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1. The notion of strong approximation

The idea of strong approximation goes back to congruences and the Chinese Remainder Theorem.
To keep things simple, let us consider a family of polynomials

fα(x1, . . . , xd) ∈ Z[x1, . . . , xd], α ∈ I,
and let X ⊂ AdZ be the closed subscheme defined by these equations. Thus, for a Z-algebra R we have
the set of R-points

X(R) = {(a1, . . . , ad) ∈ Rd | fα(a1, . . . , ad) = 0 for all α ∈ I}.
For any integer m > 1 we have the reduction modulo m map

ρm : X(Z) −→ X(Z/mZ).

We can then ask the following

Question. (When) are the maps ρm surjective for all m?

If all ρm’s are surjective, we say that X has strong approximation – this provisional definition will
soon be reformulated using adeles. Strong approximation trivially holds for X = Ad (no equations),
but as we will see it may or may not hold in a more general situation. In fact, as we will see, there
are many obstructions for this property to hold. As a result, it actually holds quite rarely, however
it does hold in some important situations (particularly, for some algebraic groups and homogeneous
spaces) in which case we get a number of useful consequences.

For now though let us reformulate this property in a way that will lead to the adelic formulation.
Note that for m|n, there is a natural projection X(Z/nZ) → X(Z/mZ), so we can form the inverse
limit

lim
←
X(Z/mZ).

Furthermore, this set can be identified with the set of points X(Ẑ) over the completion Ẑ = lim
←

Z/mZ.

There are reduction modulo m maps

ρ̂m : X(Ẑ) −→ X(Ẑ/mẐ) = X(Z/mZ),
1
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and the preimages of points form a base for the natural topology on X(Ẑ) (which can be described

either as the topology of the inverse limit or the topology induced by the embedding X(Ẑ) ↪→ Ẑd).
This leads us to the following equivalence

maps ρm are surjective for all m > 1 ⇔ embedding X(Z) ↪→ X(Ẑ) is dense

Using the Chinese Remainder Theorem, we can naturally identify Ẑ with the product
∏
p

Zp (over all

primes p). So, the last condition is equivalent to the fact that the embedding

X(Z) ↪→
∏
p

X(Zp)

is dense - the point here is that this condition easily lends itself to the generalization in terms of adeles.
It also exhibits situations where X cannot possibly have strong approximation. For example, there
are example where X(Zp) 6= ∅ for all p but X(Z) = ∅ (in other words, X fails the Hasse principle), in
which case of course it cannot possibly have “strong approximation” (the same happens when X(Z)
is “small”). In these lectures, we will be dealing with primarily with algebraic groups where the set
of Z-points is never empty, but here “strong approximation” is not automatic either as the following
example shows.

Example. SL2 vs. GL2. The groups G1 = SL2 and G2 = GL2 can be realized as hypersurfaces in the
affine spaces, viz.

G1 = {(x11, x12, x21, x22) ∈ A4 | x11x22 − x12x21 = 1}
and

G2 = {(x11, x12, x21, x22, y) ∈ A5 | (x11x22 − x12x21)y = 1}.
One doesn’t really see much of a difference between the defining equation, however G1 has “strong
approximation” but G2 doesn’t. (We should point out that the reason is not the fact that G1 is defined
by quadratic equations, and G2 by cubic: the group SL3 is defined by a single cubic equation but does
have strong approximation.)

Lemma 1.1. The reduction modulo m map

ρm : SL2(Z) −→ SL2(Z/mZ)

is surjective, for any m > 1.

Sketch of proof. We will not work with the defining equation but rather use some structural information
about SL2. The crucial observation is that any ḡ ∈ SL2(Z/mZ) can be written in the form

ḡ =
∏̀
k=1

eikjk(āk) with (ik, jk) ∈ {(1, 2), (2, 1)} and āk ∈ Z/mZ,

where eij(a) denotes the elementary matrix having a as its (ij)-entry (exercise!). Suppose we are given
such a ḡ, and then find a factorization as above. Then picking an integer ak in the class āk modulo
m, we see that

g :=
∏̀
k=1

eikjk(ak)

satisfies ρm(g) = ḡ. Thus, ρm is surjective. �

(This entirely elementary argument obviously extends to SLn(Z) for any n > 2, but more generally
shows that proving strong approximation is easy if there are unipotent elements available.)

It is even easier to see that GL2 does not have strong approximation. In fact, already the map

ρ5 : GL2(Z) −→ GL2(Z/5Z)



STRONG APPROXIMATION FOR ALGEBRAIC GROUPS 3

is not surjective. Indeed, the determinant of any matrix in the image of ρ5 is ±1(mod 5), implying

that, for example, the matrix

(
1̄ 0̄
0̄ 2̄

)
does not lie in the image. A more conceptual way to express

the reason for failure of strong approximation in this case is contained in the following statement.

Lemma 1.2. If X as above has strong approximation as defined above (i.e. X(Z) is dense in∏
pX(Zp)) then X(Z) is Zariski-dense in X.

Sketch of proof. Let Y be the Zariski-closure of X(Z), and assume that Y 6= X. Then one can find a
point a ∈ X(Q̄) \ Y (Q̄) (where Q̄ is an algebraic closure of Q). It follows from Chebotarev’s Density
Theorem (cf. Proposition 2.4) that there exist infinitely many primes p for which a ∈ X(Zp); fix one
such prime p. Then X(Zp) \Y (Zp) is a nonempty open set in X(Zp) that has empty intersection with
X(Z). �

We note that the (nontrivial) equation (detx)2 − 1 vanishes on GL2(Z), so it is not Zariski-dense
in GL2. We can fix the lack of Zariski-density by passing from Z to some localization, e.g. Z[1/2].
Then Γ = GL2(Z[1/2]) is already Zariski-dense in GL2. (Exercise. Prove this. (Hint. Observe that
the Zariski closure Γ̄ contains SL2 and has infinite image in GL2/SL2 = Gm.)) So, one may wonder
if we have the natural analog of strong approximation in this situation, viz. whether the embedding

Γ ↪→
∏
p 6=2

GL2(Zp)

is dense. As we have just seen, for the group GL2(Z) itself, already the reduction map ρ5 modulo
5 was not surjective. It turns out that for Γ we have ρ5(Γ) = GL(Z/5Z) (and in fact, Γ is dense in
GL2(Z5)). However, ρ17(Γ) 6= GL2(Z/17Z) (and hence Γ is not dense in GL2(Z17)). The reason is
that the determinants of matrices in Γ are all of the form ±2`, ` ∈ Z, and since −1 and 2 are both

squares modulo 17, the determinants of matrices in ρ17(Γ) are contained in (Z/17)×
2 6= (Z/17)×. The

same argument shows that Γ is not dense in GL2(Zp) for any prime p ≡ 1(mod 8), implying that the
closure of Γ in

∏
p 6=2 GL2(Zp) has infinite index.

Let us now give an example of the opposite nature. Consider the subgroup ∆ ⊂ SL2(Z) generated
by the matrices (

1 4
0 1

)
and

(
1 0
4 1

)
.

Then ∆ has infinite index in SL2(Z) but is still Zariski-dense in SL2. (Exercise. Prove this. (Hint.

To prove that the index is infinite, use the fact that the matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
generated

a free subgroup.)) On the other hand, repeating the argument given in the proof of Lemma 1.2, one
shows that the embedding

∆ ↪→
∏
p 6=2

SL2(Zp)

is dense, and in fact the closure of ∆ in
∏
p SL2(Zp) = SL2(Ẑ) has finite index. One can use some

advanced results to give examples of infinite index subgroups of SL2(Z) that are actually dense in

SL2(Ẑ). For example, according to a result of Margulis-Soifer [17], the group SLn(Z) for any n > 2
has a continuum of maximal subgroups of infinite index. Such subgroups are automatically dense

in SLn(Z) in the profinite topology, and therefore are also dense in SLn(Ẑ). These subgroups are
infinitely generated, but one can first pick a finitely generated subgroup which is Zariski-dense and
then using the approximation theorems of Matthews-Vaserstein-Weisfeiler [18] and Weisfeiler [46] (cf.

§6) to conclude that the closure of this finitely generated subgroup in SLn(Ẑ) has finite index. After

that we can add more elements to create a finitely generated subgroup which is dense in SLn(Ẑ) (this
subgroup will be contained in a subgroup of infinite index in SLn(Z), and therefore will itself have
infinite index). See Soifer-Venkataramana [43] for more sophisticated constructions (they show, in
particular, that SLn(Z) for n > 3 contains a finitely generated free subgroup that is dense in the
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profinite topology; we note that this construction cannot be implemented in SL2(Z) since the latter is
virtually free, and in a free group every finitely generated subgroup is closed in the profinite topology).

These two examples show that there may be situations where an arithmetic or S-arithmetic group is
Zariski-dense but still fails strong approximation, and there are also situations where a Zariski-dense
subgroup that has infinite index in an arithmetic subgroup does have strong approximation. In order
to address these and other phenomena pertaining to strong approximation systematically, we will now
give steer the discussion in the adelic setting.

Adeles and strong approximation. Since we are mainly interested in strong approximation for
(linear) algebraic groups, we will first give the definitions in this case. Given a global field K, we
let V K denote the set of all (equivalence classes of) valuations of K, and let V K

∞ and V K
f denote the

subsets of archimedean and nonarchimedean valuations. Let G be a (linear) algebraic K-group. First,
let us fix a faithful linear K-representation (matrix realization) G ↪→ GLn which enables us to define
unambiguously the groups

G(Ov) = G ∩GLn(Ov) for all v ∈ V K
f ,

where Ov is the valuation ring in the completion Kv. For a given subset S ⊂ V K , we let AS denote
the ring of S-adeles of the field K, and define the group of S-adeles of G as follows:

G(AS) = {g = (gv) ∈
∏

v∈V K\S

G(Kv) | gv ∈ G(Ov) for almost all v /∈ S}

(“restricted direct product” of the groups G(Kv) for v ∈ V K \ S with respect to the distinguished
subgroups G(Ov) for v ∈ V K \ (S ∪ V K

∞ )). The group G(AS) is endowed with the natural topology
(“restricted direct product” topology) which is uniquely characterized by the fact that the subgroup∏

v∈V K
∞ \S

G(Kv)×
∏

v∈V K
f \S

G(Ov)

is open and the induced adelic topology on it coincides with the the product topology. It now should
be noted that while the topological group G(AS) was defined using a certain fixed matrix realization of
G, it actually is independent of the choice of this realization, viz. a different matrix realization results
in a naturally isomorphic group. Furthermore, we have the diagonal embedding G(K) ↪→ G(AS).

Definition. We say that the K-group G has strong approximation with respect to the set of places
(valuations) S if G(K) is dense in G(AS).

Let us now clarify how this definition of strong approximation relates to the provisional version we
discussed earlier. Tke K = Q and S = {∞}. Suppose G has strong approximation in the sense of the
above adelic definition, i.e. G(Q) is dense in G(AS). Then, since the subgroup∏

p

G(Zp) ⊂ G(AS)

is open, the intersection

G(Q) ∩
∏
p

G(Zp) = G(Z)

must be dense in
∏
pG(Zp) = G(Ẑ). Thus, strong approximation in the adelic sense implies strong

approximation in the previous sense for any matrix realization G ↪→ GLn.

As we stated earlier, in these lectures we are mostly interested in strong approximation for algebraic
groups, but for the sake of completeness let us mention very briefly how the notion of adeles, hence
that of strong approximation, generalizes to arbitrary varieties. The generalization to affine varieties is
completely straightforward. Namely, for a K-defined affine variety X we first fix a closed K-embedding
X ↪→ An which allows us to talk unambiguously about X(Ov) for v ∈ V K

f , and then define X(AS)
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as the restricted product of X(Kv) for v ∈ V K \ S relative to X(Ov) for v ∈ V K \ (S ∪ V K
∞ ) just as

above, i.e.

X(AS) = {x = (xv) ∈
∏

v∈V K\S

X(Kv) | xv ∈ X(Ov) for almost all v ∈ V K \ (S ∪ V K
∞ )}.

One then show that X(AS) is independent of the choice of a closed embedding X ↪→ An.

The definition of adeles for non-affine varieties is more involved (see Weil [45]). Let X be an
algebraic variety defined over a global field K. Then X admits a finite covering by K-open affine
subsets:

X =
d⋃
i=1

Xi,

and for each i we fix a K-isomorphism fi : Ui → Xi, where Ui is a closed K-subvariety of some affine
space. Then X(K) =

⋃
fi(Ui(K)) and X(Kv) =

⋃
fi(Ui(Kv)) for all v (in particular, X(Kv) is locally

compact for the natural topology that extends the usual topology on each Ui(Kv)). For v ∈ V K
f we

set

[X, fi, Ui](Ov) =
⋃
fi(Ui(Ov)).

One shows that if

X =
⋃
j

Yj , gj : Wj → Yj

is another finite open covering by K-open affine subsets with K-isomorphisms gj , then

[X, fi, Ui](Ov) = [X, gj ,Wj ](Ov) for almost all v ∈ V K
f .

This means that the spaces of S-adeles

X(AS) := {x = (xv) ∈
∏

v∈V K\S

X(Kv) | xv ∈ [X, fi, Ui](Ov) for almost all v ∈ V K \ (S ∪ V K
∞ )}

does not depend on the choice of a finite open affine covering or a system of isomorphisms. See
B. Conrad [9] for a discussion of various aspects this definition, and in particular of the fact that its
outcome coincides with the set of points of X over AS (i.e. morphisms Spec(AS)→ X as K-schemes)
as sets and also topological spaces.

We would like to observe for using the standard affine covering of the projective space X = Pn,
one finds that X(Ov) = X(Kv) for any v ∈ V K

f . It follows that for any projective K-variety X we

have X(Ov) = X(Kv) for almost all v ∈ V K
f , and therefore the (topological) space of S-adeles X(AS)

coincides with the direct product
∏
v∈V K\S X(Kv). This means that in this case strong approximation

for S becomes identical to weak approximation for V K \ S. For convenience, we recall the definition
of weak approximation.

Definition. Let X be an algebraic variety defined over an arbitrary field K, and let V be a set of
valuations of K. We say that X has weak approximation with respect to V if X(K) is dense in∏
v∈V X(Kv) for the direct product topology.

We note that X as weak approximation with respect to V if and only if it has weak approximation
with respect to every finite subset T ⊂ V . Returning now to the situation where K is a global field,
we can now clarify the difference between weak and strong approximation: the former for V K \ S
means the density in

∏
v∈T X(Kv), for any finite subset T ⊂ V K \S, of X(K), while the latter means

the density in
∏
v∈T X(Kv), for any finite subset T ⊂ V K \S such that S ∪T ⊃ V K

∞ , of X(O(S ∪T )),
where O(S∪T ) is the ring of (S∪T )-integers in K. (Thus, strong approximation means the possibility
to approximate the elements of

∏
v∈T X(Kv) not only by some elements of X(K), but in fact by those

that are integral outside S ∪ T .) Of course, this difference originates from the fact that the adelic
topology on X(AS) is stronger than the topology induced from the direct product

∏
v∈V K\S X(Kv).
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2. Necessary conditions for strong approximation

We will now discuss a bunch of necessary conditions for strong approximation. In formulating these
conditions we will assume (unless we explicitly state otherwise) that the K-variety X at hand is affine
and the set S ⊂ V K of valuations that we discard is finite. At the end of the section, we will make
some remarks for some special infinite sets S. As we already observed, one necessary condition (for
any X, not necessarily affine) is

• X(K) must be Zariski-dense in X.

The next condition is absolute irreducibility.

• X must be absolutely irreducible.

Sketch of proof. Recall that the irreducible components of a K-variety are defined over its separable
closure [3, AG 12.3]. So, if X is not absolutely irreducible, we can write X = X1 ∪ X2 where X1

and X2 are proper closed subsets defined over some finite separable extension L/K. Enlarging L we
may assume that Xi(L) 6= X(L) for both i = 1, 2. It follows from Chebotarev’s Density Theorem (cf.
Proposition 2.4 below) that one can find v1, v2 ∈ V K \ S such that L ⊂ Kvi for i = 1, 2. Set

Uvi = X(Kvi) \Xi(Kvi) for i = 1, 2.

Then Uvi is a nonempty open subset of X(Kvi) and

X(K) ∩ (Uv1 × Uv2) = ∅,

a contradiction. �

So, we will assume henceforth that X is absolutely irreducible.

Next, it is well-known that K is discrete in the ring of full adeles A (for S = ∅), cf. [1, Ch. II, §14].
It follows that if X is affine, then X(K) is discrete (and closed) in X(A) (this is typically false for X
nonaffine!). So, strong approximation can never hold in the affine case for S = ∅ (unless X is a single
point). Let us take this one step further. Recall the following elementary topological lemma.

Lemma 2.1. Let C and D be Hausdorff topological spaces with C compact, and let π : C ×D → D
be the projection.

(1) If E ⊂ C ×D is closed then π(E) is also closed.

(2) If E ⊂ C ×D is closed and discrete then π(E) is also closed and discrete.

To apply this in our situation, we observe that for S finite, we have an isomorphism of topological
rings

A = KS × AS where KS =
∏
v∈S

Kv.

This yields a homeomorphism of topological spaces

X(A) ' X(KS)×X(AS).

Since X(K) is closed and discrete in X(A), applying Lemma 2.1 we see that if X(KS) is compact
then the image of the diagonal embedding X(K) ↪→ X(AS) is closed and discrete. It follows that X
cannot have strong approximation in this case. We can thus point out another necessary condition
for strong approximation (in the affine case).

• X(KS) must be noncompact (i.e. there should exist v ∈ S such that X(Kv) is noncompact).

To our knowledge, there is no criterion for X(Kv) to be noncompact for general affine varieties but
there is the following result for algebraic groups.

Theorem 2.2. (Borel-Tits [4, ]) Let G be a reductive algebraic group over a locally compact field K

of characteristic zero. Then the group G(K) is compact if and only if G is anisotropic over K (i.e.
contains no nontrivial K-split torus).
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Sketch of proof. The implication

G(K) is compact ⇒ G is K-anisotropic

is totally obvious as for a nontrivial K-split torus S the group S(K) is noncompact. For the opposite
implication, we use Chevalley’s theorem to find a faithful K-defined representation G ↪→ GL(V ) such
that there exists v ∈ V (K) for which the stabilizer of the line V1 = 〈v〉 reduces to the trivial group
{e}. Consider some K-defined flag

F : V1 ⊂ V2 ⊂ · · · ⊂ Vn = V, where dimVi = i.

Let F(V ) be the flag variety associated with V . We then consider the orbit morphism

f : G→ F(V ), g 7→ gF.

Let Z = f(G) be the Zariski closure of the orbit X = f(G) = GF. Since F(V ) is projective, the space
F(V )(K) is compact. Since Z(K) is closed in F(V )(K), it is also compact. Since the stabilizer of
V1, hence of F, is trivial, f yields a K-defined isomorphism between G and the Zariski K-open set
X ⊂ Z. In particular, fK defines a homeomorphism between G(K) and X(K). So, to prove that G(K)
is compact, it is enough to prove that X(K) = Z(K), in other words, to prove the inclusion Z(K) ⊂ X.
Assume that there exists F′ ∈ Z(K) \X. Then the orbit GF′ has a strictly smaller dimension than X.
This means that the stabilizer H of F′ in G has positive dimension. On the other hand, H stabilizes
the K-flag F′, hence is triangulizable over K. But since G is K-anisotropic, it cannot contain any such
subgroups. �

Remark. Theorem 2.2 remains valid in positive characteristic. An elegant and simple proof was
given by Prasad [28]. Prasad shows that if G(K) is not compact, then G(K) contains an element that
has an eigenvalue which is not a unit. Without loss of generality we may suppose that this element is
semi-simple (in characteristic p > 0 one needs to raise this element to some power to kill the unipotent
part), hence lies in a K-torus. But then this torus cannot be K-anisotropic since for a K-anisotropic
torus T, the group T(K) is easily shown to be compact.

A deeper necessary condition for strong approximation is the simply connectedness. We begin with
the case of algebraic groups, and for simplicity we will treat only the case of number fields.

Theorem 2.3. Let G be a connected reductive algebraic group over a number field K. If there exists

a nontrivial K-defined isogeny π : G̃→ G (i.e. G̃ is connected and π is surjective with finite kernel).
Then G does not have strong approximation with respect to any finite set of places S ⊂ V K .

Before we sketch the proof, we would like to formulated one consequence of Chebotarev’s Density
Theorem [1, Ch. VII, 2.4] which for number fields can be proved by elementary techniques (i.e.
without any use of L-functions).

Proposition 2.4. Let L/K be a finite extension of number fields. Then there exists infinitely many
v ∈ V K such that for any extension w|v we have Lw = Kv.

Exercise. Prove this. It is enough to consider the case K = Q and L/K a Galois extension. Write
L = Q(α). Let f(x) be the minimal polynomial of α. We may assume without loss of generality
that f(x) ∈ Z[x]. Assume that the assertion is false, and show that then the values f(n), n ∈ Z, are
divisible only by finitely many primes. Show that the latter is impossible.

Sketch of proof of Theorem 2.3. Without loss of generality, we may assume that S contains the set
of archimedean places V K

∞ . If G has strong approximation with respect to S, i.e. G(K) is dense in
G(AS), then

G(OS) = G(K) ∩
∏

v∈V K\S

G(Ov)

is dense in
∏
v∈V K\S G(Ov) (where OS is the ring of S-integers in K); in particular, G(OS) is dense in

G(Ov) for every v ∈ V K \ S. It is known that Γ := G(OS) is a finitely generated group [26, Theorem

5.11], say Γ = 〈γ1, . . . , γr〉. Given γ ∈ G(K), we pick γ̃ ∈ G̃(K̄) so that π(γ̃) = γ, and then find a
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finite extension L(γ)/K for which γ̃ ∈ G̃(L(γ)). Picking such an extension for each of the generators
γi and using the fact that F := kerπ is finite, we can construct a finite Galois extension L/K such

that π−1(Γ) ⊂ G̃(L) (in particular, F ⊂ G̃(L)).
Next, we can find a finite subset T ⊂ V K containing S so that for every v ∈ V K \ T the following

properties hold:

(a) π can be reduced modulo v to an isogeny π(v) : G̃
(v)
→ G(v) of (smooth) connected groups;

(b) F maps injectively into G̃
(v)

;

(c) π−1(Γ) ⊂ G̃(OLw) for all w|v.

By Proposition 2.4, we can find v ∈ V K \ T such that Lw = Kv for all w|v. Then in view of (3) we
have

π−1(Γ) ⊂ G̃(OLw) ∩ G̃(Kv) = G̃(Ov),
and consequently Γ ⊂ π(G̃(Ov)). Since G̃(Ov) is compact, the closure of Γ is also contained in

π(G̃(Ov)). So, it remains to show that

(1) π(G̃(Ov)) 6= G(Ov).
Let k(v) be the residue field. We then have the following commutative diagram

G̃(Ov)
π−→ G(Ov)

↓ ↓

G̃
(v)

(k(v))
π(v)

−→ G(v)(k(v))

.

The vertical arrows, which are the reduction maps, are surjective by Hensel’s lemma since the reduc-
tions are smooth. So, to prove (1), it is enough to establish

(2) π(v)(G̃
(v)

(k(v))) 6= G(v)(k(v)).

But according to Lang’s Theorem, isogenous connected groups over a finite field contain the same
number of points. On the other hand,∣∣∣π(v)(G̃

(v)
(k(v)))

∣∣∣ =
|G̃

(v)
(k(v))|

|F (v)(k(v))|
< |G̃

(v)
(k(v))|

because F (v)(k(v)) contains the image of F in G̃
(v)

(k(v)), hence nontrivial due to condition (b) above.
Another way to phrase the same argument is consider the exact sequence

1→ F (v) −→ G̃
(v)
−→ G(v) → 1,

and the corresponding cohomological sequence:

G̃
(v)

(k(v))
π−→ G(v)(k(v)) −→ H1(k(v), F (v)) −→ H1(k(v), G̃

(v)
).

Since G̃
(v)

is connected, H1(k(v), G̃
(v)

) vanishes by Lang’s Theorem. On the other hand, since the

absolute Galois group of k(v) is Ẑ, we have

|H1(k(v), F (v))| = |H0(k(v), F (v))| = |F (v)(k(v))| > 1

as above, yielding (2).

(Regarding the fact, used in the proof, that for G reductive the group G(OS) is finitely generated,
we observe that it remains valid in positive characteristic when rkS G :=

∑
v∈S rkKv > 2, see [2], [8].)

An analog of this theorem is valid in positive characteristic but needs to be stated more carefully
using central isogenies, cf. [3, §22].

Examples. 1. Let T be a K-torus. Then for any integer n > 1, the map

πn : T → T, t 7→ tn,
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is a nontrivial isogeny.

2. More generally, let G be a connected reductive, but not semi-simple, group. Then G is an almost
direct product G = HT where H is semi-simple and T is the central torus. Let F = H ∩ T . Then
G = (H × T )/∆, where ∆ is the image of the embedding

F → H × T, x 7→ (x, x−1).

Again, for any n > 1 one can consider a nontrivial isogeny

π̃n : H × T → H × T, (h, t) 7→ (h, tn).

If n ≡ 1(mod |F |), then π̃n satisfies π̃n(∆) = ∆, and therefore descends to an isogeny

πn : G→ G.

Thus, a connected reductive, but not semi-simple, group (in particular, a torus) cannot possibly have
strong approximation for any finite S. See, however, a discussion below of strong approximation in
tori for certain infinite S.

We also recall that a semi-simple group G is simply connected (i.e., does not admit a nontrivial

central isogeny G̃→ G) if for some (equivalently, any) maximal torus T of G, the group of characters
X(T ) coincides with the weight lattice of the corresponding root system (equivalently, the group of
co-characters X∗(T ) is spanned by the coroots).

Theorem 2.3 goes back to Kneser. In 1989, H. Minchev [19] observe that the simply connectedness is
a necessary condition for strong approximation not only for groups but in fact for arbitrary varieties.
Since his paper appeared in a little known (Belo)Russian journal, hence is practically forgotten, I
would like to show you some details.

Theorem 2.5. Let X be an absolutely irreducible variety over a number field K. If there exist a
nontrivial connected unramified cover π : Y → X defined over an algebraic closure K̄, then X does
not have strong approximation with respect to any finite set of places S of K.

Proof. We sketch the argument assuming X and Y to be affine and smooth and S to contain all
archimedean places. We may assume that π is a Galois cover of degree n > 1, and pick a finite
extension a finite extension L/K such that π is L-defined and moreover all automorphisms Y/X are
L-defined. To implement the same idea as in the proof of Theorem 2.3, we need to verify two facts:

(A) there exists a finite extension E/L and a finite subset T ⊂ V E
f containing V E

∞ such that

π−1(X(OS)) ⊂ Y (O(E)T ), where O(E)T is the ring of T -integers in E;

(B) for almost all v ∈ V K
f such that L ⊂ Kv we have π(Y (Ov)) 6= X(Ov).

Granting these facts, one completes the argument as follows. If X has strong approximation with
respect to S, then X(OS) is dense in X(Ov) for all v ∈ V K \S. On the other hand, using Proposition
2.4, one can find v ∈ V K \S such that E ⊂ Kv and v does not lie under any place in T , and also that
(B) holds for this v. Then

X(OS) ⊂ π(Y (O(E)T )) ⊂ π(Y (Ov)).
Since Y (Ov) is compact, we obtain that the closure of X(OS) in X(Ov) is also contained in π(Y (Ov)),
and therefore cannot be equal to X(Ov) due to (B).

When proving an analog of (A) in Theorem 2.3, we relied on the fact that the group G(OS) is finitely
generated, so in no shape or form can this argument be extended to arbitrary varieties. Here one uses
the Chevalley-Weil theorem [12, Ch. 2, Lemma 8.3], [42, 4.2]. It follows from (the local version of)
this theorem that one can find a finite set S1 ⊂ V L containing all extensions of the valuations in S
such that for any x ∈ X(OS), the extension L(π−1(x)) generated by the coordinates of all preimages
of x is unramified at all w ∈ V L \ S1. On the other hand,

[L(π−1(x)) : L] 6 n!.
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Invoking now Hermite’s theorem [13, p. 122], we see that there are only finitely many possibilities
for L(π−1(x)). Taking the compositum of all these fields, we obtain a finite extension E/L such
that π−1(X(O(S))) ⊂ Y (E). To find a required finite set T ⊂ V E , we let x1, . . . xs and y1, . . . , yt
denote the affine coordinates on X and Y respectively. Since π is finite, one can find a finite subset
S2 ⊂ V L containing all extensions of places in S such that all y1, . . . , yt are integral over the ring
O(L)S2 [x1, . . . , xs]. Then for T one can take the set of all extensions of the valuations in S2 to E.

To prove (B), let us pick a finite S3 ⊂ V L containing the extensions of all valuations in S so that

for w ∈ V L \S3, there are smooth reductions Y (w) and X(w), and the reduction π(w) : Y (w) → X(w) is
a Galois cover of degree n. As in the proof of Theorem 2.3, it is enough to show that

(3) π(w)(Y (w)(`(w))) 6= X(w)(`(w)),

where `(w) is the residue field, for almost all w. But clearly

(4) |π(w)(Y (w)(`(w)))| = |Y
(w)(`(w))|
n

.

On the other hand, by the Lang-Weil theorem [14], the sizes of both X(w)(`(w)) and Y (w)(`(w)) are

qdw +O(qd−1/2
w ),

where qw is the size of `(w) and d is the common dimension of X and Y . Combining this with (4) we
obtain (3) when qw is sufficiently large (i.e., for almost all w). �

It follows in particular that a (nontrivial) K-torus T does not have strong approximation for any
finite S. Nevertheless, tori can have strong approximation with respect to certain infinite (and co-
infinite) sets S, which can be used for the congruence subgroup problem. The results that follow are
joint with G. Prasad [34].

Definition. Let F/K be a finite Galois extension with Galois group G, and let C be a conjugacy
class in G. Then the generalized arithmetic progression P(F/K,C) is the set of all v ∈ V K

f that are

unramified in F and for which the Frobenius Fr(w|v) ∈ C for some (equivalently, any) extension w|v.

Theorem 2.6. For every d,m ≥ 1 there exists an integer n = n(d,m) such that given a K-torus T of
dimension 6 d, a generalized arithmetic progression P(F/K,C) with [F : K] = m, and a finite subset
P0 ⊂ P(F/K,C), for the set

S = (P(F/K,C) \ P0) ∪ V K
∞ ,

the index [T (AS) : T (K)
(S)

] of the closure of T (K) is finite and divides n provided that some (equiv-
alently, every) element of C acts trivially on KT ∩ F , where KT is the splitting field of T .

Remark. If the assumption of the theorem does not hold, then in some cases it can be shown that

the group T (AS)/T (K)
(S)

has infinite exponent (cf. [32, Proposition 4]).

Theorem 2.6 has an application to the congruence subgroup problem. Let G be an absolutely almost
simple simply connected algebraic group over a number field K, and let S ⊂ V K be a subset that
contains V K

∞ and does not contain any nonarchimedean v such that G is Kv-anisotropic. We also
assume that G(K) satisfies the Margulis-Platonov conjecture (if G is not of type A`, then this simply
means that G(K) does not have any noncentral normal subgroups - which has been established in many
cases, cf. [26, Ch. IX] for the details). The goal of the congruence subgroup problem is to compute

the corresponding congruence kernel C(S)(G) – see [33] for the relevant definitions. According to a

conjecture due to Serre, the congruence kernel C(S)(G) is expected to be finite whenever the S-rank

rkS G :=
∑
v∈S

rkKv G

is > 2. Then one can give a precise computation of C(S)(G) using the results on the metaplectic kernel

[30]. These show that under some additional conditions on S, the congruence kernel C(S)(G) is actually
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trivial, which is equivalent to the fact that for the group G(O(S)) of points over the ring of S-integers
O(S) we have the classical congruence subgroup property: every normal subgroup N ⊂ G(O(S)) of
finite index contains the congruence subgroup G(O(S), a) for some nonzero ideal a of O(S). Serre’s

conjecture, in particular, implies that C(S)(G) = {1} whenever S is infinite. Using Theorem 2.6, we
have been able to prove this in the case where S almost contains a generalized arithmetic progression.

Theorem 2.7. In the above notations, let L/K be the minimal Galois extension over which G becomes
an inner form of a split group. If S almost contains a generalized arithmetic progression P(F/K,C)
where σ|(F ∩ L) = idF∩L for some (equivalently, any) σ ∈ C (which is automatically true if G is an

inner form), then C(S)(G) is trivial.

3. Strong approximation theorem. Ingredients of the proof.

Let G be an algebraic group over a global field K, and let S 6= ∅ be a finite set of places of K.
We already know that G can have strong approximation only if it is connected. So, assume that G
is connected, and also reductive. In characteristic zero, the latter is not really a restriction since any
connected G can be written as a semi-direct product G = H n U over K where H is reductive (the
Levi subgroup of G) and U is the unipotent radical of G (the maximal (connected) normal unipotent
subgroup of G). It follows from the strong approximation for the field K (which is basically the
Chinese remainder theorem when S ⊃ V K

∞ ) that U always strong approximation for any (nonempty)
S. Moreover, G has strong approximation if and only if H does which fully reduces the problem to
the reductive case (cf. [26, Proposition 7.1]). On the contrary, in positive characteristic, unipotent
elements can cause a lot of trouble, which we would like to avoid in these lectures.

We have also seen that if G is reductive but not semi-simple, or semi-simple but not simply con-
nected, then G does not have strong approximation. So, it remains to consider the case of G semi-
simple simply connected. Then G = G1×· · ·×Gr (direct product over K), where the Gi’s are K-simple
groups, and the strong approximation with respect to S holds for G if and only it holds for each Gi.
Furthermore, each Gi is of the form

Gi = RKi/K(Hi),

(restriction of scalars) where Ki/K is a finite separable extension and Hi is an absolutely almost simple
simply connected Ki-group. It is not difficult to see that strong approximation for Gi with respect
to S is equivalent to strong approximation for Hi with respect to S̄i, which consists of all extensions
of places from S to Ki (cf. [26, Proposition 7.1]). Thus, we see that it is enough to investigate
strong approximation for G an absolutely almost simple simply connected K-group. We then have
the following.

Theorem 3.1. (Kneser [11], Platonov [24] for characteristic zero; Margulis [15], [16], Prasad [27] for
positive characteristic) Let G be an absolutely almost simple simply connected algebraic group over a
field K, S be a (finite) set of places of K. Then G has strong approximation with respect to S if and
only if the group GS =

∏
v∈S G(Kv) is noncompact.

In other words, a K-simple group G has strong approximation with respect to S if and only if it
is simply connected and the group GS is noncompact. In the general case, a semi-simple K-group
G has strong approximation if and only if it is the direct product of its K-simple components and
each component has strong approximation. It should be noted that already for homogeneous spaces
of absolutely almost simple groups, simply connectedness and the noncompactness of S-points is not
sufficient for strong approximation – see ...

Our goal is to prove the strong approximation theorem over number fields. One of the main
ingredients of the proof is the truth of the Kneser-Tits conjecture for algebraic groups over local fields,
which we will discuss in detail in the next section. The other two is Cartan’s theorem for p-adic Lie
groups and (one consequence of) the reduction theory for S-arithmetic subgroups.

On p-adic Lie groups. Let G be an algebraic group defined over Qp. Then the group G = G(Qp) has
a natural structure of a p-adic Lie group. Recall the following fundamental fact (see [40, pp. 260-263]):
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Theorem 3.2. (Cartan) Let G be a Lie group over R or Qp. Then every closed subgroup of G is also
a Lie group. Every continuous homomorphism of Lie groups is analytic.

We will now make a couple of additional comments for the case where G = G(Qp) where G is a
Qp-defined algebraic group. Let g = L(G) be the Lie algebra of the algebraic group G. Then the Lie
algebra g∗ of G as a p-adic Lie group can be naturally identified with gQp . Let H ⊂ G be a subgroup
closed in the p-adic topology. Then according to Theorem 3.2, H is also a Lie group (more precisely,
H has a structure of a p-adic manifold, and the identity map H ↪→ G is an analytic embedding), so
that we have an inclusion h∗ ⊂ g∗ of the corresponding Lie algebras. We note that h∗ = g∗ if and only
if H is open in G.

On the other hand, we can consider the Zariski closure B of H in G, so that H ⊂ B := B(Qp). Let
b∗ be the Lie algebra of B.

Lemma 3.3. h∗ is an ideal of b∗.

Indeed, consider the adjoint representation Ad: G → GL(g). Let K be the “universal domain”
containing Qp, so that g = g∗ ⊗Qp K. Then the space h = h∗ ⊗Qp K is invariant under H, hence also
under its Zariski closure B. It follows that h∗ is invariant under B. Since the differential of Ad is the
adjoint representation ad of the Lie algebra, we obtain that [b∗, h∗] ⊂ h∗, as required. �

Corollary 3.4. Let G be an almost Qp-simple algebraic group, and let Γ ⊂ G = G(Qp) be a nondiscrete

Zariski-dense subgroup. Then the closure Γ ⊂ G in the p-adic topology is open.

Indeed, let H = Γ. Since Γ is nondiscrete, H is a Lie subgroup of G of positive dimension, so its Lie
algebra h∗ is nonzero. Since Γ is Zariski-dense in G, we obtain from Lemma 3.3 that h∗ is an ideal of
g∗. But G is almost Qp-simple, implying that g∗ does not have proper nonzero ideals. Thus, h∗ = g∗,
so H is open in G. �

On the reduction theory for S-arithmetic groups and its consequences. Let G ⊂ GLn be an
algebraic defined over a number field K, let S ⊂ V K be a finite subset containing V K

∞ , and let OS be
the ring of S-integers. Set

G(OS) = G ∩GLn(O(S)).

Then G(OS) diagonally embeds into GS :=
∏
v∈S G(Kv) as a discrete subgroup; subgroups commen-

surable with G(OS) are called S-arithmetic. The following theorem summarizes the main results of
the reduction theory for S-arithmetic subgroups.

Theorem 3.5. (1) For G semi-simple, the quotient GS/G(OS) has finite invariant measure.

(2) For G reductive, the quotient GS/G(OS) is compact if and only if G is K-anisotropic.

(We will not actually use (2) but the following remark is in order. Strong approximation for
an absolutely almost simple simply connected K-isotropic group can be established by using strong
approximation in unipotent subgroups, so one really needs to consider only the case of K-anisotropic
groups. Then by (2) the quotient GS/G(OS) is compact, (and so the quotient G(A)/G(K)). In this
case, the statements from measure theory that we will use - such as Lemmas 3.7, 3.8 - become almost
trivial. In other words, in treating the main case of anisotropic groups in characteristic zero, the use
of measure theory can be avoided altogether.)

Proposition 3.6. (Density Theorem) Assume that G is almost K-simple. If GS is noncompact then
G(OS) is Zariski-dense in G.

(Conversely, if GS is compact then G(OS), being a discrete subgroup thereof, is finite, hence not
Zariski-dense.)

Proof. Since GS is noncompact, its Haar measure is infinite. On the other hand, according to Theorem
3.5(1), the quotient GS/G(OS) has finite measure (which simply amounts to saying that there is a
measurable subset Ω ⊂ GS having finite Haar measure such that GS = ΩG(OS)). So, the group G(OS)

is infinite. Let H = G(OS)
◦

(connected component of the Zariski-closure). Then H is a K-defined
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subgroup of G having positive dimension. Let g ∈ G(K). It is easy to show that the subgroups G(OS)
and gG(OS)g−1 are commensurable, i.e. their intersection has finite index in both of them. It follows
that

G(OS)
◦

= G(OS) ∩ gG(OS)g−1
◦

= gG(OS)g−1
◦
,

i.e. H = gHg−1. Thus, H is normalized by G(K), and since G(K) is Zariski-dense in G (see [3, 18.3])
we see that H is a normal subgroup of G. Since G is K-simple, H = G, as required. �

Remark. The argument actually establishes the following stronger fact. Let G = RK/Q(G). Then
one can naturally identify G(K) with G(Q), and we let Γ denote the image of G(OS) under this
identification. Then Γ is Zariski-dense in G. Since there is a K-defined map G→ G taking Γ back to
G(OS), this assertion implies the proposition. The proof of this assertion is a slight variation of the
argument given in the proof of the proposition. More precisely, we observe that for any g ∈ G(Q),
the subgroups Γ and gΓg−1 are commensurable. So, if we let H denote the connected component of
the Zariski-closure of Γ, then H is a Q-defined normal subgroup of G of positive dimension. But G

is Q-simple. (Indeed, since G is K-simple, we may assume that G0 = RL/K(G0) for some absolutely
almost simple group G0 over some finite extension L/K. Then G = RL/Q(G0), hence Q-simple.) So,
H = G, as required.

Now, let point out the following straightforward result from measure theory.

Lemma 3.7. Let G = G1 × G2 be the direct product of two locally compact topological groups, let
πi : G → Gi (i = 1, 2) be the corresponding projection, and let H ⊂ G be a closed subgroup for which
the intersection H ∩ (G1 × {e}) is trivial and the quotient G/H has finite invariant measure. Then

π2(H) is nondiscrete and the quotient G2/π2(H) (where denotes the closure) has finite invariant
measure.

This follows from the following property of quotient measures: Let H1 ⊂ H2 be two closed sub-
groups of a locally compact group G; if G/H1 has finite invariant measure then so does G/H2 (cf.
Raghunathan [36, Lemma 1.6]).

We will use the following consequence of this fact.

Lemma 3.8. Let G be a semi-simple algebraic group over a number field K, and let S ⊂ V K be a
finite subset such that the group GS is noncompact. Given any finite (nonempty) subset S1 ⊂ V K \ S
such that S ∪ S1 contains V K

∞ , the image of G(O(S ∪ S1)) in GS1 is nondiscrete and the quotient

GS1/G(O(S ∪ S1)) has finite invariant measure.

This follows from the previous statement applied to GS∪S1 = GS × GS1 and H = G(O(S ∪ S1))
taking into account Theorem 3.5(1).

4. The Kneser-Tits conjecture over local fields

Let G be an absolutely almost simple algebraic group over a field K. Assume that G is K-isotropic
- recall that this means that rkK G > 0, i.e. G contains a nontrivial K-split torus, or equivalently,
that G contains proper K-defined parabolics. We then let G(K)+ denote the (normal) subgroup of
G(K) generated by the K-rational points of the unipotent radicals of K-defined parabolics (note that
G(K)+ is known to coincide with the subgroup generated by all unipotents in G(K) if charK = 0). It
was proved by Tits [44] that if K contains at least 4 elements then the group G(K)+ does not contain
any proper noncentral (abstract) normal subgroups. In the same paper Tits, referring to a suggestion
made by Kneser, formulated the following conjecture, which became known as

The Kneser-Tits conjecture. G(K) = G(K)+ for any absolutely almost simple simply connected
algebraic group G over any field K.

It is known, due to Chevalley and Steinberg, that the conjecture is true if G is split or quasi-split
over K. The general case remained open until around 1978 when Platonov constructed the first
counterexamples to this conjecture over general fields (cf. [26, 7.2] and references therein). What is
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important for strong approximation, however, is that the conjecture is actually true for all groups over
local (i.e. nondiscrete locally compact) fields.

Theorem 4.1. (Platonov [24], [25]) Let G be an absolutely almost simple simply connected isotropic
algebraic group over a nonarchimedean local field K. Then G(K)+ = G(K).

(Platonov actually handled the characteristic zero case, i.e. when K is a finite extension of Qp, but
the result remains valid also in positive characteristic.)

Corollary 4.2. Let G be an absolutely almost simple simply connected isotropic algebraic group over
a nonarchimedean local field K. Then G(K) does not have any proper subgroups of finite index.

We will first give an outline of the ideas involved in the proof of Theorem 4.1, and then fill in some
details. An important general fact is that the proof of the Kneser-Tits conjecture over a field K can
generally be reduced to almost K-simple simply connected groups of K-rank 1. Such a group G is
of the form G = RL/K(H) for an absolutely almost simple simply connected group H over a finite
separable extension L/K with rkL H = 1. Clearly, if the Kneser-Tits conjecture holds for H over L,
then it holds for G over K. Thus, we get a reduction to absolutely almost simple simply connected
groups of relative rank 1 (note that we need the Kneser-Tits conjecture to hold not only over a given
field K itself but also over its finite separable extensions). A very helpful fact over nonarchimedean
local fields is that all absolutely almost simple groups of relative rank one are of classical types. This
follows from the classification results, but in fact we don’t even need the detailed classification. There
are two fundamental facts related to the classification over a nonarchimeadean local field K:

(A) H1(K,G) = 1 for any semi-simple simply connected group G;

(B) if G is absolutely almost simple and K-anisotropic then G is an inner form of type An.

(These facts can either be derived from the Bruhat-Tits theory [7], or can be obtained through a careful
case-by-case analysis [26, Ch. VI].) Since the groups of types E8,F4,G2 are both simply connected
and adjoint, we obtain from (A) that they all are split over K. Let G be an absolutely almost simple
simply connected group, and Z be its center, and Ḡ = G/Z be the corresponding adjoint group. Then
we have the coboundary map

H1(K, Ḡ)→ H2(K,Z).

It follows from (A) applied to G and its twists that this map is injective. On the other hand, H2(K,Z)
can be easily computed in all cases. In particular, these computations show that for types3,6D4 and
2E6, the group H2(K,Z) vanishes. These means that all groups of these types are quasi-split (then
their K-rank is > 2, and they satisfy the Kneser-Tits conjecture anyway). This leaves us with only
types E6 and E7.

To handle these types, let us introduce some notations that will be used in this section systematically.
Let S be a maximal K-split torus of G (thus, dimS = rkKG). Pick a maximal K-torus T of G
containing S, and let Φ = Φ(G,T ) be the corresponding root system. We then pick a minimal K-
defined parabolic P ⊂ G and then choose a Borel subgroup B ⊂ P . Let Π ⊂ Φ be the system of
simple roots that corresponds to B. We then consider the Dynkin diagram for Φ, and call a vertex
in this diagram distinguished (and circle it in the diagram) if the restriction of the corresponding
simple root to S is nontrivial. Yet another important element is the so-called ∗-action of the Galois
group Gal(K̄/K) on the Dynkin diagram. More precisely, since T is defined over K, the Galois group
acts on the group of characters X(T ), and this action takes roots to roots. In other words, we get a
homomorphism

θ : Gal(K̄/K)→ Aut(Φ(G,T )).

Let σ ∈ Gal(K̄/K). Then σ(Π) is another system of simple roots in Φ, so there exists a unique
wσ ∈ W (G,T ) = W (Φ(G,T )) (the Weyl group of G with respect to T which is identified with the
Weyl group of the root system Φ(G,T )) such that

(wσ ◦ σ)(Π) = Π.
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Then the action on the Dynkin diagram given by wσ ◦ σ is called the ∗-action by σ. (Exercise. Check
that this is indeed an action.) Recall that the ∗-action is trivial if and only if our group is an inner
form of the split group. The Dynkin diagram with circled vertices and the given ∗-action is called the
Tits index. When we draw the Tits index, we put the vertices that lie in the same orbit of the ∗-action
close to each other. In fact, the ∗-action takes distinguished vertices to distinguished vertices, so we
put a common circle on the distinguished orbits on the distinguished vertices in the same orbit of the
∗-action. Recall that the K-rank of G coincides with the number of orbits of the ∗-action on the set
of distinguished vertices; in fact, the maximal K-split torus S is defined inside T by the conditions
stating that all nondistinguished vertices vanish on S and all distinguished vertices in the same ∗-orbit
have the same value on S.

Let H = ZG(S), and let G0 = [H,H] be the anisotropic kernel of G over K. It is a K-anisotropic
semi-simple group with a maximal K-torus T0 := T ∩G0, and its Dynkin diagram is obtained from the
Dynkin diagram of G by discarding all distinguished vertices (thus, the set of vertices of this diagram
coincides with the set Π0 of nondistinguished vertices).

Now, let us handle the remaining cases E6 and E7. For G of type E7, the center Z has order 2. Then
every element of H2(K,Z) splits over a (in fact, any) quadratic extension extension of K, so G splits
over a quadratic extension of K. On the other hand, the anisotropic kernel can have only components
of type An. Since these split over a quadratic extension, all components must be of type A1. But it is
impossible to obtain a diagram of type A1 + · · ·+ A1 by deleting from a diagram of type E7 only one
vertex. So, rkK G > 2.

Similarly, for G of type E6, the center Z has order 3. Arguing as above, we conclude that G splits
over a cubic extension of K, and therefore all components of the anisotropic kernel must be of type
A2. But again, it is impossible to obtain a diagram of type A2 + · · · + A2 from a diagram of type E6

by deleting just one vertex. So, rkK G > 2.

Thus, it remains to establish the Kneser-Tits conjecture for classical groups of relative rank one,
which one does basically case-by-case. We will discuss this later, but now I would like to give more
details about this reduction to the rank-one case.

In his original argument, Platonov did not fully justify the reduction to the rank-one case (this was
done later by Prasad and Raghunathan [29]), but he described a procedure that leads to a reduction
to groups of smaller K-rank. His idea was the following. Let H = ZG(S), and let U± be the unipotent
radicals of two opposite parabolic subgroups. Then the product map

U+ ×H × U− −→ G

yields a K-defined isomorphism onto a Zariski-open subset Ω ⊂ G. Then, assuming that K is infinite
(which we always may since any semi-simple algebraic group over a finite field is split or quasi-split
by Lang’s theorem, cf. [3, §16]), Ω(K) generates G(K). It follows that the embedding H ↪→ G gives
an isomorphism of abstract groups:

H(K)/(H(K) ∩G(K)+) ' G(K)/G(K)+.

Thus, to prove that G(K) = G(K)+, we need to prove that H(K) ⊂ G(K)+. Platonov’s idea was to
find absolutely almost simple simply connected K-isotropic subgroups Gi, normalized by S, for which
the Kneser-Tits is known to be true (in his argument over local fields, these were groups of classical
types) and such that for Hi = (Gi ∩H)◦ the subgroups Hi(K) generate H(K). Then

H(K) = 〈Hi(K)〉 ⊂ 〈Gi(K)+〉 ⊂ G(K)+.

In 1985, Prasad and Raghunathan showed that the most natural choice of the Gi’s works in the general
case. More precisely, let Π0 be the set of nondistinguished vertices, and let Θ1, . . . ,Θr be the orbits
of the ∗-action on Π \Π0. For a ∗-invariant subset Θ ⊂ Π containing Π0 we let

T (Θ) =

(⋂
θ∈Θ

ker θ

)◦
, H(Θ) = ZG(T (Θ)) , G(Θ) = [H(Θ), H(Θ)].
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(So, for Θ = Π0, the group H(Π0) coincides with H = ZG(S), and G(Π0) coincides with G0, the
anisotropic kernel.) For any Θ as above, the group G(Θ) is a semi-simple (but not necessarily ab-
solutely or even K-simple group) simply connected group. Furthermore, for any orbit Θi the group
G(Θi ∪Π0) has K-rank one, hence has a unique K-simple K-isotropic factor Gi.

Theorem 4.3. (Prasad-Raghunathan [29]) Assume that rkKG > 2. Then the group H(K) is generated
by the subgroups Hi(K) for i = 1, . . . , r. Consequently, if the Kneser-Tits conjecture is true for Gi
then it is also true for G.

Note that this result is for general fields. It is derived from the following cohomological statement.

Theorem 4.4. Let Π1, . . . ,Πd be ∗-invariant subsets of Π \Π0 such that
⋂d
i=1 Πi = ∅. Then the map

H1(K,G0) −→
d∏
i=1

H1(K,G(Πi ∪Π0))

has trivial kernel.

This result becomes trivial over nonarchimedean local fields since H1 vanishes for any simply con-
nected group (see (A) above). So, we will make no comments on the proof of Theorem 4.4, and show
only how it implies Theorem 4.3.

Let Πi denote the complement of Θi in Π \Π0, i.e. Πi =
⋃
j 6=i Θi. We begin with the following.

Lemma 4.5. The natural map

H(Π0)/G(Π0)→
r∏
i=1

H(Πi ∪Π0)/G(Πi ∪Π0).

induced by inclusions, is an isomorphism.

Proof. For α ∈ Φ, we let Gα denote the corresponding 3-dimensional subgroup and let Tα = T ∩Gα.
It is well-known that since G is simply connected, we have

T =
∏
α∈Π

Tα.

Note that Gα = [H(α), H(α)] where H(α) = ZG(T (α)) and T (α) = (kerα)◦. It follows that for any
subset Θ ⊂ Π, the group G(Θ) contains TΘ =

∏
α∈Θ Tα. So,

dimTΘ = |Θ| 6 rkG(Θ) 6 dimT − dimT (Θ) = |Θ|,

and therefore all inequalities are actually equalities, and TΘ is a maximal torus of G(Θ). It follows
that (T ∩G(Θ))◦ = TΘ, and consequently G(Θ) ∩ TΠ\Θ = {1}. On the other hand,

H(Θ) = G(Θ)T = G(Θ)TΠ\Θ,

showing that H(Θ) is a semi-direct product of G(Θ) and TΠ\Θ. Now, consider the following commu-
tative diagram induced by embeddings:

H(Π0)/G(Π0) −→
r∏
i=1

H(Πi ∪Π0)/G(Πi ∪Π0)

↑ ↑

TΠ\Π0
−→

r∏
i=1

TΘi

.

All maps in this diagram, except possibly for the top one, are bijection. So, the top one is a bijection
as well, proving our claim. �
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To simplify notations, we set Ci = H(Πi ∪ Π0) and Di = G(Πi ∪ Π0). We then have the following
commutative diagram:

1 → G0 −→ H −→ H/G0 → 1
↓ ↓ ↓

1 →
r∏
i=1

Di −→
r∏
i=1

Ci −→
r∏
i=1

(Ci/Di) → 1
.

It induces the following commutative cohomological diagram with exact rows:

1 → G0(K) −→ H(K) −→ (H/G0)(K) −→ H1(K,G0)
↓ ↓ ↓ α ↓ β

1 →
r∏
i=1

Di(K) −→
r∏
i=1

Ci(K) −→
r∏
i=1

(Ci/Di)(K) −→
r∏
i=1

H1(K,Di)
.

Since ∩ri=1Πi = ∅, we obtain from Theorem 4.4 that β has trivial kernel. It follows from the lemma
that α is an isomorphism. Then a simple diagram chase shows that the homomorphism

H(K)/G0(K) −→
r∏
i=1

Ci(K)/Di(K)

is an isomorphism. It follows that H(K) is generated by the subgroups

Fi := H(K)
⋂⋂

j 6=i
Dj(K)

 =
(
H
⋂
G(Θi ∪Π0)

)
(K).

We have

H
⋂
G(Θi ∪Π0) = Ai ×Hi,

where Ai is the product of K-anisotropic factors of G(Θi ∪ Π0). Then Fi = Ai(K)Hi(K). It remains
to observe that Ai ⊂ G0 for every i. Since the Tits index is connected, every component of G0 lies in
some Gi, hence in Hi. This completes the proof of Theorem 4.3. �

Thus, we have reduced the proof of Theorem 4.1 to groups of K-rank one and also established that
(for a nonarchimedean locally compact field K) all such groups belong to classical types. Here is the
list of such groups (over the the fields in question):

(1) G = SL2,D where D is a central division algebra over K;

(2) G = SUn(L/K, h) where h is a hermitian form over a quadratic extension L/K of Witt
index 1;

(3) G = Spinn(q) where q is a quadratic form of Witt index 1;

(4) G = S̃U3(D,h), the universal cover of the unitary group of a skew-hermitian h over a
quaternion algebra D with the canonical involution, having Witt index 1.

One shows that for any of the groups in (2)-(4), the Kneser-Tits conjecture holds over any field.
We will demonstrate this by considering the case of spinor groups of isotropic quadratic forms (the
fact that the Witt index is one does not play any role).

Proposition 4.6. Let q be a nondegenerate isotropic quadratic form over a field K of characteristic
6= 2. Then the Kneser-Tits conjecture holds for G = Spinn(q).

(We note that this follows also from the geometric approach (Gille [10]) since Spinn(q) is known to
be a rational variety if q is isotropic.)

Proof. It is well-known that for n = 3, the group G is isomorphic to SL2 (for example, because the
corresponding (even) Clifford algebra is isomorphic to the matrix algebra M2), and in this case our
assertion is well-known. The general case is considered by induction on n > 4.
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We will view q as a quadratic form on V = Kn, and assume that in the standard basis e1, . . . , en of
V the form q looks as follows:

q(x1e1 + · · ·xnen) = x1x2 + a3x
2
3 + · · ·+ anx

2
n

(in other words, the space 〈e1, e2〉 is a hyperbolic plane). We consider the standard action of G = G(K)
on V (this action factors through the usual action of SOn(q)(K)). Set a = en−1, b = en. To implement
induction, it is enough to show that

(5) G = G(a)G(b)G(a),

where G(a) and G(b) are the stabilizers of the corresponding vectors (indeed, these stabilizers are the
spinor groups of isotropic forms of dimension n − 1 and, on the other hand, G(a)(K)+, G(b)(K)+ ⊂
G(K)+; so G(a)(K) = G(a)(K)+ and G(b)(K) = G(b)(K)+ in conjunction with (5) implies G(K) =
G(K)+). Let ( | ) denote the bilinear form on V associated with q. Since the space 〈a, b〉⊥ =
〈e1, e2, . . . , en−2〉 is isotropic, we have

q(〈a, b〉⊥) = K.

It follows that for a given g ∈ G we can find v ∈ V that satisfies

(v|a) = (g(a)|a) , (v|b) = (a|b) = 0 , q(v) = q(a).

Then the spaces 〈a, v〉 and 〈a, g(a)〉 are isometric by an isometry that takes a → a, v → g(a). By
Witt’s theorem, one can find ḡ1 ∈ On(q)(K) such that

ḡ1(a) = a , ḡ1(v) = g(a).

Changing ḡ1 by a reflection with respect to an anisotropic vector in 〈v, a〉⊥, we can assume that
ḡ1 ∈ SOn(q)(K). Similarly, we can find ḡ2 ∈ SOn(q)(K) such that

ḡ2(a) = v , ḡ2(b) = b.

Then for ḡ3 := (ḡ1ḡ2)−1ḡ, where ḡ is the image of g in SOn(q)(K), we have

ḡ3(a) = (ḡ−1
2 ḡ−1

1 ḡ)(a) = ḡ−1
2 (v) = a.

Thus, ḡ = ḡ1ḡ2ḡ3 with ḡ1, ḡ2, ḡ3 ∈ SOn(q)(K), with ḡ1, ḡ3 fixing a and ḡ2 fixing b. Now, we need
to lift this factorization to the spinor group, for which we need to make sure that the spinor norm
of the factors is 1. For this we observe that we can replace ḡ1, ḡ2 with ḡ1h, h

−1ḡ2 for any h ∈
SOn−2(q)(a, b)(K). Since the space 〈a, b〉⊥ is isotropic, the spinor norm maps SOn−2(q)(a, b)(K)

surjectively onto K×/K×
2
. So, we can make the spinor norm of ḡ1 to be 1. Similarly, replacing ḡ2, ḡ3

with ḡ2h, h
−1ḡ3, we can make the spinor norm of ḡ2 to be 1. Now, we lift ḡ1, ḡ2 to g1, g2 ∈ G, and set

g3 = (g1g2)−1g. Then
g = g1g2g3,

and the images of g1, g2, g3 in SOn(g) are ḡ1, ḡ2, ḡ3. This implies that g1, g3 ∈ G(a) and g2 ∈ G(b), as
required. �

To complete the proof of Theorem 4.1, it remains to consider the groups G = SL2,D; the argument
actually works for G = SLm,D for any m > 2. Here some reduction steps in the argument work over
arbitrary fields, but the crucial step uses the following special property of nonarchimedean local fields:
the reduced norm NrdD/K : D× → K× is surjective. Since the complete argument is quite long, we
will only indicate the main steps.

First, one uses the Dieudonné determinant to show that for G = SLm,D where m > 2 and D a
finite-dimensional central division algebra over any field that

G(K)/G(K)+ ' SL(1, D)/[D×, D×] where SL(1, D) = {x ∈ D× |NrdD/K(x) = 1}.
The quotient SL(1, D)/[D×, D×] is usually called the reduced Whitehead group of D and denoted
SK1(D) (similarly, one defines the group SK1 of any finite-dimensional central simple algebra). So,
what we need to prove is the following.

Theorem 4.7. Let D be a finite-dimensional central division algebra over a nonarchimedean local
field K. Then SK1(D) = 1.



STRONG APPROXIMATION FOR ALGEBRAIC GROUPS 19

First, one uses properties of the Dieudonné determinant to prove the following.

Lemma 4.8. Let a ∈ SL(1, D). If

a ∈ [(D ⊗K B)×, (D ⊗K B)×]

where B is some associative K-algebra with 1 of dimension m then am ∈ [D×, D×].

This lemma has two important consequences.

Corollary 4.9. If D has degree n (i.e. dimK D = n2) then SK1(D) is a group of exponent n.

Indeed, if L is a maximal subfield of D then D ⊗K L ' Mn(L), and it is known that SLn(L) =
[GLn(L), GLn(L)].

Next, it is known that if n = pα1
1 · · · pαr

r then D = D1 ⊗K · · · ⊗K Dr where Di has degree pαi
i .

Corollary 4.10. SK1(D) ' SK1(D1)× · · · × SK1(Dr).

Thus, it is enough to prove that SK1(D) is trivial assuming that D has degree pd for some prime
p (we note that this reduction is valid over any field). This case is treated by induction on d. The
following statement (which again is valid over any field) handles the base case d = 1.

Proposition 4.11. Let D be a central division algebra over an arbitrary field K of a prime degree p.
Then SK1(D) = 1.

Proof. Let a ∈ D× with NrdD/K(a) = 1, and let L be a maximal subfield of D containing a. Then

NL/K(a) = NrdD/K(a) = 1.

If L/K is (purely) inseparable (which is possible only if p = charK), then a = 1, and there is nothing
to prove. So, we may assume that L/K is separable. Let M be the Galois closure of L with Galois
group G = Gal(M/K). Let Gp be the Sylow p-subgroup of G, and let P = MGp be the corresponding
fixed field. Then the degree m = [P : K] is prime to p. On the other hand, since G is contained in the
symmetric group Sp, the subgroup Gp has order p. It follows that L⊗K P = LP = M and M/P is a
cyclic Galois extension of degree p. We have

NM/P (a) = NL/K(a) = 1.

It follows from Hilbert 90 that a = σ(b)/b for some b ∈M×, where σ is a generator of Gal(M/P ). On
the other hand, by the Skolem-Noether Theorem, there exists t ∈ (D⊗K P )× such that σ(b) = tbt−1.
Thus,

a = tbt−1b−1

is a commutator in (D⊗K P )×. Invoking Lemma 4.8, we conclude that am ∈ [D×, D×]. On the other
hand, by Corollary 4.9, ap ∈ [D×, D×]. Since m and p are relatively prime, we see that a ∈ [D×, D×],
as required. �

Conclusion of the proof of Theorem 4.7. We will now assume that the group SK1 is trivial for all
central division algebras of degree pd−1 over nonarchimedean local fields, and prove that it is then
trivial for all algebras of degree pd over such fields. The argument here is a beefed up version of the
proof of Proposition 4.11. So, let D be a central division algebra of degree pd over a nonarchimedean
local field K, let a ∈ SL(1, D), and let L be a maximal subfield of D containing a. We will only
consider the case where L/K is separable; the general case differs by some minor technical details.
Let M be the Galois closure of L with Galois group G = Gal(M/K). Pick a Sylow p-subgroup Gp ⊂ G,

and set P = MGp . Let H ⊂ Gp be the subgroup corresponding to the subfield LP ⊂ M . Then one

can find a normal subgroup N ⊂ Gp of index p containing H. Then E := MN is a cyclic extension of
P contained in LP = L⊗K P . As above, it is enough to show that

a ∈ [(D ⊗K P )×, (D ⊗K P )×].

We have
NLP/P (a) = NrdD/K(a) = 1 = NE/P

(
NLP/E(a)

)
.
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Applying Hilbert’s 90, we conclude that there exists b ∈ E such that

(6) NLP/E(a) = σ(b)b−1,

where σ is a generator of Gal(E/P ). Now, let ∆ be the centralizer of E in D ⊗K P ; according to the
Double Centralizer Theorem, ∆ is a central division algebra over E of degree pd−1. The crucial for us
property is

Nrd∆/E(∆×) = E×;

this property holds because E is a nonarchimedean local field and is equivalent to the fact that
H1(E,SL1,∆) = 1, cf. (A) above. Thus, we can pick t ∈ ∆ so that Nrd∆/E(t) = b. Furthermore,

by the Skolem-Noether Theorem, one can find s ∈ (D ⊗K P )× such that the inner automorphism
x 7→ sxs−1 induces σ on E. Then s normalizes ∆, and for [s, t] = sts−1t−1 ∈ ∆ we have

Nrd∆/E([s, t]) = σ(b)b−1.

Comparing with (6)), we obtain

Nrd∆/E(a[s, t]−1) = 1.

By induction, we conclude that a[s, t]−1 ∈ [∆×,∆×], and therefore a ∈ [(D ⊗K P )×, (D ⊗K P )×], as
required. �

For completeness, let us also discuss the archimedean situation. A semi-simple group G over C
splits, so G(C)+ = G(C) and G(C) is connected. The following statement treats real algebraic groups.

Proposition 4.12. (Cartan) Let G be an absolutely almost simple simply connected R-group. Then
G(R) does not have any proper noncentral normal subgroups. In particular, G(R) is connected, and if
G is R-isotropic then G(R)+ = G(R).

Proof. First, let G be an arbitrary reductive R-anisotropic group, i.e. G(R) is compact. Then every
element of g ∈ G(R) is semi-simple, hence lies in some maximal R-torus T . Since T splits over C and
is anisotropic over R, we have

T ' (R
(1)
C/R(Gm))d, d = dimT.

Then T (R) ' Ud, where U = {z ∈ C× | |z| = 1}, hence connected. It follows that G(R) is connected.
Now, let G be in addition R-simple. Then using the Implicit Function Theorem, it is easy to show
that every noncentral normal subgroup of G(R) is open [26, Theorem 3.3], and therefore must coincide
with G(R) since this group is connected.

Now, let G be an almost simple simply connected R-isotropic group. Being a normal subgroup of
G(R) the group G(R)+ is open in G(R). Furthermore, since the group of real points of a unipotent
subgroup is connected, the group G(R)+ is also connected. So, we just need to prove that

G(R)+ = G(R).

Let S be a maximal R-split torus of G, and let H = ZG(S). As we remarked earlier, it is enough to
show that H(R) ⊂ G(R)+. Write H as an almost direct product H = B · S where B is a reductive
R-anisotropic group. Then H(R) = B(R) ·S(R). Indeed, we have the following commutative diagram

H −→ H/S
↑ ↑=
B

α−→ B/(B ∩ S)
.

Then B/(B ∩ S) is a reductive R-anisotropic group, so (B/(B ∩ S))(R) is connected as we have just
seen above. On the other hand, it follows from the Implicit Function Theorem that α(B(R)) is open
in (B/(B ∩ S))(R). Thus,

α(B(R)) = (B/(B ∩ S))(R).

Then a simple diagram chase shows that H(R) = B(R) · S(R). Now, since B(R) is connected and
G(R)+ is open in G(R), we conclude that B(R). On the other hand, it was shown by Borel and Tits
[4, 7.2] and [5, 4.6] that S is contained in a simply connected R-split subgroup of G, implying that
S(R) ⊂ G(R)+. Thus, H(R) ⊂ G(R)+, as required. �
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5. Proof of strong approximation

Let G be an absolutely almost simple simply connected algebraic group over a number field K, and
let S ⊂ V K be a finite subset such that the group GS is noncompact. We wish to show that G(K) is
dense in G(AS). Any open subset Ω ⊂ G(AS) looks as follows:

Ω = U ×
∏

v/∈S∪S1

G(Ov)

for some finite set S1 ⊂ V K \ S such that S ∪ S1 contains V K
∞ and some open set U ⊂ GS1 . Then

G(K)∩Ω 6= ∅ is equivalent to G(O(S∪S1))∩U 6= ∅. Thus, the density of G(K) in G(AS) is equivalent
to the density of G(O(S ∪S1)) in GS1 , for any finite S1 ⊂ V K \S (and one can assume without loss of
generality that S∪S1 ⊃ V K

∞ ). To prove the latter, we will be using repeatedly the following elementary
statement.

Lemma 5.1. ([26, Lemma 7.4]) Let Γ be a subgroup of the direct product B = B1 ×B2 of topological
groups B1 and B2, and let πi : B → Bi be the canonical projection for i = 1, 2. Assume that

(1) π1(Γ) is dense in B1;

(2) B1 has a fundamental systems of neighborhoods of the identity U = {U} consisting of
subgroups such that for every U ∈ U the projection π2(Γ ∩ (U ×B2)) is dense in B2.

Then Γ is dense in B.

We will first consider the case where S contains V K
∞ and also all those nonarchimedean v for which

G is Kv-anisotropic (i.e. G(Kv) is compact) - recall that such places can exist only if G is of type
An. Let S1 ⊂ V K \ S be a finite subset. We need to show that Γ = G(O(S ∪ S1)) is dense in GS1 .
Assume the contrary, and let S2 ⊂ S1 be a maximal (possibly, empty) subset such that (the image of
the diagonal embedding of Γ is dense in GS2 . By our assumption, S2 6= S1, so we pick some v ∈ S1 \S2

and set S3 = S2 ∪ {v}. Since Γ is not dense in GS3 = GS2 × G(Kv) and GS2 has a fundamental
system of neighborhoods of the identity consisting of subgroups, it follows from Lemma 5.1 that there
exists an open subgroup U ⊂ GS2 such that Γ ∩ U is not dense G(Kv). We may assume without loss
of generality that U is a finite index subgroup of

∏
v∈S2

G(Ov). It follows that Γ ∩ U contains some
finite index subgroup of G(O(S ∪ {v})). But according to Corollary 4.2, the group G(Kv) does not
have proper subgroups subgroups of finite index, so to obtain a contradiction it is enough to prove the
following.

Proposition 5.2. For any v ∈ V K \ S, the group ∆ = G(O(S ∪ {v})) is dense in G(Kv).

Proof. First, it follows from Lemma 3.8 that ∆ is nondiscrete in G(Kv) and the quotient G(Kv)/∆
by the closure of ∆ has finite invariant measure. Next, consider the groups G0 = RK/Q(G) and
G = RKv/Qp

(G), where p is chosen so that Qp ⊂ Kv and note that there is a Qp-defined epimorphism
G0 → G. According to the remark made after Proposition 3.6, the group ∆ is Zariski-dense in G0,
hence in G. On the other hand, as we have already mentioned, ∆ is not discrete in G(Kv) ' G(Qp).
So, applying Corollary 3.4, we obtain that ∆̄ is open. Now, the fact that G(Kv)/∆̄ has finite measure
tells us that ∆̄ is a subgroup of finite index in G(Kv). But again according to Corollary 4.2, the group
G(Kv) does not have any proper subgroups of finite index. So, ∆̄ = G(Kv), as required. �

We will now drop the assumption that S contains

San := {v ∈ V K
f | G is Kv-anisotropic}.

We will need to use weak approximation for simply connected groups.

Proposition 5.3. Let G be a semi-simple simply connected group over a number field K. Then G
has weak approximation with respect to any finite subset T ⊂ V K , i.e. G(K) is dense in GT =∏
v∈T G(Kv).
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Proof. It is well-known that the variety of G is unirational over K, i.e. there exists a K-defined
dominant map f : W → G of some Zariski-open subset W ⊂ Ad of the affine space (cf. [3, 18.2]). The
weak approximation theorem for the field K implies the weak approximation property for W ; in other
words, W (K) is dense in WT =

∏
v∈T W (Kv). Applying f , we obtain that the closure of G(K) in

GT contains
∏
v∈T f(W (Kv)). But using the Implicit Function Theorem, one shows that f(W (Kv))

contains an open subset of G(Kv) (cf. [26, Cor. 1 in §3.1]), which implies that the closure G(K) is

always open in GT ; in other words, the quotient GT /G(K) is discrete. On the other hand, according
the reduction theory for the groups of adeles, the quotient G(A)/G(K) has finite invariant volume [26,

Theorem 5.5]. Writing G(A) = G(AT ) × GT and using Lemma 3.7, we see that GT /G(K) has finite
invariant measure, and therefore is in fact finite. If G is not of type An, then G(Kv) does not have
proper subgroups of finite index (indeed, if v is nonarchimedean then G is Kv-isotropic and required
fact is Corollary 4.2; for v archimedean it is Proposition 4.12). Then the same is true for GT , and we

obtain G(K) = GT , as required.
Let now G be of type An. Then according to classification G is either SLm,D (inner form) or

SUm(h,D) (outer form) where h is a hermitian form over a division algebra D with an involution of
the second kind. We then let H respectively be GLm,D and Um(h,D). (A group G of type A1 can be
viewed as both, inner or outer form, but then we use the first option for H, i.e. we view G as an inner
form.) In either case, the variety of H is rational over K, and therefore H has weak approximation,
i.e. H(K) is dense in HT (cf. [26, 7.1]). Clearly, [H(F ), H(F )] ⊂ G(F ) for any field extension F/K,
and in fact

[H(Kv), H(Kv)] = G(Kv)

for any v. This follows from Theorem 4.1 when v is nonarchimedean and G is Kv-isotropic, and from
Proposition 4.12 for v archimedean. It remains to consider the case where v is nonarchimedean and
G is Kv-anisotropic. But then G ' SL1,D and H ' GL1,D for some central division algebra D over
Kv (see (B) in §4), and our claim is equivalent to the fact that SK1(D) = 1 which was established in
Theorem 4.7. But then already [H(K), H(K)] ⊂ G(K) is dense in GT . �

Returning now to the proof of strong approximation, we recall that the set San is finite and that
strong approximation for S∪San has already been established. Set S0 = San\S so that S∪San = S∪S0

and

G(AS) = GS0 ×G(AS∪S0)

Since all places in S0 are nonarchimedean, GS0 has a fundamental system of neighborhoods of the
identity consisting of open subgroups U ⊂ GS0 . Moreover, since GS0 is compact, [GS0 : U ] < ∞.
By Proposition 5.3, G(K) is dense in GS0 . So, in order to apply Lemma 5.1, we need to show that
G(K)∩U is dense in G(AS∪S0). But we already know that G(K) is dense in G(AS∪S0), so it remains to
show that the latter does not have proper closed subgroups of finite index. Let H be such a subgroup.
For every v /∈ S ∪ S0, the group G is Kv-isotropic, so the group G(Kv) does not have any proper
subgroups of finite index, and therefore is contained in H. We conclude that H contains GS2 for any
finite S2 ⊂ V K \ (S ∪ S0). But it easily follows from the definition of the adelic topology that the
union

⋃
S2
GS2 over all such S2’s is dense in G(AS∪S0). So, H = G(AS∪S0), as claimed.

Finally, let us get rid of the assumption that S contains V K
∞ . Set S1 = V K

∞ \(V K
∞ ∩S) and S2 = S∪S1

so that

G(AS) = G(AS2)×GS1 .

We already know that G(K) is dense in G(AS2). Furthermore, the latter has a basis of neighborhoods
of the identity consisting of open subgroups U ⊂ G(AS2), and we need to show that for any such
subgroup the intersection G(K) ∩ U is dense in GS1 . Without loss of generality we may assume
that U ⊂

∏
v/∈S2

G(Ov), and then G(K) ∩ U is a finite index subgroup of G(O(S2)). It follows from
Proposition 4.12 and the preceding remarks that for each v ∈ S1 the group G(Kv) is connected, so
the group GS1 is connected as well. So, in order to prove that G(K) ∩ U is dense in GS1 for every U ,
it is enough to prove that G(O(S2)) is dense in GS1 . Let Λ denote the connected component of the
closure of G(O(S2)) in GS1 . We claim that Λ is a normal subgroup of GS1 . Indeed, for any g ∈ G(K)
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the subgroups G(O(S2)) and gG(O(S2))g−1 are commensurable, which implies that Λ = gΛg−1. But
G(K) is dense in GS1 by Proposition 5.3, so Λ is normal in GS1 . Thus, Λ = GS3 for some S3 ⊂ S1

and it remains to show that actually S3 = S1. Assume the contrary, i.e. S4 := S1 \ S3 6= ∅, and let
π : GS1 → GS4 be the canonical projection. Since kerπ = GS3 is contained in the closure of G(O(S2)),

the connected component of the closure Φ = G(O(S2)) in GS4 coincides with π(Λ) = 1. If we consider
GS4 as a real Lie group, then by Cartan’s theorem Φ is also a Lie group. So, since its connected
component is trivial, it is actually discrete. But G(O(S2)) is a discrete subgroup of GS2 such that
the quotient GS2/G(O(S2)) has finite invariant measure. Writing GS2 = GS2\S4

×GS4 and observing
that S2 \ S4 contains S, making GS2\S4

noncompact, we obtain from Lemma 3.7 that G(O(S2)) in
nondiscrete in GS4 , a contradiction. �

The above proof of Theorem 3.1 for characteristic zero breaks down in positive characteristic,
first and foremost, because Cartan’s Theorem 3.2 is valid only in characteristic zero. It should be
mentioned that eventually Pink [21] proved a result which in some sense can be viewed as an analog
(or replacement) of Cartan’s theorem. The precise statement in the general case is too technical for us
to discuss here, so we will only indicate what it yields in one particular case (see [21, Theorem 0.7]):
Let G be an absolutely simple connected adjoint group over a nondiscrete locally compact field F , and
assume that the adjoint representation of G is irreducible. If Γ ⊂ G(F ) is a compact Zariski-dense
subgroup, then there exists a closed subfield E ⊂ F and a model H of G over E such that Γ is open
in H(E). Results of this kind can be used to prove Theorem 3.1 in positive characteristic (cf. [22]),
but the original argument given simultaneously by Margulis [15] and Prasad [27], was different. They
derived strong approximation (arguing along the lines indicated above) from the following statement:

Let G be a connected semisimple algebraic group over a local field F , and let H
be a nondiscrete closed subgroup such that G(F )/H carries a finite invariant Borel
measure. Then H ⊃ G(F )+.

Their arguments (which were different) used ergodic considerations and representation theory. More
than 25 years later, Pink [23] used his results from [21] to give a purely algebraic proof of this theorem,
hence of strong approximation.

Strong approximation in homogeneous spaces. The results on strong approximation in homo-
geneous were obtained in [6] and [37] (a detailed exposition of the results of the latter was given in
[38]). The fact that only connected simply connected varieties have a chance to possess strong approx-
imation, by and large, forces us to focus our attention on homogeneous spaces of the form X = G/H
where G is a semi-simple simply connected algebraic K-group, and H is a K-defined connected re-
ductive subgroup (any such variety is affine and simply connected). Furthermore, given S ⊂ V K , it
is not difficult to show that for such X, the space XS =

∏
v∈S X(Kv) is noncompact if and only if

GS is noncompact. Assuming that G is actually absolutely almost simple, we conclude from Theorem
3.1 that G has strong approximation with respect to S (for a general semi-simple group G one needs
to consider the K-simple components). Then using Galois cohomology one investigates when strong
approximation for G implies strong approximation for X = G/H. Here is one easy result in this
direction.

Proposition 5.4. ([37]) Let X = G/H be the quotient of a connected absolutely almost simple simply
connected algebraic group G defined over a number field K by a connected semi-simple simply connected
K-subgroup H. Then X has strong approximation with respect to a finite set S of places of K is and
only if the space XS is noncompact.

Example. Let q = q(x1, . . . , xn) be a nondegenerate quadratic form over K in n > 3 variables.
Consider the quadric X ⊂ An given by the equation q(x1, . . . , xn) = a for some a ∈ K×. Assuming
that X(K) 6= ∅, fix x ∈ X(K). Then X can be identified with the homogeneous space G/H where
G = Spinn(q) and H = G(x) (the stabilizer of x); note that H ' Spinn−1(q′), where q′ is the restriction
of q to the orthogonal complement of x. So, it follows from Proposition 5.4 that for n > 5, the quadric
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X has strong approximation with respect to S if and only if there exists v ∈ S such that q is Kv-
isotropic. The same result remains valid for n = 4 even though in this case G is not absolutely almost
simple. (Incidentally, this result applies to the defining equation for SL2 we considered in §1, yielding
thereby another proof of strong approximation for this group; cf. Lemma 4.5.)

Exercise. Work out explicit conditions for strong approximation in “spheres” defined by other types
of forms.

The case n = 3 in the above example is different as here H = G(x) is a torus. This case can also be
treated rather explicitly using the results of Nakayama-Tate on the Galois cohomology of tori. More
precisely, let T be a K-torus, and let L be the splitting field of T . As usual, given a module M over the
Galois group Gal(L/K), we let H i(L/K,M) denote the Galois cohomology group H1(Gal(L/K),M).
Given a finite set S of places of K, we let S̄ denote the set of all extensions of places in S to L, and
let AL and AL,S̄ denote the rings of adeles and S̄-adeles of L. Finally, let cL(T ) = T (AL)/T (L) be the
adele class group of T over L, and let

δ : H1(L/K, T (AL)) −→ H1(L/K, cL(T ))

be the corresponding map on cohomology. Then, viewing TS̄ and T (AL,S̄) as subgroups of T (AL), we
have the following statement.

Proposition 5.5. ([37]) Let X = G/T , where G is an absolutely almost simple simply connected
K-group and T ⊂ G is a K-torus. Then X has strong approximation with respect to a finite set S of
places of K if and only if XS is noncompact and

δ
(
H1(L/K, T (AL,S̄))

)
⊂ δ

(
ker(H1(L/K, TS̄)→ H1(L/K,GS̄))

)
,

where L is the splitting field of T and S̄ consists of all extensions of places in S to L.

Example (continuation) Using Proposition 5.5, we can now consider the case n = 3 and complete
thereby the analysis of strong approximation in quadrics. So, let

q(x, y, z) = ax2 + by2 + cz2

be a nondegenerate ternary quadratic form over a number field K, and let X ⊂ A3 be a quadric given
by the equation q(x, y, z) = a. Set q′(y, z) = by2 + cz2. Let S be a finite set of places of K such
that XS is noncompact. Then X has strong approximation with respect to S if and only if one of the
following two conditions holds:

• q′ is K-isotropic, or

• q′ is K-anisotropic and there exists v ∈ S such that q′ remains anisotropic over Kv

and either v is nonarchimedean or q is Kv-isotropic.

It follows that the quadric X over Q defined by the equation

x2 + y2 − 2z2 = 1

(which is simply connected) does not have strong approximation with respect to S = {∞}.
Another consequence of Proposition 5.5 is that for X = G/T , one can find a finite set of places

S0 (depending on T ) such that X has strong approximation with respect to S whenever S ⊃ S0. It
turns out that this qualitative statement remains valid for quotients by arbitrary connected reductive
subgroups. More precisely, using some ideas that eventually led him to theorems of the Nakayama-Tate
type for Galois cohomology of arbitrary connected groups, Borovoi proved the following.

Proposition 5.6. ([6]) Let X = G/H be the quotient of a connected absolutely almost simple algebraic
group G over a number field K by its connected reductive subgroup H. There exists a finite set S0 of
places of K such that X has strong approximation with respect to S0 (and then, of course, it also has
strong approximation with respect to any S ⊃ S0).
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6. Strong approximation for Zariski-dense subgroups

Strong approximation for algebraic group G over a number field K with respect to a set of places S
gives us the density of G(O(S)) in

∏
v/∈S G(Ov), and in particular, the openness of G(O(S)) in G(AS),

which, by and large, is the most essential part of the strong approximation theorem. It turned out,
however, this property (i.e. the openness of the closure) holds not only for S-arithmetic groups but
in fact in a much more general situation. For example, slightly generalizing our discussion in §1, one
shows that the subgroup

∆m =

〈(
1 m
0 1

)
,

(
1 0
m 1

)〉
⊂ SL2(Z),

which for m > 2 has infinite index in SL2(Z), the closure ∆m is open in SL2(Ẑ), i.e. has finite index.
We will see that actually the only feature of a subgroup needed to ensure the openness of the closure is
its Zariski-density. To avoid technical complications, I will explain this for K = Q (this is, in fact how
these results emerged historically), and in the end state a theorem for the general case. The following
lemma, the proof of which requires only the techniques that we have already used in the proof of the
strong approximation theorem, shows one immediate consequence of Zariski-density.

Lemma 6.1. Let G be an absolutely almost simple algebraic Q-group, and let Γ ⊂ G(Z) be a Zariski-
dense subgroup. Then for any finite set of primes P , the closure of Γ in

∏
p∈P G(Zp) is open.

Proof. We first consider the case where P = {p} consists of a single prime. Let g = L(G) be the Lie
algebra of G as an algebraic group, so that g∗ = gQp is the Lie algebra of G(Zp) as a p-adic Lie group.

Since G(Zp) is compact, Γ is not discrete there. So, it follows from Cartan’s theorem that ∆ := Γ is
a p-adic Lie group of positive dimension. Then the Lie algebra h∗ of ∆ is a nonzero subalgebra of g∗.
Furthermore, since Γ is Zariski-dense in G, the algebra h∗ is an ideal of g∗ (Lemma 3.3). Since G is
absolutely almost simple, g∗ does not have any proper nonzero ideals, so h∗ = g∗, and we conclude
that ∆ is open in G(Zp), as required (cf. Corollary 3.4).

Now, let P = {p1, . . . , pr}. We already know that the closure ∆i of Γ in G(Zpi) is open for each
i = 1, . . . , r. But G(Zpi) is an almost pro-pi group. So, the Sylow pro-pi subgroup ∆i(pi) is also open
in G(Zpi). Let ∆ be the closure of Γ in G =

∏r
i=1G(Zpi), and let ∆(pi) be the Sylow pro-pi subgroup

of ∆. Then for the projection πi : G → G(Zpi) we have πi(∆(pi)) = ∆i(pi). But ∆(pi) has an open
subgroup ∆′(pi) which is contained in the factor G(Zpi) of G, and note that ∆′(pi) is open in G(Zpi).
Thus, ∆ contains the product

∏r
i=1 ∆′(pi), and our assertion follows. �

While this assertion (and particularly its proof) is quite useful (e.g. it is used in the proof of the
existence of generic elements in arbitrary Zariski-dense subgroups, cf. ..), it falls short of proving that

the closure Γ̂ of Γ in G(Ẑ) =
∏
pG(Zp) is open. Indeed, all it gives is that Γ̂ contains a subgroup of

the form
∏
pWp, where Wp ⊂ G(Zp) is an open subgroup; to prove the openness however we need to

show that one can take Wp = G(Zp) for almost all p. Nevertheless, we have the following.

Theorem 6.2. (Matthews, Vaserstein, Weisfeiler [18]) Let G be a connected absolutely almost simple
simply connected algebraic group over Q.

(1) If Γ ⊂ G(Z) is a Zariski-dense then the closure Γ̂ ⊂ G(Ẑ) is open.

(2) If Γ ⊂ G(Q) is a finitely generated Zariski-dense subgroup then for some finite subset
S ⊂ V Q containing ∞ such that the closure of Γ in G(AS) is open.

The paper of Matthews et al. appeared in 1984, but the interest in this sort of results arose some
20 years earlier in connection with the study of Galois representations on torsion points of elliptic
curves. In fact, Serre in his book on `-adic representations [41] pretty much had this theorem for SL2

(at least all the ingredients were there).
The argument for parts (1) and (2) is very much parallel. Let us sketch if for part (1) which requires

less notations. The main point is to show that if we let Γ
(p)

denote the closure of Γ in G(Zp) then

(7) Γ
(p)

= G(Zp)



26 ANDREI S. RAPINCHUK

for almost all p. If this fact is granted, then the proof of the fact Γ̂ is open in G(Ẑ) is obtained by a
relatively straightforward group-theoretic argument. The idea is revealed in the following

Exercise. Let F1, . . . , Fr are pairwise nonisomorphic nonabelian finite simple groups. If E is a
subgroup of the direct product F = F1 × · · ·Fr that projects surjectively onto each factor, then
E = F .

In our situation, for almost all primes p, the group G has good reduction G(p), and the finite almost
simple groups G(p)(Fp) are pairwise nonisomorphic. Using this, one can find a finite set P of “bad”
primes such that if Ψ is a closed subgroup of Θ =

∏
p/∈P G(Zp) that projects surjectively onto each

factor, then Ψ = Θ (cf. the above exercise). This, in conjunction with with (7) and Lemma 6.1, yields

the openness of Γ̂.

Thus, it remains to establish (7) for almost all p. For this one uses the following statement, which

can also be used to facilitate the above reduction. Let ρp : G(Zp)→ G(p)(Fp) be the reduction mod p
map.

Proposition 6.3. For almost all p, if ∆ ⊂ G(Zp) is a closed subgroup such that ρp(∆) = G(Zp) then
∆ = G(Zp).

To give an idea of the proof we will give a complete argument in the case G = SL2 which was
considered by Serre.

Lemma 6.4. Let ∆ ⊂ SL2(Zp), where p > 3, such that for the reduction map ρp : SL2(Zp)→ SL2(Fp)
we have ρp(∆) = SL2(Fp). Then ∆ = SL2(Zp).

Proof. By assumption, there exists g ∈ ∆ such that

g =

(
1 0
1 1

)
+ ps, with s ∈M2(Zp).

Using that p > 3, one shows that

gp =

(
1 0
p 1

)
+ p2t, with t ∈M2(Zp).

Let SL2(Zp, pi) denote the congruence subgroup of SL2(Zp) modulo piZp. It is well-known that there
exists an isomorphism of abelian groups

SL2(Zp, p)/SL2(Zp, p2) ' sl2(Fp),
where sl2 is the Lie algebra of SL2 (i.e., 2 × 2-matrices with trace zero). Our previous computation
shows that the image of Φ of the intersection ∆ ∩ SL2(Zp, p) in this quotient is nontrivial. On the
other hand, Φ is obviously invariant under the adjoint action of ∆, and since ρp(∆) = SL2(Fp),
we conclude that Φ is actually invariant under SL2(Fp). But since p 6= 2, the group SL2(Fp) acts
on sl2(Fp) irreducibly, implying that ∆ ∩ SL2(Zp, p) surjects onto SL2(Zp, p)/SL2(Zp, p2). However,
SL2(Zp, p2) is in fact the Frattini subgroup of the pro-p group SL2(Zp, p), so the latter fact implies
that ∆ ∩ SL2(Zp, p) = SL2(Zp, p), and our claim follows. �

So, to complete the proof of (both parts of) Theorem 6.2, one needs to prove the following.

Theorem 6.5. Let G be a connected absolutely almost simple simply connected algebraic group over
Q, and let Γ ⊂ G(Q) be a finitely generated Zariski-dense subgroup. Then there exists a finite set of
primes Π = {p1, . . . , pr} such that

(1) Γ ⊂ G(ZΠ), where ZΠ = Z[1/p1, . . . , 1/pr];

(2) for p ∈ Π, there is a smooth reduction G(p);

(3) if p /∈ Π and ρp : G(Zp)→ G(p)(Fp) is the corresponding reduction map, then ρp(Γ) = G(p)(Fp).

Conditions (1) and (2) are routine (in fact, (1) holds automatically for any Π if Γ ⊂ G(Z)), so the

main point is to ensure condition (3). The general idea is the following. Let g and g(p) be the Lie
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algebras of G and G(p). Since Γ is Zariski-dense in G, the group AdΓ acts on gQ absolutely irreducibly.
By Burnside’s theorem, this means that Ad Γ spans EndQ gQ as a Q-vector space. Excluding finitely

many primes, we can achieve that for any of the remaining primes p, the group Ad ρp(Γ) acts on g
(p)
Fp

absolutely irreducibly. This eventually implies that for almost all p we have

ρp(Γ) = G(p)(Fp).

This implication would be obvious if we knew that ρp(Γ) is necessarily of the form H(Fp), where

H ⊂ G(p) is some connected algebraic Fp subgroup. (Indeed, then the Lie algebra h of would be a

nonzero ρp(Γ) invariant subspace of g(p), so h = g(p) and H = G(p) as G(p) is connected for almost
all p, yielding the required fact.) Of course, such an a priori description of ρp(Γ) is too much to hope
for, but important information along these lines, which is sufficient for the proof of Theorem 6.5, is
contained in a theorem of Nori.

Nori’s Theorem. Let H be an arbitrary subgroup of GLn(Fp). Set

X = {x ∈ H | xp = 1}.

Assume that p > n. Then the condition xp = 1 is equivalent to the condition (x − 1)n = 0, hence
characterizes precisely the unipotent elements. For x ∈ X, we can define the “truncated” logarithm

log x := −
p−1∑
i=1

(1− x)i

i
.

Furthermore, observing that (log x)n = 0, we see that for any t ∈ Fp (an algebraic closure of Fp) one
can define the “truncated” exponential

x(t) := exp(t · log x), where exp z =

p−1∑
i=0

zi

i!
.

(Note that x(1) = x.) We regard x(t) as a one-parameter subgroup Ga → GLn. Set

H+ = 〈X〉 ⊂ H,

and let H̃ denote the connected Fp-subgroup of GLn generated by the 1-parameter subgroups x(t) for
all x ∈ X.

Theorem 6.6. (Nori [20]) If p is large enough (for a give n), then H+ coincides with H̃(Fp)+, the

subgroup of H̃(Fp) generated by all unipotents contained in it.

Exercise. Prove Nori’s theorem for n = 2. More precisely, show that for any subgroup H ⊂
GL2(Fp), we have the following three possibilities: (1) H+ = {1}; (2) H+ is conjugate to U ={(

1 a
0 1

)
| a ∈ Fp

}
; (3) H+ = SL2(Fp). (Hint. Use the Bruhat decomposition in GL2(Fp).)

Proof of Theorem 6.5. Recall the famous theorem of Jordan:

There exists a function j(n) on positive integers such that if G ⊂ GLn(K) is a finite

linear group over a field K of characteristic zero, then G contains an abelian normal

subgroup N such that the index [G : N] divides j(n).

For the proof of Theorem 6.5 we need to observe that the assertion of Jordan’s theorem remains
valid (with the same j(n)) for any subgroup G ⊂ GLn(Fp) of order prime to p (this is proved by lifting

G to a subgroup G̃ ⊂ GLn(Zp)).

Now, suppose that G ⊂ GLn. Let j = j(n) be the value of the Jordan function for this n. Set

Γ(j) = 〈γj | γ ∈ Γ〉,
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and let Φ = [Γ(j),Γ(j)]. It is easy to see that Φ is Zariski-dense in G, in particular, nontrivial. Then,
by expanding Π, which initially needs to be chosen to satisfy conditions (1) and (2) of the theorem,
we may assume that for all p /∈ Π we have ρp(Φ) 6= {1}. In addition, by expanding Π further, we may

assume that for p /∈ Π, the group Ad ρp(Φ) acts on g(p) absolutely irreducibly, and also that Nori’s
theorem applies to GLn(Fp). We will now show that the resulting Π is as required.

Let p /∈ Π, and set H = ρp(Γ) ⊂ GLn(Fp). First, we observe that the order of H is divisible
by p. Indeed, otherwise by the version of Jordan’s theorem mentioned above, there would exist an
abelian normal subgroup N ⊂ H of index dividing j. Then ρp(Γ

(j)) ⊂ N , and therefore ρp(Φ) = {1};
a contradiction. This means that if we define H+ and H̃ as in Nori’s theorem, then H̃ 6= {1},
hence the Lie algebra h̃ of H̃ is a nonzero subspace of g(p). On the other hand, by our construction

H̃ is normalized by ρp(Γ), so the space h̃ is Ad ρp(Γ)-invariant. Combining this with the absolute

irreducibility of the latter, we obtain that h̃ = g(p), i.e. H̃ = G(p). Furthermore, since G is simply

connected, so is G(p), and therefore by the affirmative answer to the Kneser-Tits conjecture over finite
fields, we have

G(p)(Fp) = G(p)(Fp)+.

Invoking Nori’s theorem, we obtain

H = H̃(Fp)+ = G(p)(Fp)+ = G(p)(Fp),

as required.

A far-reaching generalization of Theorem 6.2 was given by B. Weisfeiler. We will state it using the
original notation.

Theorem 6.7. Let k be an algebraically closed field of characteristic 6= 2, 3, and let G be an almost
simple, connected and simply connected algebraic group defined over k. Let Γ be a Zariski-dense finitely
generated subgroup of G(k), and let A be the subring of k generated by the traces tr Ad γ for γ ∈ Γ.
Then there exists a nonzero b ∈ A, a subgroup Γ′ ⊂ Γ of finite index, and a structure GAb

of a group

scheme over Ab on G such that Γ′ ⊂ GAb
(Ab) and Γ′ is dense in GAb

(Âb).

(Here Ab denotes the localization of A with respect to b, and Âb the profinite completion of the ring
Ab, i.e. the profinite completion with respect to the topology given by all ideals of finite index.

7. Applications and generalizations

Double cosets of the adele groups

Generic elements Let G be a semi-simple algebraic group over a field K. Fix a maximal K-torus T
of G, and let Φ(G,T ) and W (G,T ) denote the corresponding root system and the Weyl group. The
natural action of the absolute Galois group Gal(K/K), where K is a fixed separable closure of K, on
the character group X(T ) gives rise to a group homomorphism

θT : Gal(K/K) −→ Aut(Φ(G,T ))

that factors through the Galois group Gal(KT /K) of the minimal splitting field KT of T in K inducing
an injective homomorphism θ̄T : Gal(KT /K)→ Aut(Φ(G,T )). We say that T is generic over K if

θ(Gal(K/K)) ⊃W (G,T ).

Furthermore, a regular semi-simple element g ∈ G(K) is called K-generic if the K-torus T = ZG(g)◦

(the connected component of the centralizer of g) is generic over K.

Theorem 7.1. ([31], [35]) Let G be an absolutely almost simple algebraic group over a finitely generated
field K. Then any finitely generated Zariski-dense subgroup Γ ⊂ G(K) contains a generic element of
infinite order.
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In [31], we considered the case of an arbitrary semi-simple algebraic group G over a finitely generated
field K, and proved the existence, in an arbitrary finitely generated Zariski-dense subgroup Γ ⊂ G(K),
of generic elements without components of finite order (where the components are understood in
terms of the decomposition G = G1 · · ·Gd as an almost direct product of absolutely almost simple
groups). The argument that we will sketch below, assuming G to be absolutely almost simple, used
the approximation considerations in the spirit of Lemma 6.1. In [35] this argument was extend to an
absolutely almost simple group G over a finitely generated field K of positive characteristic using the
results of Pink [21], [22]. We note that it was also shown in [35] that if g ∈ Γ is a generic element then
there exists a finite index subgroup ∆ ⊂ Γ such that the whole coset g∆ consists entirely of generic
elements.

Sketch of proof of Theorem 7.1. Let G be an absolutely almost simple simply connected algebraic
group over a finitely generated field K of characteristic zero. Given two maximal tori of G defined
over some extension F/K, there exists g ∈ G(F ) such that T2 = ιg(T1) where ιg(x) = gxg−1. Then
ιg induces an isomorphism between the Weyl groups W (G,T1) and W (G,T2). A different choice of g
will change this isomorphism by an inner automorphism of the Weyl group, implying that there is a
canonical bijection between the sets [W (G,T1)] and [W (G,T2)] of conjugacy classes in the respective
groups; we will denote this bijection by ιT1,T2 . Moreover, if we let ι∗g : X(T2) → X(T1) denote the
corresponding isomorphism of the character groups, then ι∗g takes Φ(G,T2) to Φ(G,T1), and if we
identify Aut(Φ(G,T1)) with Aut(Φ(G,T2)) using

ι\g : α 7→ (ι∗g)
−1 ◦ α ◦ ι∗g for α ∈ Aut(Φ(G,T1)),

then the following holds: if g ∈ G(E), where E is an extension of F , then for any σ ∈ Gal(E/E) we
have

(8) ι\g(θT1(σ)) = θT2(σ)

in the above notations.

Next, we will the following result that enables us to embed a given finitely generated field of
characteristic zero into p-adic fields.

Proposition 7.2. ([31, Proposition 1]) Let K be a finitely generated field of characteristic zero, and
let R ⊂ K be a finitely generated subring. Then there exists an infinite set of primes Π such that for
each p ∈ Π there exists an embedding ε : K ↪→ Qp with the property εp(R) ⊂ Zp.

We will also need the following immediate consequence of the Inverse Function Theorem.

Lemma 7.3. ([35, Lemma 3.1]) Let G be a semi-simple algebraic group over a field K which is complete
with respect to a discrete valuations v. Fix a maximal K-torus T of G, let Treg denote the Zariski-open
set of regular elements, and consider the regular map

ψ : G× Treg → G, (g, t) 7→ gtg−1.

Then the map
ψK : G(K)× Treg(K)→ G(K)

induced on K-points is open for the topology defined by v.

The final preparation step is contained in the following.

Lemma 7.4. Let G be an absolutely almost simple simply connected split group over Qp, let T0 be a
maximal Qp-torus of G, and let [w0] be a conjugacy class in W (G,T0). Then there exists a maximal

Qp-torus T of G such that ιT0,T ([w0]) intersects θT (Gal(Qp/Qp))

Indeed, by our assumption there exists a maximal torus T1 of G that splits over Qp, and we
let [w1] = ιT0,T1([w0]). Since T1 splits, we can pick a representative n1 for w1 in the normalizer
NG(T1)(Qp). The Galois group Gal(Qur

p /Qp) of the maximal unramified extension is isomorphic to

Ẑ by the map that sends the Frobenius automorphism ϕ to 1 ∈ Ẑ. So, there exists a (continuous)
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homomorphism Gal(Qur
p /Qp)→ NG(T1)(Qp) that send ϕ to n1. Lift this homomorphism to a homor-

phism ξ : Gal(Qp/Qp)→ NG(T1)(Qp). One can view ξ as a Galois cocycle with values in G, and since

H1(Qp, G) = 1 there exists h ∈ G(Qp) such that

ξ(σ) = h−1σ(h) for all σ ∈ Gal(Qp/Qp).

Then a direct computation shows that the maximal torus T := hT1h
−1 is defined over Qp and for any

lift ϕ̃ ∈ Gal(Qp/Qp) of the Frobenius we have

θT (ϕ̃) ∈ ιT1,T ([w1]) = ιT0,T ([w0]),

giving our claim. �

We are now in a position to complete the proof of Theorem 7.1. Without loss of generality we may
assume G to be simply connected. Fix a maximal K-torus T0 of G, and let [w1], . . . , [wr] denote all
nontrivial conjugacy classes of W (G,T0). Let K be a finite extension of K over which G splits. Fix
a matrix realization G ⊂ GLn. Since Γ is finitely generated, we can find a finitely generated subring
R ⊂ K such that Γ ⊂ GLn(R). Using Proposition 7.2, we can find r primes p1, . . . , pr such that for
each i = 1, . . . , r there exists an embedding εpi : K ↪→ Qpi with the property εpi(R) ⊂ Zpi . Then, in

particular, Γ is not discrete in G(Qpi), and then the proof of Lemma 6.1 shows that the closure Γ of
the image of the diagonal embedding

Γ ↪→
r∏
i=1

G(Qpi)

is open. Now, using Lemma 7.4, for each i = 1, . . . , r we can a maximal Qp-torus Ti such that

(9) θTi(Gal(Qpi/Qpi)) ∩ ιT0,Ti([wi]) 6= ∅.

By Lemma 7.3, for ψ(i) : G× Ti reg → G, (g, t) 7→ gtg−1, the set

Ui := ψ
(i)
Qpi

(G(Qpi)× Ti reg(Qpi))

is open and obviously intersects every open subgroup in G(Qpi). It follows that
∏r
i=1 Ui intersects Γ,

hence also Γ. We claim that any

g ∈ Γ
⋂ r∏

i=1

Ui

(which can be chosen to have infinite order) is K-generic. Indeed, let T = ZG(g)◦. Applying (8) and
(9), we see that the conjugacy class ιT0,T ([wi]) of W (G,T ) intersects

θT (Gal(Qpi/Qpi)) ⊂ θT (Gal(K/K)),

for each i = 1, . . . , r. Thus, the subgroup

θT (Gal(K/K)) ∩W (G,T )

intersects every conjugacy class of W (G,T ). Applying an elementary fact (Jordan’s theorem) from
group theory, we obtain that

θT (Gal(K/K)) ⊃W (G,T ),

as required. �

Strong approximation over fields other than global.



STRONG APPROXIMATION FOR ALGEBRAIC GROUPS 31

References

1. Algebraic Number Theory, ed. J.W.S. Cassels, A. Fröhlich, 2nd edition, London Math. Soc., 2010.
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