, we
count the number of loci homozygous for the currently favored

allele and add the number of heterozygous loci weighted by
a dominance parameter. The resulting seasonal score is then
mapped to fitness via a monotonically increasing function which
accounts for strength of selection and epistasis. The previously
studied cases of multiplicative selection and selection on a fully
additive phenotype are special cases of our model. We identify a
general mechanism, segregation lift, by which seasonally fluctu-
ating selection can maintain polymorphism at tens or hundreds
of unlinked loci. Segregation lift requires that the average dom-
inance parameter of the currently favored allele—the summer
allele in summer and the winter allele in winter—is sufficiently
large. Individuals with many heterozygous loci then have higher
scores in both seasons than individuals with the same number of
summer and winter alleles, but more homozygous loci. Unlike
in previously studied additive models, fully homozygous types
thus cannot fix in the population, and multilocus polymorphism
is maintained. In some cases, segregation lift may also be inter-
preted as a type of phenotypic plasticity, where more heterozy-
gous genotypes can better adjust to both summer and winter
environments.

The critical value of the dominance parameter required to
maintain polymorphism, dcrit , depends mostly on the type of
epistasis and on the number of loci. Without epistasis, i.e., for
multiplicative selection, dcrit is 0.5. With synergistic epistasis, it
is close to one when there are multiple loci. With diminishing-
returns epistasis, the type of epistasis that appears most common,
dcrit , is substantially larger than 0.5 with few loci, but quickly
approaches 0.5 as the number of loci increases.

Robustness and Plausibility of Segregation Lift as a Mechanism
to Maintain Variation. Segregation lift requires that dominance
changes over time such that the currently favored allele is on
average at least slightly dominant with respect to the seasonal

A B

C D

Fig. 8. Influence of the dominance parameter d on effective strength of
balancing selection (A; be, Eq. 14, Materials and Methods), retardation fac-
tor (B), magnitude of fluctuations (C; se, Eq. 15, Materials and Methods),
and predictability of fluctuations (D). Symbols indicate averages across repli-
cates for the uncapped vs. capped model variant (often overlapping), and
solid vs. dashed lines in A, C, and D indicate the respective means ± two
standard errors. Lines in B simply connect maximum-likelihood estimates
obtained jointly from all replicates. N = 1,000, L = 100, g = 15, µ= 10−4.
See SI Appendix, Fig. S5 for more detailed information on the distribution
and frequency dependence of seasonal allele frequency changes. The verti-
cal gray lines are at d = 0.5. Bal. sel., balancing selection; exp., expected.
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A B

C D

Fig. 9. Influence of population size and the number of seasonally selected
loci on effective strength of balancing selection (A; be in Eq. 14, Materials
and Methods), retardation factor (B), magnitude of fluctuations (C; se in Eq.
15, Materials and Methods), and predictability of fluctuations (D). Symbols
indicate averages across replicates and lines in A, C, and D indicate means±
two standard errors (in C and D, standard errors are too small to be visible).
Lines in B simply connect maximum-likelihood estimates obtained jointly
from all replicates. Note that in B, some points are missing because the rate
of loss of polymorphism was too small to be quantified. d = 0.7, y = 4, g =

15, µ = 10−4. Bal. sel., balancing selection; exp., expected.

score. As discussed above, there are several potential mecha-
nisms that can plausibly produce such changes in dominance.
Moreover, the required changes are small. Unfortunately, there
have been only few relevant empirical studies so far. For
instance, in the copepod Eurytemora affinis, there appears to be
beneficial reversal of dominance for fitness across salinity con-
ditions (47). In experimental Drosophila populations, changes in
dominance for gene expression across environments appear to be
common (48). More empirical and theoretical work is required
to find out how common changes in dominance are, in particu-
lar on the relevant scale of the seasonal score. However, even if
the required changes in dominance are rare on a per-site basis
and the vast majority of polymorphisms are lost under fluctu-
ating selection, there may still be many sites in the genome
with appropriate reversal of dominance, and, as we show, those
are then the ones that we should see as seasonally fluctuating
polymorphisms.

In the focal diminishing-returns scenario, the conditions for
stable polymorphism via segregation lift are surprisingly robust
to changes in the mutation rate (Fig. 6) and to asymmetries in
number of generations, strength of selection, or population size
between summer and winter (SI Appendix, Figs. S13–S15), appar-
ently more so than under the multiplicative model (SI Appendix,
Fig. S17). When the dominance parameter differs between sum-
mer and winter, polymorphism is generally stable at those loci
whose average dominance parameter across seasons is>0.5 (Fig.
10F and SI Appendix, Fig. S16). Segregation lift is also robust to
variation in effect sizes and dominance parameters across loci
(Fig. 10). In reality, the strength of seasonality likely varies in
space and time, which could make the maintenance of polymor-
phism by segregation lift even more robust (SI Appendix, Fig.
S2B and ref. 40). Future work needs to explore whether segrega-
tion lift is robust also to linkage between selected loci. Since our
diminishing-returns fitness function has a particular relationship

between epistasis and strength of selection, future work should
also consider more general fitness functions allowing for various
combinations of epistasis and selection strength.

Whenever there is balancing selection at a large number of
loci, genetic load is a potential concern. In the case of segre-
gation lift with diminishing-returns epistasis, however, genetic
load does not appear to play an important role. The results
for our capped model closely match the results for the origi-
nal, uncapped model. Apparently, independent segregation at
a large number of unlinked loci leads to relatively small vari-
ance in seasonal scores within the population and, together with
the diminishing-returns fitness function, to relatively small vari-
ance in fitness. With a much smaller offspring number cap or
with multiplicative selection, differences between the capped and
uncapped model are more substantial, but even then, balancing

A B

C D

E F

Fig. 10. Stability of polymorphism and detectability of allele-frequency
fluctuations when parameters vary across loci and seasons. (A) Snapshot
of allele-frequency trajectories for stable polymorphisms in one simulation
run. (B) Average number of stable polymorphisms as a function of the total
number of loci for different population sizes. (C and D) As in A and B,
but only for polymorphisms that are also detectable. (E) Winter effect size,
∆l,w , vs. summer effect size, ∆l,s, for stable and detectable and only sta-
ble polymorphisms. The plot shows pooled results over ten simulation runs
with independently drawn parameters. Oval isoclines indicate the shape of
the original sampling distribution, with 75% of the sampling probability
mass inside the outermost isocline. (F) Corresponding dominance parame-
ters (see also SI Appendix, Fig. S19). The dominance parameters were orig-
inally drawn from a uniform distribution on the unit square. Parameters:
y = 4, g = 10, µ = 10−4 and in A, C, E, and F N = 10,000, L = 100.
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selection emerges for d > 0.5. Thus, unrealistically large off-
spring numbers are not required for stable multilocus polymor-
phism via segregation lift.

Magnitude and Detectability of Allele-Frequency Fluctuations. In
addition to stable polymorphism, segregation lift can also pro-
duce strong and predictable seasonal fluctuations in allele
frequencies. The magnitude of these fluctuations, however,
decreases with the number of loci under selection. Thus, the
number of detectable polymorphisms may be maximized at an
intermediate number of loci (Fig. 10). In SI Appendix, section S3,
we use a heuristic mathematical argument to explore the rela-
tionship between number of loci and magnitude of fluctuations
in a population of infinite size. As the number of loci goes to
infinity, the effective strength of selection at each locus is pre-
dicted to go to zero, i.e., effective neutrality. This is because
more loci lead to higher overall seasonal scores, z , which under
diminishing-returns epistasis leads to weaker average selection
pressures at each locus. Thus, even if segregation lift contributes
substantially to maintaining polymorphism at a large number of
loci, it is not necessarily easy to detect individual selected loci
based on their allele-frequency fluctuations. Future research will
need to explore new ways of detecting such subtle seasonal allele-
frequency fluctuations at many loci, perhaps based on their col-
lective behavior rather than on patterns at individual sites.

Empirical Evidence, Alternative Hypotheses, and Potential Tests
for Segregation Lift. As mentioned above, a recent pooled-
sequencing study by Bergland et al. (36) detected strong seasonal
allele-frequency fluctuations at hundreds of sites in a temperate
population of D. melanogaster. At many sites, allele frequencies
fluctuated by ∼10% over a single season of ∼10 generations,
and many of the polymorphisms appear to be long-term stable.
Based on our results, segregation lift could potentially explain
these observations, but caution is warranted for several reasons.
First, with hundreds of seasonal SNPs and only few chromo-
somes, there will necessarily be substantial linkage between some
of the sites. Second, the distribution and dynamics of dominance
effects at the seasonally selected loci are still unknown. Finally, it
is not completely clear whether the observed magnitude of allele-
frequency fluctuations can be explained by our segregation lift
model, where fluctuations are often more subtle (Fig. 10 C and
D, but see Fig. 7C). Based on our current knowledge, we there-
fore cannot claim that the empirical observations by Bergland et
al. (36) are explained by segregation lift. Future work will need
to empirically test this model and possible alternatives.

One alternative is that genetic variation is not really sta-
bly maintained, but simply induced by recurrent mutation, with
selection responsible only for the seasonal fluctuations (31, 49),
or by recurrent immigration from other subpopulations where
either winter- or summer-favored alleles dominate. However,
in the case of the Drosophila observations, this was considered
unlikely (36). Alternative mechanisms that could lead to both
fluctuations and long-term stability are (i) differential responses
to fluctuating resource concentrations and population densities
(17, 50–52) and (ii) a so-called “temporal storage effect” where
genetic variation can be buffered by a long-lasting life-history
stage on which selection does not act, or by some other pro-
tected state (51, 53, 54). However, these mechanisms are more
commonly studied in ecology as mechanisms for species coexis-
tence, and it is unclear whether they can maintain polymorphism
at multiple loci in diploids.

In future empirical tests for segregation lift, a main challenge
will be that the pivotal dominance parameter, d , is not rela-
tive to fitness but relative to the seasonal score, z , which medi-
ates between multilocus genotype and fitness, and is itself not
directly measurable. Since the shape of the fitness function, w ,
is also generally unknown, it is not possible to infer d from fit-

ness measurements of different single-locus genotypes in a com-
mon genetic background. In an ideal situation, with fitness mea-
surements for many different multilocus genotypes at different
times, we could use statistical methods such as machine learn-
ing to jointly estimate parameters of the fitness function, effect
sizes, and dominance parameters and thereby assess whether or
not there is segregation lift. Such statistical approaches could
also take into account the existence of several multiplicative
fitness components, each with a set of contributing loci that
might exhibit segregation lift and epistatic interactions. In prac-
tice, however, measuring fitness is challenging in itself. One pro-
ductive direction could be to stock a large number of outdoor
mesocosms, each with a different multilocus genotype, and track
fitness over multiple seasons. However, apart from the logistic
challenges, we do not know a priori which loci to focus on. Com-
ing up with a meaningful and feasible way to empirically get at
the scale of the seasonal score z and estimate the relevant domi-
nance parameters is thus an important research direction arising
from this study. An alternative approach is to make predictions
for the genetic footprint of selection in linked neutral regions,
e.g., look at diversity levels, site-frequency spectra, and patterns
of linkage disequilibrium, and use these empirically more acces-
sible patterns to distinguish between multiple possible models.

Conclusions
We identify segregation lift as a general mechanism by which sea-
sonally fluctuating selection can maintain polymorphism at hun-
dreds of unlinked loci in populations of biologically reasonable
size. Segregation lift circumvents the problems associated with
maintenance of polymorphism under stabilizing selection and
does not require highly heterozygous individuals to have unre-
alistically many offspring. Given the ubiquity of environmental
fluctuations, segregation lift could make a substantial contribu-
tion to genetic variation in natural populations of many taxa. An
important question for future work is how we can use modern
molecular biology and sequencing technologies to test for seg-
regation lift and thus make progress on solving the puzzle of
genetic variation.

Materials and Methods
For the basic model and the capped model, we assess stability of polymor-
phism by estimating an effective strength of balancing selection, be, from
the year-to-year allele-frequency dynamics. For this, we fit a standard bal-
ancing selection model (55) of the form

∆yx = bex(1− x)(1− 2x) [14]

to average changes in allele frequency over one yearly cycle, ∆yx (see SI
Appendix, section S2 for details). Positive values of be indicate that rare
alleles tend to become more common in the long run, whereas negative
values indicate that rare alleles tend to become even more rare. Second, we
quantify the magnitude of fluctuations over individual seasons. For this, we
fit a standard directional selection model (55)

∆sx = sex(1− x), [15]

with an effective selection coefficient se, to average allele-frequency
changes over one season, ∆sx (SI Appendix, section S2).

To obtain a measure for statistical uncertainty in our results, we run 10
replicates for every parameter combination and calculate effective strength
of balancing selection, be, and effective selection coefficient, se, indepen-
dently for each replicate. We do the same for the predictability of fluctu-
ations, i.e., the proportion of seasons in which a locus changes its allele
frequency in the expected direction. In all three cases, we report the mean
over replicates ± two standard errors of the mean. To obtain retardation
factors, we run 100 replicates until polymorphism is lost at one of the loci
or a maximum time of 500 years is reached. From the times of loss for the
replicates, we obtain maximum-likelihood estimators for the rate of loss of
polymorphism (see SI Appendix, section S2 for details).

C++ simulation code and supporting R scripts are available at https://doi.
org/10.6084/m9.figshare.5142262.
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Fig. S1. Examples illustrating why a heterozygote fitness closer to the fitter homozy-
gote is neither a sufficient nor a necessary condition for d > 0.5. If the fitness function
is concave, the fitness of a heterozygote can be closer to the fitter homozygote even
for d < 0.5 (A). On the other hand, if the fitness function is convex, the fitness of
heterozygotes can be closer to the less fit homozygote even for d > 0.5 (B). It is
assumed that the genetic background is the same for all genotypes and, for simplicity,
that it makes contribution 0 to z. The dotted lines illustrate the mapping between
z = d and z = 1 and the respective fitnesses. A) Eq. (4) with y = 0.1. B) Eq. (5)
with q = 1.2.

Appendix S1. Local stability analysis for the additive
scenario (d = 0.5) with diminishing-2

returns epistasis

In this section, we consider a scenario where alleles contribute4

to the seasonal score z additively within and between loci
(ds = dw = 0.5 in Eq. (1) and Eq. (2)). We show that in the6

deterministic model without recurrent mutation, a population
fixed for a balanced haplotype with L/2 summer-favored alleles8

and L/2 winter-favored alleles (L even) cannot be invaded
by any other haplotype. We give an intuitive rather than a10

mathematically formal outline of the stability analysis.
Assume that a certain balanced haplotype is at frequency12

close to 1 in the population. We will call it the resident hap-
lotype. Let εi,j be the combined frequency of all haplotypes14

that have a winter allele at i positions where the resident
haplotype has a summer allele and a summer allele at j posi-16

tions where the resident haplotype has a winter allele. Thus
an i, j-haplotype has L/2 + i − j winter alleles, L/2 − i + j18

summer alleles, and differs in i+ j positions from the resident
haplotype.20

Rare i, j-haplotypes will almost certainly occur in a geno-
type with a copy of the resident balanced haplotype. This has22

two consequences. First, recombination with the resident bal-
anced haplotype will produce other haplotypes that differ in at24

most i+ j positions from the resident haplotype. Haplotypes
with more than i+ j differences cannot be produced because26

if resident and invading haplotype have the same allele at a
locus, then all offspring haplotypes will carry this allele as well.28

Given free recombination, the probability that one of the two
recombinant haplotypes produced by an i, j-resident genotype30

(consisting of one i, j-haplotype and one resident haplotype)
is of type i, j is 1/2i+j . Second, the relevant fitness values for 32

the invasion of the i, j-haplotype are w((L+ i− j)/2) in winter
and w((L− i+ j)/2) in summer. The population mean fitness 34

will be approximately w(L/2) in both seasons, namely the
fitness of the resident-resident genotype. 36

To linear order, the frequency of the i, j-haplotype after one
yearly cycle with g generations of summer and g generations 38

of winter will be

ε′i,j = εi,j ·
(
w((L+ i− j)/2)

w(L/2)

)g
·
(
w((L− i+ j)/2)

w(L/2)

)g
·
(

2 · 1
2i+j

)2g
,

[S1]
where the factor of two in the last term comes from the fact 40

that each genotype contributes on average two haplotypes in
the next generation. From the assumption that intermediate 42

types are favored in the long run (negative epistasis), we can
conclude that 44

w((L+ i− j)/2) · w((L− i+ j)/2) ≤ w(L/2)2, [S2]

with equality for i = j. Hence ε′i,j < εi,j for i 6= j, showing
that unbalanced haplotypes cannot invade the population. 46

For a balanced haplotype (i = j),

ε′i,j = εi,j · 1 ·
(

2 · 1
22i

)2g
< εi,j for i ≥ 1. [S3]

Intuitively, other balanced haplotypes cannot invade, because 48

they differ from the resident balanced haplotype at more than
one position and are therefore broken down by recombination. 50

Hence we have shown that a population fixed for a certain
balanced haplotype cannot be invaded by any other balanced 52

or unbalanced haplotype.

Appendix S2. Detailed methods 54

Individual-based simulations. We assume discrete, non-
overlapping generations with population size N and L loci. In 56

each generation, the following events take place in this order:
1) The fitnesses of all individuals in the parent generation are 58

calculated using the genotype-to-fitness map described in the
main text (Eq. (1), Eq. (2), Eq. (4)). 2) Each individual in the 60

offspring generation draws two parents, independently, with
replacement (i.e. selfing is possible), and proportionally to 62

parent fitness. 3) Each parent passes one set of alleles to each
of its offspring. We assume unlinked loci such that at each 64

of the L loci each of the two allele copies is passed on with

1To whom correspondence should be addressed. E-mail: meike.wittmann@uni-bielefeld.de or
dpetrov@stanford.edu
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Fig. S2. Alternatives to the scenario in Fig. 3. A) If heterozygotes are relatively close to the fitter homozygote with respect to one of the traits and the beneficial allele is only
slightly recessive for the other trait, we can still obtain a beneficial reversal of dominance with respect to the seasonal score, z. However, in this case, ds 6= dw . B) If the two
traits are of similar importance in the two seasons, heterozygotes are fitter than either homozygote at all times.

equal probability, independently of the alleles passed on at66

other loci, and also independently of which alleles were passed
on to other offspring of the same parent. 4) Independently68

and with probability µ, each of the allele copies passed to an
offspring mutates to the respective other allele. 5) The parent70

generation is removed from the model and replaced by the
individuals in the offspring generation.72

To initialize a simulation run, we randomly assemble geno-
types. Independently for each individual, locus, and allele copy,74

we draw the summer and the winter allele with equal proba-
bilities. Each simulation runs for 500 years, corresponding to76

500 · 2 · g generations. Each parameter combination is repli-
cated 10 times. For each locus, we store the allele-frequency78

trajectory over time.

Stability of polymorphism and magnitude of fluctuations. To80

quantify and compare the dynamics of different simulation
runs, we compute three summary statistics from the allele-82

frequency trajectories: an effective strength of balancing se-
lection, be, as a measure of the stability of polymorphism, an84

effective selection coefficient, se, as a measure of the magnitude
of fluctuations, and the proportion of allele frequency changes86

that go in the expected direction as a measure of predictability
of fluctuations.88

To compute the strength of balancing selection, we divide
the allele-frequency interval between 0 and 1 into 25 equally-90

sized bins (from 0 to 0.04, from 0.04 to 0.08, ...). For each
frequency bin, we compute the average allele-frequency change92

over the course of one year, from the middle of the cold season

to the middle of the next cold season. We chose the middle of 94

the cold season as a reference point because at this point the
average frequency across all loci should be approximately 0.5. 96

Choosing the middle of the warm season as the reference point
should give the same results, but choosing either the beginning 98

or end of the warm season would lead to asymmetric results.
We average over all loci and times, for which the frequency at 100

the reference point is in the respective frequency bin. Because
we want to quantify dynamics at equilibrium, we only use data 102

from the second half of each simulation run. We also exclude
data points for which the allele frequency at the beginning 104

of the year is exactly 0 or 1. For each bin, we then subtract
an approximate average frequency change due to mutations 106

2·g ·(µ·(1− p̄)−µ· p̄) = 2·g ·µ·(1−2p̄), where p̄ is the midpoint
of the respective frequency bin (0.02, 0.06,...). Finally, we use 108

the lm function in R [1] to fit a balancing-selection model of
the form be · p̄(1− p̄)(1− 2p̄) to the mutation-adjusted average 110

allele-frequency changes. The coefficient be is our effective
strength of balancing selection. Example model fits are shown 112

in Fig. S3 A.

To compute the effective selection coefficient, we use the 114

same data subsets and frequency bins as for the effective
strength of balancing selection. But now we compute the 116

average frequency change of the currently favored allele for
each season, i.e. of the summer allele from spring to fall or 118

of the winter allele from fall to spring. We bin data points
according to the mid-season frequency of the currently favored 120

allele. After subtracting g·µ·(1−2p̄), the approximate expected
frequency change due to mutations, we fit the model se ·p̄(1−p̄). 122
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Fig. S3. Examples of model fits to estimate (A) the effective strength of balancing
selection (Eq. (14)) and (B) the effective selection coefficient (Eq. (15)). The letters
A, B, and C in the plots indicate the panel in Fig. 7 that depicts the corresponding
time series.

The coefficient se is the effective selection coefficient. Example
model fits are shown in Fig. S3 B.124

Retardation factor. To obtain the retardation factor, we ran
additional simulations without recurrent mutations (µ = 0).126

We started at allele frequency 0.5 for all loci and simulated
nrep = 100 replicate populations. We stopped the simulation128

as soon as polymorphism was lost at any of the L loci, but
at most after 500 years, corresponding to tmax = 500 · 2 · g130

generations. For each parameter combination, we ran a neutral
control simulation, which was achieved by setting y = 0.132

The relevant results for each parameter combination are the
number of replicates, nlost, in which the first polymorphism134

was lost before tmax and the times of loss for each of these
replicates t1, t2, ..., tnlost .136

For simplicity, we assume that polymorphism is lost with
the same probability p in every generation such that the time
to the first loss is geometrically distributed. We then adopt a
Maximum-Likelihood approach to estimate p. The likelihood
of p is

L(p) = (1− p)tmax·(nrep−nlost)pnlost

nlost∏
i=1

(1− p)ti−1 [S4]

= pnlost (1− p)a [S5]

with

a := tmax(nrep − nlost)− nlost +
nlost∑
i=1

ti. [S6]

To look for extreme values, we take the first derivative with138

respect to p

L′(p) = pnlost−1(1− p)a−1 (nlost − p(nlost + a)) [S7]

and obtain our estimator140

p̂ = nlost

nlost + a
= nlost∑nlost

i=1 ti + tmax(nrep − nlost)
. [S8]

Eq. (S7) is positive for p < p̂ and negative for p > p̂. Therefore,
p̂ is a maximum of the likelihood function. To see that this142

estimator makes sense, consider an example where loss is so
fast that all replicates lose a polymorphism before tmax. In144

this case, p̂ will be the inverse of the average time to loss.
For each parameter combination, we obtain the ML-146

estimator p̂sel under seasonally fluctuating selection and the

ML-estimator for the corresponding neutral scenario p̂neutral. 148

Finally, we compute the retardation factor as p̂neutral/p̂sel. Val-
ues larger than one occur for selection scenarios that tend 150

to maintain polymorphism longer than neutrality, whereas in
scenarios with a retardation factor below one polymorphism 152

is lost more quickly than under neutrality.

Stability in asymmetric scenarios. In our model with param- 154

eter variation across loci and seasons, and also in the basic
model with different numbers of generations in summer and 156

winter, the dynamics are generally asymmetric. That is, either
the summer or the winter allele is more common on average. 158

Hence the standard balancing selection model Eq. (14) does not
fit anymore. We therefore use a different method to assess sta- 160

bility of polymorphism for individual loci. For each frequency
bin between 0 and 0.5, we take all time points for which the 162

frequency of the currently rare allele is in the frequency bin
at the beginning of the cycle and compute the average change 164

in its allele frequency over one cycle. As above, we subtract
the expected input from new mutations. We do this separately 166

for 10 replicate simulation runs (or for 10 disjoint subsets of
the data if the actual replicates differ in the locus parameters) 168

and for each frequency bin we compute the interval mean ±
2 standard errors. We then call a polymorphism stable if the 170

rare allele has a positive expected frequency change in the
most marginal frequency bin whose interval does not overlap 172

zero.

Appendix S3. Magnitude and detectability of seasonal 174

fluctuations with diminishing-returns
epistasis 176

In this section, we use a heuristic mathematical argument to
explore how the magnitude of allele-frequency fluctuations 178

changes as the number of loci increases in a population of
infinite size. 180

Let us assume that there are L+1 loci in total, with one focal
locus whose dynamics we will now study while the remaining 182

L loci form its “genetic background”. Let us first consider the
contribution, zb, of the genetic background to the seasonal 184

score, z, i.e. the total score minus the contribution from the
focal locus. For simplicity, we will focus on the expected allele 186

frequency change over one generation at one of the two time
points at which the allele frequency equals the yearly average 188

allele frequency. At this point, both the population mean and
the variance of the score zb among individuals in the population 190

should be approximately proportional to the number of loci:

z̄b =
L∑
l=1

c̄l ≈ k1L [S9]

and 192

Var(zb) =
L∑
l=1

Var(cl) ≈ k2L, [S10]

where we have assumed free recombination. Here, cl is the
contribution of locus l to an individual’s score, and k1 and 194

k2 are positive constants that will depend on the distribution
of locus parameters. For example, if all loci have symmetric 196

parameters (∆s,l = ∆w,l =: ∆l and ds,l = dw,l =: dl), all
loci will have an allele frequency of approximately 0.5 in the 198

middle of summer. Since mating is random, allele frequencies
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will be in approximate Hardy-Weinberg equilibrium in every200

generation before selection and, with ∼ denoting averages
across loci,202

z̄b =
L∑
l=1

(1
4 + 1

2dl
)

∆l =
(1

4∆̃ + 1
2 d̃∆

)
︸ ︷︷ ︸

k1

L. [S11]

Similarly,

Var(zb) =
L∑
l=1

E[c2l ]−E[cl]2 [S12]

=
L∑
l=1

(1
4 + 1

2d
2
l

)
∆2
l −
(1

4 + 1
2dl
)2

∆2
l [S13]

=
( 3

16∆̃2 + 1
4

(
∆̃2d2 − ∆̃2d

))
︸ ︷︷ ︸

k2

L. [S14]

Next, we quantify the fitnesses of the three genotypes (WW,
WS, SS) at a focal locus averaged over the possible genetic204

backgrounds. For this, we expand the fitness function w(z) as
a second-order Taylor expansion around z̄b:206

w(z) ≈ w(z̄b) + w′(z̄b)(z − z̄b) + 1
2w
′′(z̄b)(z − z̄b)2. [S15]

Now, we need the values of the phenotype z for the three
genotypes at the focal locus. Let us assume that the focal locus208

has parameters d and ∆. Because we consider the population
in the middle of summer, the winter-winter homozygote (WW)210

at the focal locus does not contribute anything to the seasonal
score and z = zb. For the heterozygote (WS), z = zb + d ·∆,212

and for the summer-summer homozygote, z = zb + ∆. With
this, we obtain214

wWW ≈ w(z̄b) + 1
2w
′′(z̄b)Var(zb), [S16]

wWS ≈ w(z̄b) + w′(z̄b)d ·∆ + 1
2w
′′(z̄b)Var(zb), [S17]

and216

wSS ≈ w(z̄b) + w′(z̄b)∆ + 1
2w
′′(z̄b)Var(zb). [S18]

Finally, we compute the expected change in summer al-
lele frequency, p, over one generation at the focal locus. The218

frequency of the summer allele in the next generation is

p′ ≈ p2wSS + p(1− p)wWS

p2wSS + 2p(1− p)wWS + (1− p)2wWW
[S19]

and the proportional change in allele frequency is220

p′ − p
p
≈ p(1− p)wSS + (1− p)(1− 2p)wWS − (1− p)2wWW

p2wSS + 2p(1− p)wWS + (1− p)2wWW
.

[S20]
Substituting Eq. (S16)–Eq. (S18) and simplifying, we obtain

p′ − p
p
≈ (1− p)w′(z̄b)∆(p+ d(1− 2p))
w(z̄b) + 1

2w
′′(z̄b)Var(zb) + ∆pw′(z̄b)(p+ 2(1− p)d)

.

[S21]
For the specific fitness function fitness function used in this222

paper
w(z) = (1 + z)y, [S22]

with 224

w′(z) = y(1 + z)y−1, [S23]

and
w′′(z) = y(y − 1)(1 + z)y−2, [S24]

and using Eq. (S9) and Eq. (S10), we obtain

p′ − p
p
≈ ∆(1− p)(p+ d(1− 2p))y(1 + k1L)y−1

(1+k1L)y+ 1
2 y(y−1)(1+k1L)y−2k2L

+∆py(1+k1L)y−1(p+2(1−p)d)

[S25]

= ∆(1− p)(p+ d(1− 2p))y
1 + k1L+ 1

2y(y − 1) k2L
1+k1L

+ ∆py(p+ 2(1− p)d)
[S26]

=: φ(L). [S27]

It follows that, 226

lim
L→∞

φ(L) = 0. [S28]

Moreover,

d

dL
φ(L) < 0 [S29]

⇔ d

dL

(
1 + k1L+ 1

2y(y − 1) k2L

1 + k1L

)
> 0 [S30]

⇔k1 + 1
2y(y − 1) k2

(1 + k1L)2 > 0. [S31]

With y > 1, the second term is positive and the inequality
is always fulfilled. With y < 1 it is fulfilled for sufficiently 228

large L. Thus, with y > 1, the magnitude of allele-frequency
change in an infinite population decreases monotonically as L 230

increases and approaches zero for very large numbers of loci.
With y < 1, allele-frequency change may first increase with 232

increasing number of loci, but eventually decreases and also
approaches zero. This finding indicates that there is a limit to 234

the number of loci that can be detected to exhibit seasonal
allele-frequency fluctuations. Intuitively, as the number of loci 236

increases the average fitness of the genetic background becomes
larger. Thus selection at a focal locus gets effectively weaker. 238

Appendix S4. Extreme-value statistics

To obtain a better intuitive feeling for the distribution of 240

fitness within a population and for the effect of offspring-
number capping, we will use a heuristic argument similar to 242

the one presented by Ewens [2, p. 83–84]. Specifically, we
will calculate the expected value of the seasonal score of the 244

fittest and the least fit individual in the population and then
compare the fitness of individuals with these seasonal scores. 246

As an approximation, we will assume the seasonal scores within
the population to be normally distributed with mean z̄ and 248

variance σ2. Using Eq. (S11) and Eq. (S14), with L as the
total number of loci, 250

z̄ =
(1

4 + d

2

)
· L [S32]

and

σ =
√( 3

16 + 1
4 · (d

2 − d)
)
· L [S33]

This assumes that all loci have the same effect size and domi- 252

nance parameter and that we are studying the population in
the middle of a season. 254
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We now assume that the seasonal scores of N individuals
(where N is the population size) are drawn independently from256

this distribution. Let Zi be the seasonal score of individual i
with 1 ≤ i ≤ N and let Y be the largest of the Zi. Then the258

cumulative distribution function of Y is

F (y) = Pr(Y ≤ y) =
N∏
i=1

Pr(Zi ≤ y) =
(

1
2

[
1 + erf

(
y − z̄√

2σ

)])N
,

[S34]
which uses the standard formula for the cumulative distribution260

function of a normal distribution. Using Mathematica [3], the
probability density function of Y is262

f(y) = dF

dy
=

√
2
π

0.5NNe−
(y−z̄)2

2σ2
(

erf
(
y−z̄√

2σ

)
+ 1
)N−1

σ
.

[S35]
and the expected seasonal score of the fittest individual in the
population is264

E[Y ] =
∫ ∞
−∞

y · f(y)dy. [S36]

Since there does not seem to be an analytical solution, we
evaluated this integral numerically using Mathematica [3]. For266

example, for d = 0.7 and N = 1000, E[Y ] ≈ 72. That is, the
average seasonal score of the fittest individual in the population268

is about 72. The average seasonal score in this situation is 60
and, because of symmetry, the average seasonal score of the270

least fit individual in the population must be approximately 48.
Using the fitness function Eq. (4), an individual with seasonal272

score 72 is 1.2 times fitter than an individual with seasonal
score 48 if y = 0.5 and 4.9 times fitter for y = 4. These274

values are in excellent agreement with those obtained from the
individual-based simulations (see main text). The moderate276

fitness differences obtained from this analysis confirm that
segregation lift does not require the fittest individuals in the278

populations to have excessively many offspring.

Appendix S5. Additional results280

See Figs. S4–S19.

1. R Core Team (2014) R: A Language and Environment for Statistical Computing. (R Foundation282

for Statistical Computing, Vienna, Austria).
2. Ewens WJ (2004) Mathematical population genetics. (Springer, New York), 2nd edition.284

3. Wolfram Research Inc. (2015) Mathematica, Version 10.3. Champaign, IL.
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Fig. S9. Effect of capping offspring number at three, the smallest possible value. Influence of the dominance parameter d on (A) effective strength of balancing selection
(be, Eq. (14), Methods), (B) retardation factor, (C) magnitude of fluctuations (se, Eq. (15), Methods), (D) predictability of fluctuations. Symbols indicate averages across
replicates for the uncapped vs. capped model variant and solid vs. dashed lines in A, C, and D indicate the respective means± two standard errors. Lines in B simply connect
maximum-likelihood estimates obtained jointly from all replicates. N = 1000, L = 100, g = 15, µ = 10−4. The vertical grey lines are at d = 0.5.
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Fig. S10. Influence of the dominance parameter d under a multiplicative model (w(z) = exp(ln(1 + s) · z) = (1 + s)z ) on (A) effective strength of balancing selection
(be, Eq. (14), Methods), (B) retardation factor, (C) magnitude of fluctuations (se, Eq. (15), Methods), (D) predictability of fluctuations. Symbols indicate averages across
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Fig. S11. Typical distributions of seasonal scores, z, under a multiplicative model (w(z) = exp(ln(1 + s) · z) = (1 + s)z ). Shown are distributions within a generation at
the start of the season (generation 1), in the middle of a season (generation 8), and at the end of the season (generation 15). The panels differ in the selection coefficient, s: (A)
s = 0.1, (B) s = 0.5, (C) s = 2. Offspring number is uncapped. N = 1000, L = 100, g = 15, d = 0.7, µ = 10−4. Each distribution represents the average over ten
replicates and 20 seasons per replicate. The fittest individual was on average 9.3 times fitter than the least fit individual for s = 0.1, 1.7 · 103 times fitter for s = 0.5, and
4.2 · 103 times fitter for s = 2.
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Fig. S12. Example time series for the uncapped multiplicative model (w(z) = exp(ln(1 + s) · z) = (1 + s)z ) with d = 0.74, s = 0.5.
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Fig. S13. Effects of asymmetry in the number of generations between summer and winter. There are 15 generations of summer. The y-axis shows the winter allele frequency in
the middle of winter, averaged across time and loci. Closed symbols represent parameter combinations that were classified as having stable polymorphism (see section Stability
in asymmetric scenarios), open symbols represent unstable polymorphism. Lines indicate means ± two standard errors. Other parameters: N = 1000, L = 100, y =
4, µ = 10−4.
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Fig. S14. Effects of asymmetry in the exponent of the fitness function, y, between summer and winter. The y-axis shows the winter allele frequency in the middle of winter,
averaged across time and loci. Solid symbols represent parameter combinations that were classified as having stable polymorphism (see section Stability in asymmetric
scenarios), open symbols represent unstable polymorphism. Dotted lines indicate means± two standard errors. Other parameters:N = 1000, L = 100, g = 15, µ = 10−4.
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Fig. S15. Robustness of results to seasonal changes in population size. (A) Four population-size trajectories. The trajectories are deterministic and cyclic and only two years
are shown. Population size is 500 during winter and grows exponentially to different final sizes, Nmax, over summer (except for the case Nmax = 500, where population size
remains constant throughout the year). (B) Corresponding effective strength of balancing selection. L = 100, g = 15, y = 4, µ = 10−4.
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Fig. S16. Effects of asymmetry in the dominance parameter, d, between summer and winter. The winter dominance parameter, dw , is set to 0.4 whereas the summer
dominance parameter, ds, is varied. The y-axis shows the winter allele frequency in the middle of winter, averaged across time and loci. Solid symbols represent parameter
combinations that were classified as having stable polymorphism (see section Stability in asymmetric scenarios), open symbols represent unstable polymorphism. Dotted lines
indicate means± two standard errors. Other parameters: N = 1000, L = 100, µ = 10−4.
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Fig. S17. Effects of asymmetry in the number of generations between summer and winter under a multiplicative model (w(z) = exp(ln(1 + s) · z) = (1 + s)z ). There
are 15 generations of summer. The y-axis shows the winter allele frequency in the middle of winter, averaged across time and loci. Closed symbols represent parameter
combinations that were classified as having stable polymorphism (see section Stability in asymmetric scenarios), open symbols represent unstable polymorphism. Lines
indicate means± two standard errors. Other parameters: N = 1000, L = 100, µ = 10−4.
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Fig. S18. Histograms of the difference in the logarithms of seasonal effect sizes for stable (blue bars) compared to all polymorphisms (white bars) in Fig. 10 E, i.e. for
N = 10, 000, L = 100, g = 10, y = 4, µ = 10−4.
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Fig. S19. Boxplots of (ds + dw)/2 for stable and unstable polymorphisms in Fig. 10 E, conditioned on (ds + dw)/2 > 0.5. N = 10, 000, L = 100, g = 10, y = 4, µ =
10−4.
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