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1. Introduction

The recent works [8], [9], and [10] have brought to the forefront several related (conjec-
tural) finiteness properties of linear algebraic groups over an arbitrary finitely generated 
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field K. Recall that any such field is equipped with an almost canonical set V of discrete 
valuations called divisorial. More precisely, V consists of the discrete valuations of K as-
sociated with the prime divisors of a model X, i.e. an irreducible normal scheme of finite 
type over Z having K as its function field.1 For the formulation of our first conjecture, 
we will say that a reductive algebraic K-group G has good reduction at a place v of K if 
there exists a reductive group scheme G over the valuation ring Ov of the completion Kv

whose generic fiber G ×Ov
Kv is isomorphic to G ×K Kv (see [15] or [18] for an exposition 

of the theory of reductive group schemes).

Conjecture 1. Let G0 be a (connected) reductive algebraic group over a finitely generated 
field K, and V be a divisorial set of places of K. Then the set of K-isomorphism classes 
of (inner) K-forms G of G0 that have good reduction at all v ∈ V is finite (at least when 
the characteristic of K is “good”).

(When G is an absolutely almost simple algebraic group, we say that char K = p is 
“good” for G if either p = 0 or p > 0 and does not divide the order of the Weyl group of 
G. For non-semisimple reductive groups, only characteristic 0 will be considered good.)

This is one of the central conjectures in the rapidly-evolving study of algebraic groups 
over higher-dimensional fields, and it has implications for a number of topics of current 
interest, including the genus problem for absolutely almost simple algebraic groups and 
the analysis of weakly commensurable Zariski-dense subgroups of these groups (see [9, 
§1] for a detailed discussion). As observed in [6], Conjecture 1 also yields the truth of 
the following conjecture for semisimple adjoint groups.

Conjecture 2. Let G be a (connected) reductive algebraic group defined over a finitely 
generated field K, and V be a divisorial set of places of K. Then the global-to-local map 
in Galois cohomology

λG,V : H1(K,G) −→
∏
v∈V

H1(Kv, G)

is proper, i.e. the pre-image of a finite set is finite. In particular, the Tate-Shafarevich 
set

X(G,V ) := kerλG,V

is finite.

The properness of λG,V in the classical setting where K is a number field is well-
known (see [45, Ch. III, §4.6]) and is established using reduction theory (see also [14]

1 Note that any two divisorial sets V1 and V2 associated with models of K are commensurable, i.e. 
Vi \ (V1 ∩ V2) is finite for i = 1, 2, and for any finite subset S of a divisorial set V , the set V \ S contains a 
divisorial set.
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for the function field case). Yet another famous consequence of reduction theory is the 
finiteness of the class number. We briefly recall the relevant definitions here and refer the 
reader to §3 for further details. So, suppose K is a field endowed with a set V of discrete 
valuations, and let G be an algebraic K-group with a fixed matrix realization G ⊂ GLn. 
For each v ∈ V , we set G(Ov) = G(Kv) ∩ GLn(Ov) and then define the corresponding 
adelic group as

G(A(K,V )) = { (gv) ∈
∏
v∈V

G(Kv) | gv ∈ G(Ov) for almost all v ∈ V }

(where, as above, for each discrete valuation v, we let Kv denote the completion of K at 
v and Ov ⊂ Kv the corresponding valuation ring). The product

G(A∞(K,V )) =
∏
v∈V

G(Ov)

is called the subgroup of integral adeles. Furthermore, assume that V satisfies the fol-
lowing condition (which holds automatically for a divisorial set of places of a finitely 
generated field):

(A) For any a ∈ K×, the set V (a) := {v ∈ V | v(a) �= 0} is finite.

Then there is a diagonal embedding G(K) ↪→ G(A(K, V )), whose image is called the 
subgroup of principal adeles and which we will still denote simply by G(K). The set of 
double cosets

cl(G,K, V ) := G(A∞(K,V ))\G(A(K,V ))/G(K)

is called the class set of G (we should point out that the class set is sometimes defined 
using rational adeles rather than the full adeles, as we have done here).

Note that if G = Gm is a 1-dimensional split torus, then there is a bijection between 
cl(G, K, V ) and the Picard group Pic(V ) (defined as the quotient of the free abelian group 
on V by the subgroup of ‘principal divisors,’ which makes sense in view of condition (A) 
— see [9, §2]); when K is a number field and V is the set of all nonarchimedean places, 
this simply becomes the usual class group of K. Moreover, if G = On(q) is the orthogonal 
group of a nondegenerate n-dimensional quadratic form q over a number field K and V
is again the set of all nonarchimedean places of K, then the elements of cl(G, K, V ) are 
in bijection with the classes in the genus of q — see, for example, [42, Proposition 8.4]. 
(These two examples explain the terminology.) It was proved by Borel ([3, §5]) that if 
K is a number field and V is the set of nonarchimedean places of K, then the class 
set cl(G, K, V ) is finite for any linear algebraic group G over K, which generalizes the 
classical results about the finiteness of the class number of a number field and the number 
of classes in the genus of a quadratic form. More recently, Borel’s finiteness theorem was 
extended to all algebraic groups over global fields of positive characteristic by B. Conrad 
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[14] using the theory of pseudo-reductive groups developed by Conrad-Gabber-Prasad 
[16]. On the other hand, given an arbitrary finitely generated field K equipped with a 
set V of discrete valuations, the Picard group Pic(V ) may very well be infinite, which 
raises the question of how the finiteness theorem for the class number of an algebraic 
group over a number field can be extended to more general fields. In [10], we proposed 
to consider the following

Condition (T). There exists a finite subset S ⊂ V such that |cl(G, K, V \ S)| = 1.

It is easy to see that if the class set cl(G, K, V ) is finite, then Condition (T) holds for the 
given G, K, and V . In general, as pointed out in [10, §3], Condition (T) is instrumental 
in the study of the finiteness properties of unramified cohomology, which have a close 
connection to Conjectures 1 and 2. While one does not expect Condition (T) to hold for 
an arbitrary reductive algebraic group G over a general finitely generated field K and a 
divisorial set V , it is likely to be true for all G in certain important situations, including 
when

• K is a 2-dimensional global field (i.e. the function field of a smooth geometrically 
integral curve over a number field or the function field of a smooth geometrically 
integral surface over a finite field — see [30] and [9]) and V is a divisorial set of 
places; and

• K = k(C), the function field of a smooth geometrically integral curve C over a 
finitely generated field k and V is the set of places of K associated with the closed 
points of C.

We refer the reader to [43] for a detailed discussion of Conjectures 1 and 2 and Con-
dition (T). Our first goal in the current paper is to establish Conjectures 1 and 2 for 
all algebraic tori over a finitely generated field K of characteristic 0 with respect to any 
divisorial set V of discrete valuations. Furthermore, while the analogue of Condition (T)
for rational adeles was previously established for algebraic tori over finitely generated 
fields in [10, Proposition 4.2], we will verify it here for the full adeles and also develop 
some techniques that yield Condition (T) for (disconnected) groups whose connected 
component is a torus. As an application, one then obtains Condition (T) for the normal-
izer of a maximal torus in a reductive group. We formulate our main results pertaining 
to Conjectures 1 and 2 below, and refer the reader to §3 (particularly Proposition 3.1
and Theorem 3.4) for the detailed statements concerning Condition (T).

Theorem 1.1. Let K be a finitely generated field of characteristic 0 and V be a divisorial 
set of places of K. Then for any integer d ≥ 1, the set of K-isomorphism classes of 
d-dimensional K-tori that have good reduction at all places v ∈ V is finite.

Theorem 1.2. Let K be a finitely generated field and V be a divisorial set of places of K. 
Then for any algebraic K-torus T , the Tate-Shafarevich group
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X1(T, V ) = ker
(
H1(K,T ) →

∏
v∈V

H1(Kv, T )
)

is finite.

A salient feature of the paper is the systematic use of adelic techniques, particularly 
in §§3-4. While these have long been indispensable tools in the analysis of global fields, 
their arithmetic applications in the context of more general fields have been scarce. We 
develop some basic results for the adele groups of algebraic tori in §3 and use these to 
establish Condition (T) in certain cases. We then apply them in §4 to give one of two 
proofs of Theorem 1.2. Our second proof of Theorem 1.2 in §4, which requires certain 
restrictions on char K, relies on some considerations that have been used to establish 
the finiteness of unramified cohomology. It should be pointed out that the connections 
between Conjectures 1 and 2 and the finiteness properties of unramified cohomology 
exist not only in the case of tori but also in other important situations — see [9]. So, 
we conclude the paper by obtaining in §5 several new finiteness results for unramified 
cohomology and discussing their applications.

To give more details, we first need to review the basic set-up. Let K be a field equipped 
with a discrete valuation v and having residue field K(v), and suppose that M is a finite 
Galois module that is unramified at v and whose order is prime to char K(v). Then, for 
all i ≥ 1, there exist residue maps

∂i
v,M : Hi(K,M) → Hi−1(K(v),M(−1))

(see [21, Ch. II, §7] for the details). An element of Hi(K, M) is said to be unramified 
at v if it lies in ker ∂i

v,M . Moreover, if V is a set of discrete valuations of K such that 
the residue maps exist for all v ∈ V (cf. Condition (B) in §5), one defines the degree i
unramified cohomology of K with respect to V by

Hi(K,M)V =
⋂
v∈V

ker ∂i
v,M .

Unramified cohomology initially emerged in the study of rationality questions for alge-
braic varieties, but has since become an important tool in a variety of problems involving 
algebraic cycles, algebraic groups, division algebras, quadratic forms, etc. (see, for ex-
ample, [11] for a detailed discussion of unramified cohomology and its applications). In 
connection with Conjectures 1 and 2, our focus in this paper is on the finiteness prop-
erties of unramified cohomology of finitely generated fields. In §5, we obtain finiteness 
statements for the unramified cohomology of function fields of rational surfaces and 
Severi-Brauer varieties over number fields (Theorem 5.1 and Proposition 5.4) and derive 
consequences for Conjectures 1 and 2 for several classes of groups, including spinor and 
special orthogonal groups of quadratic forms and groups of type G2 (Theorems 5.6 and 
5.7).
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2. Tori with good reduction: proof of Theorem 1.1

In this section, we will prove Theorem 1.1 concerning algebraic tori with good re-
duction. Throughout this section, we will work over fields of characteristic 0; our main 
assertion is in fact false in positive characteristic — see Remark 2.5 below.

An important ingredient needed for our argument is a higher-dimensional version of 
the Hermite-Minkowski theorem, formulated in Proposition 2.1 below. Recall that the 
classical version of the theorem states that given a number field L, a finite set T of 
primes of L, and an integer n ≥ 1, there are only finitely many extensions L′/L of degree 
n that are unramified outside T . This fact can also be interpreted group-theoretically 
as follows. Following Serre, we say that a profinite group G is of type (F) if for every 
integer n, G has only a finite number of open subgroups of index n — cf. [45, Ch. III, 
§4.1] (profinite groups of type (F) are also sometimes called small). By Galois theory, the 
Hermite-Minkowski theorem translates into the statement that the Galois group GF,T

of the maximal Galois extension of F unramified outside of T is of type (F).
Suppose now that S is a regular integral scheme that is of finite type and dominant 

over Spec(Z). Denote by K the function field of S (thus, in particular, char K = 0), fix 
an algebraic closure K of K, and let s : Spec(K) → S be the corresponding geometric 
point of S. Let V be the set of discrete valuations of K associated with the codimension 
1 points of S and set KV /K to be the maximal subextension of K that is unramified at 
all v ∈ V . With these notations, we have

Proposition 2.1. The extension KV /K is Galois and Gal(KV /K) is of type (F).

We begin the proof with the following

Lemma 2.2. With the above notations, let KS/K be the compositum of all finite subexten-
sions L/K of K such that the normalization of S in L is étale over S. Then KS = KV .

Proof. It follows from the definitions that we have the inclusion KS ⊂ KV . To show 
the reverse inclusion, suppose that L/K is a finite subextension of K that is unramified 
at all v ∈ V , and let Y be the normalization of S in L. Then by assumption, Y → S

is finite étale over each codimension 1 point of S. The Zariski-Nagata purity theorem, 
whose statement we include below for completeness, then implies that Y is étale over S, 
hence L ⊂ KS . �
Theorem 2.3 (Zariski-Nagata purity theorem). Let ϕ : Y → S be a finite surjective mor-
phism of integral schemes, with Y normal and S regular. Assume that the fiber of YP of 
ϕ above each codimension 1 point of S is étale over the residue field κ(P ). Then ϕ is 
étale.

(See, for example, [47, Theorem 5.2.13] for the statement and related discussion and [25, 
Exp. X, Théorème 3.4] for a detailed proof.)
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Next, it is well-known that under our assumptions, KS/K is a Galois extension, 
and Gal(KS/K) is canonically isomorphic to the fundamental group πét

1 (S, ̄s), for the 
geometric point s̄ : Spec(K) → S (see, for example, [47, Proposition 5.4.9]). Thus, Propo-
sition 2.1 follows from Lemma 2.2 and the following

Theorem 2.4 (cf. [27, Theorem 2.9] and [19, Ch. VI, §2.4]). Let X be a connected scheme 
of finite type and dominant over Spec(Z). Then the fundamental group πét

1 (X) (with 
respect to any geometric point) is of type (F).

We now turn to

Proof of Theorem 1.1. Let K be a finitely generated field of characteristic 0 and X
be a model of K. After possibly replacing X by an open subset, we may assume that 
X is smooth over an open subset of Spec(Z) (see, for example, [23, Proposition 6.16 
and Corollary 14.34]); in particular, the structure morphism is flat, hence open, and 
therefore X is dominant over Spec(Z). Let V be the divisorial set of discrete valuations 
of K associated with the prime divisors of X. We will work with a fixed algebraic closure 
K of K.

Recall that the K-isomorphism classes of d-dimensional K-tori are in one-to-one cor-
respondence with the equivalence classes of continuous representations ρ : Gal(K/K) →
GLd(Z) (see, for example, [42, §2.2.4]). Moreover, it is well-known that a K-torus has 
good reduction at a place v of K if and only if T ×K Kv splits over an unramified 
extension of the completion Kv; in particular, this means that the inertia subgroup 
Iv of the decomposition group Dv ⊂ Gal(K/K) acts trivially on the character group 
X(T ) of T and hence Iv ⊂ ker ρ (see, for example, [38, 1.1]) Thus, using the preceding 
notations, the K-isomorphism classes of d-dimensional K-tori having good reduction 
at v ∈ V are in bijection with the equivalence classes of continuous representations 
ρ : Gal(KV /K) → GLd(Z).

Next, since by Minkowski’s Lemma the congruence subgroup GLd(Z, 3) modulo 3, i.e. 
the kernel of the reduction modulo 3 homomorphism GLd(Z) → GLd(Z/3Z), is torsion-
free (see, for example, [42, Lemma 4.19]), it follows that the minimal splitting fields of d-
dimensional tori have bounded degree over K. Consequently, Proposition 2.1 implies that 
there are only finitely many possibilities for the minimal splitting fields of d-dimensional 
K-tori that have good reduction at all v ∈ V . Finally, by reduction theory, GLd(Z)
has only finitely many conjugacy classes of finite subgroups (see [42, Theorem 4.3]), 
so for any such splitting field L/K, there are only finitely many equivalence classes of
representations ρ : Gal(L/K) → GLd(Z). The assertion of Theorem 1.1 now follows. �
Remark 2.5. It should be pointed out that Theorem 1.1 is generally false in characteristic 
p > 0. The element of the above argument that fails in this case is the Hermite-Minkowski 
Theorem. Indeed, let K = k(t) be the field of rational functions in one variable over the 
prime field k = Fp, and let V be the set of discrete valuations of K corresponding to all 
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monic irreducible polynomials f(t) ∈ k[t] (in other words, V consists of the valuations 
corresponding to all closed points of A1

k = P 1
k \ {∞}). Let ℘(a) = ap − a be the Artin-

Schreier operator. Then for any a ∈ k[t] \ ℘(k[t]), the Artin-Schreier polynomial fa(t) =
tp− t − a defines a degree p cyclic Galois extension La/K. Since f ′

a = −1, this extension 
is unramified at all v ∈ V . On the other hand, the quotient k[t]/℘(k[t]) is easily seen to 
be infinite, so we have infinitely many degree p cyclic extensions of K unramified at all 
v ∈ V . For any such extension L/K, the corresponding quasi-split torus T = RL/K(Gm)
and the norm torus T ′ = R(1)

L/K(Gm) have good reduction at all v ∈ V , implying that 
there are infinitely many isomorphism classes of such tori.

Remark 2.6. Let G be an absolutely almost simple algebraic group over a field K, and let 
L be the minimal Galois extension of K over which G becomes an inner form of a split 
group. It is well known that the Galois group Gal(L/K) is isomorphic to a subgroup 
of the automorphism group of the Dynkin diagram of G, hence L/K can only be of 
degree 1, 2, 3 or 6. Furthermore, if G has good reduction at a discrete valuation v of K, 
then v must be unramified in the corresponding extension L/K. So, if K is a finitely 
generated field of characteristic zero with a divisorial set of places V , then Proposition 2.1
implies that there exists a finite collection L1, . . . , Lr of Galois extensions of K of degree 
1, 2, 3 or 6 such that for any absolutely almost simple K-group G having good reduction 
at all v ∈ V , the corresponding extension L is one of the Li’s. In fact, this remains 
valid also when K has characteristic p > 0 different from 2 and 3. It follows in these 
situations that if the finiteness of the set K-isomorphism classes in Conjecture 1 is 
known to hold only for inner K-form G of G0 with good reduction at all v ∈ V and 
all quasi-split groups G0 associated with one of the Li’s, then it actually holds for all
forms. On the other hand, if p = 2 or 3, then, as we have seen in Remark 2.5, the field 
K = Fp(t) has infinitely many cyclic degree p extensions L/K unramified at all v ∈ V , 
where, as above, V is the set of all places of K different from ∞. The quasi-split simply 
connected K-groups GL associated with these extensions will then constitute an infinite 
family of pairwise nonisomorphic K-groups having good reduction at all v ∈ V . Thus, 
particular care needs to be taken when trying to extend Conjecture 1 to characteristics 
2 and 3.

Remark 2.7. It is not difficult to see that if a reductive group G over a field K has 
good reduction at a discrete valuation v of K, then so does the maximal central torus 
T of G. So, for K a finitely generated field of characteristic zero with a divisorial set 
of place V , we conclude from Theorem 1.1 that for a given reductive K-group G, there 
exists a finite collection T1, . . . , Tr of algebraic K-tori such that if G′ is a K-form of 
G that has good reduction at all v ∈ V , then the maximal central torus T ′ of G′ is 
K-isomorphic to one of the Ti’s. This essentially reduces the proof of Conjecture 1 to 
semisimple groups.
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3. Condition (T) for (disconnected) algebraic groups with toroidal connected 
component

Our goal in this section is two-fold. First, we verify Condition (T) for a torus over a 
finitely generated field with respect to a divisorial set of places — note that this was done 
in [10, Proposition 4.2] for rational adeles, and in Proposition 3.1 below, we establish the 
corresponding fact for the full adeles defined in §1. We then prove Theorem 3.4, which 
yields Condition (T) for algebraic groups over finitely generated fields whose connected 
component is a torus. In fact, we develop, more generally, a strategy for verifying Con-
dition (T) for a disconnected linear algebraic group given that it holds for the group’s 
connected component.

For the reader’s convenience, we begin by briefly reviewing our notations. Throughout 
this section, we take K to be a finitely generated field and V a divisorial set of places of K. 
Note that V satisfies condition (A) that was introduced in §1. Recall that we denote by 
A(K, V ) the corresponding K-algebra of adeles, i.e. the restricted (topological) product 
of the completions Kv for v ∈ V with respect to the valuation rings Ov ⊂ Kv (cf. [5, Ch. 
II, §§13-14], where the construction is described in detail for global fields). Furthermore, 
we let

A∞(K,V ) =
∏
v∈V

Ov

denote the subring of A(K, V ) of integral adeles. Next, suppose L/K is a finite separable 
field extension of K, and let V L denote the set of all extensions to L of the discrete 
valuations in V . Note that V L is a divisorial set of places of L: indeed, it consists of the 
discrete valuations corresponding to the prime divisors on the normalization in L of the 
chosen model for K. It is well-known that there exists a natural isomorphism

A(K,V ) ⊗K L 
 A(L, V L)

of topological rings (cf. [5, Ch. II, §14]). In particular, for a finite Galois extension L/K, 
the adele ring A(L, V L) has a natural action of the Galois group Gal(L/K) such that

A(L, V L)Gal(L/K) = A(K,V ).

Now let G be a linear algebraic K-group with a fixed matrix realization G ⊂ GLn. 
Then the group of points

G(A(K,V )) :=
(∏

v∈V

G(Kv)
)

∩ GLn(A(K,V ))

is naturally identified with the adele group of G introduced in §1. The subgroup of 
integral adeles is given by
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G(A∞(K,V )) = G(A(K,V )) ∩ GLn(A∞(K,V )) =
∏
v∈V

G(Ov).

Since V satisfies condition (A), we have the diagonal embedding K ↪→ A(K, V ) that 
yields the diagonal embedding G(K) ↪→ G(A(K, V )), the image of which is called the 
group of principal adeles and is routinely identified with G(K). As in §1, the set of double 
cosets G(A∞(K, V ))\G(A(K, V ))/G(K) is called the class set and denoted cl(G, K, V ). 
We say that Condition (T) holds in this situation if there exists a finite subset S ⊂ V

such that cl(G, K, V \ S) reduces to a single element.
As mentioned above, our first main result in this section is the following.

Proposition 3.1. Condition (T) holds for any algebraic torus T over a finitely generated 
field K with respect to any divisorial set of places V of K.

This statement is a straightforward consequence of the more general Proposition 3.2
below. To formulate the result, we will need one additional bit of notation. For each 
v ∈ V , denote by Δv the (unique) maximal bounded subgroup of T (Kv). Note that if 
T has good reduction at v, then Δv = T (Ov) (see, for example, [32]). On the other 
hand, since V satisfies (A), the torus T does have good reduction at almost all v ∈ V . 
Consequently, we have Δv = T (Ov) for all but finitely many v ∈ V , and therefore

Δ :=
∏
v∈V

Δv

naturally embeds into T (A(K, V )).

Proposition 3.2. The group

T (A(K,V ))/(Δ · T (K))

is finitely generated.

In the proof of this proposition, as well as in later arguments, we will need the following 
well-known fact from the cohomology of finite groups (see, for example, [37, Ch. II, 
Corollary 1.32] for a proof).

Lemma 3.3. Let G be a finite group and suppose M is a G-module that is finitely generated 
as an abelian group. Then the cohomology groups Hi(G, M) are finite for all i ≥ 1.

Proof of Proposition 3.2. Let L = KT be the minimal Galois extension of K over which 
T splits, and denote by V L the set of all extensions to L of places in V . For each w ∈ V L, 
let Δ̃w denote the (unique) maximal bounded subgroup of T (Lw). Then for v ∈ V and 
w|v, we have the inclusion Δv ⊂ Δ̃w, and hence a diagonal embedding
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Δv ↪→
∏
w|v

Δ̃w =: Δ̃(v).

Notice that Δ̃(v) is the maximal bounded subgroup of

∏
w|v

T (Lw) = T (L⊗K Kv).

Moreover, it is invariant under the natural action of Gal(L/K) and the subgroup of 
Galois-fixed elements is a bounded subgroup of T (Kv), hence coincides with Δv. Set

Δ̃ =
∏

w∈V L

Δ̃w =
∏
v∈V

Δ̃(v).

Then Δ̃ embeds into T (A(L, V L)) = T (A(K, V ) ⊗K L). It is clearly invariant under the 
action of Gal(L/K) and the subgroup of Galois-fixed elements coincides with Δ.

Now, by the definition of L, there exists an L-isomorphism T 
 (Gm)d where 
d = dimT . It induces an isomorphism between T (A(L, V L)) and (I(L, V L))d, where 
I(L, V L) := Gm(A(L, V L)) is the group of ideles of L with respect to V L (see [9, §2] for 
a detailed discussion of ideles in this context). Under this isomorphism, T (L) maps to 
(L×)d, and Δ̃ to (I∞(L, V L))d, where

I∞(L, V L) =
∏

w∈V L

O×
Lw

is the subgroup of integral ideles. This yields an isomorphism

T (A(L, V L))/(Δ̃ · T (L)) 
 [I(L, V L)/I∞(L, V L)L×]d.

On the other hand, by [9, Lemma 2.2], the quotient I(L, V L)/I∞(L, V L)L× can be 
identified with the Picard group Pic(V L) for V L, and, as we observed in [9, §4], it follows 
from [29, Theorem 1.b] that Pic(V L) is finitely generated. So, we conclude that the group 
T (A(L, V L))/(Δ̃ · T (L)) is also finitely generated. We also note that the intersection 
T (L) ∩ Δ̃ is mapped to Ed, where

E = {x ∈ L× | v(x) = 0 for all v ∈ V L}

is the group of units in L× with respect to V L. The main result of [44] implies that E
is a finitely generated group (see, for example, [7, §8] for the details), so the intersection 
U := T (L) ∩ Δ̃ is also finitely generated.

Next, set

Ω = T (A(K,V ))
⋂

(Δ̃ · T (L)).
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By construction, the quotient T (A(K, V ))/Ω embeds into T (A(L, V L))/Δ̃ · T (L) and is 
therefore finitely generated. Thus, to complete the proof, it is enough to show that the 
quotient Ω/(Δ · T (K)) is finite. For this, we consider the following exact sequence of 
Galois modules over G = Gal(L/K)

1 → U
α−→ Δ̃ × T (L) β−→ Δ̃ · T (L) → 1,

where α is given by α(u) = (u, u−1) for u ∈ U , and β is the product map. It induces the 
exact sequence of cohomology groups

H0(L/K, Δ̃ × T (L)) β0

−→ H0(L/K, Δ̃ · T (L)) −→ H1(L/K,U),

where, as usual, we write Hi(L/K, ∗) to denote the Galois cohomology group Hi(G, ∗). 
It follows from the definitions that

H0(L/K, Δ̃ × T (L)) = Δ × T (K) and H0(L/K, Δ̃ · T (L)) = Ω,

with β0 being the product map. Thus, the quotient Ω/(Δ ·T (K)) injects into H1(L/K, U). 
Since, as noted above, U is finitely generated, it follows from Lemma 3.3 that the group 
H1(L/K, U) is finite, and hence Ω/(Δ · T (K)) is also finite, as required. �

For the sake of completeness, let us now briefly indicate how Proposition 3.1 follows 
from Proposition 3.2. As we already mentioned above, there exists a finite subset S1 ⊂ V

such that Δv = T (Ov) for all v ∈ V \ S1. By Proposition 3.2, we can find t1, . . . , tr ∈
T (A(K, V )) so that their images in the quotient T (A(K, V ))/(Δ · T (K)) generate the 
latter. Thus, there exists a finite subset S2 ⊂ V such that the v-component (ti)v belongs 
to T (Ov) for all v ∈ V \S2 and all i = 1, . . . , r. Set S = S1∪S2, and let π : T (A(K, V )) →
T (A(K, V \S)) be the natural projection. By our construction, π(Δ) ⊂ T (A∞(K, V \S))
and π(ti) ∈ T (A∞(K, V \ S)) for all i = 1, . . . , r. Since Δ and T (K), together with the 
elements t1, . . . , tr generate T (A(K, V )) as an abstract group, we obtain

T (A(K,V \ S)) = π(T (A(K,V ))) = T (A∞(K,V \ S)) · T (K),

as required.

Next, we will extend Proposition 3.1 to disconnected groups whose connected compo-
nent is a torus. This, in particular, applies to the normalizers of maximal tori in reductive 
groups (see Corollary 3.7 below), which is likely to be helpful for the analysis of finiteness 
properties in the general case.

Theorem 3.4. Let K be a finitely generated field and V be a divisorial set of places of 
K. Then any linear algebraic K-group G whose connected component is a torus satisfies 
Condition (T).
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The proof of the theorem will rely on Lemmas 3.5 and 3.6 below, which in fact provide 
a general approach for establishing Condition (T) for a linear algebraic K-group once 
it is known to hold for the group’s connected component (cf. Remark 3.8). Let us note 
that although we only consider finitely generated fields and divisorial sets of places, the 
lemmas are actually valid for any field K equipped with a set V of discrete valuations 
satisfying condition (A) introduced in §1.

Lemma 3.5. Let G be a linear algebraic K-group with connected component H = G◦. 
Assume that

G(Kv) = G(Ov)H(Kv) (1)

for almost all v ∈ V . If H satisfies Condition (T), then so does G.

Proof. Deleting finitely many places from V , we may assume that (1) holds for all v ∈ V . 
Then for any subset V ′ ⊂ V , the natural map

H(A∞(K,V ′))\H(A(K,V ′))/H(K) −→ G(A∞(K,V ′))\G(A(K,V ′))/G(K)

is surjective. By our assumption, the term on the left reduces to a single element for 
some cofinite V ′ ⊂ V . But then so does the term on the right (with the same V ′), i.e. G
satisfies Condition (T). �

Our next statement will be instrumental for verifying condition (1). We continue to 
denote by H the connected component of a linear algebraic K-group G. It follows from 
[4, AG 13.3] that G(K) = G(Ksep)H(K), where K denotes a fixed algebraic closure of K
and Ksep ⊂ K the corresponding separable closure. Consequently, one can find a finite 
Galois extension L/K and a finite subset C ⊂ G(L) such that G(K) = CH(K). Then 
G(F ) = CH(F ) for every field extension F/L.

Lemma 3.6. With notations as above, fix a place v ∈ V and let w be an extension of v
to L. Assume that

(i) C ⊂ G(OLw
);

(ii) the natural map H1(Lw/Kv, H(OLw
)) → H1(Lw/Kv, H(Lw)) has trivial kernel.

Then (1) holds.

Proof. Let g ∈ G(Kv). By construction, we can write g = ch with c ∈ C and h ∈ H(Lw). 
Then for any σ ∈ Gal(Lw/Kv), we have σ(g) = g, hence

c−1σ(c) = hσ(h)−1 =: ξ(σ).

Clearly, ξ = {ξ(σ)}σ∈Gal(Lw/Kv) is a 1-cocycle on Gal(Lw/Kv) with values in
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G(OLw
) ∩H(Lw) = H(OLw

),

and the corresponding cohomology class lies in the kernel of the map

H1(Lw/Kv, H(OLw
)) → H1(Lw/Kv, H(Lw)).

By (ii), there exists a ∈ H(OLw
) such that ξ(σ) = a−1σ(a) for all σ ∈ Gal(Lw/Kv). 

Then σ(ca−1) = ca−1, implying that

ca−1 ∈ G(OLw
) ∩G(Kv) = G(Ov).

Furthermore,

ah = (ca−1)−1g ∈ H(Lw) ∩G(Kv) = H(Kv),

and thus

g ∈ G(Ov)H(Kv).

Since g ∈ G(Kv) was arbitrary, (1) follows. �
Proof of Theorem 3.4. In the case at hand, the connected component H = G◦ is a K-
torus, which we will denote by T . According to Proposition 3.1, Condition (T) holds for 
T , so by Lemma 3.5, it is enough to check condition (1) for almost all v ∈ V . For this, 
we will use Lemma 3.6. Pick a finite Galois extension L/K so that there exists a finite 
subset C ⊂ G(L) such that G(K) = CT (K). Without loss of generality, we may assume 
that T splits over L. Deleting from V a finite number of places, we may also assume 
that for any v ∈ V and any extension w|v, the extension Lw/Kv is unramified, we have 
the inclusion C ⊂ G(OLw

), and the subgroup T (OLw
) is a maximal bounded subgroup 

of T (Lw). Then it only remains to verify condition (ii) of Lemma 3.6. Let π ∈ Kv be a 
uniformizer. Since the extension Lw/Kv is unramified, π remains a uniformizer in Lw, 
yielding the following decomposition of L×

w as Gal(Lw/Kv)-module:

L×
w = 〈π〉 × ULw


 Z× ULw
,

where ULw
= O×

Lw
is the group of units in Lw. Let X∗(T ) be the group of cocharacters 

of T . Then we have the following isomorphisms of Gal(Lw/Kv)-modules:

T (Lw) 
 X∗(T ) ⊗Z L×
w = X∗(T ) × (X∗(T ) ⊗Z ULw

).

As ULw
is the maximal bounded subgroup of L×

w , we easily see that X∗(T ) ⊗ZULw
is the 

maximal bounded subgroup of T (Lw), hence coincides with T (OLw
). Thus, the latter is 

a direct factor of T (Lw) (as Gal(Lw/Kv)-module), and the required injectivity of the 
map
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H1(Lw/Kv, T (OLw
)) → H1(Lw/Kv, T (Lw))

immediately follows, completing the proof. �
As an immediate consequence of Theorem 3.4 and the structure theory of reductive 

groups, we obtain

Corollary 3.7. Let K be a finitely generated field and V a divisorial set of places of K. 
Suppose G is a connected reductive K-group and T ⊂ G is a maximal K-torus. Then the 
normalizer NG(T ) of T in G satisfies Condition (T).

Remark 3.8. It follows from [40, Théorème 4.1] that if H is a semisimple algebraic K-
group that has good reduction at v and the extension Lw/Kv is unramified, then the 
map H1(Lw/Kv, H(OLw

)) → H1(Lw/Kv, H(Lw)) has trivial kernel. (We note that a 
complete proof of this result can be found in [26]: the anisotropic case is considered in 
Theorem 5.1, and the reduction to this case is given in Proposition 4.5.) This means that 
for a fixed semisimple K-group H and a fixed finite Galois extension L/K, this map has 
trivial kernel for almost all v ∈ V , which is sufficient for analyzing Condition (T) by the 
method described above.

4. Finiteness results for Tate-Shafarevich groups of tori

In this section, we establish some finiteness results for the Tate-Shafarevich groups of 
algebraic tori over finitely generated fields (see Theorems 4.1 and 4.8). To fix notations, 
given a field K, a K-torus T , and a set V of discrete valuations of K, we define

Xi(T, V ) := ker
(
Hi(K,T ) →

∏
v∈V

Hi(Kv, T )
)
,

where Kv denotes the completion of K at v ∈ V .
Our main result in this section is Theorem 1.2, which we restate here for the reader’s 

convenience.

Theorem 4.1. Let K be a finitely generated field and V be a divisorial set of places of K. 
Then for any algebraic K-torus T , the Tate-Shafarevich group

X1(T, V ) = ker
(
H1(K,T ) →

∏
v∈V

H1(Kv, T )
)

is finite.

We will give two proofs of this result. Our first proof, which covers the general case, 
makes use of adeles and relies on some of the techniques developed in §3. The second 
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proof requires the additional assumption that the degree n = [KT : K], where KT is 
the minimal splitting field of T inside a fixed separable closure Ksep of K, is prime to 
char K; however, the argument reveals important connections with finiteness results for 
étale and unramified cohomology, and is thus applicable in other situations.

First proof of Theorem 4.1. For a finite Galois extension L/K and any i ≥ 1 we define

Xi(L/K, T, V ) := ker
(
Hi(L/K, T (L)) →

∏
v∈V

Hi(Lw/Kv, T (Lw))
)
,

where, in the product on the right, we choose, for each v ∈ V , a single extension w|v in 
V L. The main ingredient in our first proof of Theorem 4.1 is the following statement.

Proposition 4.2. For any finite Galois extension L/K and any i ≥ 1, the group 
Xi(L/K, T, V ) is finite.

First, let us show how this proposition implies Theorem 4.1. Let L = KT be the 
minimal splitting field of T . The inflation-restriction exact sequence

0 → H1(L/K, T (L)) → H1(K,T ) → H1(L, T ),

combined with the fact that H1(L, T ) = 0 as T is L-split (Hilbert’s Theorem 90), enables 
us to canonically identify H1(K, T ) with H1(L/K, T ) (via the inverse of the inflation 
map). Similarly, we can canonically identify H1(Kv, T ) with H1(Lw/Kv, T ) for any 
extension w|v. It follows that

X1(T, V ) = X1(L/K, T, V ),

which is finite by Proposition 4.2.

We begin our proof of Proposition 4.2 with the following general lemma.

Lemma 4.3. In the above notations, the group Xi(L/K, T, V ) coincides with

Qi(L/K, T, V ) := ker
(
Hi(L/K, T (L)) → Hi(L/K, T (A(L, V L)))

)
,

where V L consists of all extensions to L of places in V .

Proof. First, recall that for any v ∈ V , the product 
∏

w|v Lw is identified as Gal(L/K)-
module with L ⊗ Kv (cf. §3 and [5, Ch. II, §10]). Therefore, by Shapiro’s Lemma, we 
have a natural identification of Hi(L/K, 

∏
w|v T (Lw)) with Hi(Lw/Kv, T (Lw)) for any

extension w|v. Thus, the natural embedding of T (A(L, V L)) into 
∏

w∈V L T (Lw) yields 
the inclusion
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Qi(L/K, T, V ) ⊂ Xi(L/K, T, V ).

Before establishing the opposite inclusion, let us first recall the well-known description 
of the cohomology of the adelic group T (A(L, V L)). For each finite set S ⊂ V , let S̃ ⊂ V L

be the set of all extensions to L of places in S, and define

T (A(L, V L, S̃)) =
∏
v∈S

(
∏
w|v

T (Lw)) ×
∏
v/∈S

(
∏
w|v

T (OLw
))

Then T (A(L, V L, S̃)) is stable under the action of Gal(L/K) and T (A(L, V L)) is the 
direct limit of the T (A(L, V L, S̃)) as S runs over the finite subsets of V (in fact, without 
loss of generality, we may assume that the sets S consist of places such that, for each 
v /∈ S, the extension Lw/Kv is unramified and T has good reduction at v). Since the 
cohomology of finite groups commutes with direct limits, it follows that

Hi(L/K, T (A(L, V L))) = lim−→
S

Hi(L/K, T (A(L, V L, S̃))).

Furthermore, since for each v, the corresponding product is stable under Gal(L/K), we 
have

Hi(L/K, T (A(L, V L, S̃))) =
∏
v∈S

Hi(L/K,
∏
w|v

T (Lw)) ×
∏
v/∈S

Hi(L/K,
∏
w|v

T (OLw
)).

By Shapiro’s Lemma, the latter group is naturally identified with
∏
v∈S

Hi(Lw/Kv, T (Lw)) ×
∏
v/∈S

Hi(Lw/Kv, T (OLw
)),

where for each v ∈ V , we have chosen the same extension w|v as in the definition of 
Xi(L/K, T, V ).

From this discussion, we see that to prove the inclusion Xi(L/K, T, V ) ⊂ Qi(L/K,

T, V ), it is enough to show that the map

ιv : Hi(Lw/Kv, T (OLw
)) −→ Hi(Lw/Kv, T (Lw))

is injective for almost all v. We will establish this using a slight modification of argument 
used in the proof of Theorem 3.4.

Let KT be the minimal splitting field of T , and let F = KT ·L be the compositum of 
KT and L inside a fixed separable closure Ksep of K. Then for all but finitely many v ∈ V , 
the extension F/K is unramified at v and T (OFu

), where u|v, is a maximal bounded 
subgroup of T (Fu). It turns out that for such v, the map ιv is injective. Indeed, as we 
have seen in the proof of Theorem 3.4, we have an isomorphism of Gal(Fu/Kv)-modules

T (Fu) 
 X∗(T ) × T (OFu
).
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Taking the fixed points under Gal(Fu/Lw), we obtain the decomposition

T (Lw) 
 M × T (OLw
) where M = X∗(T )Gal(Fu/Lw).

Thus, T (OLw
) is a direct factor of T (Lw) as Gal(Lw/Kv)-module, and the injectivity of 

ιv follows, completing the proof. �
Next, as in §3, for w ∈ V L, let Δ̃w denote the maximal bounded subgroup of T (Lw), 

and set

Δ̃ =
∏

w∈V L

Δ̃w.

As we have seen previously, Δ̃ embeds into T (A(L, V L)), yielding a map

Hi(L/K, Δ̃) ψ(i)−→ Hi(L/K, T (A(L, V L))).

We also have a map

Hi(L/K, T (L)) ϕ(i)−→ Hi(L/K, T (A(L, V L))),

induced by the embedding T (L) ↪→ T (A(L, V L)). We define the subgroup of weakly 
unramified elements in Hi(L/K, T (L)) to be

W i(L/K, T, V ) = ϕ(i)−1(im ψ(i)).

A bit more concretely, it is easy to see that α ∈ Hi(L/K, T ) is weakly unramified if for 
any v ∈ V , its image in Hi(Lw/Kv, T ) under the restriction map lies in the image of the 
map

Hi(Lw/Kv, Δ̃w) → Hi(Lw/Kv, T (Lw))

for some (equivalently, any) extension w|v.
Since we obviously have Qi(L/K, T, V ) ⊂ W i(L/K, T, V ), it follows from Lemma 4.3

that for the proof of Proposition 4.2, it is enough to establish

Proposition 4.4. With the preceding notations, the group W i(L/K, T, V ) is finite.

Proof. We begin with the following two exact sequences:

1 → E −→ T (L) × Δ̃ π−→ H → 1, (2)

where E = T (L) ∩ Δ̃ is embedded in T (L) × Δ̃ via e �→ (e, e−1) and H = T (L) · Δ̃ ⊂
T (A(L, V L)) with π being the product map, and
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1 → H −→ T (A(L, V L)) −→ T (A(L, V L))/H → 1. (3)

Then (2) yields the following exact sequence in cohomology

Hi(L/K,E) −→ Hi(L/K, T (L)) ×Hi(L/K, Δ̃) ϕ(i)+ψ(i)−→ Hi(L/K,H), (4)

where ϕ(i) and ψ(i) are the same maps as ϕ(i) and ψ(i) but with the target being 
Hi(L/K, H) instead of Hi(L/K, T (A(L, V L))), and (3) yields the exact sequence

Hi−1(L/K, T (A(L, V L))/H) ε−→ Hi(L/K,H) ω−→ Hi(L/K, T (A(L, V L))).

We note that

ϕ(i) + ψ(i) = ω ◦ (ϕ(i) + ψ(i)). (5)

On the other hand, if p : Hi(L/K, T (L)) ×Hi(L/K, Δ̃) → Hi(L/K, T (L)) denotes the 
canonical projection, then clearly

W i(L/K, T, V ) = p(ker(ϕ(i) + ψ(i))),

so it is enough to prove the finiteness of ker(ϕ(i) +ψ(i)). As we observed at the start of §3, 
the set V L is a divisorial set of places of L, so Proposition 3.2 implies that the quotient 
T (A(L, V L))/H is a finitely generated abelian group. Consequently, by Lemma 3.3, the 
group Hi−1(L/K, T (A(L, V L))/H) is finite for i ≥ 2. For i = 1, it may be infinite, but it 
is still finitely generated. Since Hi(L/K, H) has finite exponent (cf. [37, Ch. II, Corollary 
1.31]), we see that im ε is finite for all i ≥ 1, and hence kerω is finite. So, it follows from 
(5) that it is enough to prove the finiteness of ker(ϕ(i) + ψ(i)). However, we observed 
in the proof of Proposition 3.2 that E is a finitely generated abelian group and hence 
Hi(L/K, E) is finite by Lemma 3.3. Thus, the required fact follows immediately from 
the exact sequence (4). �

Let us point out that one can somewhat streamline the proof of Proposition 4.4 using 
the results on Condition (T) from §3. More precisely, applying Proposition 3.1 to T
over L with the set of places V L, we can find a co-finite subset V ′ ⊂ V such that 
T (A(L, (V ′)L)) = T (L)Δ̃′, where

Δ̃′ =
∏

w∈(V ′)L
Δ̃w.

Clearly, W i(L/K, T, V ′) contains W i(L/K, T, V ), so it is enough to prove the finiteness 
of the former. Thus, replacing V with V ′, we may assume that H = T (L)Δ̃ coincides 
with T (A(L, V L)). In this case, in place of (2), we have the short exact sequence

1 → E −→ T (L) × Δ̃ π−→ T (A(L, V L)) → 1,



A.S. Rapinchuk, I.A. Rapinchuk / Journal of Number Theory 233 (2022) 228–260 247
which leads to the exact sequence

Hi(L/K,E) −→ Hi(L/K, T (L)) ×Hi(L/K, Δ̃) ϕ(i)+ψ(i)−→ Hi(L/K, T (A(L, V L))).

As above, the group Hi(L/K, E) is finite, so the required finiteness of ker(ϕ(i) + ψ(i))
immediately follows.

Remark 4.5. The above argument shows that the finiteness of the Tate-Shafarevich group 
of any torus over a finitely generated field with respect to a divisorial set of places is a 
direct consequence of the finite generation of the relevant unit and class groups (over a 
suitable extension of the base field).

Second proof of Theorem 4.1. As remarked above, in our second proof, we will make 
the additional assumption that n = [KT : K] is prime to char K. We will proceed by 
first reducing Theorem 4.1 to a statement about the finiteness of a certain group of 
unramified cohomology, and then proving this statement in Theorem 4.6 below.

For the argument, we fix a model X of K over Z (if char K = 0) or over a finite field 
(if char K > 0) such that V is associated with the prime divisors of X. After possibly 
shrinking X and V , we can assume that X is smooth (over an open subset of Spec(Z) in 
the first case and over a finite field in the second), n is invertible on X, and T extends 
to torus T over X (so that, in particular, the generic fiber of T is T ).

First, the inflation-restriction sequence

0 → H1(KT /K, T ) → H1(K,T ) → H1(KT , T ),

combined with the fact that H1(KT , T ) = 0 as T is KT -split (Hilbert’s Theorem 90) 
enables us to canonically identify H1(K, T ) with H1(KT /K, T ). This, in particular, 
implies that nH1(K, T ) = 0. Furthermore, since n is prime to the characteristic of K, 
we can consider the Kummer sequence

1 → M → T
×n−→ T → 1,

where M = T [n] is the n-torsion in T . Then, since H1(K, T ) is annihilated by n, the 
corresponding exact sequence in Galois cohomology

H1(K,T ) ×n→ H1(K,T ) → H2(K,M)

yields an embedding

ψK : H1(K,T ) → H2(K,M).

Note that there are similar embeddings ψL for all Galois extensions L/K containing KT , 
and these behave functorially. We thus obtain the commutative diagram
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H1(K,T )
ψK

H2(K,M)

∏
v∈V

H1(Kv, T ) Ψ ∏
v∈V

H2(Kv,M)

where Ψ =
∏
v∈V

ψKv
. It follows that ψK gives an embedding of X1(T, V ) into

X2(M,V ) := ker
(
H2(K,M) →

∏
v∈V

H2(Kv,M)
)
,

and it is enough to prove the finiteness of the latter. For this, we relate X2(M, V ) to 
unramified cohomology.

More precisely, it follows from our construction that for any v ∈ V , the field 
extension KT /K is unramified at v. Since, in addition, n is invertible on X, the 
Gal(Ksep

v /Kv)-module M = T [n] is unramified (and can be naturally identified with 
the Gal((K(v))sep/K(v))-module T (v)[n], where T (v) denotes the reduction of T at v). 
So, there exists a residue map

∂̃v : H2(Kv,M) → H1(K(v),M(−1)),

and the residue map ∂v : H2(K, M) → H1(K(v), M(−1)) mentioned in §1 is then the 
composition of ∂̃v with the restriction map H2(K, M) → H2(Kv, M) (see [21, Ch. II, 
§7]). It follows that for any x ∈ X2(M, V ), all residues ∂v(x), v ∈ V are trivial. In other 
words, X2(M, V ) is contained in the unramified cohomology group

H2(K,M)V :=
⋂
v∈V

ker ∂v.

So, to complete the proof of Theorem 4.1, it remains to establish

Theorem 4.6. With the preceding notations, H2(K, M)V is finite.

For the proof of Theorem 4.6, it will be convenient to introduce the following notations. 
We let M denote the n-torsion subscheme T [n] of T over X. As usual, we will use the 
same notation for the associated étale sheaf. Next, for P ∈ X, we denote by OX,P the 
local ring of X at P . We then define

D(X) = Im(H2
ét(X,M) → H2(K,M))

and
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D(X,P ) = Im(H2
ét(Spec(OX,P ),M) → H2(K,M)),

where the maps are the natural ones induced by passage to the generic point. An im-
portant ingredient in the proof of Theorem 4.6 is the following lemma.

Lemma 4.7. We have equalities

D(X) =
⋂

P∈X(1)

D(X,P ) = H2(K,M)V ,

where X(1) denotes the set of codimension 1 points (prime divisors) of X.

Proof. To prove the second equality, it suffices to show that for every point P ∈ X(1)

and the corresponding discrete valuation v of K, the kernel ker ∂v of the residue map 
∂v considered above coincides with D(X, P ). Indeed, it is known (see [11, §3.3] and 
references therein) that the residue map

δP : H2(K,M) → H1(K(v),M(−1))

arising from absolute purity for discrete valuation rings applied to the locally constant 
constructible étale sheaf of Z/nZ-modules on Spec(OX,P ) associated with M, coincides 
up to sign with ∂v. On the other hand, δP fits into the following exact sequence that is 
derived from the localization sequence in étale cohomology (cf. [35, Ch. III, Proposition 
1.25])

· · · → H2
ét(Spec(OX,P ),M) → H2(K,M) δP→ H1(K(v),M(−1)) → · · · ,

from which the required fact follows.
Let us now turn to the first equality. One of the crucial ingredients needed for the 

argument is the truth of the absolute purity conjecture for regular noetherian schemes, 
which was established by Gabber (see [20]). As observed in [11, §3.4], it implies that 
for any open subscheme U ⊂ X such that codimX(X \ U) ≥ 2, the restriction map 
H2

ét(X, M) → H2
ét(U, M) is surjective. Thus, to prove the first equality, it is enough to 

show that for every

γ ∈
⋂

P∈X(1)

D(X,P ),

there exists an open subscheme Uγ ⊂ X (depending on γ) such that codimX(X \Uγ) ≥ 2
and γ ∈ D(Uγ). This is done by the following (relatively) standard argument (see, for 
example, [11, Theorem 3.8.2], [13, Proposition 6.8], and [22, Corollary A.8]), which actu-
ally yields an open subscheme Uγ ⊂ X containing X(1) (implying that the codimension 
of its complement is ≥ 2) with γ ∈ D(Uγ).
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First, according to [2, VII, 5.9], we have

H2(K,M) = lim−−−→
U

H2
ét(U,M), (6)

where the limit is taken over all nonempty open affine subschemes U of X. So, there 
exists such U with γ ∈ D(U), i.e. γ is the image in H2(K, M) of some γU ∈ H2

ét(U, M). 
If U contains X(1), we are done. Otherwise, the complement X(1) \ (X(1)∩U) consists of 
finitely many points. Then, in order to extend U to a required open set Uγ by an obvious 
inductive argument, it suffices to prove the following: for any P ∈ X(1) \ (X(1) ∩ U), 
there exists an open Ũ ⊂ X containing U ∪{P} such that γ ∈ D(Ũ). By our assumption, 
γ ∈ D(X, P ), so there exists an open affine neighborhood W of P such that γ is the 
image in H2(K, M) of some γP ∈ H2

ét(W, M). It follows from (6) that there exists 
an open affine subset W0 ⊂ U ∩ W such the images of γU and γP in H2

ét(W0, M)
coincide. Let us show that there exists an open neighborhood W ′ ⊂ W of P such that 
U ∩ W ′ ⊂ W0. Indeed, since P /∈ U , we have P ∈ X \ W0. As P ∈ X(1), the closure 
{P} is an irreducible component of X \W0. Let Z be the union of all other irreducible 
components. Then W ′ := W ∩ (X \ Z) is an open neighborhood of P . Furthermore, 
the complement X \ (U ∩W ′) is a closed subset that contains P and Z, hence contains 
X \W0. Thus, U ∩W ′ ⊂ W0, as required. Set Ũ = U ∪W ′, and let γ′ be the restriction 
of γP to W ′. Then (γU , γ′) ∈ H2

ét(U, M) ⊕H2
ét(W ′, M) and the restrictions of γU and γ′

to U ∩W ′ coincide. Then by the Mayer-Vietoris sequence in étale cohomology (see, for 
example, [46, Tag 0A50]), there exists γ̃ ∈ H2

et(Ũ , M) that restricts to γU and γ′ on U
and W ′, respectively. Clearly, γ̃ maps to γ, showing that γ ∈ D(Ũ), as required. �
Proof of Theorem 4.6. In view of Lemma 4.7, it suffices to show that H2

ét(X, M) is finite. 
This is established by the same argument as in the proof of [7, Theorem 10.2], which 
relies on Deligne’s theorem for the higher direct images of constructible sheaves (see [17, 
Théorème 1.1 in “Théorèmes de finitude en cohomologie �-adique”]), the Leray spectral 
sequence, and finiteness results for the étale cohomology of constructible sheaves over 
the spectrum of a finite field (see [35, Ch. VI, Corollary 5.5]) or the ring of S-integers in 
a number field (see [31, Corollary 6.17], [36, Ch. II, Proposition 2.9], and [39, Theorem 
8.3.20(i)]). �

To conclude this section, we would like to observe that the finiteness of X1(T, V )
yields the following statement concerning a subgroup with bounded torsion in X2(T, V ).

Theorem 4.8. Let K and V be as in Theorem 4.1. Then for any K-torus T and any 
integer � > 0 prime to char K, the �-torsion subgroup �X2(T, V ) is finite.

Proof. Let L = KT be the minimal splitting field of T inside a fixed separable closure 
Ksep of K. It is well-known (see, for example, [42, Proposition 2.1]) that T can be 
embedded into an exact sequence of K-tori
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1 → T → T0 → T1 → 1, (7)

where T0 is a quasi-split K-torus of the form RL/K(Gm)s for some s > 0. Let us first show 
that �X2(T0, V ) is finite. It is obviously enough to establish the finiteness of �X2(T , V )
for T = RL/K(Gm). Now, by Shapiro’s Lemma, we have

H2(K, T ) = H2(L,Gm) = Br(L),

so that X(T , V ) can be identified with the kernel Ω of the natural map of Brauer groups

Br(L) −→
∏

w∈V L

Br(Lw),

where V L consists of all extensions of places in V to L. Clearly, �Ω is contained in the �-
torsion of unramified Brauer group �Br(L)V L . Since V L is a divisorial set of places of the 
finitely generated field L (see the discussion at the start of §3) and � is prime to char L, 
the latter is finite (see [7, Theorem 2] — note that this is also a formal consequence of 
Theorem 4.6 above). So, the required finiteness of �X(T0, V ) follows.

Next, since H1(F, T0) = 0 for any field extension F/K by Hilbert’s Theorem 90 and 
Shapiro’s Lemma, the exact sequence (7) gives rise to the following commutative diagram 
with exact rows:

0 H1(K,T1)
α

H2(K,T )
β

H2(K,T0)

0
∏
v∈V

H1(Kv, T1)
∏
v∈V

H2(Kv, T )
∏
v∈V

H2(Kv, T0)

Clearly, β(�X2(T, V )) ⊂ �X2(T0, V ), hence finite as we just showed. On the other hand,

�X2(T, V ) ∩ kerβ = �X2(T, V ) ∩ Im α = α(�X1(T1, V )).

As we showed in Theorem 4.1 above, X1(T1, V ) is finite, so the finiteness of �X2(T, V )
follows. �
5. Finiteness results for unramified cohomology and applications

In this section, we prove several finiteness results for the unramified cohomology of 
function fields of rational varieties and Severi-Brauer varieties over number fields. We 
then apply these statements to the framework developed in [9] to establish some new 
cases of Conjectures 1 and 2.
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To streamline the statements of our results in this section, we introduce the following 
condition. Suppose K is a field and let n > 1 be an integer. We will say that a set V of 
discrete valuations of K satisfies condition (B) with respect to n if

(B) n is invertible in the residue fields K(v) for all v ∈ V .

Notice that if K is a finitely generated field of characteristic 0 and V is a divisorial set 
of places, then for any n > 1, one can ensure that (B) holds by deleting finitely many 
places from V . On the other hand, if char K = p > 0, then (B) holds automatically for 
any n prime to p and any set of places V of K. In any case, whenever V satisfies (B) 
with respect to n, the unramified cohomology groups Hi(K, μ⊗j

n )V are defined for all 
i ≥ 1.

We begin by considering the unramified cohomology of function fields of rational 
varieties over number fields.

Theorem 5.1. Let k be a global field, and let K = k(x1, . . . , xr) be a purely transcendental 
extension of k of transcendence degree r ≥ 1. Fix an integer n > 1 prime to p = char k. 
Suppose that V is a divisorial set of places of K satisfying (B) with respect to n and 
assume that k contains a primitive n-th root of unity. Then

(a) The unramified cohomology groups Hi(K, μn)V are finite for i ≤ 3.
(b) If r ≤ 2, then the unramified cohomology groups Hi(K, μn)V are finite for all i ≥ 1.

Proof. (a) The finiteness of H1(K, μn)V is well-known (cf. [7, Proposition 5.1]) and 
the finiteness of H2(K, μn)V = nBr(K)V was established in [7, Theorem 2] (note that 
this also follows from Theorem 4.6 above). The first step in proving the finiteness of 
H3(K, μn)V is the following lemma.

Lemma 5.2. Let k be a global field, K be the function field of P r
k , and V0 be the set of 

discrete valuations of K associated with all the prime divisors of P r
k . If i ≥ 3, then the 

unramified cohomology groups Hi(K, μn)V are finite for all n prime to p = char k and 
all sets V of discrete valuations of K containing V0.

Proof. It is well-known that the natural map Hi(k, μn) → Hi(K, μn) induces an isomor-
phism

Hi(k, μn) ∼−→ Hi(K,μn)V0

(see, for example, [11, Theorem 4.1.5]). So, let us now show the finiteness of Hi(k, μn)
for i ≥ 3. In fact, we have the following more general and precise results. Let M be a 
finite Galois module over k. If p > 0, then k has cohomological dimension 2 (cf. [45, Ch. 
II, §4.2, Corollary]), hence Hi(k, M) vanishes. To treat the case where k is a number 
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field, we need to observe that according to a result of Poitou-Tate, for i ≥ 3, the natural 
map

Hi(k,M) −→
∏

v∈V k
R

Hi(kv,M), (8)

where V k
R is the set of real valuations of k, is an isomorphism (cf. [39, 8.6.10(ii)]). Since the 

groups Hi(kv, M) for v ∈ V k
R are obviously finite, the finiteness of Hi(k, μn) follows. �

Continuing the proof of part (a), we now let V be any divisorial set of places of K. 
Denote by Ok the ring of integers of k. Since, as observed in §1, any two divisorial sets 
are commensurable, it follows that after possibly deleting a finite number of places from 
V , we may assume that V = V (U) is the set of discrete valuations of K associated with 
the prime divisors of a smooth open subscheme U ⊂ P r

S , where S is an open subscheme 
of Spec(Ok) with n invertible on S. Moreover, possibly shrinking U (which reduces V by 
a finite number of places), we can assume that P r

S \ U is pure of codimension one. Let

P r
S \ U =

⋃
j∈J

Yj

be the decomposition into irreducible components and denote by κj the function field 
of Yj . By [9, Proposition 6.4] (see also [12, §2, p. 36]), we have an exact sequence of 
unramified cohomology groups

0 → H3(K,μn)V (Pr
S) → H3(K,μn)V (U) →

⊕
j∈J

H2(κj , μn)V (Yj), (9)

where for an irreducible scheme X, we let V (X) denote the set of discrete valuations of 
the function field k(X) associated with all prime divisors of the normalization of X. We 
note that the assumption that k contains μn enables us to avoid considering twists in 
this sequence. In view of Lemma 5.2, the obvious inclusion

H3(K,μn)V (Pr
S) ⊂ H3(K,μn)V0

implies that H3(K, μn)V (Pr
S) is finite. Furthermore, as shown in [7, Theorem 2], each of 

terms H2(κj , μn)V (Yj) is finite. Thus, H3(K, μn)V (U) is finite, which gives the finiteness 
of H3(K, μn)V , as needed.

(b): We only need to prove the finiteness of Hi(K, μn)V for i ≥ 4. Proceeding as in 
part (a), we obtain an exact sequence

0 → Hi(K,μn)V (Pr
S) → Hi(K,μn)V (U) →

⊕
j∈J

Hi−1(κj , μn)V (Yj)

for all i ≥ 4. (Again, since μn ⊂ k, no twists are needed.)
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As above, Lemma 5.2 yields the finiteness of Hi(K, μn)V (Pr
S). If r = 1, then the fields 

κj in the terms on the right are number fields, so the groups Ht(κj , μn)V (Yj) are finite 
for all t ≥ 3 by the results of Poitou-Tate (see the proof of Lemma 5.2). If r = 2, then the 
κj have transcendence degree 1 over k, in which case the finiteness of Ht(κj , μn)V (Yj)
for all t ≥ 3 follows from [9, Proposition 4.2 and Theorem 6.3]. Consequently, the groups 
Hi(K, μn)V (U) are finite, which yields the finiteness of Hi(K, μn)V for all i ≥ 4, as 
claimed. �
Remark 5.3. In positive characteristic, Theorem 5.1 can be reformulated in the more 
traditional context of function fields of varieties over finite fields. So, let k = Fq be a 
finite field of characteristic p > 0, n > 1 be an integer relatively prime to p such that k
contains a primitive n-th root of unity, and K = k(x1, . . . , xr) be a purely transcendental 
extension of k of transcendence degree r. Then the assertion of part (a) of the theorem 
holds true as stated, and part (b) holds for r ≤ 3. Here the claim that requires more 
justification is the finiteness of H4(K, μn)V when r = 3. In order to apply the above 
argument, one needs to use the finiteness of the unramified cohomology in degree 3 of 
the function field of a smooth surface over a finite field, which was established in [9, §7].

Building on Theorem 5.1, one would like to understand the unramified cohomology 
of the function fields of geometrically rational varieties without rational points. The 
next proposition treats some Severi-Brauer varieties over global fields: while the first 
part is straightforward, the second requires input from Kahn’s analysis of the motivic 
cohomology of Severi-Brauer varieties.

Proposition 5.4. Let k be a global field and X be the Severi-Brauer variety over k as-
sociated with a central division algebra D over k of degree �. Denote by K = k(X) the 
function field of X and let V (X) be the set of geometric places of K, i.e. the discrete 
valuations of K corresponding to the prime divisors of X.

(a) For any integer n > 1 that is prime to � and p = char k, the unramified cohomology 
groups Hi(K, μ⊗j

n )V (X) are trivial if p > 0 and are finite if p = 0, for all i ≥ 3 and 
all j.

(b) If � is a prime �= chark, then the group H3(K, μ⊗2
�t )V (X) is trivial if p > 0 and finite 

if p = 0, for all t ≥ 1.

Proof. (a) Let k′ be a maximal separable subfield of D so that Xk′ 
 P �−1
k′ . Set K ′ =

k′(Xk′). Since n is prime to �, the restriction map Hi(K, μ⊗j
n ) → Hi(K ′, μ⊗j

n ) is injective, 
giving rise to an inclusion

Hi(K,μ⊗j
n )V (X) ↪→ Hi(K ′, μ⊗j

n )V (X ′ ).
k



A.S. Rapinchuk, I.A. Rapinchuk / Journal of Number Theory 233 (2022) 228–260 255
As we have already seen in the proof of Lemma 5.2, the latter group is isomorphic to 
H1(k′, μ⊗j

n ) (see, for example, [11, Theorem 4.1.5]), which is trivial is p > 0 and finite if 
p = 0.

(b): Using a complex constructed by Kahn (see [28, Corollary 7.1]), Pirutka [41, 
Proposition 3] showed that the natural map

η : H3(k,Q�/Z�(2)) → H3(K,Q�/Z�(2))V (X)

is surjective (note that this result requires � to be a prime). If p > 0 then k has cohomo-
logical dimension 2, hence H3(k, Q�/Z�(2)) = 0, yielding the required fact. To treat the 
case p = 0, we observe that

H3(k,Q�/Z�(2)) = lim
−→

H3(k, μ⊗2
�t ). (10)

On the other hand, applying the isomorphism (8), for each t ≥ 1 we obtain an isomor-
phism

ιt : H3(k, μ⊗2
�t ) −→

∏
v∈V k

R

H3(kv, μ⊗2
�t ),

and the isomorphisms ιt and ιt+1 are compatible with the inclusion μ⊗2
�t ↪→ μ⊗2

�t+1 . It is 
easy to see that for each v ∈ V k

R , the group Gal(kv/kv) (which is a cyclic group of order 
2) acts on μ⊗2

�t trivially for any t, implying that

H3(kv, μ⊗2
�t ) = H1(kv, μ⊗2

�t ) = Hom(Gal(kv/kv), μ⊗2
�t )

is a cyclic group of order gcd(�, 2) and that the map H3(kv, μ�t) → H3(kv, μ�t+1) is an 
isomorphism. Using (10), we then obtain that

H3(k,Q�/Z�(2)) 
 (Z/(�, 2)Z)|V
k
R |,

and in particular is finite. To conclude the argument, recall that a well-known conse-
quence of the Merkurjev-Suslin theorem is that the natural map

H3(K,μ⊗2
�t ) → H3(K,Q�/Z�(2))

is injective for all t ≥ 1 (see [33, 18.4]). This gives an inclusion

H3(K,μ⊗2
�t )V (X) ↪→ H3(K,Q�/Z�(2))V (X),

completing the proof. �



256 A.S. Rapinchuk, I.A. Rapinchuk / Journal of Number Theory 233 (2022) 228–260
Now, using Proposition 5.4 and arguing as in the proof of Theorem 5.1 we obtain 
the following result for an arbitrary divisorial set of places of the function field of a 
Severi-Brauer variety.

Corollary 5.5. Let k be a global field and m > 1 be an integer relatively prime to char k

such that k contains a primitive m-th root of unity. Furthermore, let K = k(X) be the 
function field of a Severi-Brauer variety X associated with a central division algebra D
over k of degree �, and let V be a divisorial set of places of K satisfying condition (B) 
with respect to m. If either m is relatively prime to � or � is a prime number �= char k, 
then the unramified cohomology groups Hi(K, μm)V are finite for i ≤ 3.

In [9], we discovered connections between finiteness properties of unramified cohomol-
ogy with μ2-coefficients and Conjectures 1 and 2 for certain groups. We will now apply 
the preceding results to this framework in order to establish several new cases of the 
conjectures.

We begin with the following statement for spinor, special orthogonal, and special 
unitary groups, which relies on the finiteness of unramified cohomology in all degrees 
with μ2-coefficients.

Theorem 5.6. Let k be a number field, K = k(x1, x2) a purely transcendental extension 
of k of transcendence degree 2, and V any divisorial set of places of K.

(a) For any n ≥ 5, the set of K-isomorphism classes of spinor groups G = Spinn(q) of 
nondegenerate quadratic forms in n variables over K that have good reduction at all 
v ∈ V is finite.

(b) For any n ≥ 5 and G = SOn(q), with q a nondegenerate quadratic form in n variables 
over K, the global-to-local map

λG,V : H1(K,G) →
∏
v∈V

H1(Kv, G)

is proper. In particular, X(G, V ) is finite.
(c) Fix a quadratic extension L/K and let n ≥ 2. Then the number of K-isomorphism 

classes of special unitary groups G = SUn(L/K, h) of nondegenerate hermitian L/K-
forms in n variables that have good reduction at all v ∈ V is finite. Moreover, the 
global-to-local map

λG,V : H1(K,G) →
∏
v∈V

H1(Kv, G)

is proper. In particular, X(G, V ) is finite.

Proof. After deleting finitely many places from V , we may assume that V satisfies con-
dition (B) with respect to 2, so that the unramified cohomology groups Hi(K, μ2)V are 
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finite for all i ≥ 1 by Theorem 5.1. Then parts (a) and (b) follow from Theorems 2.1 
and 3.4 in [9]. To derive part (c), one argues as in the proofs of Theorems 8.1 and 8.4 in 
[9]. �
(Of course, part (b) (resp., (c)) can be interpreted as a local-global statement for the 
isomorphism classes of quadratic (resp., hermitian) forms. We also note that one has a 
result similar to part (c) for absolutely almost simple simply connected groups of type 
Cn that split over a quadratic extension — see [9, Remark 8.6].)

Our next result relies only on the finiteness of unramified cohomology in degree 3.

Theorem 5.7. Let k be a global field and suppose that K is either a purely transcendental 
extension k(x1, . . . , xr) of k or the function field k(X) of a Severi-Brauer variety X over 
k associated with a central division algebra D over k of degree �. Let V be any divisorial 
set of places of K.

(a) Let m > 1 be a square-free integer prime to char k such that k contains a primitive 
m-th root of unity. Furthermore, assume that either m is relatively prime to � or � is 
a prime number. Then for G = SL1,A, with A a central simple K-algebra of degree 
m, the global-to-local map

λG,V : H1(K,G) →
∏
v∈V

H1(Kv, G)

is proper. In particular, X(G, V ) is finite.
(b) Let G be a simple algebraic K-group of type G2. Assume that either � is odd or 

� = 2. Then the number of K-isomorphism classes of K-forms G′ of G having good 
reduction at all v ∈ V is finite, and, moreover, the global-to-local map

λG,V : H1(K,G) →
∏
v∈V

H1(Kv, G)

is proper. In particular, X(G, V ) is finite.

Proof. Theorem 5.1 and Corollary 5.5 provide the input needed to apply the argument 
developed in [9] to establish Theorems 5.7 and 9.1 in our situation in order to prove 
parts (a) and (b), respectively. �

We conclude this section with a simple proof of a (known) result on the Brauer group 
of a Severi-Brauer variety. Initially, we were unable to find a suitable reference in the 
literature and developed the argument given below; however, subsequently Skip Garibaldi 
pointed out to us that this fact is a particular case of Theorem B in [34]. Let k be an 
arbitrary field, fix a separable closure ksep of k, and suppose X is a Severi-Brauer variety 
associated with a central division algebra D over k. Then X = X×k k

sep is isomorphic to 
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Pn
ksep for some n. Note that since X is smooth, the (cohomological) Brauer group Br(X)

of X coincides with the unramified Brauer group Br(k(X))V0 of the function field L(X)
with respect to the geometric places V0 (see [24, Proposition 2.1]).

Proposition 5.8. The natural map Br(k) → Br(X) is surjective.

Proof. Consider the Hochschild-Serre spectral sequence

Ep,q
2 = Hp(k,Hq

ét(X,Gm,X)) ⇒ Hp+q
ét (X,Gm,X).

Then the sequence of low-degree terms

E2,0
2 → ker(E2 → E0,2

2 ) → E1,1
2

yields the exact sequence

Br(k) → Br1(X) → H1(k,Pic(X)),

where Br1(X) = ker(Br(X) → Br(X)) is the (so-called) algebraic Brauer group. Since

Br(X) = Br(Pn
ksep) = Br(ksep) = 0,

it follows that Br1(X) = Br(X). Moreover, Pic(X) 
 Pic(Pn
ksep) 
 Z, so to complete the 

proof it suffices to show that Pic(X) has trivial Gal(ksep/k)-action (as then H1(k, Z) =
0). Now Gal(ksep/k) can act on Z only by sending 1 to either 1 or -1, and we need to 
eliminate the second possibility. For this, we interpret the action in terms of line bundles 
and observe that the line bundles in the class corresponding to 1 have nonzero global 
sections while those in the class corresponding to −1 do not, so the required fact follows 
immediately. �

We recall that according to a theorem of Amitsur [1], the kernel of the natural map 
Br(k) → Br(X) coincides with the cyclic subgroup of Br(k) generated by the class of D; 
in particular, we obtain Br(X) 
 Br(k)/〈[D]〉.
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