THE BRAUER GROUP OF A FIELD

IGOR RAPINCHUK

This paper is devoted to the construction of the Brauer group of a field and its description in
terms of factor sets. Since the elements of the Brauer group are similarity classes of central simple
algebras over a given field, we begin by establishing some fundamental theorems for such algebras
in §81 and 2 (this material is contained, for example, in [2], [4] and [6]). In §3, we introduce the
Brauer group of a field, and in §4 we describe it using factor sets and crossed products, which leads to
an isomorphism between the Brauer group and a certain second cohomology group (this part closely
follows the exposition given in [2], Ch. 4). In §5 we specialize to crossed products associated to cyclic
Galois extensions. Finally, in §6 we apply the general theory to describe the Brauer group of a local
field. (These two sections follow [4], Ch. 15 and 17.)

In this paper, all algebras will be associative and finite dimensional.

1. BASIC FACTS ABOUT SIMPLE ALGEBRAS

Let A be an algebra with identity over a field K. We recall that A is said to be simple if it has no
proper two-sided ideals, and central if its center Z(A) coincides with K. We will study algebras by
analyzing the structure of modules over them. A (left) A-module M is simple if it contains no proper
submodules. The following well-known statement will be used repeatedly.

Schur’s Lemma. If M and N are simple A-modules then every nonzero A-module homomorphism
f: M — N is an isomorphism. In particular, if M is a simple A-module then End4 M is a division
Ing.

Indeed, we have Ker f # M, so Ker f = {0}, and f is injective. Similarly, Im f # {0}, so Im f = N,

making f also surjective, hence an isomorphism.

Now, let A be a (finite dimensional) simple K-algebra. By dimension consideration, there exists a
minimal nonzero left ideal M C A. In the sequel, 4 A will denote A considered as a left A-module, and
then M is a simple submodule of 4A.

Proposition 1. Let A be a finite dimensional simple K-algebra, and M C A be a nonzero minimal
left ideal. Then

(1) there exists n > 0 such that ;A ~ M & --- @& M as A-modules;
—_—

n
(2) any A-module is isomorphic to a direct sum of copies of M, in particular M is the only simple
A-module;

(3) let N1 and N be A-modules; then N1 ~ Na as A-modules if and only if dimg N1 = dimg No
(we notice that any A-module has the natural structure of a K-vector space).

Proof. (1): Since M is a left ideal, > . , Ma is a two-sided ideal, hence coincides with A. In particular,
we can write

1=myai + - +mpa, with m; € M, a; € A,
1
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and then
(1) A=>"Ma,
i=1

We can assume that the set {aj,...,a,} is minimal with respect to the property A = >  Ma,;, and
then Ma; # {0} for all i = 1,...,n. Notice that for any a € A, the map f,: M — Ma, z — za, is a
surjective homomorphism of left A-modules. So, if Ma # {0} then arguing as in the proof of Schur’s
Lemma, we see that f, is injective, hence an isomorphism. Thus, all the Ma;’s in (1) are isomorphic
to M, and in particular are simple A-modules. It remains to show that the sum (1) is direct. However,
if for some j we have

Ma; (Y Ma; # {0}
i#j
then because of the simplicity of Ma; we conclude that Ma,; C Z# ; Ma;. Then

A= Z M Qj,
i#]
contradicting the minimality of the set {a1,...,a,}.

(2): Let N be a (nonzero) left A-module. Then N is a quotient of a free A-module which in
combination with part (1) shows that there is a surjective homomorphism

f: @ M; — N
i€l
where each M; is isomorphic to M. Set N; = f(M;). We can discard those ¢ for which V; = {0}. Then

clearly f gives an isomorphism between M; and N;, and in particular, N; is simple. Furthermore,
N =3 ,c; Ni, and it remains to find a subset Iy C I such that

(2) N=N.
i€lp

For this we consider the collection [J of all subset J C I for which the sum ), ; N; is direct. Clearly,
all one-element subsets of I belong to 7, in particular, J # (. We can order J by inclusion, and
then it is easy to see that J satisfies Zorn’s Lemma. Let Iy € J be a maximal element provided by
the latter. Then by our construction the sum ) ;. 1, Vi 1s direct, and we only need to show that it
coincides with N. Assume the contrary. Then in view of N =} . ; N;, there exists ig € I such that
Nig & > e, Ni- Since Ny, is simple, this actually means that N;, N ,c; N; = {0}, implying that the
sum » .o ToUfio) N; is also direct. This contradicts the maximality of Iy and proves (2).

(3): We embed K < A by x — x - 14, so any A-module can indeed be considered as a vector space
over K. By part (2), we have

Ny~ M and Ny~ M
for some cardinal number numbers o and ay. Then
dimg N; = (dimg M)ay,
and since dimg M is finite, we see that
dimKNl :dimKNg < ] = (9,

and our claim follows. O

Part (1) of Proposition 1 will enable us to prove Wedderburn’s Theorem (see Theorem 1) which
describes the structure of finite dimensional simple algebras. The argument will require the following.
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Lemma 1. Let A be an arbitrary ring, M be a left A-module, and E = Ends(M). Then for any
n > 1, there exists a ring isomorphism

(3) Ends(M™) ~ M, (E),

the ring of n X n-matrices over the ring E. Furthermore, if A is a K-algebra with identity then E,
Endg(M™), and M, (E) have the natural structures of a K-algebra for which (3) is an isomorphism
of K-algebras.

Proof. Define ¢;: M — M™ and 7;: M™ — M by
girmi— (0,...,m,...,0) and m;: (my,...,my) — m;.
Then
n
Y exmp =idyn  and  mpog; =idy if k=j and 0 if k# .
k=1

Given f € End4(M™), we let f;j = mjo foe; € Efori,j =1,...,n. We claim that the correspondence
Enda(M™) 2 f 5 (fij) € Mo(E)
yields the required isomorphism (3). Indeed, for f,g € End4(M") we have
p(f+9)=(mio(f+g)oej) = (mofoej+mogoe;) = (fij) +(9;) = () + ¢(9),

and

n

¢(fg)ij =miofo <Z 6Wk> ogoej =Y (mofoer)(mogoe;) =Y figry = ((£)e(9))i
k=1 k=1

k=1

for all i, 7, so ¢(fg) = ¢(f)¥(g). Thus, ¢ is a ring homomorphism. Given (f;;) € M, (E), we define
f: M™ — M"™ by

f(m) = <Z flk(ﬂk(m))w",ank(ﬂk(m))> :
k=1 k=1

Clearly, f € End4(M™). Furthermore, for any 4, j we have
(mio foey)(m) =Y fu((mk 0 g5)(m)) = fij(m),
k=1

showing that the correspondence (fj;) — f is inverse to ¢ and thus making ¢ a ring isomorphism.

As we observed in the proof Proposition 1, if A is a K-algebra, any A-module N becomes a K-vector
space. Moreover, since K is contained in the center of A, End 4(/V) becomes a K-algebra for the scalar
multiplication

(af)(x) = flax) = af(z) for a € K, f € Endsg(N), z € N.
Since ¢; and 7; are A-module homomorphisms, we have
(af)ij =mio(af)oe; =a(mo foe;) =afy,

which shows that (3) is an isomorphism of K-algebras. O

The following theorem is the main result of this section.

Theorem 1. (Wedderburn) Let A be a finite dimensional simple algebra over a field K. Then A ~
M, (D) for a unique n > 1 and a unique up to isomorphism division K-algebra D. Conversely, any
algebra of the form M, (D), where D is a division algebra, is simple.



4 IGOR RAPINCHUK

Proof. We recall that the opposite algebra A°P is obtained by giving the same K-vector space A a
new product defined by a x b = ba where ba is the product in the original algebra A. First, we notice
that Enda(4A) ~ A°. Indeed, if ¢ € Enda(4A4) then p(z) = z¢(1) for all x € A, and then then the
correspondence ¢ — ¢(1) yields the required isomorphism. On the other hand, by Proposition 1(1),
for some n > 1, there is an isomorphism of left A-modules: 4 A ~ M", where M is a minimal nonzero
left ideal of A. Then by Lemma 1, End4(4A) ~ M, (F), where E = End4(M). Since M is simple as
A-module, F is a division algebra. Thus,

AP ~Endy(44) ~ M,(E).

It remains to observe that the map a = (a;;) — 'a = (aj;) gives an isomorphism M, (E)°P ~ M, (E°P).
So, we eventually obtain that A ~ M, (D) with D = E°P (notice that the algebra opposite to a division
algebra is itself a division algebra).

For the uniqueness of n and D, we need the following lemma.

Lemma 2. Let A = M, (D), where D is a division ring, and let V = D™ be the space of n-columns on
which A acts by matrixz multiplication on the left. Then V is a simple A-module and End (V') ~ D°P.

Proof. Given any nonzero v,w € V, there exists a € A such that av = w, and the simplicity of V'

1 d
0 *
follows. Now, let f € Enda(V). Let o = | . |, and suppose that f(vg) = | . |. We claim that
0 *
ai
a2
f(v) = vd for all v € V. Indeed, let v = _ . Then
an
a10...0 CL10...0 d
flo)=f Do v | = Do : | =vd,
a, 0 ... 0 a, 0 ... 0 *
Then the map f +— d gives the required isomorphism End 4 (V') ~ D°P. O

Now, suppose A ~ M, (D) and A ~ M,,(D2). Let Vi = DJ* and Vo = D3?. Then both V; and V5
can be considered as A-modules. It follows form Lemma 2 that they are simple A-modules, and then
by Proposition 1(2), they are isomorphic as A-modules. Using Lemma 2, we obtain

D{P ~ End (V1) ~ Enda(V3) ~ D5P,
so Dy ~ Dy as K-algebras. Furthermore,

dimg A = n% dimg D1 = n% dimg Do,
SO N1 = ng.

Finally, we need to show that A = M, (D), where D is a division algebra, is simple. Let e;; be the
standard basis of A. Suppose a C A is a nonzero two-sided ideal, and pick a nonzero a = (a;;) € a
where, say, a;,j, 7 0. It is easy to check that

—1
eij = €iip (A7, @) joj»
so e;; € a for all ¢, j, and therefore a = A. O

Corollary 1. Suppose K is an algebraically closed field. If A is a finite dimensional simple algebra
over K then A ~ M, (K) for some n.
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Indeed, it is enough to show that if D is a finite dimensional division algebra over K then D = K.
Assume the contrary, and pick a € D\ K. Then K(a)/K is a nontrivial finite field extension, which
cannot exist because K is algebraically closed. Thus, D = K.

The following statement is well-known.
Lemma 3. Let A= M, (D). Then the center Z(A) is naturally isomorphic to the center Z (D).

Indeed, if a € Z(A) then using the fact that a commutes with all elements of the standard basis e;;,
we immediately see that a is a scalar matrix. Furthermore, if « is its diagonal element then o € Z(D).
Conversely, any such scalar matrix is in Z(A).

2. FUNDAMENTAL THEOREMS FOR SIMPLE ALGEBRAS
The following simple facts will be used repeatedly.

Lemma 4. Let V and W be vector spaces over a field K, and suppose wi,...,w, € W are linearly
independent over K. If ay,...,a, € V are such that

alP@uwi+- - F+a, Qw,=0 mn VW

thenay =---=a, = 0.
Proof. Being linearly independent, wq,...,w, can be included in a basis wi,...,wy,... of W. Let
Vly...,Um,... be a basis of V. We can write a; = Zj aj;v; with oy € K, and then

0:a1®w1+--~+an®wn:2 Zaijvj ®wi:2aij(vj®wi).
J i,j

i
But it is well-known that the elements v; ® w; form a basis of V ®@x W. So, all o;; = 0, and therefore
ar=---=ay=0. O

If A and B are K-algebras then the tensor product of vector spaces A ®x B can be given a

multiplication satisfying
(a1 ® b1)(az ® ba) = a1az @ b1bo,

and this multiplication makes A ®x B into a K-algebra. Furthermore, A and B can be identified
with subalgebras of A ® g B by the maps a — a @k 1p and b+— 14 ® b, and then A and B commute
inside A ® g B. It is not difficult to see that A ® ¢ B can in fact be characterized by the following
universal property: given algebra homomorphisms f: A — C and g: B — C such that f(A) and
g(B) commute inside C' then there exists a unique algebra homomorphism F': A®g B — C such that

Fla®b) = f(a)g(b).

Proposition 2. For any two K-algebras A and B we have
Z(A®Kg B) =Z(A) @k Z(B).

In particular, if A and B are central over K then so is A Qg B.

Proof. The inclusion D is obvious. To prove the opposite inclusion, take any z € Z(A®k B) and pick
a shortest presentation of the form

n
(4) z = Zai ® b;.
=1

Then the systems a1,...,a, and bq,...,b, are linearly independent over K. Indeed, if b1,...,b, are
linearly dependent then one of them, say, by, is a linear combination of others:

b1 = Baby + -+ + Bpby.
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Then
z=a1® (Beba+ 4 Bubp) +az @by + - + a, @by, = (B2a1 +a2) @by + -+ + (Bna1 + an) @ by
is a shorter presentation, a contradiction. Now, we claim that in (4), ai,...,a, € Z(A) and by, ..., b, €

Z(B). Indeed, for any a € A we have
n
0=(a®1l)z—2z(a®1) = Z(aai —a;a) @ b;.
i=1
Since the b;’s are linearly independent, by Lemma 4, we have aa; — a;a = 0 for all i = 1,...,n. Since
a € A was arbitrary, we conclude that a; € Z(A) for all i. The argument for by, ..., b, is similar. O

The definition of the product on the Brauer group, which we will discuss in the next section, relies
on the following statement.

Theorem 2. Let A be a central simple K-algebra, and B be an arbitrary K-algebra. Then any two-
sided ideal a C A @k B is of the form a = A®g b for some two-sided ideal b of B. In particular, if
B is also simple (but not necessarily central), then A @k B is simple.

Proof. We may assume that a # {0}. First, we will show that

(5) a[ B # {0}.

For this we pick a nonzero x € a which has a presentation of the form

n
x:Zai®bi
=1

with the smallest possible n. Then aq,...,a, and by,...,b, are linearly independent. In particular,

ay # 0, so, since A is simple, we have Aa1 A = A, i.e. there exist ¢1,...,¢cp,dy,...,dy € A such that
crardy + -+ - + cpardy = 1.

Consider

z=(a®@)z(di®1)+ - +(c;@)x(d;®1) = (crardi+- - -+ cpardy) @b1+- - -+ (crandi +- - -+ cpandy) =

=1®b +a2®by+ -+ ap @ by.
Clearly Z € a, T # 0 and Z has length < n. So, we may assume from the very beginning that a; = 1.

We now claim that actually n = 1. Indeed, suppose n > 2. Since ay,...,a, are linearly independent
over K, we have ag ¢ K = Z(A). So, there exists a € A such that aay # aga. Then

y=(a®@ 1)z —z(a®1) = (aag — aza) @ ba + --- + (aa, — ana) @ by,
is a nonzero element in a having length < n, a contradiction. So, n =1, and x = 1 ® by € a, and (5)
follows.

Thus, b := anN B is a nonzero two-sided ideal of B. We claim that a = A ® b. In any case, A Qx b
is a two-sided ideal of A ® ¢ B contained in a. Then one can consider the canonical homomorphism

with Ker ¢ = A®@kg b C a. If a # A @k b then ¢(a) is a nonzero two-sided ideal of A @k B/b.
Applying (5) to the latter algebra, we obtain that ¢(a)NB/b # {0}. Taking pullbacks, we obtain that
for a = ¢~*((a)) one has aN B 2 b, which contradicts our construction. O

The proof of the following corollary requires one general remark: if A is a K-algebra then for any
field extension L/K, the algebra Ay := A ® L can be considered as an algebra over L for the scalar
multiplication - (a ® b) = a ® ¢b, and dimg A = dimy, Ap,.
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Corollary 2. Let A be a finite dimensional central simple algebra over a field K. Then dimg A is a
perfect square.

Proof. Let K be an algebraic closure of K. Consider B := A @k K as a K-algebra. It follows from

Theorem 2 that B is simple, and then by Corollary 1 we have B ~ M,,(K) for some n > 1. Thus,

dimg A = dimgz B = n?.

The following theorem will enable us to construct the inverses of elements in the Brauer group.

Theorem 3. Let A be a central simple algebra over a field K, dimgx A = n?. Then
ARy AP ~ EndK(A) ~ MHQ(K)

Proof. For a € A, define \,: A — A by A\y(x) = ax. Clearly, A\, € Endg(A), and the correspondence
L: A — Endg(A), a — Ag, is an algebra homomorphism. Similarly, for b € A, we define py: A — A
by pp(z) = xb. Again, p, € Endg(A), and the correspondence b — pp defines an algebra homomor-
phism R: A°® — Endg(A). (The homomorphisms L and R are called the left and the right regular
representations of A, respectively.) For any a,b,z € A we have

(Aa © pp)(2) = a(xb) = (ax)b = (pp © Aa) (),

i.e. Ay and p, commute in Endg(A). Thus, there exists a homomorphism F': A ® g A°? — Endg(A)
which takes a ® b to the endomorphism that acts as follows x +— axzb (then an element ) a; ® b;
corresponds to the endomorphism = +— > a;2b;). By Theorem 2, the algebra A @ A°P is simple, so
since F' is not the zero homomorphism, we have Ker F' = {0}, i.e. F is injective. On the other hand,

dimg A @k AP = (n2)2 = dimg EndK(A),

which implies that F' is also surjective, hence an isomorphism. O

The following two theorems are the most important results about simple algebras.

Theorem 4. (Skolem-Noether) Let A and B be finite dimensional simple K -algebras, with B central.
If f,g: A — B are two K-algebra homomorphisms then there exists b € B* such that

g(a) =bf(a)b™ for all a € A.

Proof. Consider C = A ® g B°P. Since B is central, B°P is also central, so it follows from Theorem 2
that C is simple. Associated with every homomorphism f: A — B, one has a C-module structure on
B given by

(a®b)s-x= f(a)xd.
We will use By to denote B endowed with this structure. For our two homomorphisms f,g: A — B,
we obviously have dimg By = dimg By, so by Proposition 1(3) we have By ~ B, as C-modules. Let
¢: By — By be a C-module isomorphism. Set b = ¢(1). Then for any x € B we have

p(r) =p((l@z)p-1) = (1), ¢(1) = bz.
Applying the same argument to 1) = ¢~ ': B, — By, we see that 1(z) = b’z where ' = 1(1). Then
z=(pov)(z) =0z,

so substituting x = 1, we get bb’ = 1. Similarly, ¥’'b = 1, i.e. b € B*. Furthermore, for any a € A, we
have

bf(a) = ¢(fa)) =¢((a@1)f-1) = (a@1)g- (1) = g(a)b,
yielding g(a) = bf(a)b™!, as required. O
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Corollary 3. Let A be a central simple algebra over K. Then every K-algebra automorphism of A is
mner.

Indeed, given a K-algebra automorphism ¢g: A — A, our claim follows from the theorem applied to
f =1ida. (A different proof based on Theorem 3 is given in [6], Ch. XI, Prop. 4.)

Theorem 5. (the Double Centralizer Theorem) Let A be a central simple algebra over K of dimension
dimg A =n, and let B C A be a simple subalgebra of dimension dimg B = m. Denote

Za(B)={x € A|zb=bx forall be B}.
Then
(1) Za(B) ®x M, (K) ~ A® B°P;
(2) Za(B) is a simple subalgebra of A of dimension dimg Z4(B) = n/m;
(3) Za(Za(B)) = B.

Proof. The proof is based on two simple observations that slightly generalize our previous construc-
tions:

e In Proposition 2 we proved that for any K-algebras A and B one has Z(A®g B) = Z(A) @k Z(B).
The same argument shows that for any K-algebras A and B and any subalgebras A’ C A and B’ C B
one has

ZagxB(A @k B') = Zs(A') @k Zp(B').

e In the proof of Theorem 3, we constructed the representations L: A — Endg(A), a — A4, and
R: A°® — Endg (A), b+— pp, and observed that L(A) and R(A°P) commute inside Endg (A). In fact,
Zendge(a)(L(A)) = R(AP).

Indeed, if f € Zgna,(a)(L(A)) then f(ax) = af(z) for all a,z € A. Letting z = 1, we get f(a) = af(1),

i.e. f = Pr@1)-
To prove the theorem, we consider two embeddings f,g: B - A @k Endg(B) = A @k My, (K)

given by

f(b) =b®idp and g(b) =1® .
We have

Z(A®g M (K)) =Z(A) @g Z(Mn(K)) = K g K =K,
which means that A @ M,,(K) is central. Then by the Skolem-Noether Theorem, f and g are
conjugate, i.e. there exists z € (A ®x Endg(B))* such that
f(b) = zg(b)z~! for all be B.
This implies that
Z pgyemndg () (B)) = ©Zag cEndge () (9(B))z ™,
in particular, these centralizers are isomorphic. But
Z p@ Endg (B)(f(B)) = Zagcindg (B)(B ®x K) = Za(B) ®k Endg (B)
and
Z p@wEndg (B)(9(B)) = ZAg Endy (B) (K @K L(B)) = A®@k R(B).

Thus,

ZA(B) QK EndK(B) ~AQg BOp,
proving (1).
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(2): By Theorem 2, the algebra A ®x B°P is simple. So, the isomorphism in part (1) implies that
Z4(B) @k Endg (B) is simple, and therefore Z4(B) is simple. Counting dimensions, we obtain
dimg Z4(B) -m? = (dimg A) - (dimg B) = nm.
So, dimg Z4(B) = n/m (in particular, m divides n).

(3): Obviously, B C Z4(Za(B)). Applying part (2) to Z4(B) (which is simple), we obtain
n n

~ dimg Za(B) n/m
So, B = ZA(Z4(B)) by dimension considerations. O

dimg ZA(Za(B))

=m.

Corollary 4. Let A be a central simple algebra over K of dimension dimg A = d2. If L is a field
extension of K of degree { then { divides d and Z (L) is a central simple algebra over L of dimension
dimp, Z4(L) = (d/f)?. In particular, if £ = d then Za(L) = L, and consequently, L is a mazimal
subfield of A.

Proof. Since L is commutative, L. C Z4(L). Then
dimg ZA(L) = d*/¢ = (dimg, Z4(L)) - £,

so dimy, Z4(L) = (d/¢)%. Since
Z(Za(L)) C Za(Za(L)) = L,
we obtain that Z4(L) is central over L. O

Corollary 5. Let D be a central division algebra over K of dimension dimg D = d?. If P C D is a
maximal subfield then dimg P = d.

Notice that every maximal subfield P C D necessarily contains K as otherwise the subring generated
by P and K would be a subfield of D strictly containing P. Furthermore, since D is finite dimensional,
maximal subfields obviously exist. Now, let P C D be a maximal subfield. Then P = Zp(P). Indeed,
if a € Zp(P)\ P then P[a] would be a subfield strictly containing P. Applying the previous corollary,
we obtain dimg P = d. (In this argument we used the obvious fact that any subalgebra of a finite
dimensional division algebra is itself a division algebra.)

The following proposition is needed to give a cohomological interpretation of the Brauer group.

Proposition 3. Let D be a central division algebra over a field K. Then D contains a mazimal subfield
P which is a separable extension of K.

Proof. Of course, there is nothing to prove if K has characteristic zero or is finite. So, we can assume
that K is an infinite field of characteristic p > 0. Next, it is enough to show that there always exists an
element a € D\ K which is separable over K. Indeed, given this fact, we can complete the argument
by induction on dimg D = d?. Indeed, if £ = [K(a) : K] > 1 then by Corollary 4, the centralizer
Zp(K(a)) is a central division algebra over K (a) such that dimy,) Zp(K(a)) = (d/¢)* < dimg D.
Then by induction hypothesis, Zp (K (a)) contains a maximal subfield P which is a separable extension
of K(a). Then P is a separable extension of K and by Corollary 5, [P : K(a)] = d/¢, implying that
[P : K] =d. Then by Corollary 4, P is a maximal subfield of D.

An element a € D\ K separable over K can be found in any maximal subfield P of D if d is not a
power of p because in this case P/K cannot be purely inseparable (recall that the degree of a purely
inseparable extension must be a power of p). So, we only need to consider the case where d = p®.
Assume that D\ K does not contain any elements separable over K. Then all these elements are purely
inseparable, and since the degree of any element over K divides p®, we obtain that a?” € K for all
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a € D. Now, pick a basis e; = 1,e9,...,¢e42 of D over K, and let ¢1,...,t;2 be variables. Then there
exist polynomials fi,..., fgz € K|t1,...,ts] such that

(trer + - +tpe)’ = fi(ty,... tg2)er + - f(ti, ... te)eqs.
Since a?” € K for all a € D, we have
(6) folar,...,ap2) == fp(al,...,ap2) =0
for all (a1,...,ap) € K%, Then, because K is infinite, we conclude that fo = --- = fzz = 0, and

therefore (6) for all (ai,...,az) € K%. This means that a?” € K for all a € D ®x K. But by

Corollary 1, D ®x K ~ My(K), and for the element e;; of the standard basis we have e’fi =enn ¢ K,
a contradiction, proving the existence of separable elements. O

3. THE BRAUER GROUP OF A FIELD

Two central simple algebras A; and Aj are called similar (written Ay ~ Ajg) if the division algebras
D, and Dy such that A; ~ M, (D;) and Ay ~ M,,(D3), are isomorphic.

Lemma 5. (1) For any K-algebra R, R @y M, (K) ~ M,(R);
(2) My (K) @ My (K) 22 My (K);
(3) A1 ~ Az if and only if there exist mi and mgy such that Ay @ My, (K) ~ Ay @ M, (K);
(4) similarity is an equivalence relation.

Proof. (1): There is an algebra homomorphism R ®p M, (K) — M,(R) such that r ® x — rx. The
inverse homomorphism is given by () — ZZ ;Tij @ eij, where e;; is the standard basis of M,,.

(2): We have a natural homomorphism
Endg(K™) @k Endg(K™) — Endg (K™ ® K™) = Endg (K™).

It is injective because it is nonzero and the algebra in the left-hand side is simple (Theorem 2), and
it is then surjective by dimension count.

(3): Suppose A; ~ M, (D;). If Ay ~ As then D; ~ Dj so using (1) and (2) we obtain
A1 Q@ My, (K) ~ Dy ®g My, (K) g Mp,(K) >~ Mp,n,(D1) =~ Mp,n,(D2) ~ As @ My, (K).
Conversely, suppose Ay @ My, (K) ~ As @k My, (K). As above, we see that
A @ My, (K) >~ My, (D;) for i=1,2.
So, by the uniqueness part of Theorem 1 we obtain that Dy ~ Dy, and A ~ As.
(4): Follows immediately from the definitions. O

For a (finite dimensional) central simple algebra A over a field K, we let [A] denote the equivalence
class of algebras similar to A. As a set, the Brauer group of K (denoted Br(K)) is the collection of all
such classes (thus, the elements of Br(K') bijectively correspond to the isomorphism classes of central
division algebras over K). We introduce a product on Br(K') by using tensor product of algebras:

(7) [A][B] = [A®K BJ.

We notice that the algebra A® g B is central by Proposition 2 and simple by Theorem 2, so [AQ B] €
Br(K).If A~ A" and B ~ B’ then

AR Mp(K) ~ A @ My (K) and B @ M, (K) ~ B’ @k My (K)
for some integers m,m/,n,n/, and then

(A RK B) RK an(K) ~ (A/ RK B,) RK Mm/n/(K),
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and therefore A ® x B ~ A’ ® ¢ B’, by Lemma 5. This shows that the product operation (7) is well-
defined. The associative and commutative properties for tensor product imply that this operation is,
respectively, associative and commutative. Furthermore,

[A][M(K)] = [A ®@x M (K)] = [A],

so [M,,(K)] is an identity element. Finally, using Theorem 3 we obtain that if dimy A = n? then
[AJ[AP] = [A @5 A%P] = [M2 (K],

showing that [A°P] is an inverse element for [A] in Br(X). Thus, we have proved the following.

Proposition 4. Br(K) is an abelian group for the operation given by (7).

We will analyze Br(K) by considering a system of its subgroups naturally associated with (finite)
extensions of K. More precisely, let L/K be a field extension. For a central simple K-algebra A, we
set A, = A®g L. We say that L is a splitting field for A if Ay ~ M, (L) as L-algebras. It is easy
to see that if L splits A then L splits any algebra which is similar to A. The classes of algebras that
split over a given extension L/K form a subgroup of Br(K) which is called the relative Brauer group
associated with L/K and denoted Br(L/K). To see that Br(L/K) is indeed a subgroup of Br(K), we
observe that it follows from Proposition 2 and Theorem 2 that for a central simple K-algebra A, the
algebra Ay, is a central simple L-algebra, and then the correspondence [A] — [A1] gives a well-defined
map €7,/ : Br(K) — Br(L). Moreover, there is an isomorphism of L-algebras

(A@K B) Qg L ~ (A®K L) XL (B KK L),

which shows that e, is a group homomorphism. Clearly, Br(L/K) is precisely the kernel of this
homomorphism, so in particular it is a subgroup of Br(K'). We will now give an alternative character-
ization of the elements of Br(L/K) for finite extension L/K.

Theorem 6. Let L/K be an extension of degree n.
(1) If A is a central simple K -algebra of dimension n? such that L C A then Ap ~ My(L).

(2) Conversely, if a central simple K-algebra A splits over L then there exists a unique up to iso-
morphism central simple K -algebra A’ such that A ~ A', dimg A’ =n? and L C A'.

Thus, Br(L/K) consists of the classes of central simple K-algebras that have dimension n? and con-
tain L.

Proof. (1): Consider A as a right vector space over L. Then for any a € A, left multiplication A\,: A —
A, x — ax, is an L-linear map of A. Since dimy, A = n, the correspondence a — A, defines a map

f+A— Endp(A) ~ M,(L),

which is easily seen to be a homomorphism of K-algebras. On the other hand, we have a homomor-
phism of K-algebras
x

g: L — M,(L), x+—
x
Clearly, the images of f and g commute, so there is a homomorphism of K-algebras
h: A®kg L — M,(L) such that h(a®b) = f(a)g(b).
The simplicity of A @ ¢ L implies that h is injective. Then, since
dimg A ®k L = n® = dimg M, (L),
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we see that h is also surjective, and hence an isomorphism of K-algebras. Finally, for any ¢ € A and
b,c € L we have

h(c-(a®b)) =h(a® cb) = f(a)cg(b) = cf(a)g(b) = c-h(a®b),
so h is actually an isomorphism of L-algebras.

(2): Let A = My(D). Since L splits A, it also splits D. Indeed, if Dy, ~ My(A) where A is a division
algebra then Ay ~ Mg(A), so from the uniqueness in Wedderburn’s theorem we see that A = L, and
our claim follows. Thus, D @ L ~ M,,(L), where m? = dimy D. Then

(8) D® @ L ~ (D ®k L)°P ~ M,,(L)°® ~ M,,(L),

i.e. L splits D as well. Let V = L™. Because of the isomorphism (8), we can consider V as a
left vector space over D°P. This is equivalent to considering V' as a right vector space over D, so
Endper (V) ~ M;(D), where t = dimper V. On the other hand, since L commutes with D°P inside
D°P @ L ~ M,,(L), the elements of L acts as D°P-endomorphisms of V| yielding an embedding of
K-algebras L < M;(D). Notice that

dimg V=mn =1t -dimg D,

implying that
2
) _ o
dimg D
Thus, A’ := M;(D) has dimension n?, is similar to A and contains an isomorphic copy of L, as required.
Finally, the uniqueness of A’ follows from the fact that because of dimension considerations, every

class of similar algebras contains at most one algebra (up to isomorphism) of a given dimension. [

t?dimg D =

We can now connect the (absolute) Brauer group Br(K') with the relative Brauer groups Br(L/K).

Proposition 5. Br(K) = U Br(L/K) where the union is taken over all finite Galois extensions of K.
L

Proof. Let A be any central simple K-algebra. By Wedderburn’s Theorem, A ~ My(D) where D is
a division algebra. Using Proposition 3, we can find a maximal subfield P of D which is a separable
extension of K. Then by Theorem 6 we have

D ®k P~ My(P) where dimg D = (2,
and therefore
ARk P~ (Mg(K)®kx D)k P~ My(P)®p Dp ~ Mg(P)®@p My(P) ~ M,(P)
with n = d¢. On the other hand, since P is separable over K, its normal closure L is a (finite) Galois
extension of K. Clearly,
A®g L~ (A®kg P)®p L~ M,(P)®p L ~ M,(L).
Thus, [A] € Br(L/K), and the proposition follows. O

4. Br(L/K) AND FACTOR SETS

In this section, we fix a finite Galois extension L/ K of degree n, and let G = Gal(L/K). By Theorem
6, every element of Br(L/K) is represented by a central simple K-algebra A of dimension n? which
contains L. We begin by constructing a natural basis of A as a left vector space over L.

By the Skolem-Noether theorem, for every ¢ € G, the identity embedding L — A is conjugate to
the embedding L < A given by a + o(a), i.e there exists x, € A* such that

9) zeax,' =o(a) forall ac L.
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Lemma 6. {z, | 0 € G} is a basis of A over L.

Proof. Since dimy, A = n = |G|, it is enough to show that these elements are linearly independent over
L. Assume the contrary, and let

01To, + Ty, =0
be the shortest possible relation of linear dependence (then in particular, all a; # 0). Clearly, r > 1.
Pick a € L so that L = K(«); then o;(a) # 0j(«) for i # j. We have

0=or(a)(a1Z5, + - arZs,.) — (1T5, + -+ T4, ) =

= a1(or(a) — o1(a)) oy + - + ar—1(or(a) — op-1()) 20,4,
which is a shorter relation of linear dependence, in which all the coefficients are # 0. A contradiction.
O

Thus,
A= @ Lz,.
ceG
Notice that for any a,,ar € L we have

(apxo)(arzs) = (agazgafazgl)xgznf = (ago(ar))xexs.

So, to understand multiplication in A, it is enough to describe the products z,z, for all o, 7 € G. For
this, we compute the action of these products on L. For any a € L, we have

(toxr)a(zox,) ' = 2o (zraz N2, = o(r(a)) = (07)(a) = zoraz,}.

It follows that ¢, := x;}mgm.r centralizes L, and therefore ¢, € L* by Corollary 4. Now, we can
write

Tolr = TorCor = g Tor With ap, = mmcgﬁx;ﬁ = (07)(¢or) € L".
Thus, multiplication in A is completely determined by specifying the elements a, » € L* forall o, 7 € G.
The collection {a, -} is called a factor set of A relative to L; it is often convenient to view factor sets

as functions G x G — L*. These functions are not arbitrary: they must satisfy a system of relations
derived from the associative law in A. To obtain these relations, take any p, o, 7 € GG. Then

(pxo)Tr = (poTpr)Tr = Qpo(Tpexr) = Up,o0po,r T (po)r

and

xp(xaxT) = 'rp(aO',TxO',’T) = (mpaa,T:E;l)(xpxaT) = p(aa,r)ap,gfrmp(a‘r)'
Since T(pe)r = Tp(o7), We obtain that
(10) plaor)apor = Apopsr forall p,o,7eG.

Notice that these conditions are identical to the conditions that define 2-cocycles on G with values in

A*, which allows us to treat every factor set as an element of the group of 2-cocycles Z2(G, L*).
Now, let A’ be a K-algebra isomorphic to A that also contains L (more precisely, we consider A

and A" as K-algebras with fixed embeddings ¢: L < A and (/: L < A’). Pick an arbitrary system of

elements {z/ } such that

-1

zla(zl)™ =o(a) forall a€L,

and consider the corresponding factor set {a;, .} defined by

(11) 2l = d .

We want to relate {a, -} and {a;, . }. First, let f: A — A’ be an arbitrary K-isomorphism. Then f o
and ¢/ are two embeddings of L into A’, so by the Skolem-Noether theorem there exists an invertible
t € A’ such that

(fou)(a) =tat™ forall a e L*.
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Then f’ :=i,-1 o f, where i,-1 is the inner automorphism of A’ induced by t~1, i.e. i,-1(z) = t~'wt,
has the property that f’ o: = /. This means that we can always choose our isomorphism f: A — A’
so that it induces the identity map on L. Then for any o € GG, we have in A’ that

f(zo)af(zs) ™t =0(a) = 2La(z))™ forall a€ L.
So, dy := f(z,) ! belongs to L*, and we can therefore write
2l = f(25)ds = bo f(z0) with by = f(zs)do f(xs)"" = 0(ds) € L*.
Then
wpzy = (bo f(w0)) (br f (7)) = b0 (br) f(20r) = bo0(br)aor f(2or) = boo(brbyr)ao, 2.
Comparing this with (11), we obtain

(12) a/ = . a’U,T'

g, T boT

Notice that functions of the form b,o (b, )b, ! are precisely the elements of the group of 2-coboundaries
B?(G, L*). Thus, one can associate a well-defined element of H?(G,L*) to every isomorphism class
of central simple K-algebras A having dimension n? and containing L. Combining this with the fact
that every element of Br(L/K) is represented by a unique up to isomorphism such algebra, we obtain
a well-defined map

Br/i: Br(L/K) — H*(G,L*), [A]~ {as-}(mod B*(G,L*))
Lemma 7. B, is injective.

Proof. Let A and A’ be two central simple K-algebras having dimension n? and containing L. Suppose

they are written in the form
A= EBL:J;J and A’ = @Lx;

oeG oeG
where the elements z,, and z satisfy

zoar,' =o(a) and zla(z))™' =o(a) forall a€ L.

The corresponding factor sets a,,- and aj, , are defined by

AW, / /
ToTr = UgrTor and ToXr = Qg T,

If Bk ([A]) = Br/k ([A']) then there exist elements b, € L* for o € G such that (12) holds. We want
to show that A and A’ are isomorphic. Define f: A — A’ by

f (Z agxa> = Zaabglm;.

Clearly, f is an isomorphism of left vector spaces over L, and all we need to verify is that f is
multiplicative. Because of the distributive law, it is enough to check that f is multiplicative on
elements of the form a,x,. We have

f(azs)(arar)) = f((as0(ar))ao,vor) = (ago(aT))ag,Tb;Tlx;T
and
flagto) flarar) = (agby ' a))(arb; ' al) = (ago(ar)b, ta(brh))alal = (aaa(aT)b;lo(b;l))a;’Tx;T.
It now follows from (12) that
fl(aszs)(arzr)) = flasrs) f(arxr),

as required. O
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Lemma 8. 8, is surjective.

Proof. Let {a,,} be an arbitrary element of Z?(G, L*), which means that (10) holds. Consider an
n-dimensional left vector space over L with a basis {z,|0c € G} :

A= @ Lx,.
oceG
Define a multiplication on A by the formula:

(Z ag:c(,) (Z bT$7—) = Z o0 (br)a 1 Tor.

It is easy to see that this multiplication is K-bilinear and satisfies the distributive law, making A a
K-algebra. We claim that A is a central simple K-algebra and 81,k ([A]) = {as}. We will divide the
verification into several small steps.

e A is associative. Because of the distributive law, it is enough the associative law only for elements
of the form a,x,. A direct computation shows that

((app)(a0zs))(arzr) = (app(ac)(po)(ar))apotper T (po)r
and
(apl'p)((aaxo))(aTxT)) = (app(a0>(pa)(a'r))p(amT)ap,UTxp(aT)-
Then (10) shows that these product are equal.
® = af&xl is an identity element for A. Because of the distributive law, it is enough to check that
(13) (Ao )t = oo = u(AsTq)
For this we notice that plugging in ¢ for p and 1 for ¢ and 7 in (10), we get
o(a1,1)as,1 = Go100,1,

ie. o(a11) = as1. Then

(agxo)u = (agxg)(aﬁxl) = (ap0(a11) Vag10s = a5y,

verifying the first part of (13). The second part is verified similarly by observing that plugging in o
for 7 and 1 for p and o one gets a1, = ai1.

It follows that L can be embedded in A by the map a — au.

o 2, = (ag-1,a11) ' @,-1, in particular, z, is invertible. Indeed, let y = (ay-1 ya1,1) '@,-1. Then

To-1Tg = Gp-1 5,21 = (Ay-1 ;011U

proving that yz, = u. Furthermore,

-1 -1 -1

Lol = U(aa—l,U)_la(al,l)_lxd‘ra—l = U(aa—l,a) a;jaa,a—1$1 = U(aa_l,o) a;laa,a_lal,lu =u,

which follows from (10) by plugging in o for p, 0= for o and o for 7, and using the fact that a; , = a1 ;.

e v,ax,! = o(a) for all a € L. We recall that a € L is identified with au, so we need to check that
ro(au)z;t = o(a)u. We have

To(au)z, !t = xg(aaﬁxl)x;l = a(a)a(al,l)_lag,lxgxgl = o(a)u,
as required.

o A is central over K. For a € L, we will write a instead of au. Suppose z = > a,x, € Z(A). Then
for any a € L we have

a (Z ag;vg) = Z 0oLy = (Z agzng) a= Z a,0(a)xq,
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implying that a,(a — o(a)) = 0 for all ¢ € G. Pick a so that L = K(a). Then for any o # 1 we have
o(a) # a, so the above relation yields a, = 0. Thus, z € L. But then x,z2,! = o(2) = 2 for any
ce€G,s0z€ K.

e A is simple. Let a C A be a nonzero two-sided ideal. Pick a nonzero element a € a which has the
shortest presentation of the form

a4 =05, Tg; + "+ 05, To,;
then in particular all the coefficients are # 0. We claim that in fact » = 1. Assume that r > 1, and
pick £ so that L = K (¢). Then o;(¢) # o;(¢) for i # j, so
al — o (0)a = ag,(01(€) — 0 (0))Tg, + -+ + ao,_, (07-1(€) — 01 (£)) 2,

is a nonzero in a having a shorter presentation, a contradiction. Thus, » = 1, i.e. a = a,,2s,. But any
nonzero element of this form is invertible, implying a = A.

Thus, A is a central simple algebra over K having dimension n? and containing L. By our construc-
tion, T52r = Gy, Tor, Which implies that
Brx([4]) = {agr}(mod BX(G, L)),

as required. O

The algebra A constructed in the proof of Lemma 8 is called the crossed product of L and G relative
to the factor set {a, .} and will be denote (L, G, {as+}).

We are now in a position to prove the main result of this section.
Theorem 7. 37/ : Br(L/K) — H?(G, L*) is a group isomorphism.

Proof. 1t follows from Lemmas 7 and 8 that 1,k is a bijection, so all we need to show is that 3r /x is
a group homomorphism. For this we need to prove the following: let {a, .} and {bs .} be two factor
sets; consider the factor set c¢;r = as+bs 7. Let

(14) A=@PLz, , B=PLy, , C=EP L,

where
reax, = ysay, ' = zoaz;' = o(a) forall ac L
and
Tolr = Qorlor 5 YolYr = bo’,TyO'T y RoZr = CorZot)
be the corresponding crossed products. We need to show that
[C] = [A][B] = [A®K B].
We will show that in fact
(15) A®g B~ M,(C).
For this we consider M = A ®;, B where both A and B are treated as left L-modules. Notice that
dimy A = dimy, B = n, so dimy, M = n?, and therefore dimyg M = n3. For any a € A and b € B, the
right multiplications by a and b define L-linear maps of A and B, respectively. It follows that one can
give M a right (A ® ¢ B)-module structure such that
(x®ry)(a®@K b) =za®r yb.
Next, we will give M a left C-module structure using the canonical bases of A, B and C' described in
(14). We claim that there is a left C-module structure on M such that

(co25)(a®L b) = (corsa) ®L Yob.
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The left multiplications by c,z, and ¥y, are K-linear maps of A and B respectively, so there is a
K-linear map v: A ®x B — A ®p B such that v(a ®x b) = (¢y250) @k yob. On the other hand, M
can be written as (A ®x B)/R, where R is the K-vector subspace of A ® g B spanned by elements of
the form fa ® b —a ® (b, for all a € A, b € B and ¢ € L. Let us show that v(R) C R. We have

Y(la @b — a® ) = corola ® Yob — Coxea @ Yolb = 0(£)coTra @ Yob — corsa @ o(£)ysb € R,

as required. Thus, v induces a K-linear map on M such that y(a ® b) = c,x,a ® y,b, and this
map is by definition the multiplication map by ¢,z,. This multiplication obviously extends to a map
C x M — M such that (¢; + c2)m = cym + cam. It remains to verify that

(16) c1(cam) = (c1c2)m
It is enough to check this for elements of the form ¢; = ¢, 25, c2 = dr2z; and m = a ®, b. We have
c1(cam) = (co26)(drzra @ Yrb) = Coxodr 0 QL Yoyrb = ¢40(dr) a6 +T0ra QL b +Yorb
and
(crc2)m = (co0(dr)Cor207)(a R b) = co0(dr)CorTora QL Yorb.
Since ¢g,r = G5,7bs,r, these expressions are equal, and we obtain (16). It is easy to see that
(em)(a @k b) = c¢(m(a @k b)),
i.e. the left multiplication by C' commutes with the right multiplication by A ® B. It follows that
the right multiplication by A ® ¢ B gives rise to a K-algebra homomorphism
(A®g B)°® =% Endg(M).
Since A @ B, and hence (A @ B)°P, is simple, ¢ is injective. To prove that it is also surjective, we
compute the dimensions. We have
dimg M = n® = dimg O™,
so since C' is simple, it follows from Proposition 1(3) that M ~ C™ as C-modules. So,
Endg(M) ~ M, (C)°° ~ M, (C°P).
In particular,
dimg Endg(M) = n? - dimg C = n* = dimg A ® B,
implying that ¢ is surjective. Thus, ¢ is an isomorphism, so
A®kg B ~ (Endc(M))°P ~ M, (C),
proving (15), and completing the argument. O

Remark. A different proof of Theorem 7 is given in [3], §4.4.

We will now show that Theorem 7 can be extended to infinite Galois extensions. Let L/K be an
infinite Galois extension with the Galois group G = Gal(L/K). Let { P, };cr be a family of finite Galois
extensions of K contained in L such that L = |J,c; P;, and for any 4,5 € I there exists k € I such
that Pj, P; C Py. Then G = @Gi where G; = Gal(P;/K) = Gal(L/K)/Gal(L/P;). We claim that

(17) Br(L/K) = JBr(P:/K).
iel
The inclusion D is obvious. Let now [A] € Br(L/K); then there exists an isomorphism of L-algebras

A @k L ~ M,(L). Pick a basis ey, ..., e, of A over K. There exists i € I such that alej) € M, (F;)
for all j = 1,...,n% and then a(A) C M,(P;). Clearly, a induces an isomorphism of P;-algebras
A ®k Py ~ My,(F;). So, [A] € Br(P;/K), and (17) follows. We will interpret (17) as follows: for
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P; C Pj, there is the inclusion map L;-: Br(P;/K) — Br(P;/K); then {Br(FP;/K), L;} is a direct system
and
Br(L/K) = lim{Br(P,/K), 1}

On the other hand, for P; C Pj, we have the natural surjective map pg: Gal(P;/K) — Gal(Pj/K)
which gives rise to the inflation map
0. H*(Gal(P,/K), Pf) — H*(Gal(P;/K), P}),
which is defined by sending the class of a cocycle {a,..} € Z?(Gal(P;/K), P}) to the class of the
cocycle as + € Z?(Gal(Pj/K), Pr) given by
6,7 = pl(6),00 ()"
Then by definition of the cohomology of profinite groups (cf. [1], Ch. V)
H*(G,L*) = li_r>n{H2(Gal(Pi/K), P}), 05}
For each i, by Theorem 7, we have an isomorphism 8p, /: Br(P;/K) — H*(G;, P}). So, to construct
an isomorphism 7 : Br(L/K) — H*(G, L*), it is enough to show that the system {p, /j } defines an

isomorphism between the direct systems {Br(P;/K), L;} and {H?(Gal(P;/K), P}), 0;}, ie. if P, C P
then the diagram

Bi(P/K) —5 Br(Pj/K)

Bp,/k 4+ 1 BpKi
o
H*(Gy, BY) —= H*(Gj, P})

is commutative; then we can set 8r/x = lim Sp, /.
—

Proposition 6. Let E C F be finite Galois extensions of K. Let v: Br(E/K) — Br(F/K) be the
natural embedding, and let 0: H*(Gal(E/K), E*) — H?(Gal(F/K), F*) be the inflation map. Then
the diagram
Br(E/K) s Br(F/K)
BE/K + 1 Br/k
H%(Gal(E/K),E*) % H2(Gal(F/K),F*)

15 commutative.
Proof. Let m = [E : K], n = [F : K|, r = n/m, and let p: Gal(F/K) — Gal(E/K) be the

canonical map. Any element of Br(F/K) is represented by an algebra A which is a crossed prod-
uct (E,Gal(E/K),{asr}) for some factor set {a, ,}. Then

A= @ Fz,
ceGal(E/K)

where

1

zoax, =o(a) forall a € E, and z,2; = o Tor.

Then 0(8g,k([A])) is represented by the cocycle g > such that
5.7 = Ap(&).p(7)-
On the other hand, ¢([A]) = [B] where B = M,(A). So, to prove our claim it is enough to write
B= P Fu
5€Gal(F/K)

where
y(;-bygl =4(b) forall be F, and ysy; = G5 +Ys.+-
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For this we pick a basis ej,...,e, of F over E and embed F into M, (E) C B using the left regular
representation A which is described by

)\(b) = (Sij) where bej = Zsijei~
i=1
Furthermore, for 6 € Gal(F/K), we set
p(6) = (tij) where &(e;) = Ztij€i~
i=1

Define an action of Gal(F/K) on M,(F) by
o ((uij)) = (p(6)(uij)))-

Then we have the following identities:

(18) p(67) = p(6)o (u(7))
and
(19) A(6(0)u(0) = n(6)a(A(b)),

which are verified by direct computation (see [4, §14.5, Lemma] for the details). Clearly,

G(A(b)) = Z5A(b)E, " where T = diag(z,(s), - - Tp(s)):
so it follows from (19) that

A(6(b)) = u(@)a (A(b)u(6) ™! = p(6)ZsA(b)Z5 u(e) "
Thus, ys := u(6)Zs satisfies

ysby, ' = &(b) forall be F.
Furthermore, using (18) we obtain
Ysyr = (0)Top(7)T7 = p(0)5 (1(T))Tews = (0T )Ap(5),p(3)To7 = Q5,7 Yo7

as required. N

It follows from Proposition 3 that Br(K) = Br(Ksep/K), where Ky, is a separable closure of K.
Then we obtain the following.

Theorem 8. For any Galois extension L/K, there is an isomorphism
Br/k: Br(L/K) — H*(Gal(L/K),L").
In particular, Br(K) ~ HQ(Gal(Ksep/K),Ks*ep).
Now, let L/K be a finite Galois extension, and P be an intermediate subfield. Then Gal(L/P) is

a subgroup of Gal(L/K), so there is the restriction map

v: H*(Gal(L/K), L*) — H*(Gal(L/P), L*).
On the other hand, there is the homomorphism

e: Br(L/K) — Br(L/P), [A]— [A®k P].

With these notations, we have the following.
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Proposition 7. The diagram

Br(L/K) = Br(L/P)
Br/i + 1 Br/p
H?*(Gal(L/K),L*) -2+ H?(Gal(L/P),L")

15 commutative.

Proof. Any element of Br(L/K) is represented by an algebra A which is a crossed product (L, Gal(L/K),{asr})
for some factor set {ay }. Then
A= @ Lz,

oeGal(L/K)

where
xga:U;l =o(a) forall a € L and z,2; = a5 rTor.
We already know that Z4(P) is a central simple P-algebra (Corollary 4), and clearly
Za(P)= P L.
s€Gal(L/P)
It follows that
v(Br/x([A])) = Br/p([Za(P))).

It remains to be shown that [Z4(P)] = [A ®k P] in Br(L/P). For this, we consider A as a module
over A @ P°P = A @k P with the scalar multiplication given by

(a®p)-b=abp.

As we have seen in the proof of the Double Centralizer Theorem, End4(4A) consists of right multi-
plications by elements of A, hence is isomorphic to A°P. It follows that

Endag,p(A) ~ Za(P)°P
as P-algebras. On the other hand, since A ® ¢ P is simple, we obtain from Proposition 1(3) that
ApxPA Rk P~ A" where r=[P: K].
So,
(A®k P)® ~ Endag, r(ag,PA @K P) ~ M,(Endag, p(A)) ~ M, (Zs(P)°?)

It follows that A ® P ~ M,.(Za(P)) as P-algebras, and therefore [Z4(P)] = [A ®k P] in Br(L/P),
as required. O

Corollary 6. Let D be a central division algebra of dimension m? over K. Then m[D] is trivial in
Br(K). In particular, Br(K) is a periodic group.

Indeed, pick a maximal subfield P C D which is a separable extension of K, and let L be its
Galois closure. Then [D] € Br(L/K). On the other hand, by Theorem 6, D ®x P ~ M,,(P). So,
it follows from the proposition that v(8y,x([D])) is trivial, and therefore pu(v(Br/xk([D]))) is trivial,
where j: H?(Gal(L/P), L*) — H?(Gal(L/K), L*) is the corestriction map. But gowv is multiplication
by m = [Gal(L/K) : Gal(L/P)] (cf. [1]), and our assertion follows.
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5. CYCLIC ALGEBRAS

In this section, we specialize to the cases where L/K is a cyclic extension of degree n. Fix a generator
o of the Galois group G = Gal(L/K). Given a central simple algebra A over K of dimension n? that
contains L, pick an arbitrary element x, € A* such that

(20) zeax,' =o(a) forall ac L.
Set

Ty = (x,)" for i=0,1,...,n— 1.
Then xaiam;} =o'(a) foralli =0,...,n — 1. Let a = (z,)".

Lemma 9. o € K*.

n

Indeed, we have (z,)"az,"™ = 0"(a) = a implying that a = (z,)"™ belongs to Z4(L) = L. Further-

more,
o(a) = zo(xp)z, ' = (2,)" = o,
yielding o € K*.
Clearly, for 7,5 € {0,...,n — 1}, we have
o T yiti , t+g<n
L 5id 55 { AT yitj—n 7,+] 2 n

Thus, the multiplication table for A is completely determined by specifying a. We will denote this
algebra by (L, o, a). Using the definition a, 9 = 1,‘.,-1'91,‘;91, we obtain that the corresponding factor set

looks as follows:
S 1 , i1+75<n
Yl T\ a , i+jzn

We will denote this factor set by {a,i ,i(a)}. We have shown that any element of Br(L/K) is
represented by an algebra of the form (L,o,«) for some a € K*. Because of the identification
Br(L/K) ~ H?*(G,L*), this means that every element of H?(G,L*) is represented by a cocycle
i i () for some o € K*. Conversely, for any a € K*, a,i ,(a) is a cocycle. Notice that

(21) Ui i ()i 57 (B) = agi gi(B) for any o, € K*

Any other element satisfying (20) is of the form 2/, = z,t for some t € L*, and then

o = (:ZZ/ )n — (CCgt) - (.Tgt) = g(t)o'Q(t) cee O'n(t)CU?; = NL/K(t)aa

g

where N7,k is the norm map. Thus, the correspondence
Yok Br(L/K) — K*/Np (L), [(L,0,a)] = aNp/g(L"),

is well-defined. Conversely, if o/ = aNpk(t) then the correspondence (x,)" — (z4t)" fori = 0,...,n—
1, extends to an isomorphism of algebras (L,o,a’) =~ (L,o,a), which shows that v, is injective.
Since a,i ,5(a) is a cocycle for any a € K*, we obtain from Lemma 8 that YLK 18 also surjective,
hence bijective. Finally, using (21) and Theorem 7, we conclude that 77,/ is a group isomorphism.
Thus, we have proved the following.

Theorem 9. If L/K is a finite cyclic extension with the Galois group G = (o), then the correspondence
Yok Br(L/K) — K*/Np (L"), [(L,0,a)] = aNp, (L"),

s a group isomorphism.
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Notice that this theorem gives an interpretation of the well-known isomorphism H?(G,L*) =~
K*/Np k(L") for G cyclic, in the language of simple algebras.

Example 1. Take K = R. Then Br(R) = Br(C/R). By Theorem 9,
Br(C/R) ~ R*/Ne/r(C),

which is a group of order two. This means that there exist a unique up to isomorphism noncommutative
central division algebra over R. On the other hand, the algebra of Hamiltonian quaternions H is a
central 4-dimensional division algebra over R. Thus, we recover a theorem, due to Frobenius, that any
finite dimension central division algebra over R is isomorphic to H.

Example 2. Let K = F, be a finite field with ¢ element, and let L = Fyn. It is well-known that
L/K is cyclic, and its Galois group is generated by the corresponding Frobenius automorphism. Then
by Theorem 9

Br(L/K)~ K*/Np k(L")

But it is well-known that the norm map over finite fields is surjective. So, Br(L/K) is trivial for any
finite extension L/K, and therefore Br(K) is trivial. This means that there are no noncommutative
finite dimensional central division algebras over K. Since the center of any finite division division ring
is a finite field, we recover a theorem, due to Wedderburn, that any finite division ring is commutative.

Before proceeding to our next example, we need to prove one lemma.

Lemma 10. Let F/K be a cyclic extension of degree n with the Galois group Gal(F/K) = (5), and
let E C F be a subextension having degree m over K and o be the restriction of 6 to F. Then for any
a € K*,

(E,o,a) ~ (F,6,a")

where T = n/m.

Proof. We will use the notations introduced in the proof of Proposition 6. It was shown therein that
one can take ys; = 1(6)Zs. Then using (18) we obtain

vh = (1(6)2s) - (1(6)T5) = (&) (n(6)) - 6" H((6))TG = p(6")(@F)" = o

because u(6™) is the identity. O

Example 3. Let K be a local field, and K, be its unramified extension of degree n. Then
Gal(K,,/K) is generated by the corresponding Frobenius automorphism ¢. It follows from Theorem 9
that the correspondence [(Ky,¢,a)] = aNg, /k(K;) gives an isomorphism g, /i Br(K,/K) —
K* /N, /k(K,). Tt is well-known that Ng /g (K;) = UK™ (cf. [5], Ch. V, §2), so the map
aUK*" +— v(a)/n, where v is the valuation on K with the value group Z, obviously gives a group
isomorphism K* /N, /r(K;) =~ %Z/ Z. Composing it with vg, /i, we get an isomorphism

1
i™: Br(K,/K) — ~Z)7, (Kn,p,a)— v(a)/n(mod Z).
n
Suppose now that m|n. Then K, C K,, and the restriction of the Frobenius automorphism ¢ of K,

to K, gives the Frobenius automorphism ¢ of K,,. Then it follows from Lemma 10 that the diagram

Br(K,,/K) — Br(K,/K)
im) | 1™
iz —  izjz
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in which the horizontal maps are standard embeddings, is commutative. It follows that for the maximal
unramified extension K", the Brauer group Br(K" /K) is isomorphic to

1
lim ~7/Z. = Q/Z.

6. THE BRAUER GROUP OF A LOCAL FIELD

Let K be alocal field, and v be the valuation on K. In this section, we will compute Br(K') through
understanding the structure of finite dimensional central division algebras over K. So, let D be a
central division algebra over K of dimension n2. The first step in the analysis of the structure of D is
extending the valuation to D. As in the case of fields, by a valuation on D we mean a map w: D* — R
that satisfies the following two properties:

(V1) w(ab) = w(a) + w(b) for all a,b € D*;
(Vo) w(a +b) > min{w(a), w(b)} for all a,b € D*, b # —a.

We recall that given a field extension L/K of degree n, the valuation v has a unique extension to L
which is given by the equation

(22) o(0) = %U(NL/K(K)) for all ¢ L*.

A similar construction yields an extension of v to D, but the norm map Ny i needs to be replaced
with the reduced norm map Nrdp, g, which is defined as follows. Let P be any splitting field for D

so that there exists an isomorphism D ®x P =~ M,,(P). Then we define
Nrdp,k(a) = det(pp(a® 1)) for a € D*.
The most important properties of this map are listed in the following proposition.
Proposition 8. (1) Nrdp/k(a) is independent of the choice of P and pp.
(2) Nrdp/g defines a homomorphism of D* to K*;
(3) For any mazimal subfield L of D, we have Nrdp k(a) = N, x(a) for all a € L.
Proof. See [4], Ch. 16. O

Proposition 9. The equation

1
(23) w(a) = EU(NrdD/K(a))
defines a valuation on D that extends v.

Proof. Clearly, w extends v and satisfies (V7), so we only need to verify (Vg). Take any a,b € D,
b# —a. Then w(a+b) = w(a) +w(14+a~'b). Let L be a maximal subfield of D containing a~'b. Then
(22) defines an extension of v to L. On the other hand, for ¢ € L, using Proposition 8(3), we obtain

w(t) = ~o(Nrdpse() = ~o(Nye(6)) = 5(0),

So,
w(l+a™1b) = 5(1 4+ a7 1b) > min{o(1),9(a"1b)} = min{w(1),w(a"'b)} = min{w(1), w(b) — w(a)}.
Thus,
w(a+b) = w(a) + w(l 4+ a"'b) > w(a) + min{w(1), w(b) — w(a)} = min{w(a),w(d)},

as required. O
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Let I'yy, = w(D*) and I', = v(K™) be the value groups of w and v respectively. It follows from (23)
that nI'y, C T'y, so I'y is cyclic and the ramification index e(D|K) = [I'y : I'y] is < n. Any element
IT € D* such that w(II) is the positive generator of Iy, is called a uniformizer. As usual, O, := {a €
D*|lw(a) = 0} U{0} is a subring of D, called the valuation ring, and B, := {a € D*|w(a) > 0} U {0}
is a two-sided ideal of O, called the wvaluation ideal of w. Clearly, B, = 11O, = Oll for any
uniformizer II, and any element a € O, \ By, is invertible in O,,. It follows that D = O, /B, is a
division ring, called the residue algebra. It is an algebra over the residue field k£ = O, /p,, where O,
and p, are the valuation ring and the valuation ideal in K. For a € O,,, we let a denote the image of
a in D. A standard argument shows that for a1, ...,a, € O, linear independence of a,...,a, over k
implies linear independence of aq,...,a, over K, which in particular implies that the residual degree
f(D|K) = dimy, D is finite.

Proposition 10. We have e(D|K) = f(D|K) = n, and D contains an unramified extension of K of
degree n.

Proof. Since k and f(D|K) are finite, the residue algebra D is finite, hence commutative by Wedder-
burn’s theorem (Example 2 in §5). So, D is a finite field extension of k, and therefore D = k(a) for
some a € O,. Consider the field L = K(a), and let E be the maximal unramified extension of K
contained in L. Then for the corresponding residue fields we have L = E = D. Since [E : K] < n, we
obtain

f(DIK) = f(E|K) < n.
Now, let O(E) be the valuation ring of E. We claim that for any uniformizer II € O,, we have
(24) Ow=O(E)+O(E)I+ -+ O(E)IT" L,

Let A = O(E) + O(E)I1 + -+ + O(E)[I" L. Since O(E) is compact, A is also compact, hence closed
in O,. So, to prove (24), it is enough to show that A is dense in O,,, which is equivalent to

Op = A+ 0,1V for any j > 0.
But since E = D, we have O,, = O(E) + O(E)II. Iterating, we obtain
Ow=0(E)+O(E)IL+---+ O(E)IV™' + O,I for any j > 0.

But II satisfies an equation of degree n with coefficients in @, and leading coefficient 1, so TI¢ € A for
any d > 0. This implies that

O(E)+ O(E)I+---+O(E)IV"! C A
for any j, and (24) follows. We then have
(25) Ow/pyOp = E+ ENl +--- + ENI",

where E and IT are the images of O(E) and II in O, /p,O,. Since E is unramified, we have £ = E,
and dimy, E = f(D|K). Also, TI*PIK) ¢ p,0,,, so (25) reduces to

Ow/poOw = E + ETl 4 - - - + EII*PIE)-L,
Taking the dimensions over k, we obtain n? < e(D|K)f(D|K), so in fact e(D|K) = f(D|K) = n, and
F is an unramified extension of K of degree n contained in D. O
Let K, be the unramified extension of K of degree n, and K" be the maximal unramified extension

of K. It follows from Proposition 10 that
Br(K) = | JBr(Kn/K) = Br(K"/K).
n



BRAUER GROUP 25

On the other hand, as we have seen in Example 3 in §5, there is a system of compatible isomorphisms
zé?): Br(K,/K) — (1/n)Z/Z, leading to an isomorphism

irg: Br(K) — Q/Z, [(Kpn,pn,a)]— v(a)/n(mod Z),

where ¢y, is the Frobenius automorphism of K, /K. This proves the first assertion of the following
theorem.

Theorem 10. (1) There is an isomorphism ik : Br(K) — Q/Z.
(2) If L/K is an extension of degree n then the diagram

Br(K) % Q/z
(26) €L~L . \l/,un
Br(L) % Q/z

where e, ([A]) = [A ®k L] and py, is multiplication by n, is commutative.

Proof. We only need to prove assertion (2). First, we observe that if we have a tower of extensions
K C M C L, and our assertion is true for the extensions M/K and L/M then it is also true for
L/K. Since any extension L/K admits such a tower in which M /K is unramified and L/M is totally
ramified, it is enough to consider separately the cases where L/K is unramified and totally ramified.

L/K is unramified. Any element of Br(K) is represented by an algebra A = (K, pm,«) where
K,,/K is the unramified extension of degree m divisible by n and ¢, is the Frobenius automorphism
of Ky,. Recall that o = (x,,,)™, where z,,, € A* is an element such that x@mam;}n = pm(a) for all
a € K},. Then

nv(«)

(27) i ([A]) = "2 2 (mod 7).

Since n|m, we have L C K,,, and as we have seen in the proof of Proposition 7, £1,([4]) = [Za(L)].
Besides, according to Corollary 4, Z4(L) is a central simple algebra over L of dimension (m/n)?. The
Frobenius automorphism of K,,/L is (¢m)", and it is induced by the element (x,,)" € Za(L). It
follows that Z4(L) = (K, (om)™, 3) where

8= ((2p,)")"" = (20,,)" = a

So,
(28) ir(er([A])) = vr(a)/(m/n)(mod Z),

where vy, is the valuation on L with the value group Z. However, since L/K is unramified, we have
vr(a) = v(a), and the commutativity of (26) follows from (27) and (28).

L/K is totally ramified. Again, consider an element of Br(K') which is represented by an algebra
A = (K, ©m,a). Then p,(ix([A])) is still given by (27). Since L/K is totally ramified, we have
LNK, = K. As K,,/K is a Galois extension, we have [K,,L : L] = [K,, : K], and therefore
(KL : K] = [K,, : K][L : K]. It follows that the homomorphism K,, ®x L — K, L, a®b — ab, which
is always surjective, is in fact an isomorphism. Thus, A ® ¢ L contains K,,L as a maximal subfield.
The extension K, L/L is unramified of degree m, and its Frobenius automorphism @, restricts to ¢y,.
It follows that the same element z,,, € A* C (A ®k L)* induces @,. So, A @k L = (KL, om, B),
where

B = (2e,)" = .

Thus,
(29) ir(er([A])) = vp(a)/m(mod Z).
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But since L/K is totally ramified, we have v () = nv(«). So, the commutativity of (26) follows from
(27) and (29). O

Corollary 7. For any extension L/K of degree n, we have Br(L/K) = Br(K, /K).

Indeed, it follows from the commutative diagram (26) that Br(Li/K) = Br(L2/K) = i}’ (Ker )
for any two extensions L;/K and La/K of degree n.

Combining Corollary 7 with Example 3 in §5, we obtain

Corollary 8. Let L/K be a Galois extension of degree n with the Galois group G. Then H*(G,L*)
s a cyclic group of order n.

This result is crucial for local class field theory.
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