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Abstract

Let f be a nondegenerate quadratic form in n � 5 variables over a number field K and let S

be a finite set of valuations of K containing all Archimedean ones. We prove that if the Witt index
of f is � 2 or it is 1 and S contains a non-Archimedean valuation, then the S-arithmetic subgroups of
SOn(f ) have bounded generation. These groups provide a series of examples of boundedly generated
S-arithmetic groups in isotropic, but not quasi-split, algebraic groups.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

An abstract group Γ is said to have bounded generation (abbreviated (BG)) if there
exist elements γ1, . . . , γt ∈ Γ such that Γ = 〈γ1〉 · · · 〈γt 〉, where 〈γi〉 is the cyclic sub-
group generated by γi . Such groups are known to have a number of remarkable properties:
the pro-p completion Γ̂ (p) is a p-adic analytic group for every prime p [8,12]; if Γ in
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addition satisfies condition (Fab)1 then it has only finitely many inequivalent completely
reducible representations in every dimension n over any field (see [14,23,25] for represen-
tations in characteristic zero, and [1] for arbitrary characteristic); if Γ is an S-arithmetic
subgroup of an absolutely simple simply connected algebraic group over a number field,
then Γ has the congruence subgroup property [15,20]. There are reasons to believe that
the class of groups having (BG) is sufficiently broad, in particular it most probably con-
tains all higher rank lattices in characteristic zero (note that there are also simple, hence
nonlinear, infinite boundedly generated groups [16]). Unfortunately, bounded generation
of lattices is known only in very few cases. First, it was noted that the results on factoring a
unimodular matrix over an arithmetic ring as a product of a bounded number of elementary
matrices [6,7,13,17,31] imply bounded generation of the corresponding unimodular groups
(notice, however, that the results on “bounded factorization” do not extend to “nonarith-
metic” Dedekind rings [29]). Later, Tavgen [28] showed that every S-arithmetic subgroup
of a split or quasi-split algebraic group over a number field K of K-rank � 2 is bound-
edly generated. However, until recently there were no examples of boundedly generated
S-arithmetic groups in algebraic groups that are not split or quasi-split. The goal of this
paper is to establish bounded generation of a large family of S-arithmetic subgroups in
isotropic orthogonal groups.

Main Theorem. Let f be a nondegenerate quadratic form over a number field K in n � 5
variables, S be a finite set of valuations of K containing all Archimedean ones. Assume that
either the Witt index of f is � 2 or it is one and S contains a non-Archimedean valuation.
Then any S-arithmetic subgroup of SOn(f ) has bounded generation.

This result was announced with a sketch of proof in [9] for the case where the Witt index
of f is � 2. The argument in [9] boiled down to reducing the general case to n = 5 where
the group is split, so one can use the result of Tavgen [28]. Unfortunately, this argument
does not immediately extend to the situation where the Witt index is one due to some
technical problems, but mainly because of the fact that the resulting special orthogonal
group in dimension n = 5 is no longer split and bounded generation of its S-arithmetic
subgroups has not been previously established. At the same time, the method used in [9]
does not allow one to reduce n = 5 to n = 4 where the orthogonal group has type A1 × A1

so one can apply the known results for SL2. In the present paper, the method of [9] is
modified in order to overcome the difficulties noted above. Our primary objective was to
treat the case n = 5, but it turned out that the resulting argument applies in all dimensions
and in fact simplifies the proof given in [9].

Now, we explain briefly how the proof of the Main Theorem goes. To facilitate the use
of strong approximation, we will argue for the spin group G = Spinn(f ) rather than for
the special orthogonal group SOn(f ); notice that (BG) of S-arithmetic subgroups in one of
them implies the same property for the other—see Lemma 5.2. We consider the standard

1 We recall that condition (Fab) for Γ means that every subgroup of finite index Γ1 of Γ has finite abelianization
Γ ab = Γ1/[Γ1,Γ1].
1
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representation of G on the n-dimensional quadratic space and, after choosing appropriately
two anisotropic orthogonal vectors a, b ∈ Kn, analyze the product map

P := G(a) × G(b) × G(a) × G(b)
μ−→ G,

where G(a) and G(b) denote the stabilizers of a and b, respectively. The proof of (BG)
is reduced from dimension n to dimension n − 1 by proving that either μ(PO(S)) or a
product of its several copies contains a subset of GO(S) open with respect to the topology
defined by a certain finite set of valuations (see Section 5 for precise formulations). To
achieve this, we construct an auxiliary variety Z and factor μ as a product of two regular
maps φ :P → Z and ψ :Z → G, see Section 2. We then establish a local–global principle
for the fibers of φ (see Section 3), and finally make sure that the relevant local conditions
are satisfied. Eventually, this process enables us to descend either to a 5-dimensional form
of Witt index two or to a 4-dimensional isotropic form. So, to complete the argument it
remains to observe that (BG) of S-arithmetic subgroups is a result of Tavgen [28] in the
first case, and follows from the known results for SL2 [7,13,17,31] in the second case. It
appears that some parts of the argument, particularly the method of factoring a sizable set
of S-integral transformations of a quadratic lattice as a product of transformations of sub-
lattices having smaller rank, are of independent interest and may have other applications.

2. Preliminaries

In this section, K will denote an arbitrary field of characteristic �= 2. Let f be a non-
degenerate quadratic form over K of dimension n � 5. Given an extension E/K , we let
iE(f ) denote the Witt index of f over E, and we will write iv(f ) instead of iKv (f ) if K

is a number field and v is a valuation of K . Throughout the paper, we will assume that
iK(f ) � 1, i.e., f is K-isotropic. We realize f on an n-dimensional vector space W over
K and let (· | ·) denote the associated bilinear form. We also fix a basis e1, e2, . . . , en of W

in which f looks as follows:

f (x1, . . . , xn) = x1x2 + α3x
2
3 + · · · + αnx

2
n, (2.1)

and set a = en, b = en−1.
Next, we need to introduce some algebraic varieties and morphisms between them.

Consider W = W ⊗K �, where � is a “universal domain,” and extend f and (· | ·) to W. Let
G denote the spin group Spinn(f ) associated with W, regarded as an algebraic K-group
(naturally) acting on W. For a vector w ∈ W, G(w) will denote its stabilizer, and we will
write G(w1,w2) for G(w1)∩G(w2), etc. We will be working with the following algebraic
K-varieties:

P = G(a) × G(b) × G(a) × G(b),

X = {
s ∈ W

∣∣ f (s) = f (a)
}
, Y = {

(g, s) ∈ G × X
∣∣ (

s | g(b)
) = 0

}
,

Z = {
(g, s, t) ∈ Y × W

∣∣ (t | a) = 0, f (t) = f (b), (s | t) = 0
}
,
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and the following morphisms:

μ :P → G, μ(x, y, z,u) = xyzu,

φ :P → Z, φ(x, y, z,u) = (
xyzu, xy(a), xy(b)

)
,

ε :Z → Y, ε(g, s, t) = (g, s),

ν :Z → X, ν(g, s, t) = s.

We notice that the image of φ is indeed contained in Z as(
xy(a) | xyzu(b)

) = (
a | zu(b)

) = (
z−1(a) | b) = (a | b) = 0,

hence (xyzu, xy(a)) ∈ Y , and also(
xy(b) | a) = (

b | x−1(a)
) = (b | a) = 0.

The proof of the Main Theorem hinges on the fact that the product morphism μ :P → G

can be factored as μ = ψ ◦ φ, where

ψ :Z → G, ψ(g, s, t) = g.

Proposition 2.1.

(i) For every g ∈ GK , ψ−1(g)K �= ∅.
(ii) For every ζ ∈ ZK , φ−1(ζ )K �= ∅.

Consequently, μ(PK) = GK .

Proof. (i) If g(b) = ±b, one easily verifies that (g, a, b) ∈ ψ−1(g)K . So, we may assume
that g(b) �= ±b. Set

u′ = (g(b) | b)

f (b)
b.

Being isotropic, the space 〈a, b〉⊥ contains a nonzero vector u′′ such that f (u′′) = f (b) −
f (u′). Then the vector u := u′ + u′′ satisfies the following conditions:

(u | a) = 0, (u | b) = (
g(b) | b)

and f (u) = f (b).

Since g(b) �= ±b, the last two conditions imply that 〈u,b〉 and 〈g(b), b〉 are isometric
2-dimensional subspaces of W , so by Witt’s theorem there exists σ ∈ On(f ) such that
σ(u) = g(b) and σ(b) = b. Then (

σ(a) | b) = (a | b) = 0
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and (
σ(a) | g(b)

) = (
a | σ−1(g(b)

)) = (a | u) = 0,

implying that (g, σ (a), b) ∈ ψ−1(g)K .
(ii) Suppose that ζ = (g, s, t) ∈ ZK . Since (t | a) = 0, the vectors t and a are linearly

independent. As f (t) = f (b), by Witt’s theorem there exists ρ ∈ On(f ) such that

ρ(b) = t and ρ(a) = a. (2.2)

In fact, one can always find such a ρ in O′
n(f ), the kernel of the spinor norm θ on SOn(f ).

Indeed, if detρ = −1, we can pick an anisotropic c ∈ W orthogonal to both a and b,
and replace ρ with ρτc, where τc is the reflection associated with c, which allows us to
assume that ρ ∈ SOn(f ). Furthermore, since the space 〈a, b〉⊥ is isotropic, there exists
δ ∈ SOn(f )(a, b) such that θ(δ) = θ(ρ) (see [2, Theorem 5.18]). Then we can replace ρ

with ρδ−1 ∈ O′
n(f ).

Arguing similarly, we find η ∈ O′
n(f ) such that

η(a) = s and η(b) = t (2.3)

and σ ∈ O′
n(f ) such that

σ(a) = s and σ(b) = g(b). (2.4)

Since the elements ρ, η, and σ have spinor norm one, they are images under the canoni-
cal isogeny π : Spinn(f ) → SOn(f ) of suitable elements ρ̃, η̃, σ̃ ∈ GK = Spinn(f ). Set
x = ρ̃, y = ρ̃−1η̃, z = η̃−1σ̃ , and u = (xyz)−1g. Then (x, y, z,u) ∈ PK and xyzu = g.
Moreover, xy(a) = s and xy(b) = t , which shows that φ(x, y, z,u) = ζ , as required. �
Remark. It follows from Proposition 2.1 that GK = G(a)KG(b)KG(a)KG(b)K . For clas-
sical groups, decompositions of this kind were introduced by M. Borovoi [4]. Our proof of
the Main Theorem is based on the analysis of the Borovoi decomposition for the group of
S-integral points. In [9] we used the Borovoi decomposition involving three factors, G(a),
G(b), and G(a), but as we will see, the decomposition with four factors allows one to
bypass some technical difficulties and eventually leads to a more general result.

The following properties of the morphisms introduced above will be used in the sequel.

Lemma 2.2. The morphisms φ :P → Z and ε :Z → Y are surjective. Consequently, if
charK = 0, there exists a Zariski K-open set P0 ⊂ P such that for h ∈ P0, the points φ(h)

and (ε ◦ φ)(h) are simple on Z and Y , respectively, and the differentials dhφ :T (P )h →
T (Z)φ(h), dφ(h)ε :T (Z)φ(h) → T (Y )(ε◦φ)(h), and dhμ :T (P )h → T (G)μ(h) are surjective.

Proof. It follows from Proposition 2.1 that φ :P → Z and μ :P → G are surjective. Now,
given (g, s) ∈ Y , over an algebraically closed field one can always find t ∈ 〈a, s〉⊥ such that
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f (t) = f (b), whence the surjectivity of ε :Z → Y . The rest of the lemma follows from a
well-known result about dominant separable morphisms (see, for example, [3, Chapter AG,
Theorem 17.3]) and the irreducibility of P . �
Lemma 2.3. Set η = ν ◦ φ. Then η(PE) = XE for any extension E/K .

Proof. It is enough to show that φ(PE) = ZE and ν(ZE) = XE , the first assertion being
part (ii) of Proposition 2.1 in which K is replaced with E. For the second assertion, let
s ∈ XE . Then by Witt’s theorem there exists g ∈ SOn(f )E such that g(a) = s. Since the
orthogonal complement to a in W ⊗K E is isotropic, arguing as in the proof of part (ii)
of Proposition 2.1, we see that g can be chosen to be of the form g = π(g̃) for some
g̃ ∈ GE . If s = ±a, then one immediately verifies that (g̃, s, b) ∈ ν−1(s)E . Otherwise, the
space 〈a, s〉 is 2-dimensional. Since the orthogonal complement to 〈a, b〉 in W ⊗K E is
isotropic, we can argue as in the proof of part (i) of Proposition 2.1 to find w ∈ W ⊗K E,
w /∈ 〈a, b〉, satisfying

(w | b) = 0, (w | a) = (s | a), and f (w) = f (a).

By Witt’s theorem, it follows from the last two conditions that there exists σ ∈ SOn(f )E
such that σ(w) = s and σ(a) = a. Set t = σ(b) ∈ W ⊗K E. Then

(t | a) = (
σ(b) | σ(a)

) = (b | a) = 0

and

(t | s) = (
σ(b) | g(a)

) = (
b | σ−1g(a)

) = (b | w) = 0

whence (g, s, t) ∈ ν−1(s)K , as required. �

3. Fibers of the morphism φ

From now on, K will denote a number field. We let V K , V K∞ , and V K
f denote the set of

all inequivalent valuations of K , the subsets of Archimedean, and non-Archimedean val-
uations, respectively. As usual, for v ∈ V K , Kv denotes the completion of K with respect
to v, and for v ∈ V K

f , Ov denotes the ring of integers in Kv (by convention, Ov = Kv for

v ∈ V K∞ ). Given a finite subset S of V K containing V K∞ , we let O(S) denote the ring of
S-integers in K , i.e.,

O(S) = {x ∈ K | x ∈Ov for all v /∈ S}.

Finally, AK,S will denote the ring of S-adeles of K (adeles without the components corre-
sponding to the valuations in S), and AK,S(S) := ∏

v /∈S Ov will be the ring of S-integral
S-adeles.
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Now, suppose that f is a quadratic form as in Section 2. For a real v ∈ V K∞ , we let
(n+

v , n−
v ) denote the signature of f over Kv = R. By scaling f (which does not affect the

orthogonal group), we can achieve that n+
v � n−

v (and consequently n+
v � 3 as n � 5) for

all real v ∈ V K∞ . Then one can choose a basis e1, . . . , en of W = Kn so that in the corre-
sponding expression (2.1) for f , the coefficients αi belong to O(S) for all i = 3, . . . , n,
and, in addition, αn−1, αn > 0 in Kv = R for all real v ∈ V K∞ (these conventions will be
kept throughout the rest of the paper).

As we mentioned in the previous section, our goal is to find a version of the Borovoi
decomposition for the group of S-integral points. Towards this end, in this section we
will develop some conditions on ζ ∈ ZO(S) which ensure that φ−1(ζ )O(S) �= ∅. To avoid
any ambiguity, we would like to stipulate that S-integral points in the space W and its
(closed) subvarieties will be understood relative to the fixed basis e1, . . . , en, and GO(S) by
definition consists of those g ∈ GK for which π(g) ∈ SOn(f ) is represented in the fixed
basis by a matrix with entries in O(S) (of course, it is possible to realize GO(S) as the
group of S-integral points in the usual sense with respect to some faithful representation
of G, but we will not need this realization). The same conventions apply to Ov-points for
v /∈ S.

The following set of valuations plays a prominent role in our argument:

V0 =
(

n⋃
i=3

V (αi)

)
∪ V (2),

where for α ∈ K×, we set V (α) = {v ∈ V K \ S | v(α) �= 0}.

Theorem 3.1. Let ζ ∈ ZO(S). Suppose φ−1(ζ )Ov
�= ∅ for all v ∈ V0. Then φ−1(ζ )O(S) �= ∅.

We begin by establishing the following local–global principle for the fibers of φ.

Lemma 3.2. Let ζ ∈ ZO(S). Suppose that φ−1(ζ )K �= ∅ and φ−1(ζ )Ov
�= ∅ for all v /∈ S.

Then φ−1(ζ )O(S) �= ∅.

Proof. Let ζ = (g, s, t) and H = G(a,b). Being the spinor group of the space 〈a, b〉⊥,
which is K-isotropic and has dimension � 3, the group H has the property of strong ap-
proximation with respect to S, i.e. (diagonally embedded) HK is dense in HAK,S

(see [18,
104:4], [21, Theorem 7.12]). We now observe that φ−1(ζ ) is a principal homogeneous
space of the group H × H × H . More precisely, the equation

(h1, h2, h3) · (x, y, z,u) = (
xh−1

1 , h1yh−1
2 , h2zh

−1
3 , h3u

)
(3.1)

defines a simply transitive action of H × H × H on φ−1(ζ ). Indeed, one immediately
verifies that for any (x, y, z,u) ∈ φ−1(ζ ) and any (h1, h2, h3) ∈ H × H × H , the right-
hand side of (3.1) belongs to φ−1(ζ ), and that (3.1) defines an action. Now, suppose that
(xi, yi, zi , ui) ∈ φ−1(ζ ), where i = 1,2. Set

h1 = x−1x1, h2 = (x2y2)
−1(x1y1), h3 = (x2y2z2)

−1(x1y1z1).
2
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Then the conditions xi(a) = a and xi(b) = t for i = 1,2 imply that h1 ∈ H . Similarly,
from (xiyi)(a) = s and (xiyi)(b) = t we derive that h2 ∈ H , and from (xiyizi)(a) = s and
(xiyizi)(b) = g(b) that h3 ∈ H . In view of our construction, to prove that

(x, y, z,u) := (h1, h2, h3) · (x1, y1, z1, u1)

coincides with (x2, y2, z2, u2), it remains to observe that

u = h3u1 = (x2y2z2)
−1(x1y1z1)u1 = (x2y2z2)

−1g = u2,

so our claim follows.
Now, fix (x, y, z,u) ∈ φ−1(ζ )K . Then

Σ = {
(h1, h2, h3) ∈ HAK,S

× HAK,S
× HAK,S

∣∣ (h1, h2, h3) · (x, y, z,u) ∈ φ−1(ζ )AK,S(S)

}
is a nonempty open subset of HAK,S

× HAK,S
× HAK,S

. By strong approximation for H ,
there exists (h1, h2, h3) ∈ (HK × HK × HK) ∩ Σ , and then

(h1, h2, h3) · (x, y, z,u) ∈ φ−1(ζ )K ∩ φ−1(ζ )AK,S(S) = φ−1(ζ )O(S)

is a required S-integral point. �
To finish the proof of Theorem 3.1 it now remains to prove the following.

Lemma 3.3. Let ζ ∈ ZO(S). Then φ−1(ζ )Ov
�= ∅ for all v /∈ S ∪ V0.

The proof of Lemma 3.3 requires a version of Witt’s theorem for local lattices which we
state now. Fix v ∈ V K

f , and let w1, . . . ,wn be an arbitrary basis of Wv = W ⊗K Kv in which
the matrix F of the quadratic form f has entries in Ov . Consider the Ov-lattice Lv with
the basis w1, . . . ,wn, its reduction L̄(v) = Lv/pvLv modulo pv (which is an n-dimensional
vector space over kv = Ov/pv) and the corresponding reduction map Lv → L̄(v), l �→ l̄.
We also let

On(f )
Lv

Ov
= {

σ ∈ On(f )
∣∣ σ(Lv) = Lv

}
be the stabilizer of Lv .

Theorem 3.4 (Witt’s theorem for local lattices, cf. [10,11]). Suppose that the systems
{a1, . . . , am} and {b1, . . . , bm} of vectors in Lv satisfy the following properties:

(i) (ai | aj ) = (bi | bj ) for all 1 � i � j � m;
(ii) the systems {ā1, . . . , ām} and {b̄1, . . . , b̄m} obtained by reduction modulo pv are both

linearly independent over kv .

If detF ∈ O×
v and v(2) = 0, then there exists σ ∈ On(f )

Lv

Ov
such that σ(ai) = bi for all

i = 1, . . . ,m. Moreover, if 2m + 1 � n then such a σ can be found in SOn(f )
Lv .
Ov
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The earlier version of this paper contained a proof of Theorem 3.4 for lattices
over discrete valuation rings based on the standard approximation procedure due to
Hensel. The anonymous referee pointed out that the result actually holds for arbitrary
local rings and can be derived from [11, Satz 4.3] or [10, Theorem 1.2.2]. So, we
followed the referee’s suggestion and deleted our argument (which is still available
at http://www.arxiv.org/abs/math.GR/0508480). We would like to thank the referee for
his/her comments.

Proof of Lemma 3.3. We mimic the proof of Proposition 2.1(ii) except that instead of the
usual Witt’s theorem we use Theorem 3.4. We let L denote the O(S)-lattice with the basis
e1, . . . , en which was fixed earlier, and for v /∈ S we set Lv = L ⊗O(S) Ov . We claim that
for every v ∈ V K \ (S ∪ V0), each of the following three pairs (t̄ (v), ā(v)), (s̄(v), t̄ (v)), and
(s̄(v), g(b)(v)) (where ¯(v) denotes the reduction map modulo pv) is linearly independent
over kv . For this we notice that f (s) = f (a) = αn and f (t) = f (b) = αn−1 (cf. (2.1)), and
because v /∈ V0 ∪S, both αn−1 and αn are invertible in Ov . Now, if for example, t̄ (v) = λā(v)

with λ ∈ kv , then the condition (t | a) = 0 implies that

0̄ = (
t̄ (v) | ā(v)

) = λ
(
ā(v) | ā(v)

) = λᾱn.

So, λ = 0. But t̄ (v) �= 0̄ as ᾱn−1 �= 0̄, a contradiction. All other cases are considered sim-
ilarly using the orthogonality relations in the definition of Z. Then using Theorem 3.4
we find elements ρ, η, and σ in SOn(f )

Lv

Ov
satisfying conditions (2.2)–(2.4). Since

v /∈ V0 ∪ S, the lattice Lv is unimodular, and therefore the spinor norm of all three ele-
ments belongs to O×

v K×2
v [18, 92:5]. On the other hand, the lattice Mv := Lv ∩ 〈a, b〉⊥

(which has e1, . . . , en−2 as its Ov-basis) is unimodular of rank � 3, implying that
θ(SOn(f )(a, b)

Mv

Ov
) = O×

v K×2
v [18, 92:5]. So, arguing as in the proof of Proposition 2.1(ii),

we can modify the elements ρ, η, and σ so that they all have trivial spinor norm. Then they
can be lifted to elements ρ̃, η̃, and σ̃ in GOv

, and one easily verifies that the quadruple
(x, y, z,u), where x = ρ̃, y = ρ̃−1η̃, z = η̃−1σ̃ , and u = (xyz)−1g, belongs to φ−1(ζ )Ov

,
proving the lemma. �

The proof of Theorem 3.1 is now complete.

4. The quadric Qs

To complete the proof of the Main Theorem in the next section, we need to figure out
when for a given g ∈ GO(S) one can choose s, t ∈ L := O(S)e1 + · · · +O(S)en such that
the triple ζ = (g, s, t) belongs to Z and satisfies the assumptions of Theorem 3.1. We
notice that if s has already been chosen so that (g, s) ∈ Y then the t’s for which (g, s, t)

belongs to Z lie on the following quadric:

Qs = {
x ∈ 〈s, a〉⊥ ∣∣ f (x) = f (b)

}
.
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So, in this section we will examine some arithmetic properties of Qs for an arbitrary s ∈ W

such that the space 〈s, a〉 is 2-dimensional and nondegenerate.

Lemma 4.1.

(i) For every v ∈ V K∞ , (Qs)Kv �= ∅.
(ii) If n � 6, then (Qs)K �= ∅.

(iii) Suppose that s ∈ L. Then for every v /∈ S ∪ V0, (Qs)Ov
�= ∅.

Proof. (i) This is obvious if v is complex, so suppose that v is real. Then by our construc-
tion n+

v � 3, implying that the restriction of f to 〈s, a〉⊥ has at least one positive square.
Since f (b) = αn−1 > 0 in Kv = R, our assertion follows.

(ii) If n � 6 then dim〈s, a〉⊥ � 4. As a nondegenerate quaternary quadratic form over
a (non-Archimedean) local field represents every nonzero element [18, 63:18], we con-
clude that (Qs)Kv �= ∅ for all v ∈ V K

f . Combining this with (i) and applying the Hasse–
Minkowski theorem [18, 66:4], we obtain our claim.

(iii) We will show that there is a unimodular Ov-sublattice M ⊂ Lv := L ⊗O(S) Ov of
rank � 3 containing s and a. Then Lv = M ⊥ M⊥ with M⊥ unimodular of rank � 2. Since
f (b) ∈ O×

v , there exists x ∈ M⊥ such that f (x) = f (b) [18, 92:1b], and then x ∈ (Qs)Ov
,

as required. To construct such an M , we let (s1, . . . , sn) denote the coordinates of s in the
basis e1, . . . , en. Set u = s1e1 +· · ·+sn−1en−1. As u ∈ L and u �= 0, we can write u = πd

v u0
where πv ∈ Ov is a uniformizing element, d � 0 and u0 ∈ Lv \ πvLv . If f (u0) ∈ O×

v ,
then in view of u0 ⊥ a, the sublattice M = Ova + Ovu0 is as desired. Now, suppose that
f (u0) ∈ pv = πvOv . Since the sublattice N = Ova is unimodular we have Lv = N ⊥ N⊥
with N⊥ unimodular; notice that u0 ∈ N⊥. The reduction (N⊥)(v) = N⊥ ⊗Ov

kv being a
nondegenerate quadratic space over kv = Ov/pv , one can find u1 ∈ N⊥ so that the images
of u0 and u1 in (N⊥)(v) form a hyperbolic pair. Then the Ov-sublattice M with the basis a,
u0 and u1 is as required. �
Lemma 4.2.

(i) Suppose that n � 6. Given v ∈ S, there exists an open set Uv ⊂ WKv such that
Uv ∩ X �= ∅ and for any s ∈ W ∩ Uv , the quadric Qs has strong approximation with
respect to S. Moreover, if there exists v ∈ V K∞ with the property iv(f ) � 2, then Qs

has strong approximation with respect to S for any s.
(ii) Suppose that n = 5 and v ∈ S is non-Archimedean. There exists an open subset

Uv ⊂ WKv with the property Uv ∩X �= ∅ such that for s ∈ W ∩Uv one has (Qs)Kv �= ∅
and moreover if (Qs)K �= ∅ then Qs has strong approximation with respect to S.

Proof. (i) It follows from the theorem in Appendix A and Lemma 4.1(ii) that a neces-
sary and sufficient condition for strong approximation in Qs is that (Qs)S = ∏

v∈S(Qs)Kv

be noncompact. If v ∈ V K∞ is such that iv(f ) � 2, then for any s the space 〈s, a〉⊥ is
Kv-isotropic and therefore (Qs)Kv is noncompact, hence our second assertion. For the first
assertion, we observe that the space 〈a, b〉⊥ is K-isotropic by our construction, and be-
sides there exists s0 ∈ 〈a, b〉 such that f (s0) = f (a) and 〈a, s0〉 = 〈a, b〉. The fact that the
subgroup of squares K×2

v is open in K×
v implies that there exists an open set Uv ⊂ WKv
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containing s0 such that for any s ∈ Uv , the spaces 〈s, a〉 and 〈s0, a〉 are isometric over Kv .
Then it follows from Witt’s theorem that the space 〈s, a〉⊥ is Kv-isotropic, so the set Uv is
as required.

(ii) Pick c ∈ W orthogonal to a and b so that f (c) = −f (b), and let U be the orthog-
onal complement in W to a, b, and c. Since dimU = 2 and v is non-Archimedean, the
set of nonzero values of f on U ⊗K Kv consists of more than one coset modulo K×2

v ,
so there exists an anisotropic u ∈ U such that f (u) /∈ −f (c)K×2

v , and then the space
〈c,u〉 is Kv-anisotropic. Pick u′ ∈ U orthogonal to u. Then the space 〈a,u′〉⊥ = 〈b, c,u〉 is
Kv-isotropic (viz., f (b + c) = 0), but the space 〈a, b,u′〉⊥ = 〈c,u〉 is Kv-anisotropic. As
in the proof of (i), we pick s0 ∈ 〈a,u′〉 so that f (s0) = f (a) and 〈a, s0〉 = 〈a,u′〉, and then
find an open subset Uv ⊂ WKv containing s0 such that for any s ∈ Uv the subspaces 〈a, s〉
and 〈a, s0〉 are isometric over Kv . If now s ∈ W ∩ Uv , then it follows from Witt’s theorem
that the space 〈a, s〉⊥ is Kv-isotropic, implying not only that (Qs)Kv �= ∅ but in fact also
that (Qs)Kv is noncompact. Furthermore, if d ∈ (Qs)Kv then the space 〈a, s, d〉⊥ is Kv-
isometric to 〈a, s0, b〉⊥ = 〈a, b,u′〉⊥, hence Kv-anisotropic. Thus, if (Qs)K �= ∅, then by
the theorem in Appendix A, Qs has strong approximation with respect to S. �

5. Proof of the Main Theorem

For convenience of reference we will list some elementary results about groups with
bounded generation.

Lemma 5.1. Let Γ be a group, and Δ be its subgroup.

(i) If [Γ :Δ] < ∞ then bounded generation of Γ is equivalent to bounded generation
of Δ.

(ii) If Γ has (BG) then so does any homomorphic image of Γ .
(iii) If Δ � Γ and both Δ and Γ/Δ have (BG) then Γ also has (BG).

Proof. All these assertions, except for the fact that in (i), (BG) of Γ implies (BG) of Δ,
immediately follow from the definition. A detailed proof of the remaining implication is
given, for example, in [17]. �

It follows from Lemma 5.1(i) that given two commensurable subgroups Δ1 and Δ2
of Γ (which means that Δ1 ∩ Δ has finite index in both Δ1 and Δ2), (BG) of one of them
is equivalent to (BG) of the other. In particular, if G is an algebraic group over a number
field K , then (BG) of one S-arithmetic subgroup of G implies (BG) of all S-arithmetic sub-
groups of G. Furthermore, if π :G1 → G2 is a K-defined isogeny of algebraic K-groups
and Γ is an S-arithmetic subgroup of G1, then (BG) of Γ is equivalent to (BG) of π(Γ ).
Since the latter is an S-arithmetic subgroup of G2 (see, for example, [21, Theorem 5.9]),
we obtain the following.

Lemma 5.2. Let π :G1 → G2 be a K-defined isogeny of algebraic K-groups, where K is
a number field. Then (BG) of one S-arithmetic subgroup in G1 or G2 implies (BG) of all
S-arithmetic subgroups in G1 and G2.
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Applying this lemma to the universal cover Spinn(f )
π→ SOn(f ), we see that to prove

the Main Theorem it is enough to show that for G = Spinn(f ), the group GO(S), defined in
terms of our fixed realization, is boundedly generated. Our argument will use the following
simple observation.

Lemma 5.3. Let Γ be a group, and Δ be its subgroup of finite index. If there exist
γ, γ1, . . . , γs ∈ Γ such that γΔ ⊂ 〈γ1〉 · · · 〈γs〉, then Γ has (BG).

Proof. Let x1, . . . , xn be a system of left coset representatives for Δ in Γ . Then

Γ =
n⋃

i=1

xiΔ ⊂
n⋃

i=1

xi〈γ 〉〈γ1〉 · · · 〈γs〉,

implying that Γ = 〈x1〉 · · · 〈xn〉〈γ 〉〈γ1〉 · · · 〈γs〉. �
To proceed with the proof of the Main Theorem, we need to introduce some additional

notations. For g ∈ G, the fiber over g of the projection Y → G can (and will) be identified
with

Bg = {
s ∈ W

∣∣ (
s | g(b)

) = 0, f (s) = f (a)
}; (5.1)

notice that Bg is a quadric in an (n−1)-dimensional vector space (= g(b)⊥). Furthermore,
for v ∈ V K we denote

Pv =
{

(P0)Kv if v ∈ S,

(P0)Kv ∩ POv
if v /∈ S,

where P0 ⊂ P is the Zariski-open set introduced in Lemma 2.2, and set Gv = μ(Pv). It
follows from the surjectivity of dhμ at all points h ∈ P0 (see Lemma 2.2) and the Implicit
Function Theorem [27, pp. 83–85] that Gv is open in GKv .

Proposition 5.4. If n � 6 and iK(f ) � 2 then

GO(S) ∩
∏
v∈V0

Gv ⊂ μ(PO(S)).

Proof. Fix g ∈ GO(S) ∩ ∏
v∈V0

Gv . Then for each v ∈ V0, one can pick hv ∈ Pv so that
μ(hv) = g, hence φ(hv) = (g, sv, tv). It again follows from Lemma 2.2 and the Implicit
Function Theorem that the map (ε ◦ φ)v is open at hv , implying that one can pick an open
neighborhood Σv ⊂ (Bg)Ov

of sv satisfying

(g,Σv) ⊂ ε
(
φ(Pv)

)
. (5.2)

Clearly, g(a) ∈ Bg , in particular, (Bg)K �= ∅. Furthermore, the orthogonal complement
of g(b) is isometric to the orthogonal complement of b, hence K-isotropic, so it follows
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from (5.1) that (Bg)S is noncompact. Since n − 1 � 5, by the theorem in Appendix A, Bg

has strong approximation with respect to S, and therefore one can find

s ∈ (Bg)O(S) ∩
∏
v∈V0

Σv. (5.3)

According to Lemma 4.2(i), the corresponding quadric Qs (see Section 4) has strong ap-
proximation with respect to S. Taking into account that Qs = {t | (g, s, t) ∈ ε−1(g, s)} and
that according to (5.2) and (5.3) one has ε−1(g, s)∩φ(Pv) �= ∅ for all v ∈ V0, we conclude
that there exists t such that

ζ := (g, s, t) ∈ ZO(S) ∩
∏
v∈V0

φ(POv
). (5.4)

Then it follows from Theorem 3.1 that φ−1(ζ )O(S) �= ∅, and therefore g ∈ μ(PO(S)), prov-
ing the proposition. �

An analog of Proposition 5.4 for the case, where iK(f ) = 1 requires a bit more work,
especially if n = 5.

Proposition 5.5. Suppose that n � 5, iK(f ) = 1, and S contains a non-Archimedean val-
uation. Then

GO(S) ∩
∏
v∈V0

Gv ⊂ μ(PO(S))μ(PO(S))μ(PO(S))
−1. (5.5)

Proof. By our assumption, one can pick in S an Archimedean valuation v1 and a non-
Archimedean valuation v2. Let Uv2 ⊂ WKv2

be an open subset with the properties described
in Lemma 4.2, i.e., Uv2 ∩ X �= ∅ and for any s ∈ Uv2 ∩ XK , the quadric Qs has strong
approximation with respect to S if either n � 6 or n = 5 and (Qs)K �= ∅; in addition, for
such s one can guarantee that (Qs)Kv �= ∅ if n = 5. It now follows from Lemma 2.3 that
for the map η introduced therein, the set

P ′
v2

= η−1(Uv2 ∩ XKv2
) ∩ (P0)Kv2

is a nonempty open subset of PKv2
. Then as above we conclude that G′

v2
:= μ(P ′

v2
) is a

nonempty open subset of GKv2
.

By strong approximation, PO(S) is dense in PS\{v1} × ∏
v∈V0

POv
, which in view of

Proposition 2.1 implies that the closure of μ(PO(S)) in G(S∪V0)\{v1} contains GS\{v1} ×∏
v∈V0

Gv . Since the Gv’s are open, we conclude that the closure of

B := μ(PO(S))μ(PO(S))
−1 in G(S∪V0)\{v1}

contains GS\{v1} × ∏
v∈V0

Ev for some open neighborhoods of the identity Ev ⊂ GKv ,
v ∈ V0. It follows that given an element g belonging to the left-hand side of inclusion (5.5),
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there exists h ∈ B−1 such that

gh ∈
( ∏

v∈(V0∪S)\{v1,v2}
Gv

)
× G′

v2
.

Thus, it is enough to show that

GO(S) ∩
[( ∏

v∈(V0∪S)\{v1,v2}
Gv

)
× G′

v2

]
⊂ μ(PO(S)). (5.6)

Fix a g belonging to the left-hand side of the inclusion (5.6). As in the proof of Proposi-
tion 5.4, we can find open sets Σv ⊂ (Bg)Ov

for v ∈ (S ∪ V0) \ {v1, v2} such that

(g,Σv) ⊂ ε
(
φ(Pv)

)
and also an open set Σ ′

v2
⊂ (Bg)Kv2

such that(
g,Σ ′

v2

) ⊂ ε
(
φ
(
P ′

v2

))
.

As in the proof of Proposition 5.4, we use the theorem in Appendix A to conclude that Bg

has strong approximation with respect to {v1}, so one can find

s ∈ (Bg)O(S) ∩
[( ∏

v∈(S∪V0)\{v1,v2}
Σv

)
× Σ ′

v2

]
.

Then for each v ∈ (S ∪ V0) \ {v1}, we have ε−1(g, s)Kv �= ∅ implying that (Qs)Kv �= ∅.
Furthermore, the non-emptiness of (Qs)Kv for v = v1 follows from Lemma 4.1(i) as v1
is Archimedean, and for v /∈ S ∪ V0—from Lemma 4.1(iii) as s ∈ L. So, by the Hasse–
Minkowski theorem [18, 66:4], (Qs)K �= ∅. Since s ∈ Uv2 , by Lemma 4.2, Qs has strong
approximation with respect to S in all cases. The rest of the argument repeats verbatim
the corresponding part of the proof of Proposition 5.4: we use strong approximation for
Qs to find a t for which the triple ζ = (g, s, t) satisfies (5.4); then by Theorem 3.1,
φ−1(ζ )O(S) �= ∅. This implies that g ∈ μ(PO(S)), and the proposition follows. �
Proof of the Main Theorem. As we explained in the beginning of this section, it is enough
to establish bounded generation of GO(S). For this, we will argue by induction on n. First,
we will consider the case iK(f ) � 2. In this case we can assume without any loss of
generality that the basis e1, . . . , en is chosen so that the space spanned by e1, . . . , e4 has
Witt index two. If n = 5, then the group G is K-split, so bounded generation of GO(S) is
a result of Tavgen [28]. For n � 6, it follows from Proposition 5.4 that μ(PO(S)) contains
an open subset of GO(S), and since congruence subgroups form a base of neighborhoods
of the identity, there exists a congruence subgroup Δ ⊂ GO(S) and an element h ∈ GO(S)

such that

hΔ ⊂ μ(PO(S)) = G(a)O(S)G(b)O(S)G(a)O(S)G(b)O(S).
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Since both G(a)O(S) and G(b)O(S) are boundedly generated by induction hypothesis and
Δ has finite index in GO(S), bounded generation of the latter follows from Lemma 5.3.

Now, suppose that iK(f ) = 1 but S contains a non-Archimedean valuation. Here the
induction starts with n = 4, in which case G is known to be K-isomorphic to either
SL2 × SL2 or RE/K(SL2) for a suitable quadratic extension E/K (see, for example,
[2, Theorems 5.21 and 5.22]). In either case, since S contains a non-Archimedean valu-
ation, bounded generation of GO(S) follows from bounded generation of SL2(A), where A

is a ring of S-integers in a number field having infinitely many units [7,31]. For n � 5, the
argument is completed as above using Proposition 5.5 instead of Proposition 5.4. �
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Appendix A

The purpose of this appendix is to formulate and prove the result on strong approxima-
tion in quadrics that was used in the proof of the Main Theorem. Let q = q(x1, . . . , xm)

be a nondegenerate quadratic form in m � 3 variables over a number field K , and Q be a
quadric given by the equation q(x1, . . . , xm) = a where a ∈ K×. Fix a nonempty subset S

of V K .

Theorem. Assume that QK �= ∅ and QS := ∏
v∈S QKv is noncompact.

(i) If m � 4 then Q has strong approximation with respect to S.
(ii) If m = 3 then Q has strong approximation with respect to S if and only if the follow-

ing condition holds: Let x ∈ QK and let g be the restriction of q to the orthogonal
complement of x in K3; then either g is K-isotropic, or g is K-anisotropic and there
exists v ∈ S for which g is Kv-anisotropic and additionally q is Kv-isotropic if v is
real.

Assertion (i) is proved, for example, in [18, 104:3], where it is then used to establish
strong approximation for Spinm(q). We have not found, however, a proof of assertion (ii)
in the literature. As was pointed out in [22], both facts can be derived from the analysis of
strong approximation in the homogeneous spaces G/H which relies on the strong approx-
imation theorem for algebraic groups and results on Galois cohomology. Such analysis
for the cases where G is a connected simply connected K-group and H is either its con-
nected simply connected K-subgroup or a K-subtorus (which are sufficient for the proof
of the theorem) was given in [22]; the case of an arbitrary reductive H was independently
considered in [5]. In our exposition we will follow [24].
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First, we establish the following criterion of strong approximation which easily trans-
lates into the language of Galois cohomology.

Lemma A.1. Let X = G/H , where G is a connected K-group and H is its connected
K-subgroup. If G has strong approximation with respect to S then the closure of XK

in XA(S) coincides with GA(S)XK = {gx | g ∈ GA(S), x ∈ XK }. Thus, X has strong ap-
proximation with respect to S if and only if the map of the orbit spaces GK \ XK →
GA(S) \ XA(S) is surjective.

Proof. It follows from the Implicit Function Theorem that for every v ∈ V K and any
xv ∈ XKv , the orbit GKvxv is open in XKv [21, Section 3.1, Corollary 2]. Moreover, for al-
most all v ∈ V K

f , the group GOv
acts on XOv

transitively (this is a consequence of Hensel’s

lemma and the fact that for almost all v there exist smooth (irreducible) reductions G(v),
H(v) and X(v) = G(v)/H(v), so G(v) acts on X(v) transitively by Lang’s theorem (see, for
example, [3, Section 16]). Thus, for any x ∈ XA(S), the orbit GA(S)x is open in XA(S). We
conclude that the complement of GA(S)XK in XA(S) is open, hence GA(S)XK is a closed
subset of XA(S) containing XK . On the other hand, strong approximation in G implies that
XK = GKXK is dense in GA(S)XK , and all our assertions follow. �

To give a cohomological interpretation, we recall that for any field extension P/K , there
is a natural bijection

GP \ XP � Ker
(
H 1(P,H) → H 1(P,G)

)
(see [26] for the details and unexplained notations). In the adelic setting, for any finite
Galois extension L/K , there is a bijection

GA(S) \ (
XA(S) ∩ α(GA(S)⊗KL)

) � Ker
(
H 1(L/K,HA(S)⊗KL) → H 1(L/K,GA(S)⊗KL)

)
,

where α :G → G/H = X is the canonical map. Given an algebraic K-group D, we let
H 1(K,D)A(S) denote the direct limit of the sets H 1(L/K,DA(S)⊗KL) taken over all finite
Galois extensions L/K ; we notice that if D is connected then for a fixed L/K the set
H 1(Lw/Kv,DO(Lw)) is trivial for almost all v ∈ V K

f , where (w | v), so H 1(K,D)A(S) can

be identified with the set
∏′

v /∈S H 1(Kv,D) consisting of (cv) ∈ ∏
v /∈S H 1(Kv,D) such that

cv is trivial for almost all v (see [21, Section 6.2]). With these notations, there is a bijection

GA(S) \ XA(S) � Ker
(
H 1(K,H)A(S) → H 1(K,G)A(S)

)
.

Now we can reformulate Lemma A.1 as follows.

Corollary A.2. Let X = G/H as above. Assume that G has strong approximation with re-
spect to S. Then X has strong approximation with respect to S if and only if the natural map

Ker
(
H 1(K,H) → H 1(K,G)

) −→ Ker
(
H 1(K,H)A(S) → H 1(K,G)A(S)

)
is surjective.
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We recall that to have strong approximation with respect to a finite S, an algebraic
group G must be connected and simply connected [21, Section 7.4], so we will assume that
this is the case in the rest of this appendix. The cohomological criterion of Corollary A.2
immediately leads to the following:

Proposition A.3. Let X = G/H where G has strong approximation with respect to S. If H

is connected and simply connected then X also has strong approximation with respect to S.

Proof. Since G and H are both simply connected, H 1(Kv,G) and H 1(Kv,H) are trivial
for all v ∈ V K

f [21, Theorem 6.4]. This means that

Ker
(
H 1(K,H)A(S) → H 1(K,G)A(S)

) =
∏

v∈V K∞\(V K∞∩S)

Ker
(
H 1(Kv,H) → H 1(Kv,G)

)
.

So, the proposition follows from Corollary A.2 and the fact that the map

ψ : Ker
(
H 1(K,H) → H 1(K,G)

) −→
∏

v∈V K

Ker
(
H 1(Kv,H) → H 1(Kv,G)

)
is surjective. This is in fact true for any connected H . Indeed, we have the following com-
mutative diagram:

H 1(K,H)

β

H 1(K,G)

γ∏
v∈V K∞ H 1(Kv,H)

∏
v∈V K∞ H 1(Kv,G)

Since β is surjective [21, Proposition 6.17] and γ is injective (“Hasse principle,” [21, The-
orem 6.6]), the surjectivity of ψ follows. �

Proposition A.3 readily yields assertion (i) of the theorem. Indeed, it follows from
Witt’s theorem that Q is a homogeneous space of G = Spinm(q) so that if x ∈ QK then
Q can be identified with the homogeneous space X = G/H where H = G(x). Clearly,
H = Spinm−1(g), where g is the restriction of q to the orthogonal complement of x; in
particular, H is connected and simply connected for m � 4. Since QS is noncompact, GS

is also noncompact, and hence has strong approximation with respect to S. Thus, strong
approximation for Q ∼= X follows from Proposition A.3. If m = 3 then H = Spin2(g) is a
1-dimensional torus, so to handle this case we need to analyze the cohomological criterion
of Corollary A.2 in the situation where H = T is a K-torus.

So, let T be a K-torus of a connected simply connected K-group G. Fix a finite Galois
extension L/K that splits T . It follows from Hilbert’s Theorem 90 that

H 1(K,T ) = H 1(L/K,T ) and H 1(K,T )A(S) = H 1(L/K,TA(S)⊗ L).

K
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So, the map in Corollary A.2 reduces to the following:

φ : Ker
(
H 1(L/K,T ) → H 1(L/K,G)

)
−→ Ker

(
H 1(L/K,TA(S)⊗KL) → H 1(L/K,GA(S)⊗KL)

)
.

We now let A denote the (full) adelic ring of K . It follows from the Hasse principle for G

that the map γ in the following commutative diagram

H 1(L/K,T )

β

α
H 1(L/K,G)

γ

H 1(L/K,TA⊗KL)
δ

H 1(L/K,GA⊗KL)

is injective, so

β(Kerα) = Imβ ∩ Ker δ. (A.1)

Let CL(T ) = TA⊗KL/TL denote the group of classes of adeles of T over L. The exact
sequence

1 → TL −→ TA⊗KL → CL(T ) → 1

gives rise to the exact cohomological sequence

H 1(L/K,T )
β−→ H 1(L/K,TA⊗KL)

ρ−→ H 1(L/K,CL(T )
)
. (A.2)

Writing A = A(S) × KS where KS = ∏
v∈S Kv and using (A.1) in conjunction with the

exactness of (A.2), we obtain

Imφ = {
x ∈ Ker

(
H 1(L/K,TA(S)⊗KL) → H 1(L/K,GA(S)⊗KL)

) ∣∣ there is

y ∈ Ker
(
H 1(L/K,TKS⊗KL) → H 1(L/K,GKS⊗KL)

)
with ρ(x, y) = 0

}
. (A.3)

Now we are in a position to give a criterion for strong approximation in X = G/T in terms
of properties of the map ρ.

Proposition A.4. Let X = G/T where G is a simply connected K-group and T is a K-sub-
torus of G. Assume that G has strong approximation with respect to S. Then X has strong
approximation with respect to S if and only if

ρ
(
H 1(L/K,TA(S)⊗KL)

) ⊂ ρ
(
Ker

(
H 1(L/K,TKS⊗KL) → H 1(L/K,GKS⊗KL)

))
. (A.4)
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Proof. It follows from (A.3) and Corollary A.2 that all we need to prove is the equality

ρ
(
Ker

(
H 1(L/K,TA(S)⊗KL) → H 1(L/K,GA(S)⊗KL)

))
= ρ

(
H 1(L/K,TA(S)⊗KL)

)
. (A.5)

Notice that for any v ∈ V K
f and its extension w ∈ V L

f , the first cohomology

H 1(L/K,GKv⊗KL) = H 1(Lw/Kv,GLw)

is trivial. This implies that

Ker
(
H 1(L/K,TA(S)⊗KL) → H 1(L/K,GA(S)⊗KL)

)
= Ker

(
H 1(L/K,TKS∞⊗KL) → H 1(L/K,GKS∞⊗KL)

) × H 1(L/K,TA(S∪S∞)⊗KL),

where S∞ = V K∞ \ (V K∞ ∩ S). Thus, to establish (A.5) it suffices to show that for any
v0 ∈ V K∞ there exists v /∈ S ∪ V K∞ such that

ρ
(
H 1(L/K,TKv0 ⊗KL)

) = ρ
(
H 1(L/K,TKv⊗KL)

)
. (A.6)

Let X∗(T ) be the group of cocharacters of T (i.e., X∗(T ) = Hom(Gm,T )). It follows from
the Nakayama–Tate theorem [30] that one can identify

H 1(L/K,CL(T )
)

with Ĥ−1(L/K,X∗(T )
)

and

H 1(L/K,TKv0 ⊗KL) = H 1(Lw0/Kv0 , TLw0
) with Ĥ−1(Lw0/Kv0 ,X∗(T )

)
and under these identifications the left-hand side of (A.6) coincides with the image of the
corestriction map

CorGal(L/K)

Gal(Lw0 /Kv0 ) : Ĥ−1(Lw0/Kv0 ,X∗(T )
) −→ Ĥ−1(L/K,X∗(T )

)
.

Similarly, the right-hand side of (A.6) coincides with the image of

CorGal(L/K)

Gal(Lw/Kv) : Ĥ−1(Lw/Kv,X∗(T )
) −→ Ĥ−1(L/K,X∗(T )

)
(we fix extensions w0 | v0 and w | v). Thus, (A.6) definitely holds if Gal(Lw0/Kv0) =
Gal(Lw/Kv). But for v0 ∈ V K∞ , the Galois group Gal(Lw0/Kv0) is cyclic, so the existence
of v /∈ S ∪ V K∞ with the same Galois group Gal(Lw/Kv) follows from Chebotarev Density
Theorem (see, for example, [19, Chapter VII, Theorem 13.4]). �

We can now complete the proof of assertion (ii) of the theorem. As we pointed out ear-
lier, here Q can be identified with the homogeneous space X = G/T , where G = Spin3(q)
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and T is the 1-dimensional torus Spin2(g) where g is the restriction of q to the orthogonal
complement of a chosen point x ∈ QK . If g is K-isotropic then T splits over L = K , so
(A.4) trivially holds, and Proposition A.4 yields strong approximation in Q ∼= X.

Suppose now that g is K-anisotropic. Then T splits over a quadratic extension L/K ,
with the nontrivial element of Gal(L/K) acting on X∗(T ) ∼= Z as multiplication by −1, so

H 1(L/K,CL(T )
) ∼= Ĥ−1(L/K,X∗(T )

) ∼= Z/2Z.

Furthermore, by Chebotarev Density Theorem there exists v /∈ S ∪ V K∞ such that Lw/Kv

is a quadratic extension, and then

ρ
(
H 1(Lw/Kv,T )

) = H 1(L/K,CL(T )
)

implying that

ρ
(
H 1(L/K,TA(S)⊗KL)

) = H 1(L/K,CL(T )
)
.

Thus, condition (A.4) that gives a criterion for strong approximation in X boils down to
the equality

ρ
(
Ker

(
H 1(L/K,TKS⊗KL) → H 1(L/K,GKS⊗KL)

)) = H 1(L/K,CL(T )
)
,

which in turn holds if and only if there is v ∈ S such that

Ker
(
H 1(Lw/Kv,T ) → H 1(Lw/Kv,G)

) �= {1}. (A.7)

Clearly, (A.7) holds if Lw/Kv is a quadratic extension (i.e., g is Kv-anisotropic) and
H 1(Lw/Kv,G) = {1} which happens if either v ∈ V K

f or q is Kv-isotropic (notice that
in the latter case G ∼= SL2 over Kv). This proves the presence of strong approximation in
all cases listed in (ii). It remains to show that in all other situations strong approximation
does not hold, i.e., (A.7) fails for all v ∈ S. If T splits over Kv then H 1(Lw/Kv,T ) = {1},
so (A.7) cannot possibly hold. In the remaining case, v is real and G is Kv-anisotropic.
Then G = SL1(H) where H is the algebra of Hamiltonian quaternions and T corresponds
to a maximal subfield of H. A simple computation shows that the map H 1(C/R, T ) →
H 1(C/R,G) is a bijection, so again (A.7) fails. (Thus, the 2-dimensional quadric over Q

given by the equation x2
1 + x2

2 − 2x2
3 = 1 does not have strong approximation with respect

to S = V
Q∞.)
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