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Definition and history

Definition 1

An abstract group Γ has bounded generation (BG) if there
exist γ1, . . . , γd ∈ Γ such that

Γ = 〈 γ1 〉 · · · 〈 γd 〉,
where 〈 γi 〉 is cyclic subgroup generated by γi.

Profinite version:

Definition 2

A profinite group Γ has bounded generation (BG)pr if there
exist γ1, . . . , γd ∈ Γ such that

Γ = 〈 γ1 〉 · · · 〈 γd 〉,
where 〈 γi 〉 is closure of cyclic subgroup generated by γi.
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Definition and history

• (BG) for Γ ⇒ (BG)pr for Γ̂ (profinite completion).

• Question of whether the converse is true remained open
for a long time.

• Our results show that (BG)pr 6⇒ (BG).

This indicates that in some situations (BG)pr may be more

useful (and maybe even more natural) than (BG) itself.

We will return to this in the end but for now will talk

almost exclusively about (BG) for discrete groups.
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Definition and history

Remarks and Examples

(BG) and (BG)pr are purely group-theoretic properties, but both

positive and negative results on (BG) have strong number-

theoretic connections.

Let us begin with some remarks and examples.

• Every group with (BG) is finitely generated.

• Conversely, every finitely generated abelian, or more
generally, nilpotent group has (BG).

• Every solvable subgroup of GLn(Z) is polycyclic (Mal’cev)
hence has (BG).

In other known cases, verification of (BG) is nontrivial.
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Definition and history

First “semi-simple” examples (viz., SLn(Z), n > 3) came about

from investigation of a linear algebra question.

Every A ∈ SLn(F) (F a field) can be reduced to In by a

sequence of elementary row/column operations:

A −→ A1 −→ · · · −→ In ⇒

A = ei1j1(α1) · · · eirjr(αr) (αi ∈ F)

where eij(α) =


1 α

1
. . .

1

. In fact,

r 6 n2 + (const) · n

(independent of A).
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Definition and history

Examples

Every A ∈ SLn(Z) can also be reduced to In by integral
elementary operations, resulting in a factorization

A = ei1j1(α1) · · · eirjr(αr) with αi ∈ Z.

Question. Can r be bounded by c(n) independent of A?

“No!” for n = 2 b/c SL2(Z) is v. free. What about n > 3?

This question was asked by Dennis and van der Kallen in
1979 over any ring O of algebraic integers.

Theorem (CARTER, KELLER, 1983)

Let O = OK be a ring of algebraic integers, and n > 3. Then
every A ∈ SLn(O) is a product of

6 1
2 (3n2 − n) + 68 · ∆− 1

elementaries, ∆ = # of prime divisors of discriminant of K.
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Definition and history

Examples

The theorem results in a factorization

Γ = 〈 γ1 〉 · · · 〈 γd 〉 (BG)

of Γ = SLn(O) with all γi unipotent.

The case Γ = SL2(O), where O = OK,S is ring of S-integers in
a number field K, was completely resolved only recently.

When O is Z or ring of integers of imaginary quadratic

field, Γ fails to have (BG). All other cases are covered in

Theorem (MORGAN, R., SURY, 2018)

Assume that O× is infinite. Then every A ∈ SL2(O) is a product
of 6 9 elementaries.
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Definition and history

• Cooke and Weinberger (1975): assertion can be derived
from GRH (still unproven!)

•Morris (Witte) reworked (2007) preprint of Carter, Keller
and Paige to prove existence of a bound using model
theory – no explicit bound can be obtained!

• Vsemirnov (2014) proved assertion for O = Z[1/p] using
results of Heath-Brown.

Our proof relies only on traditional ANT.

Note that theorem yields a factorization (BG) for Γ = SL2(O)
where generally some γi are unipotent and some semi-simple

(with unipotents necessarily present!).
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Definition and history

Examples (cont.)

(BG) is known for many other S-arithmetic subgroups of

isotropic simple algebraic groups over number fields:

• Tavgen (1990) proved (BG) for all Chevalley groups of
rank > 1 and many quasi-split groups.

• Erovenko, R. (2006) considered isotropic, but not necessarily
split or quasi-split, orthogonal groups.

• Heald (2013) considered some isotropic unitary groups.

Why are we interested in
groups with (BG)?
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Properties and Main Theorem

• SS-rigidity A group Γ is SS-rigid if it has finitely many

equivalence classes of completely reducible representations

ρ : Γ −→ GLn(C) in each dimension n.

If Γ is finitely generated, one defines character variety Xn(Γ).

Then Γ is SS-rigid ⇔ dim Xn(Γ) = 0 for all n.

Theorem (R., 1990)

If Γ has (BG) and satisfies

(Fab) every finite index subgroup Γ1 ⊂ Γ has finite abelianization
Γab

1 = Γ1/[Γ1, Γ1],

then Γ is SS-rigid.

Remarks. 1. Without (Fab), Γ cannot be SS-rigid.

2. Assertion remains true if (BG) for Γ is replaced by (BG)pr for Γ̂.
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Properties and Main Theorem

• Congruence subgroup problem Let G ⊂ GLn be an algebraic

group over a number field K, S be a set of places of K

containing all archimedean ones, OS be ring of S-integers,

Γ = G(OS).

Γ̂ - completion of Γ for topology defined by all finite
index (normal) subgroups N ⊂ Γ

Γ - completion of Γ for topology defined by congruence
subgroups Γ(a) for nonzero ideals a ⊂ OS

Then ker
(

Γ̂→ Γ
)

is congruence kernel C = C(G, S).

C = {1} ⇐⇒ every (normal) subgroup N ⊂ Γ of
finite index contains some Γ(a)

Congruence subgroup problem is to compute C, in particular,

to determine when C is finite.
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Properties and Main Theorem

Theorem (LUBOTZKY, PLATONOV - R., 1992)

Let G be absolutely almost simple and simply connected.

Assume that S does not contain any nonarchimedean v such that
G is Kv-anisotropic and G/K satisfies Margulis-Platonov conjecture.

Then C is finite iff Γ̂ has (BG)pr. Thus, if Γ has (BG) then
C is finite.

Shalom, Willis (2013) used (BG) to prove Margulis-Zimmer

conjecture in some cases.

(BG) was also used to estimate Kazhdan constants (Kassabov)

and to study first-order rigidity (Avni, Lubotzky, Meiri).

(BG)pr for pro-p groups is equivalent to analyticity.
Andrei Rapinchuk (University of Virginia) 14 / 33



Properties and Main Theorem

Available results created expectation that higher rank lattices

should have (BG).

(Fujiwara (2005) noted that rank-one lattices do not have (BG))

While borderline between rank-one and higher rank lattices is
always expected, as far as (BG), there is also borderline
between non-uniform and uniform cases.

Over more than 30 years no examples of S-arithmetic

subgroups of simple anisotropic groups over number fields

with (BG) have been found. (Recall: G is anisotropic over a

field K of char 0 if G(K) does not contain unipotents 6= e.)

Question A. Can (BG) possibly hold for an infinite S-arithmetic

subgroup of an anisotropic simple algebraic group?
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Properties and Main Theorem

In all known examples of S-arithmetic subgroups with (BG),

the corresponding factorizations (BG) always involve unipotent

elements.

Question B. Which linear groups are boundedly generated by

semi-simple elements?

Main Theorem (CORVAJA, R., REN, ZANNIER, 2020)

Let Γ ⊂ GLn(K) be a linear group, char K = 0, which is not

virtually solvable. Then any possible presentation (BG) for Γ

involves at least two non-semi-simple elements. In particular, a

linear group boundedly generated by semi-simple elements is

virtually solvable.

(There are solvable finitely generated linear groups without (BG).)
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Properties and Main Theorem

We say that Γ ⊂ GLn(K) is anisotropic if it consists only of

semi-simple elements.

Corollary 1

An anisotropic linear group Γ ⊂ GLn(K), char K = 0, has (BG) iff

it is finitely generated and virtually abelian.

Corollary 2

Infinite S-arithmetic subgroups of simple anisotropic algebraic

groups do not have (BG).
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(BG) for SLn(Z), n > 3

• Any A ∈ SLn(Z) can be reduced to

 a b
c d

In−2

 by

6 1/2 · (3n2 − n) elementary operations.

So, it is enough to show that any

 a b
∗ ∗

1

 can be

reduced to I3 inside SL3(Z) by a bounded number of
elementary operations.

• BOUNDED MULTIPLICATIVITY OF MENNICKE SYMBOLS: for ` > 0

 a b
∗ ∗

1

`

⇒

 a` b
∗ ∗

1

 by 16 elementary operations.
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(BG) for SLn(Z), n > 3

One elementary operation:

 a b
c d

1

 ⇒
 a b + ta

c d + tc
1


So, using Dirichlet’s Prime Number Theorem, we can assume

that b = p a prime.

Applying Dirichlet’s Theorem twice, we can assume that

A =

 u p
q v

1

 with p, q odd primes and gcd( p−1
2 , q−1

2 ) = 1

Find m, n > 0 such that m · p−1
2 − n · q−1

2 = ±1 and set

s = m · p− 1
2

and t = n · q− 1
2.
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(BG) for SLn(Z), n > 3

We have us ≡ ±1(mod p), so

As 16⇒

 us p
∗ ∗

1

 1⇒

 ±1 p
∗ ∗

1

,

which is a bounded product of elementaries. So, As is a

bounded product of elementaries.

Applying transpose and using same argument, we find that

At is also a bounded product of elementaries.

Then A±1 = (As) · (At)−1 is a bounded product of

elementaries.
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(BG) for SLn(Z), n > 3

Van der Kallen (1980) showed that there is no bound N

such that every matrix in SL3(C[x]) is a product of 6 N

elementaries.

Question of whether there is such a bound for SL3(Q[x]) or

SL3(Z[x]) is open.
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On the proof of the Main Theorem

Main Theorem

Let Γ ⊂ GLn(K) be a linear group, char K = 0, which is not

virtually solvable. Then any possible presentation (BG) for Γ

involves at least two non-semi-simple elements. In particular, a

linear group boundedly generated by semi-simple elements is

virtually solvable.
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On the proof of the Main Theorem

First, we make two reductions:

1. By a specialization argument, we show that it is enough
to prove Main Theorem when K is a number field, i.e.
Γ ⊂ GLn(Q).

2. Assuming that Γ is not virtually solvable, one reduces
to case where connected component G◦ of Zariski-closure
G of Γ is nontrivial semi-simple group.

For γ ∈ GLn(Q), let Λ(γ) denote subgroup of Q
×

generated

by eigenvalues of γ. Key statement is the following.
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On the proof of the Main Theorem

Theorem

Let γ1, . . . , γr ∈ GLn(Q) be semi-simple with one possible
exception, and let γ ∈ GLn(Q) be another semi-simple matrix.

Assume that γ has an eigenvalue λ which is not a root of
unity and which satisfies

〈λ〉 ⋂ [Λ(γ1) · · ·Λ(γr)] = {1}.
Then 〈γ〉 ⋂ 〈γ1〉 · · · 〈γr〉 is finite. In particular,

〈γ〉 6⊂ 〈γ1〉 · · · 〈γr〉.

To complete proof of Main Theorem we need to show that
given γ1, . . . , γr ∈ Γ, there exists a semi-simple γ ∈ Γ of
infinite order such that

Λ(γ)
⋂
[Λ(γ1) · · ·Λ(γr)] = {1}.

This follows from existence of generic elements in Zariski-dense
subgroups of semi-simple groups (Prasad, R., 2003).
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On the proof of the Main Theorem

Proof of key statement critically depends on

Laurent’s Theorem

Let Ω be a finitely generated subgroup of (Q
×
)N, and let

Σ ⊂ Ω. Then Zariski-closure of Σ in T = (Gm)N is a finite
union of translates of algebraic subgroups of T.

We consider case where all γi are semi-simple.

We can find g, g1, . . . , gr ∈ GLn(Q) so that

g−1γg = diag(λ1, . . . , λn), λ1 = λ,
g−1

i γigi = diag(λi1, . . . , λin), i = 1, . . . , r.

Let p(x11, . . . , xrn) ∈ Q[x11, . . . , xrn] be (11)-entry of

g−1 ·
[

r

∏
i=1

(gi · diag(xi1, . . . , xin) · g−1
i )

]
· g.
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On the proof of the Main Theorem

Let J = { m ∈ Z | γm ∈ 〈γ1〉 · · · 〈γr〉 }.
Then for each m ∈ J there exist a1(m), . . . , ar(m) ∈ Z so that

γm = γ
a1(m)
1 · · · γar(m)

r .

By our choice of p we have

λm = p
(

λ
a1(m)
11 , . . . , λ

ar(m)
rn

)
.

This polynomial identity holds on

Σ = { (λm, λ
a1(m)
11 , . . . , λ

ar(m)
rm ) | m ∈ J} ⊂

⊂ Ω = 〈λ〉 × 〈λ11〉 × · · · × 〈λrn〉 ⊂ Q
×(1+rn)

.
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On the proof of the Main Theorem

Assuming that J is infinite and using description of

Zariski-closure Σ provided by Laurent’s Theorem, we obtain

λ` ∈ Λ(γ1) · · ·Λ(γr) for some ` 6= 0.

A contradiction.

Many (infinite) S-arithmetic subgroups Γ of anisotropic simple

groups are known to have congruence subgroup property, i. e.

congruence kernel C is finite.

Then Γ̂ satisfies (BG)pr but Γ itself fails to satisfy (BG).
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Where do we go from there?

Other conditions. SS-rigidity and CSP follow from weaker

conditions.

Let Γ(n) be (normal) subgroup generated by nth powers.

(PG) there exist c, k such that |Γ/Γ(n)| 6 cnk for all n,

or even weaker condition

(PG)’ for any m and a prime p there exist c, k such that
|Γ/Γ(mpα)| 6 cpkα for all α.

For SLn(Z), n > 3, condition (PG)’ can be verified by purely

algebraic computations w/o using any number-theoretic results.

(PG)’ can also be analyzed by computer-based experiments.
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Where do we go from there?

Problem 1

Let Γ be an S-arithmetic subgroup of a simple algebraic
group G over a number field K. Prove that if ∑

v∈S
rkKv G > 2

then Γ satisfies (PG)’.

Amalgams. Γ = SL2(Z[1/p]) is an amalgamated product

Γ = Γ1 ∗Γ0 Γ2, [Γ1 : Γ0] = [Γ2 : Γ0] = p + 1,

Γ1 ' Γ2 ' SL2(Z) (v. free). Γ has (BG).

Consider Γ = G(Z[1/p, 1/q]) where G = SL(1, H), H algebra of

Hamiltonian quaternions over Q, p, q odd primes.

It has a similar presentation as an amalgamated product but

does not have (BG).
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Where do we go from there?

Problem 2

Give a verifiable condition for amalgamated products
Γ = Γ1 ∗Γ0 Γ2 to have (BG) or to satisfy (PG)’.

Grigorchuk and Fujiwara gave necessary conditions for

amalgamated products to have (BG) but these do not

apply to above examples.

General question. Do all examples of “semi-simple” linear

groups with (BG) involve S-arithmetic groups in an essential

way?

Is this true for those linear groups that are nontrivial

amalgamated products?
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