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Chapter 1

Some Category Theory

JULIE BERGNER

1.1 Lecture 1 (8/31/2021)

Main idea: Category theory gives a convenient way to describe mathematical objects with functions between

them. It allows general organizing principles together with general results that apply to many examples.

Definition 1.1.1. A category C consists of a collection of objects ob(C), and for any pair of objects (A, B),
a set Home (A, B) of morphisms A — B, together with,

e for every object A, an identity morphism idys : A — A, and
e a composition law
HOch(A, B) X HOmc(B, C) d HOInc (A, C)
(f,9) —gof
satisfying axioms
e (unitarity) given any f: A — B, foida = f=idgo f
e (associativity) for any f: A —> B,g: B—> C,h:C — D,
(hog)of=nho(gof)

E.g.

1) sets and functions (Set)

2) groups and group homomorphisms (Gp)



3) topological spaces and continuous maps (7 op)

4) vector spaces and linear maps

ida

5) [0] : A NIE CA%BOJ%: VBX

_
A por C

6) Any group G induces a category with one object X, and Hom(X, X) = G.
7) Any equivalent relation on a set X defines a category with objects, the elements of X and a single
morphism x — y whenever z ~ y.
Examples (5)-(7) are small, in that ob(C) is a set. (1)-(4) are large, i.e. ob(C) is a proper class.

We can also take subcategories, by taking subcollections of objects and morphisms, in a compatible way.

E.g.

8) Finite sets and functions is a subcategory of Set.

9) Groups and isomorphisms forms a subcategory of Gp.

Example(8) is a full subcategory: Homz;,se:(X,Y) =~ Homge (X, Y)
Example(9) is not full, but it is wide, in that it contains all objects.

Definition 1.1.2. An isomorphism is a morphism f : A — B such that, 3g : B — A such that go f = id4
and fog=idpg.

E.g.

e bijections between sets

e group isomorphisms

e homeomorphisms
Examples of categories in which all morphisms are isomorphisms are [0] from (5), and (6), (7), (9). We call
them groupoids.

Definition 1.1.3. An initial object in a category C is an element ¢ such that for any object C of C, 3!
morphism ¢ — C.

Dually, a terminal object is an object * such that for any C, there is a unique C' — =.

E.g.

e In Set, the empty set is initial, and any singleton {z} is terminal.



e In Gp, the trivial group {e} is both initial and terminal, we call it a zero object.

e In a group G regarded as a category, the single object is neither initial nor terminal, unless G = {e}.

e The category 0 1 2 ... has an initial object, but no terminal objects.

Definition 1.1.4. A covariant functor F : C — D assigns to any object A of C an object F/(A) of D and
to any morphism f : A — B, a morphism F(f): F(A) — F(B) in D, satisfying
o Fida) = idp(a)

o for f:A— B,g: B— C,F(go f)=F(g)oF(f).

A contravariant functor F takes f : A — B to F(f): F(B) —» F(A).

E.g.

e Fundamental group 7 : Topy — Gp is covariant.
e Homology groups Hy : Topy — Ab are covariant.
e Cohomology groups H? : Top — Ab are contravariant.

Definition 1.1.5. Given a category C, its opposite category C°P has the same objects as C, but

Homgeor (A, B) := Home (B, A)

Fact: Contravariant functors C — D <= Covariant functors C°? — D.

E.g. The forgetful functor U : Gp — Set takes a group to its underlying set.

The free functor F : Set — Gp takes a set to the free group on the set.

These functors are adjoint, in that Homg,(FX,G) = Homgse (X, UG) naturally (Functions out of a free

group are determined by where the generators go), i.e.

For any G — H,
Homg,(FX,G) —— Homg,(F X, H)

lle
IIe

Homget (X, UG) ——— Homge (X, UH)

commutes.

For any X — Y,
Homg,(FX,G) —— Homg,(FY,G)

12
12

Homge (X, UG) ———— Homge (Y, UG)



commutes.
We write this as F': Set = Gp : U or (F,U) or F 4 U. F is the left adjoint and U is the right adjoint.

Observe that F(U(G)) # G and U(F (X)) # X. But there do exist unit and counit maps X — UFX and
FUG — G for any set X and group G.

We can state this in terms of natural transformations.

Definition 1.1.6. Given F,G : C — D, a natural transformation « : F' = G consists of
for any object A of C, aa : F(A) — G(A) in D, s.t.

For any f: A — B in C, the diagram

commutes.

So, for any adjoint pair (F,U), there are natural transformations F'U = idp (counit) and idc = UF' (unit).

E.g. Consider the forgetful functor U : Top — Set.

It has a left adjoint F', taking a set to a discrete space Hom7,,(FX,Y) = Homg (X, UY).

It also has a right adjoint R, taking a set to an indiscrete space Homs,,(UY, X) = Hom7,, (Y, RX).
E.g. (Non-examples)

The forgetful functor U : Field — Set(Ab/Ring) doesn’t have a left adjoint.

Nontrivial field homomorphisms only exist between fields of the same characteristic, but can have set functions

or group/ring homomorphisms between fields of different characteristics.

E.g. The left adjoint to the forgetful functor
Ab — AbMon

(abelian monoid) is the group completion/Grothendieck group functor Kj.



1.2 Lecture 2 (9/7/2021)

Last time we talked about adjoint functors F : C = D : G, where Homp(FX,Y) =~ Home (X, GY) for objects
X of Cand Y of D.

Definition 1.2.1. Given objects X and Y, then the product X x Y, with morphisms p; : X xY — X and
p2 1 X xY — Y is defined by a universal property: for any W and any morphisms W — X and W — Y,

there exists a unique morphism W — X x Y, s.t. the following diagram commutes

w

EL

XxY
Y

E.g. Usual cartesian product of sets, spaces, groups.

X

Definition 1.2.2. Given objects X, Y, Z and two morphisms f: X — Z and g : Y — Z, then the pullback
X Xz Y, with morphisms p; : X xzY — X and p2 : X Xz Y — Y, is defined by a universal property: for
any W and any morphisms W — X and W — Y, there exists a unique morphism W — X xz Y s.t. the

following diagram commutes

b2

>
X
N

~

Y
pll/ ‘/9
X Z

E.g. In Set, X xzY = {(z,y) e X xY : f(x) = g(y)}. We can think of this diagram X — Z «— Y as a

functor from the category e <—— ¢ —— o to C.

_
f

The pullback is ”universal cone”: anything else mapping to this diagram factors through it.

Definition 1.2.3. Dually (to product), the coproduct X 1Y satisfies the universal property corresponding

to the following commutative diagram

X _ Y

E.g. Disjoint union of sets, spaces, free products of groups, direct sum of modules.

Definition 1.2.4. Dually (to pushback), the pushout X L1 Y satisfies the universal property corresponding



to the following commutative diagram

Z
f‘
X

g

|

— X

i1

E.g. InSetor Top, X uzY =X uY/ ~, where f(2) ~ g(2),Vz € Z.

E.g. Amalgamated free product of groups: G x4 H.

We can think of the diagram X 7 9y asafunctorfrom e ¢—— e — 5 e to C.

The pushout is a ”universal cocone”, maps out of the diagram factor through it.
Want to describe similar phenomena for more complicated diagrams.

Let ¢ be a small category, C an arbitrary category, and F : £ — C a functor, thought of as a diagram in C.
We have a category C’ of such functors: objects are functors, morphisms are natural transformations, e.g.

f= o — s e0+— o
a c b

F(a) F(c) F(b)
| | |
G(a) G(c) G(b)

Consider the constant diagram functor A : £ — C%, X — AX, eg. X i, x <M X If it exists, its
right adjoint lim, : C* — C, F ~ lim, F takes a diagram to its limit.

Check what’s happening for £ = ( ¢ —— ¢ «+—— o ).
A:t=Ct: lim.

Homge:(AX, F) =~ Home (X, h?l F).

X 4 x4 _x
l limy F
Fa) — Fle) «— F(b) N
F(a) F(c) F(b)



Its left adjoint, if it exists, takes a diagram to its colimit
colimg : C' = ¢: A

Homy (colimyF, X') =~ Home: (F, AX)

eg. ford=(e+—e——0)

colimgF Fl(a) F(c) F(b)
I
X X+“4—x "X

In many our standart examples, small limits and colimits (i.e. where £ is small ) all exist. But they need

not, in general.
E.g. In Set, the colimit of {1} — {1,2} — {1,2,3} — ---is {1,2,3,...}. In FinSet, this colimit doesn’t

exist.

Fact: If ¢ has an initial object ¢, then the limit of any F : £ — C is (isomorphic to) F(¢F). Dually, if £ has
a terminal object #, then the colimit of any F : £ — C is F(x).

Note: Limits and colimits, if they exists, are unique up to unique isomorphisms.

E.g. Consider the diagram ¢ = ( . i; . ) The limit of a functor F' : £ — C is called an equializer.
a f b

Its colimit is called a coequalizer.

f
E.g. In Ab, G ;; H has equalizer ker(f) and coequalizer is coker(f).

G
!
Note: The qualizer of G ?i H is not the same as the pullback of J/g .
G —tom

Proposition 1.2.5. A category C has all small limits (is complete) if and only if it has all products and

equalizers. It has all small colimits (is cocomplete) if and only if that has coproducts and coequalizers.

Definition 1.2.6. A functor C — Set is representable if it is naturally isomorphic to one of the form

Home (X, —) (for covariant functors) or Home(—, X) (for contravariant functors) for some object X of C.
E.g. id : Set — Set is representable by a singleton set {a}, id(X) = X = Homg.:({a}, X).

E.g. The forgetful functor U : Gp — Set is representable by Z. Homg,(Z,G) = UG, the underlying set of

G, since a morphism Z — G is specified by where 1 goes.

E.g. The contravariant functor Hom(— x A, B) : Set — Set is represented by Homgs.: (A4, B) = B,
Homget(C’ X A, B) >~ HOmSet (C, Homset (147 B))
CxA—->B C — Homg: (A, B)

(c,a) — beg cr b,

Cy



Note: Representable functors preserve limits, so not all functors are representable.

Lemma 1.2.7. (Yoneda) Given a functor F': C — Set and an object X of C, there is a natural bijection (in
F and X )
NatTrans(Home (X, —), F) =~ F(X)

{Oéy : HOmc(X, Y) — F(Y)} — ax(idx) € F(X)

E.g. For any functor F': Gp — Set, the set of natural transformations U — F' is given by

NatTrans(Homg,(Z, —), F) = F(Z).

Yoneda Embedding: Let C be a small category. Then the functor

C — Set®” andC? —— Set®
x —— Hom(—, z) x — Hom(z, —)

are fully faithful.

Definition 1.2.8. A functor F' : C — D is full if for any objects X,Y of C, the map Hom¢(X,Y) —
Homp(F(X), F(Y)) is surjective. It is faithful if this map is injective. F is essentially surjective if for
any object Z of D, there exists an object X of C such that F(X) =~ Z.

Definition 1.2.9. F : C — D is an equivalence if it is fully faithful and essentially surjective.
Eg. C=(s)and D= (e — o)

E.g. C = FinSet, D is the category of sets ¢F, {1},{1,2},....,{1,...,n},.... We sometimes call D a skeletal

subcategory of D, since there are no non-identity isomorphisms.

10



1.3 Lecture 3 (9/14/2021)

Theorem 1.3.1. Right adjoints preserve limite, and left adjoints preserve colimits.

Idea of proof: Let F:C = D : G be an adjoint pair, X : ¢ — D with ¢ small, with limit lim, X. e.g.,

limy, X apply G Glim, X
(a) (c) X(b) GX(a) —— GX(c) +—— GX(b)

If C is another cone of this diagram:

Apply F:
limy X oo . FC
>~ c
/ N \‘/ \ — =
X(a) X(c) <> X (b) i

Dual argument for colimits.

Can also write as isomorphisms:

Home: (AG,GX) = Homp: (FAC, X)
=~ Homp(AFC, X)
=~ Homp (FC, lign X)

=~ Home¢(C, G liﬁn X)
Last topic: Abelian Categories.
Idea: formalize nice properties of the category rMod of R—modules

First properties:

e enriched in Ab: Hom(M, N) is an abelian group
e has a zero object (the 0 module) that is both initial and terminal

e has all binary products (M x N) and coproducts (M @ N ).

Any category with these properties is called additive.

Note: A consequence is that finite products agree with finite coproducts, e.g., M x N ~ M @ N.

11



But there’s more structure in gMod, intuitively given by the existence of short exact sequencec, i.e.,

monomorphisms, epimorphisms, kernels and cokernels.

Definition 1.3.2. A morphism f: X — Y in a category C is:

e a monomorphism if for any A, k: W — X, if fh = fk, then h = k; and
e an epimorphism if for any h,k:Y — Z,if hf = kf, then h = k.

Definition 1.3.3. Let C be an additive category, and f : X — Y a morphism

f
e the kernel of f is the equalizer of X $§ Y ;and

f
e the cokernel of f is the coequalizer of X ?i Y .

Definition 1.3.4. An abelian category is an additive category C such that every morphism has a kernel

and a cokernel, every monomorphism arises as a kernel, and every epimorphism arises as a cokernel.
E.g. gMod, Ch(R): chain complexes of R—modules.
Definition 1.3.5. A functor C — D between abelian categories is exact if it preserves exact sequences.

Theorem 1.3.6. (Freyd-Mithcell Embedding Theorem) For any small abelian category C, there exists a ring
R and an exact, fully faithful functor C — rMod that embeds C as a full subcategory.

12



Chapter 2

Introduction to spectral sequences

PETER ABRAMENKO

For this set of notes, R is a ring with 1 and C = pRMod is the category of left R-modules.

2.1 Filtered Differential Modules

Definition 2.1.1. A decreasing filtration of M € C is a sequence (FPM),ez if submodules with FPT1M <
FPM for all p € Z and M = UpeZ FPM. The filtration is called finite if there exist pi,ps € Z such that
FPrM = M and FP2M = 0.

With any filtration (F?M) of M, we associate a graded module
GrM = (G M)pez

where GrP M := FPM /FP*1M. The module Gr M is sometimes identified with D ez Gr" M.

Example 2.1.2. Suppose M = @D ., MP, FPM = @,. M". Then Gr* M = MP for all p € Z.

peZL i=p

Lemma 2.1.3. If (FPM) and (FPM') are finite filtrations of M, M' € C and f : M — M’ is a homomorphism
of filtered modules (i.e. f(FPM) < FPM' for all p) such that the map induced by f, Grf : Gr M — Gr M,

s an isomorphism, then f is also an isomorphism.

Proof. Without loss of generality, we may shift the indices of the filtrations so that

Note that we are applying the same shift to each filtration. By assumption, we know that the maps Gr? f :
FPM/FPHIM — FPM’'/FPTIM’ are isomorphisms for all p. We will show that f is an isomorphism by

induction on n.

13



We can easily reduce to the case where n = 2. That is, we are given
M>F'M>1 and M'>F'M >0
where f1 := Gr' f: FIM — F'M’ and f:= Gi° f : M/F'M — M'/F'M’ are isomorphisms.

To check that f is injective, note that for all z € ker f, f(z + F*M) = 0. Since f is injective, we have that
v+ F'M = F'M and z € F'M. Therefore, fi(x) = f(z) = 0 and by injectivity of fi, * = 0. Thus f is

injective.

We now check that f is surjective. Let y € M’. Now, since f is surjective, there exists an m € M such
that f(z + F'M) = y + F'M'. Ergo, y € f(z) + F'M’'. Since f is surjective, F* M’ = f(F'M). Ergo,
ye f(x)+ f(FIM) = f(x + FM) < f(M). Thus f is surjective as desired. O

Definition 2.1.4. A differential module is a pair (M,d) with M € C and d € homg (M, M) such that d? = 0
(that is, imd < kerd). We set

B:=B(M) :=imd (coboundaries)
Z:=7Z(M):=kerd (cocycles)
H(M):=Z/B (cohomology)

A filtration of (M, d) is a filtration (FPM)pez of M such that d(FPM) < FPM for all p.

Example 2.1.5. Take C = (C™,d'C™ — C™"1) to be a cochain complex. Set M := @, C", and d :=
@, d" : M — M. Then (M,d) is a differential module. If additionally, each C™ has a filtration (FPC™)pez
such that d"(FPC™) € FPC™ "L for all p, then (FPM = @, FPC™)pez is a filtration of (M,d).

A filtration of (FPM),ez of the differential modules (M, d) induces a filtration (H (M )P)pez on the cohomology
HM) :=(ZnFPM)/(BnFPM) — Z/B = H(M).

On the other hand, each FP M becomes a differential modules with respect to dpr = D1pp : FPM — FPM.
The cohomology of (FPM,dp») is

H(FPM) = kerdp»/imdps = (Z o FPM)/dps (FPM).
Note that dps (FPM) = d(FPM) € B n FPM but imdpr need not equal B n FPM in general.

Thus, for each p, there exists a homomorphism (? : H(FPM) = (Z n FPM)/dp» (FPM) — Z/B = H(M)
with image (Z n FPM)/(B n FPM)=G(M)? = {2+ Blz€ Z n FPM}.

The filtration (H(M)P),ez of H(M) induces a graded module Gr H(M) = (H(M)?/H(M)PT1) .

We may now talk about the purpose of the spectral sequence: to approximate EY, := H(M)?/H(M )P+ by
a sequence (EP),ey, starting with E} = FPM/FPTLM with p € Z.

14



2.2 Constructing the Spectral Sequence

Definition 2.2.1. For r € Ny, a cochain complex C with differential d of degree r is a direct sum C' = @pEZ crP
with a homomorphism d : C — C where d?> = 0 and dP : C? — CP*7 for all p. That is, d? o =" = 0. This
also yields a cohomology module H?(C) = kerd?/imd"~" and H(C) := @, H?(C).

The case with r = 1 gives us classical cochain complexes. An example of the r = 0 case is as follows.

Example 2.2.2. Let (M,d) be a filtered differential module and C = Gr M. Take dy : FPM/FPYIM —
FPM/FPTIM to be the map induced by d° = d|prprr : FPM — FPM. Then H(Gr M) will become E; =
@D ez H?(Gr M) = @,y H(FPM/FPIM).

We now move towards constructing the spectral sequence (E?),ez which we identify with C—BpEZ E?, a cochain
complex of degree r € Nj.
For the moment, we only have the differential d : M — M satisfying d?> = 0 from our filtered differential

module (M, d). Using this d we define for r,p € Z:

7P = {we FPM|dxe FP*" M}, Z%:= Z~FPM
BP:= d(FP="M) ~ FPM, BY := BnFPM

Observation 2.2.3. The following observations will be useful.

1. Forr >0, we have FPM < FP*"M, ZP = FPM, and BP < FP~"M.

2. For fized p we have that:

d(FPM) BY
70 = FPMA~Z C

N

By

N
N
N
N

. c B BY | BY, < Z%
Z

P P p P _ FP
41 S ZP < ... € Zy € Z; =F'M

N

3. The “(r,p)-boundary identity”: ZP~" = {x € FP~"M|dx € FPM} and thus, d(ZP~") = d(FP~"M) n
FPM = B?.

4. The “Z-jump identities”: FPYIM < FPM and ijll c Zr, Zg;rl czZb.

Definition 2.2.4. For > 0 and p € Z we define EP := ZP/(B?_| + Z"*]) and EY, := Z% /(B + Z5').

Note: B?, < FPt'M = zPt! and Z2 = FPM implies that Ef = Z2/(B?, + ZPT") = FPM/FP+IM.
Lemma 2.2.5. E% = 7Z8 /(BY, + ZEH') =~ H(M)?/H(M)P+!

Proof. We have that Z% = Z n FPM projects onto H(M)? = (Z n FPM)/(Bn FPM) ~{z + Blz€ Z§} =
Z/B = H(M). Thus, we get a projection 7, : Z% — H(M)P/H(M)P+!.

Now note that 74 (z) = 0 iff z + B e H(M)P*1 iff z = 2 + b for some z; € Z n FP*IM = Z2F! and some
b e B. Moreover ZB < ZZ and thus b = z — 2y € Z% < FPM. Ergo, b € B n FPM = B,. Hence,
z+Be HM)Pt! iff z e BY + z5+.

15



This implies that ker 7%, = B + 2z and thus
75 )(BY, + Z5) = H(M)?/H(M)P*!

as desired. O

We now introduce differentials of degree r. Note that d(Z2) € FP*"M n B < FPY*"M n Z = Z5" < 70+,
Furthermore, since d® = 0, d(B?_,) = 0 and d(ZP*}) € B?™] be definition Z”*]. Thus, d(B?_, + ZP*})
BP*T and d induces a homomorphism d? : EP = ZP /(BP_, + ZPt}) — Zp+7 /(BT 4 ZPHrHy — Eptr. Again
since d? = 0, dPdP~" = 0 for all p. Thus E, := @pez E? is a cochain complex with differential d, of degree

re No.
Next we need to determine the cohomology H(E,) = @,z HP(E;). For this, we need the following.
Lemma 2.2.6. 1. kerdt = (Z%, | + ijll)/(Bf_l + ijll)
2. imdrT = (BY + Z2T 1 /(BY_, + 20%)).
Proof. (1): Consider d? : ZP/(BP_, + ZP*}) — Z2+7 /(BEX] + ZP*7*1). We first show that kerd? 2 (27, +

ZPEN/(BP_, + ZPT!). Recall that d(ZP]) < BP'] as observed earlier and d(Z7,,) € FP*"*'M n B =
BYTHE < ZPH Y Thus, (287 + 2P, )/ (BP_, + ZP1)) € ker d?.

Now we show that kerd? < (27, + ZP*1)/(BP_, + ZP*]). Let « € ZPF such that the corresponding coset
dP(x) = 0, ie. d(z) € B'T] + ZPT7H = d(ZP*]) + ZP*77 by Observation [2.2.3|3. Equivalently, we have

T

dx = dy + z for some y € ZP*! and z € ZP*7'. Observation 4 implies that ZP* < ZP < FPM. Now,
set u:=x —y e FPM. Then dc = dy + z = dy + du and z = du € ZP7*'. Ergo, du € FPT"+1)M. Since
uwe FPM and du € FPT"T1M we have that u e Z¥, ;. Ergo, x = u +y with u e Z¥_| and y € Z"_,. Thus

proving the desired inclusion.

(2): Note EP~" = ZP~"/(B,_1 + ZP~[™') and EP = ZP/(B?_, + ZP*]). Thus, d?~"(EP~') = (d(ZP™") +
BP |+ ZPT1)/(BP_| + ZP*]). Recall that d(ZP~") = B? by Observation 3, so

mdl™" = (BE + BY_y + ZP5)/(BY_y + Z723) = (BE + 2720 /(Bl_y + Z71))
where the last equality follow from Observation 2 (as BP 2 BY_)). O

Corollary 2.2.7. H?(E,) = kerd?/imd?~" = (27, + ZP*)/(BE + ZP*)).

We can translate this further using two easy isomorphisms.

Fact. For any R-modules A,B,Z, (A+ Z)/(B+ Z) = A/(An (B + Z)).

Applying this to the corollary yields that
HP(Ey) = 20,1 /(Z8, ) 0 (BE + ZI5Y)).

Now recall from Observation 2 that B2 < Z¥,,. So we can apply

Fact. An(B+C)=B+(AnC)ifBc A
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to get that
HP(E,) = Z£+1/(Bf + (Zf-s-l N ijll))

It follows from the definition of Z? that Zf,)_H N foll = Zf_’"’l. Hence,
Hp(ET) = Zf+1/(Bf + Zf) = Ef+1

by definition.

Proposition 2.2.8. If (E, = @pez EP).en, 18 the spectral sequence associated to the filtered differential
module (M,d), then H(E,) = E,y for all v > 0. Le. HP(E,) = El ;| for all7 > 0 and all p € Z. In
particular, since E§ = FPM/FPYIM for all p, H(Gr M) = Ej.

So we start with Gr M associated to the filtration of M and by repeatedly taking cohomology, E1 =~ H(FEj),
Ey, = H(Ey), ..., Byp1 =~ H(E,), we approximate Fq,, the graded module of the cohomology H(M).

Remark: If the filtration (FPM)pez of M is finite, then there exists an r € N such that E, = E.

2.3 Spectral Sequences for Filtered Cochain Complexes

In the previous section we built spectral sequences for filtered differential modules. Now we start with a

filtered cochain complex and build its spectral sequence.

2.3.1 Building Blocks

Definition 2.3.1. A filtered cochain complex (C,d) is a cochain complex of degree 1 together with a de-
creasing filtration (FPC)pez such that (., FPC = C, [,z FPC = 0, and also satisfy conditions (1) and (2)

below.

pEZ

Recall that we consider a cochain complex of degree 1 as a direct sum C = @
with a differential d = P

nez C" of R-modules together
d": C — C with d*(C") < C"*! and dod = 0, i.e. d"*1d" =0 for all n € Z.

nez

1. The filtration and d are compatible, i.e. d(FPC) < FPC for all p.

2. The filtration and grading are compatible, i.e. FPC = @, ,(FPC n C™). That is, for each n € Z we
have a filtration (F?C"™)pez of C™ and FPC = @, ., FPC".

nez

The traditional notation here is CP" P := FPC"™ = FPC n C™.

It follows that CP4 = CP*4 ~ FPC for all p, q € Z where p+ q is the degree and p is the index of the filtration.
We can then write FPC = @P,c; CP'? = D, ; CP"7P. In this notation, compatibility with d means

d(cpn—r)yc  CPntl=P yp,
or d(Cri) < CPatl vgq.



For each pair (p, q), the differential d induces a map dP*9 : CP? — CP:4F1, Furthermore for each pair (p,n),

we have a restriction deop,n—».cpn—p_scpn+1-p. If we set

de = @ de,nfp . FPC - FPC

nezZ
then d* = 0 implies (dp»)? = 0 and so (FPC,dp») is a cochain complex of degree 1 for all p.

The filtration (F7C)pez gives rise to a graded module GrC' = P,.; G C with Gr* C := FPC/FPHIC =
@Dyez CP1/ @y, CPTHI71 = P(CP9)/CPFTHA7Y). We define Gi?? C := CP7)/CPT1471 This tells us that
Gr C is a bigraded module (which will become Ej).

GrC = (—D GrP1C = @ G P C.

p,qEZ p,NEZL

The differential dgp.n—p : CP""P — CP"T17P induces a homomorphism

dgfﬂfp . Cp,n—p/cvp+1,n—1—p N Cp’n+1_p/cp+1’n_p

sowith df := @, ., di" "GP C =P, ., G P C — GrP C, (Gr? C,df) is also a cochain complex for all
p € Z. Thus, GrC = @pez Gr? C is a cochain complex with differential dy := @pez dfy of degree 0. This
gives rise to a cohomology H(Gr C) = @, H(Gr” C) (which will become E1), where

H(Gr? C) = P H"(Gr? C) = P H"(FPC/FPH10).

nez nez

Recall that H"(FPC/FP1C) = ker d?™ P /im d5™ P!, Using ¢ = n — p instead of n, we can also write

H(GrC) = P HPT(FPC/FPTIC) = P H(GrC)P1

P,qEZ P,qEZ

as a bigraded module.

Now, C = @,,., C" has cohomology H(C) = P, ., H*(C) with H"(C) = kerd"/imd""! (this is what
we're interested in). FPC = @, ., CP" 7P has cohomology H(FPC) = @,,., H"(FPC) with H"(FPC) =
ker dgp,n-p/im dgop,n-1-p. Since FPC — C'is a cochain map, we get an induced homomorphism of cohomology
H(FPC) — H(C). Denote the image of this homomorphism by H(C)P so that H(FPC) - H(C)? < H(C).
So for each n € Z, we have a homomorphism H"(FPC) — H(C)?" P := H"(C) n H(C)?; in other words:
H(C)P™P is the image of the homomorphism H"(FPC) — H"(C).

So we obtain a filtration (H(C)P)pez of H(C) and for each n € Z, a filtration (H(C)P"P),ez of H"(C').

Definition 2.3.2.

Gr? H(C) :=H(C)?/H(C)P*!

GrH(C) =@ G’ H(C) (will become FEy,)
pEZ

Note: (J,; H(C)P"™P = H"(C) but in general we do not have that (7),., H(C)P"7P = 0 (if the latter is
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satisfied, then we call the filtration “regular”).

Using not only the filtration of H(C) but also the grading of C, we can see that also H(C') is bigraded.

G H(C) = H(C)P/H(C)P*' =@ H(C)P"~?/ P H(C)P+1n—r!

nez nezl

>~ (—D(H(C)P»”—P/H(C)p+l,n—p_1)

nez

=: @ G P H(C)

nez

So with Gr?? H(C) = H(C)?9/H(C)P*14~1 we have

Gr* H(C) = P G H(C),

qEZL

and

GrH(C)= @GP H(C) = @ G H(C)

PpEZ P,q€Z

bigraded, and
GrH"(C) = @Grp’”fp H(C).

pEZL

The term Gr?”"~? H(C') will become ER" 7.

The spectral sequence (E,),>o will be a sequence of bigraded modules which are also cochain complexes of

degree r starting with
EO = GI‘C, E1 = H(GI‘C),

and approximating F., = Gr H(C).
2.3.2 Defining the Spectral Sequence
We now move to define the spectral sequence(E,),>o for the filtered cochain complex (C,d) where C' =

Dz C" FPC = Doy, CP1 = @,z CP"P. We do this by comparing with the easier, already discussed
case of a filtered differential module (M, d).

(M, d) (C,d)

7P = {x € FPM|dz € FP+" M) ZP4 = {z € OP4 A FPC|dz € CPHI+ A FPHrC)

BP :={xe FPM|3ye FP~"M,x = dy} | BP9 := {x € CP*9 n FPC|Iy € CPTI~L A FP="C x = dy}
ZY =ZnFPM ZB1 = {x e CP*1 ~n FPC|dz = 0}

BY :=Bn FPM BT = {x e CPT9 A FPC|Iy e CPTI7L 1 = dy}

Observation 2.3.3. We have the following easy properties.

D,q — p—r,q+r—1
1. BP1 = d7?
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4. 2Bt zhe
5. BB < z5°
Note that (1) and (3) imply that dZP¢ < Zp+ma=r+1 and dZP* 1971 < zPH7 1977 Qo if we define EP¢ 1=

Zp4/(BPY 4+ ZPT 1971 the the differential d induces a homomorphism d2:4 : EP4 — EPTma=7+1 We also

define

B =20 /(B + 275) = D Y

qeZ
B, =78 /(BY, + Z5F) = (D EL
qEeZ

where 7P = @,y 209, BP = @ ey BP9, 28 = @ yep 287, B = @ ey B, and ERT = Z5%/(BET +

Z&H’q*l). With similar computations as for (M, d), one establishes the following,.

Proposition 2.3.4.

D,q o Dyq /3 p—r,q+r—1 ~ P4
HP9(E,) :=kerd??/im dP = B

If we sum over ¢, we get a differential df := @,z d? : EF — EP*". So E, = @D,z EF is a graded complex

with differential d, = P, @ of degree r. For the cohomology of E. we obtain

Corollary 2.3.5. H?(E,) := kerd?/imdl™" =~ E?_,.

Summarizing these and observations made about Ey and F,,, we get the following.

Theorem 2.3.6. Given a filtered and graded complex (C,d) with differential d of degree 1 and filtration

(FPC)pez, compatible with the grading, there is a spectral sequence (Ey)renyu{o} which satisfies:

1. By = GrC and Ey =~ H(GrC). This means that EY? = CP4/CPT1a71 gnd EP? ~ HP9(FPC/FPTIC)
for allp,qe Z.

2. Each E, = @, ,EP? is a bigraded module, and with EY = @, EX?, HY(E,) = @ o0 HM(E;) =
®yer BV = BT, so that H(E,) = @,y HY(E,) = @y EVsy = Bran.

3. Ex =~ Gr(H(C)), which means that E%? ~ Gt»1 H(C) = H(C)P9/H(C)PT14=1 for all p,q and so
Gr(H™(C)) = @pez "

Note that for all v > 0, the differentials d>9 : EP9 — EPT™a="+1 jinduced by d for p,q € Z have bidegree
(r,1—r) and that H?9(E,) =~ EP?

r+1°

An easy consequence here is that whenever EP'¢ = 0, then we have that E?? = 0 for all s > r

Recall: The foal of the spectral sequence (E,)ren, is to “approximate” E,,, which yields information about
the cohomology H(C).
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So there should be a relation between E%? and EP-? for “sufficiently big r.” Ideally, we would like to have
an rg € N such that EP4 = ER? for all r > r¢ and p, q € Z. This is usually too much to ask. So we will use
the following notion of convergence of a spectral sequence (E,.),=o: for every pair (p,q) € Z2, there exists an

ro = 7o(p, q) such that EP¢ = EL? for all r > rg.

Here are some special cases where some statements regarding the convergence of spectral sequences can be

made.

2.3.3 First Quadrant Spectral Sequences
Definition 2.3.7. The filtration (FPC),ez of (C,d) is called positive if FPC = C for all p < 0. The filtration

is called “canonically cobounded” (one might also call it a first quadrant filtration) if it is positive and C?-? = 0

for all ¢ < 0 (equivalently CP"~P = ( for all (p,n) with p > n).

CPa = Opta

00 n=1n=2 ... p
CP4 = OPHa = () Ccri =0

Figure 2.1: A visualization of a canonically cobounded filtration.
Side-Remark: For n < 0, the only options are FPC™ = C" (if p < 0) or FPC™ =0 (if n =p+ ¢q withp > 0
and hence ¢ < 0).

Proposition 2.3.8. If (FPC)pez is canonically cobounded, then E?9 =0 for allp <0, g€ Z, r € Ny u {0}
and EP? = 0 for all ¢ < 0, p € Z, r € Ny u {0} (i.e. (E,) is a first quadrant spectral sequence) and

EP9 = ERY for all v, p,q with r > max{p,q + 1}.

The assumptions in this proposition can be weakened as follows:

Definition 2.3.9. The filtration (FPC)pez of (C,d) is called bounded if there exist functions p,v : Z — Z
such that v(n) < p(n) for all n € Z and:

1. CP"=P = O™ for all p < v(n);
2. CP"P =0 for all p > p(n).

Proposition 2.3.10. If the filtration is bounded with functions p,v, then:

1. EP" P =0 for all r,p,q with p <v(n) orp > p(n);
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2. and EP9 = EE? for all r,p,q with r > max{p —v(p+¢—1),u(p+q+1) — p}.

Remark: The previous proposition is a special case of this one with v(n) = 0 for all n and u(n) = n for all
n.

What about E%?? Recall that ER? := ZB1/(BR? + ZBMH97Y) where ZBY = {x € CP4|dz = 0} and
B%1 = CP ~ d(CP9~1). Then we have the following.

1. If (F?C) is positive, then CP¢ = CP+1.a=1 — CP+d for all p < —1. BErgo, Z5% = 72141 and ERY =0
for all ¢ < 0.

2. Similarly, C?4 = 0 for all ¢ < 0 implies EZ;? = 0 for all ¢ < 0.

. . 1,g—1
Side-Remark: These casy observations only use Z%? and Z%"9~! not B%Y.

Now assume that (E,),en, i a first quadrant spectral sequence (i.e. EP? = 0 whenever p < 0 or ¢ < 0). Let

D, q € Ng be given. When does the sequence (EP?),¢n, stabilize?
Recall that EP}Y, =~ kerd??/imd?~ ™47 1. Since (E,), is a first quadrant spectral sequence we have the

following.

1. Then we have that im d?~"9+"~! = 0 whenever EP~"9""~1 = 0. This occurs when r > p (or p—r < 0).

2. We have that ker d?? = EP'Y whenever EPt™4 "1 = 0, which occurs when r > ¢+1 (or ¢—r+1 < 0).

Corollary 2.3.11. If (E,).en, is a first quadrant spectral sequence, then for any (p,q) € N2, the sequence

(EP9),>0 stabilizes for r > max(p,q + 1) =: 7o, i.e. BP9 = EPY, for allr =19+ 1.
Question: Is this limit (for fixed (p, q)) equal to ER?
Observation 2.3.12. 1. IfCP? =0 for allq<0 andr > q+ 1, then ZP9 = ZB1. This follows from
ZP9 = {x e OPY|dx e CPTI"T = (g e CPYdx = 0} = ZB¢
since CPTma=mHL = 0 4if r > g + 1.
2. If (FPC) is positive and r > p, then BP9 = BYY. This follows from
BPl = {ze CPlzedCP 1T 1} = {z e CPY|x e d(CPTI 1)} = BB
since CP~matr=1 = CP+ta=1 if p > p. Thus, r > p implies that BYY, = B,

This leads us to the following corollary.

Corollary 2.3.13. Assume that 1) (FPC) is positive and 2) CP? = 0 for all ¢ < 0. Then for all r >
max(p,q + 1)
B = 0 (B + 2P = 2 (B + 2 ) = B

(Note: v > q + 1 implies thatr —1 > (¢ —1) +1).
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Thus, we have proved the following result.

Proposition 2.3.14. If (FPC) is “canonically cobounded” (i.e. satisfies (1) and (2) from the corollary),
then EP4 = 0 for all v,p,q with p < 0 or ¢ < 0 (including r = o) and EP? = ER? for all v,p,q with
r > max(p,q + 1).

Remark: Similar (albeit more technically involved, but not really more difficult) arguments yield the proof
of Proposition [2.3.10] about general bounded filtrations, of which those in Proposition 2.3.8 are an important

special case.

2.4 Spectral Sequence of a Double Complex

The canonically cobounded filtrations of the previous section naturally arise from first quadrant double

complexes.

Definition 2.4.1. A double (cochain) complex is a doubly-graded complex C' = (C?7),, 4ez with two differ-
entials d09 : CP9 — CP+1a @bt OP4 — CPa+1 such that ditH9d0 9 = 0, dbf T dby = 0, and the following

diagram commutes for all p, q (i.e. d’ﬁl’qdlj’q = d’;’qﬂd’;’[q). We say that the degree of CP? is p + ¢

P,q+1
Cpatl L> Cpt+lg+l

D, +1,
l Jagioe

CPa T Cpt+la
I

We will mainly deal with first quadrant double complexes where C?? =0 if p <0 or ¢ < 0.

Example 2.4.2. Let C = (CP) be a cochain complex of right R-modules and D = (D7) be a cochain
complex of left R-modules. Denote the differentials by vP : C? — CP*! and §9 : DI — D', Define
CP1:= CP®pr D1. Observe that (CP?) is a double complex of abelian groups since (1gp+1 ® 07)(YP @ 1pa) =
Y ® 67 = (v? ® 1 pa+1)(lor ® §%) which makes the following diagram commute.

P ® Dq+17%10p+1 ® Ditl
1cp®5q]\ Tlcpﬁ»l@éq

CP @ D1 ——— CPtl @ D1
Y*®1pa

Definition 2.4.3. If C = (C?'?) is a double complex, we define the associated total complex TC = (TC"™) ez

by TC™ := @, 4=, C"* with total differential df = @, ,_,(d7? + (=1)Pd}y') : TC™ — TC™ 1.

In more detail, for each (p,q) we have a homomorphism d7'? + (—1)Pdy : CP4 — CPTLha@CPatl < TC L
d. is then the direct sum over all (p,q) with p + ¢ = n of the homomorphisms d9"? + (—1)Pd¥;!. The sign

(—1)P is introduced in order to obtain that dr is a differential, i.e. (T'C,dr) is a cochain complex.

Lemma 2.4.4. d}"'d} =0 for all n.
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Proof. Tt suffices to show d’}“d%(C’”q) = 0 for all p,q with p + ¢ = n. For ¢”% € CP? we obtain

0 (01) =it (df () +(=1)7 i (")

eCprt+l.q eCr:qt+1
= NI () 4 (1P AR () g R () (1) ()
(S
=0 :di"’ﬁld?[‘? =0

=P+ (<) g () = 0

There are now two canonical filtrations of (T'C,dr):

1. FYTC™ := @®,., C>"*. This yields FFTC = @, FYTC™ = @2 p ez, O ° = Dz prgez O

2. F{yTC == @,.,C" "t This yields F{;TC = @, FETO" = Dy o OV 0 = D o

PEL,t=q

Let’s concentrate on F7 for now.

Observation 2.4.5. 1. If (CP?) is a first quadrant double complex, then TC™ = 0 for all n < 0;
FYTC™ = TC™ for all p < 0 (i.e. F¥ is a positive filtration); and n —p < 0 (or p > n) implies
that F{TC" = @55, C>"~* = 0. So in this case the filtration F} (and similarly F};) is “canonically

cobounded” .

2. Warning: Note that CP? has a different meaning here than in the general discussion of spectral
sequences. In the general set up we have CP? = FPCPYe = FPC ~n CPT? gnd CP" P = FPC" =

FPC n C™. Here we specify C = TC and

crnr = QoS @ O = FPTCFPEITCN = TOP—P /TCPHEn—P=l = GrP P TC,

s=p s=zp+1

So we have CP4 = Gr*?TC = TENY in the case of FP = F7.

Remark: In principal, we get the same bigraded module Ef'? = Gr?? TC if we use the filtration F}; of
TC'. However, if we stick with the convention that in Ej"* the first index refers to the filtration index, then

HEgm = OP4 or UE(Z)W = C?P for all p, q.

Next we want to identify the levels ! By and ! B associated with the first filtration FYTC. We are using that

the next level is obtained from the previous one by taking cohomology, see Theorem [2.3.6

In particular, £y = H(Ep). In order to make this more explicit, we need to consider the differentials
Igbt . P9 — CP4F1. Recall that all the differentials dP+? are induced by dr, the total differential of TC. So
we have TC" = P CP4, and

p+g=n

db|cra = dP? 4+ (=1)Pdhy . CP9 — CPTLa g OPat!
Ly S —

<TCnt!

Since df? : CP4 — CP4T! is induced by dr, we must have 7d}? = (—1)Pd}y. This can also be seen using
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the definition E2? = ZP/(BP? 4+ ZPT1471Y with

Z51 ={x € TCP*" A FYTC|drx € TCPYIT A FITC} = (P C*PHI75,

s=Zp
701 ={x € TCP*" A FPT'TC|dyx € CPT9 A FPTCY = @ C*PTI7%,

s=p+1

So 7d>? is determined by the restriction of dg to CP4 (since ZPTH7!
is in BRI where 2P0 = @yspy1 CFPH717* is modded out, the map induced by dy on Ef°? is the same

as the one induced by (—1)Pdy.

is modded out), and since the image

Result: If for fixed p € Ny, CP denotes the cochain complex (CP%, (—1)Pdl)en,, then LEP? = HI(CP) is

the “vertical cohomology of (CP9)”. Of course, we get the same cohomology if we use the differential d¥}

without the sign (—1)P.

¢ b

Figure 2.2: Ey with ‘dg

We now turn towards the differentials Yd;. Recall that it has bidegree (1,0) (as r = 1), so 1d}? : EP"? —

1 .
EPTH. Our first observation refers to Z7.

Lemma 2.4.6. ZV1 = Z(’]’“’q*1 +(CP A ZP9)

Proof. By definition, 27! = {x € @, C*?T* *|dre v € D C*PTa=s} and

s=p+1

Z(;_z)H—l,q—l _ {x c (_B Cs,p+qfs|dz ere (_B Cs,p+q+1fs _ @ Cs,erqfs'

s=p+1 s=p+1 s=zp+1

This last equation follows since the filtration is compatible with the grading, and so dp(FPT1TC) € FPHTC

is always true. It follows that

ZPT=(CPI A ZPT) + @ CHPTIE = (OP9 A 2D + ZETh

s=p+1

O

Consequence: Every element of EV'? = ZP4/(zb*1471 | BP9) can be represented by an element of CP4 ~

p,q
ZPa.
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Now assume that ¢ = ¢?? € CP% n ZP?. Then by definition of d = dr and Z"?

de= dP? +(=1)Pdyi(c) e (—B CsPra=s,
M~ Y s>p+1
eCr+1l.q eCr.q+l

which simplifies to (—1)Pd7(c) € CP9™ N @, C¥PT97% = 0. Hence, we have the following.

Corollary 2.4.7. d|Cp,qﬁfoq = d]I)’q.

Result: 'd}? : H1(CP) — HT'(CP) is induced by d'?. It follows that Fy = H(E;) and EY? = HP(H?(CP))
— —

_ P Jq+1
_El =E{)(I

which is the “horizontal cohomology of the vertical cohomology of (CP?).”

q

o —0 0
o —0 0

f.. p

Figure 2.3: E; with Td;

More precisely: For a fixed ¢ and variable p, (H?(CP), d}?)pen, is a cochain complex with differential induced

by di'? and E5? is obtained by taking the pth cohomology of this cochain complex.

Remark: The fact that d}'? induces a differential on (H?(C?))pen, can easily be verified without referring
to the definition of EY"? and Z19. We have that

ker dif/im difi " = HI(CP) 2 HI(CPHY) = ker dff M /im df 97",

Note that the inclusions @2 (ker db) < ker dbF 97" follows from the commutativity of

r+1,9
Cpatl L> Cpt+l.g+1

5 p+1,
] Jagire

CoPa T Cpt+la
I

and d?9(im dbf ) < im d? T follows from that of

dp’q
cra L cptlg

P,q—1 r+1,9
dII T TdII

Ccpra—1 — Cptlg—1

P,q—
dI

However, in order to verify that d7'? = 7d??, we had to go back to the definition of E?? and ZP?. Putting

things together, we get the following.
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Theorem 2.4.8. If (CP?) is a first quadrant double (cochain) complez, there exists a “canonically cobounded”
filtration, FYTC of the associated total complex TC which yields a converging (in the sense of Proposi-
tion spectral sequence with the following properties.

1. TEPY = CP4 for all p,q.

2. TEPT = HY(CP) for all p,q.

3. TEDT = HP(HI(CP)) for all p,q.

p

Figure 2.4: Eo with {dy of bidegree (2,-1).
Remark:

1. We explicitly determined the differentials /dy and /d; but not ?ds, which is more involved. However, for

certain applications the information collected in the theorem is sufficient to draw interesting conclusions.

2. Using the second filtration F,TC, we obtain in a similar way a spectral sequence ("I E,) with [LEDT =
C%? and "LEP? = H1(C*P) where C*P := (C?P,d¥7) ey, for fixed p € Ny (i.e. “horizontal cohomol-

ogy”) and /' EY'? = HP(H(C*P)) (“vertical cohomology of the horizontal cohomology”).
2
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Chapter 3

The Grothendieck Spectral Sequence

You Q1

3.1 Resolutions and derived functors

Let A, B be abelian categories, and F : A — B be and additive functor. Then F always sends s.e.s. (short

exact sequence) in A to split s.e.s. in B. But usually does not necessarily preserve the class of all s.e.s.’s.

Definition 3.1.1. F is called left exact if, given any short exact sequence
0-A—-B->C—-0

in A, the induced sequence
0> F(A) - F(B) » F(C)

is exact. F is called right exact if
F(A) > F(B)— F(C)—>0

is exact. F is called exact if F' is both left and right exact.

Because of A «— A°P duality, right exactness can be reduced to left exactness. However I’ being exact fails

for many important functors.

E.g. One useful example to keep in mind: A = gMod, B = sMod and M is an (R, S)-bimodule. Then

F:HomR(M,—) : A—>B,RN'—>HOHIR(M5,N)
G=M®s(—):8—>A,sL'—>M®SL

are adjoint functors. F is left exact and G is right exact.
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More explicitly, consider A = B = zMod and the functors

F = Homg(Z/n, —)

applied to the s.e.s. 0 — Z 5 Z — Z/n — 0.

The right derived functors of F' give a functorial way to measure how F fails to be exact: i.e. functors
R'F,ieN s.t.

0 — F(A) - F(B) — F(C) - R*F(A) - R'F(B) — R'F(C) — R?’F(A) — ...
which is natural in s.e.s.

To properly define R'F,i € N, we need the notion of injective resolutions.

Definition 3.1.2.

(1) An object P is called projective in A if Hom4(P,—) : A — zMod is exact. An object I is called
injective if Hom4(—, I) : A°? — zMod is exact.

(2) A is said to have enough projectives if, VM € A, 3 an epimorphism P — M — 0. A is said to have

enough injectives if VM € A,3 a monomorphism 0 — M — [.

E.g. As an illustration, consider A = pMod for some k-algebra, where k is a field. Then any free module

R®% is projective (S can be infinity). VM € gMod, 3 surjection
R®S — M

showing that pMod has enough projectives. Any projective R-module is, in fact, a direct summand of a free

R-module. Take a surjection P — M* — 0 as right modules, and dualize to get
0— M** — p*

Then:

1) P* is injective: Hompg(—, P*) =~ Homy (P®g, k) is a composition of exact functors, and thus is exact.
]

(2) The canonical embedding M — M** — P* embeds M in an injective R-module = pMod has enough

injectives.
Definition 3.1.3. Let .4 be an abelian category. An injective resolution /°® of M is a complex of injectives
in A
0108 a2 d
s.t. it is exact everywhere except at I°, where kerdg =~ M.

Theorem 3.1.4. Let A be an abelian category with enough injectives.

1) Any M € A has an injective resolution 13;.
M
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(2) Any f : M — N extends to f* : I3, — I¥. Any such two extensions are homotopic to each other.

The proof of theorem uses a very useful characterization of injectives: ¥V monomorphim i:

0—— M —> N
fl //’ah s.t. hoi=f
L
I

As a consequence,
Corollary 3.1.5. Any two injective resolutions of M are homotopic to each other.

Lemma 3.1.6. (Horseshoe) In A, an abelian category with enough injectives. Let I3, I3 be injective
resolutions of M, N with
0-M-—->K->N->0

being exact, then there is an injective resolution I3 of K that fits into
01y —Ix—Iy—0

(I3, must termwise split as I3, = I, @ I%,Vi > 0).

Definition 3.1.7. Let A be an abelian category with enough injectives and F' be a left exact functor on A.
Then
R'F(M) := H'(F(I})))

Corollary 3.1.8.

1) RIF(M) = 0,¥i < 0. RO(M) = F(M).
2) R'F(I) = 0if I is injective and i # 0.
R'F

3) (M) is independent of choices of Iy,.

(
(
(
(

4) Given any short exact sequence 0 > A —- B — C — 0in A, 3 lLe.s.

RHF(A) —— R*TF(B) —— RYF(C) — ...

Proof. Ouly (4) needs some comment. Take injective resolutions of A, B, C as in the horseshoe lemma. Note

that injectiveness of I} shows that there is a termwise splitting I, =~ I3 @ I2. Apply F we get
0— F(I3) — F(Ip) —» F(I) = 0

a termwise split sequence. Taking cohomology for this sequence gives the desired result. O

E.g. Ext% (M, N) = R'Hompg(M, N) =~ H'(Homg(M, I%))
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3.2 Cartan-Eilenberg resolution

Instead of resolving a single object by injectives, we can also resolve certan complexes in A, provided it has

enough injectives.

Definition 3.2.1. Let A be an abelian category and K* a complex bounded from below. (K? = 0 for all

p << 0). A Cartan-Eilenberg resolution of K* is a double complex I** and a morphism of complexes

€: K* — I*Y, satisfying

(1) IP»* =0 for all p << 0, and I*? =0 if ¢ < 0. (almost first quadrant).
(2) The complex IP* is an injective resolution of KP?,Vp.

(3) The complex (kerdy)P* is an injective resolution of ker d%, .

(4) The complex (Im d,,)"* is an injective resolution of Im d,.

(5) The complex HY(I**) is an injective resolution of HP(K*).

dy dy d,
dp, i—1,j+1 . ij+1 dhn i+1,5+1 .
— "7 — I — ' — .
ay ay a,
L, ]L',]Aj djp, ]'1',,7' dj, ]7',+l j d; 4
dy dy d,
dp, i—1,j+1 . ij+1 dhn i+1,5+1 .
I J s ¥ s [ J e
ay ay a,
€ € €
K1 K; K4 ——— ...

Lemma 3.2.2. Let A be an abelian category with enough injectives, and K*® be a complex bounded from

below. Then there exists a Cartan-Eilenberg resolution of K*°.
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Proof. Without loss of generality, assume K? = 0 if p < 0. Let us break K*® into s.e.s. in A
0-2°-K"—-B'-0
0—-B'-Z' - H' -0
02" —>K"— B"" -0

0 N Bn+1 _)Zn-i—l N Hn+2 N 0

Inductively, choose injective resolutions as in horseshoe lemma:

0 zn K" Bt 0
0—— Jp° I Jptht —— 0

and
0 — Bn+1 SN Zn+1 N Hn+1 - 50

l l l

0 Jg-i—l,o JZ+1,0 Jz+1,o 0

Take dj, : I™* — I™*1* to be the composition
VA N Jngl,- - Jg+l7o _ In+1’.

The lemma follows. O

3.3 The Grothendieck spectral sequence

Definition 3.3.1. Let A be an abelian category with enough injectives, and F' a left exact functor on A.
An object A € A is called F-acyclic if
R'F(A)=0,Yi>0

E.g.

(1) Any injective object is F-acyclic.
(2) If F =Tx on a paracompact space X, then any sheaf admitting partition of 1 is F-acyclic.

Theorem 3.3.2. If F': A — B, G: B — C are left exact functors between abelian categories such that A, B
have enough injectives. Suppose F takes injective objects to G-acyclic objects. Then, for any object A € A,

3 spectral sequence
EPY = RPG(RIF(A)) = RPTIF(A)

Proof. Take an injective resolution 0 — A — I*. We then obtain F(I°*) is a complex of G-acyclic objects.
Choose a Cartan-Eilenberg resolution

e F(I*) —» J**:
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dy dy d,

dy. JimLi+l dn it dy Jitli+l dy .
d, d, dy

h Ji—1. dlp, Jhi dip JitLli d’*> )

dy dy d,

dy. JimLi+l dn Jhit dy Jitli+l dy .
d, d, dy
€ € €

— Yy - rl’Yy —— F(I'Y) ————— ...

Apply G to the bicomplex, we obtain two s.s. of a first quadrant bicomplex:

HYH,(G(J**)) = H"(Tot(G(J%*))) <= HRHJ(G(]**))

The CE-resolution has each of its column an injective relosution of F(I*), thus each H?(G(J**)) computes
RPG(F(I*)) =0if p > 1. Thus the second s.s. degenerates at Es, and

© HYHIG(I™*) = HY(GF(I*)) = R*GF(4)

On the other hand, in each horizontal row, J* * is built from split s.e.s. of injectives whose cohomology gives
an injective relosution of HY(F(I*)) = R1F(A), thus

HYH(G(J5)) = HIG(HR(J**)) = RPG(R?(F(A)))

Comparing these two s.s. gives us the desired result. O

The proof of the Thm also implies the following.

Corollary 3.3.3. If F': A — B is left exact and 0 > A — K* is a resolution of A by F-acyclic objects, then

R'F(A) =~ H(F(K*))
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E.g. Acyclic resolutions are usually more handy. In algebraic topology we know that

Hing(X,C) = R*Tx (C)
where X is a reasonable topological space and C is the constant sheaf.
When X is a smooth manifold, we have a resolution
0—-C— Q% (de Rham complex)
of C by I'x-acyclic sheaves (2% admits partition of 1 ). Thus the cohomology of the de Rham complex

RTx(C) = H*(Ix (%)) = H;,

sing

(X;C).

3.4 Lyndon-Serre-Hochschild spectral sequence

Let G be a discrete group and K a normal subgroup. Suppose A € xgMod. Then the functor
(—)¢: A AC

is a left exact functor on e Mod (= Homg(k, —), where k is equipped with the trivial G-action). Then there

is a functor isomorphism
(—) = ()
The GSS specializes in this situation to the Lyndon-Hochschild-Serre s.s.
H?(G/K,HY(K,M))R = HP*9(G, M)

Lemma 3.4.1.

(1) The abelian category xgMod has enough injectives.

(2) (—)% takes injective kG-modules to injective k(G/K)-modules.

Proof. (sketch) Assume G is finite. Then kG is a self-injectie algebra. Any M € ygMod admits an embedding
M->kGRM, x— (deG g) ® x. Further, as a kG-module, there is an isomorphism

kGRM = kG® M Rz g®g 'z
where M*" denotes M with the trivial G-action. The inverse map is given by

kGROM"™ SkGRAM h®y— h®hy

Thus kG ® M is injective and ygMod has enought injectives.

Now, by this discussion, any injective module is a direct summand of kG®", r € N U {c0}. Thus it suffies to
show that (kG)¥ is an injective kG/K-module. This is clear since (kG)¥ = k(G/K).
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This proof relies on that kG = (kG)* as G-modules when G is finite. In general, when |G| = o0, one replaces
kG ® M =~ (kG)* ® M by Homy (kG, M). The proof can be adjusted accordingly. O
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Chapter 4

Introduction to sheaves and their

cohomology

ANDREI RAPINCHUK

4.1 Introduction to Sheaves

4.1.1 Presheaf

Let X be a topological space.

Definition 4.1.1 (Presheaf). A Presheaf of sets, F on X consists of the following data:

a) aset F(U) for each open set U < X.
b) a map of sets, p{ : F(U) — F(V) for each open set V < U such that
o pf =idpw),

o o, = piiy 0 pY whenever W < V < U.

The elements of F(U) are often called “sections of F over U”. This terminology is justified by the fact that
for a given presheaf F on X, one can construct a topological space F together with a local homeomorphism,
¢+ F — X (called the étale space of the presheaf F) such that when F is a sheaf (section , the set
F(U) can be naturally identified with the set of sections

{s: U — F|s continuous and ¢ o s = idy}.

For an arbitrary presheaf, this provides one of the constructions of the sheafification of F. In this realization

the maps
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Py o F(U) — F(V) are just the restriction maps. So, we will refer to p{/ as the restriction maps in the

completely general situation. The elements of F(X) are called global sections.

We now note that the definition of a presheaf can be reformulated using categorical language. Namely, given
a topological space X, we let Op(X) denote the category whose objects are all the open sets U < X, and
whose morphisms are defined as follows: for U,V € Ob(Op(X)),

{i : V- U}(inclusion) ifV cU,
Hom(V,U) :=
10) otherwise.

Then giving a presheaf on X is precisely equivalent to giving a contravariant functor on Op(X) with values
in the category of sets. From a more general perspective that we will use to discuss Grothendieck topologies,
a presheaf is just a contravariant functor defined on an arbitrary category. In this case, the notion of a sheaf

requires some important additional structures on that category, viz a system of coverings.

Another remark is that one can consider contravariant functors with values in the categories of abelian
groups, rings etc. In this case we talk about presheaf of abelian groups, rings etc. In the situation of
“classical” presheaves (i.e. contravariant functors on Op(X)), this amounts to the requirement that F(U)
be an abelian group/ring for each open U = X, and the restriction maps p¥, : F(U) — F(V) be group/ring

homomorphisms.

Let F,G be presheaves on a topological space X with the values in a category C. We say that G is a
sub-presheaf of F if for every open set U < X, G(U) is a subset of F(U), and for V' < U, the restriction,
p(G)Y is the restriction of p(F)%.

We typically assume that F(¢) is a terminal object in our category; for example, for the category of sets,

F(¢) is a 1-element set, for the category of rings, it is the zero ring etc.

Example 4.1.2. One of the most common examples, which actually serves as a prototype for many other
example: the presheaf of continuous functions. More precisely, let X be a topological space, and for any open
set U c X, we let F(U) denote the ring of all real (or complex) valued continuous functions f : U — R (in
fact, one can consider continuous functions with values in any topological space). The restriction of functions
defines the restriction homomorphisms, pY : F(U) — F(V). By special definition, F(¢) = {0}.

If X is an open set of R™, then quite similarly one defines the sheaf of smooth (differentiable) functions, and

if X is an open subset of C, one defines the sheaf of holomorphic functions, etc.

Example 4.1.3. Constant presheaf: Fixz an object C in our category C and define F(U) = C for everyU ¢ X
open, U % ¢, and F(¢) =T (terminal object). Furthermore, we define pY = idc if V # ¢ and pg to be the
unique morphism C — T. It is easy to check that this defines a presheaf which is called the constant presheaf
on X with value C. One can think of the elements of F = C' as constant functions f : U — C.

Example 4.1.4. (Pre)sheaf of locally constant functions: The previous example has the following useful gen-
eralization/variation. Let F(U) be the set of locally constant functions f : U — C (where C is a fizved object,
e.g. a fized set). This means that every x € U has a neighborhood U, 5 x such that f(Uy) = {f(x)} (i.e

f is constant on U, ). Note that the restriction of a locally constant function to a smaller open set is also

locally constant, so we can define p¥ as the usual restriction maps, and get a presheaf. We note that locally

constant functions are continuous if C is given any toplogy (e.g. the discrete one). So the presheaf of locally
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constant functions can be viewed as a sub-presheaf of the presheaf of constant functions. Another remark is
that if C is an abelian group or a ring, then F(U) is also an abelian group or a ring (In particular, the sum

of two locally constant functions is a locally constant function).

Example 4.1.5. Presheaf of sections: Let m: Y — X be a continuous map. For a nonempty open set U, a

section of m over U is a continuous map ¢ : U =Y such that wo ¢ = idy. Let F(U) be the set of all sections
of m over U. In general, it may happen that there are no sections. So, to avoid dealing with the empty set of
sections, we may want to assume that m admits a section over X. For pg, we then take the maps given by

the restrictions of sections.

Example 4.1.6. "Skyscraper” presheaf: Let X be a topological space, and fix a point p € X. Let C be a set

(or a group, ring etc.). Let us define

FU) = C ifpel,

{+} otherwise,

here {x} denotes a terminal object. Furthermore, for V. U, let us define

a) pY =idc ifpeV c U,
b) pY = unique morphism C — {x} if pe U\V,

¢) pf =idgy ifp ¢ U

Intuitively, F is “concentrated” at p- this will have a more precise meaning/expression when we define the
stalks.

Example 4.1.7. A particularly important example for us comes from algebraic geometry. Let K be an
algebraically closed field, V < A™ be an irreducible affine algebraic set, K[V] be the ring of reqular functions
onV,ie K[V]|=Klxy,za, - ,2,]/I(V), where V) € K[z1,22, - ,xy,] is the ideal of all the polynomials
that vanish on V, K(V) be the field of rational functions on V (i.e. field of fraction of K[V]). We consider
V' as a topological space equipped with the Zariski topology. We say f € K(V) is regular at p € V if there

exist a representation, f = z—p with gp, hy € K[V] and hy(p) # 0.
P

For an open set U < A™, we let F(U) denote the set of all rational functions that are defined at all the
points p € U. Then for V.c U we have that F(U) < F(V), so for pg we just take the inclusion maps. This
creates a presheaf which is historically known as the structure sheaf. It can be explicitly calculated at so called

“principal” or “distinguished” open sets. More precisely, let f € K[V] and

D(f):={peV|[f(p) + 0},

then
F(V):= K[V]s (localization).

This generalizes to arbitrary commutative rings. Let R be a commutative ring with 1. Let X = Spec(R) be
the set of all prime ideals of R (so called prime spectrum of R). One can equip X with a topology which is

similar to the Zariski topology. For one thing, it admits basis consisting of distinguished open sets: for f € R,
D(f) := {p € Spec(R)|p 3 [}.
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Then one can define a presheaf (actually, a sheaf) on X, called the structure sheaf of an affine scheme

Spec(R), which is uniquely defined by
F(D(f)) := Ay (localization).

Definition 4.1.8. Let F and G be presheaves on a topological space X with values in a category C. A
morphism of presheaves, ¢ : F — G is a family of morphisms (in C), ¢y : F(U) — G(U), one for each open

set U < X such that for open V < U, we get the following commutative diagram.

FU) 2% 6(U)
p<f)5l MGW ()
F(V) -2 G(v)
Remark 1. Viewing presheaves as contravariant functors, Op(X) — C, we see that morphisms of presheaves

are simply natural transformations of functors.

Presheaves on X and their morphisms form a category denoted by Psh(X).

Let ¢ : F — G be a morphism of sheaves of abelian groups.then then commutativity of (*) implies that for
V < U, we have
p(F)Y (ker ¢r) < ker ¢y,

and

p(9)V (imgy) < imgy .

This means that we obtain new presheaves K and Z defined by K(U) = ker ¢y and Z(U) = im¢y which are
called the kernel presheaf and the image presheaf. Clearly, I is a subpresheaf of F, and Z is a subpresheaf
of G.

4.1.2 Sheaf

One of the features of continuous functions is that they can be glued from local information. In the simplest
case, if U = U; u Uy (U,Uy, Uy open sets), then given any continuous function f : U — R is equivalent to
giving continuous functions f; : Uy — R and fy : Uy — R such that fi|y, ~v, = f2|u,~v,- In other words,
here the “local” data, subject to some natural compatibility conditions, can be glued into the global data.

This kind of condition is precisely what distinguishes a sheaves from arbitrary presheaves.

Definition 4.1.9. A presheaf F on a topological space X is called a sheaf if every open set U < X and

every open covering U = U,e;U,, the following condition holds.

a) If s,t e F(U) and pf; (s) = pg_(t) for all awe I, then s = t.

b) Given s, € F(Uy,) for all o € I such that PanU,; (Sa) = pgiﬁUﬁ(SB) then there exist an s € F(U) such
that pf; (s) = sq for all v e 1.

(Note that according to[a)] the element s € F(U) in [b)] is unique. )
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If F is a presheaf of abelian groups, then [a)| can be restated as follows: If s € F(U) and pf_(s) = 0 for all
a € I, then s = 0. In this case, both the requirements can be stated together as the exactness of the following

sequence.

0= FU) > [[FU) = [] FUa nUp).

ael a,Bel
The exactness is understood in the following sense: the map

FU) - [[FU)

ael

is given by the product of the restrictions,
P, + F(U) — F(Ua),

identifies F(U) with the subgroup consisting of those elements on which the two arrows coincide (equalizer).

These arrows are given by
(fa) = ngng (f@)(oﬁﬁ)’
and

U
(fo) = pul nv, (f8)(a.8)-
In this form, the sheaf requirements easily generalize, for example, to the sheaves for Grothendieck topologies.

Terminology 1. Terminology Presheaves satisfying @ are called separated. Axiom @ is often called

gluing axiom.

Example 4.1.10. Let X and Y be topological spaces, and let F be the presheaf of Y -valued continuous

functions i.e. for an open U < X,
FU)={f:U—>Y continuous}

with pY defined in terms of restrictions of functions. We previously noted that F is a presheaf, but actually
it is a sheaf. Indeed, let U = UqaerU, be an open covering of an open set, U ¢ X, and let f,g : U - Y
be continuous functions. The fact that pg (f) = pg_(g) means that f(x) = g(x) for all x € U,. Since
Uy ’s cover U, we obtain that f(x) = g(z) for all x € U i.e. f = g. Now, given fo : Uy, — Y such that
ngﬁUﬂ (fa) = Pging (fg), we can define f : U — Y by letting f(z) = fo(z) if x € Uy. The compatibility
condition tells us that fo(z) = fs(z) if v € Uy N Upg, so f is well-defined. Furthermore, f is also continuous

because for an open set V 'Y we have

oy = to,

ael
and for each «, the set f;1(V) is open in Uy, hence in U.

Example 4.1.11. It is easy to see that sub-presheaves of sheaves are automatically separated but they may
not satisfy the gluing aziom. For example, let X = R and F be the sheaf of continuous R-valued functions.

Let G be the sub-presheaf of bounded continuous functions i.e. for U < R, open,

GU) ={f:U—>R|f continuous and bounded}.
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Consider the open covering of U = R by U, = (n — %,n + %) forn € Z, and let f, : U, — R be given by
fn(x) = x. Clearly f, € G(Uy,) and pgszm (fn) = pg:LmUm(fm) but there is NO bounded function f: R — R
such that pgn (f) = fn for alln.

Example 4.1.12. Constant presheaf often fails to be a sheaf. Indeed, suppose X has two nonempty open
sets Uy, Uy such that Uy n Uy = ¢, and let C be a set of cardinality = 2. Pick c1,co € C such that ¢1 F ¢
and consider f; € F(U;) (where F is the constant presheaf) that corresponds to ¢; i.e. f; : U; — C such that
fi(x) = ¢; for all x € U;. Since Uy n Uy = ¢, we have F(U; n Us) = {*} (terminal element), and therefore

P s (1) = P2, (o).

On the other hand, there is now f € F(U) such that pgi (f) = fi because if the value of f on U is ¢, then the
values on Uy and Uz will also be ¢ (since the restriction maps are the identity maps). Then ¢; = ¢ = ca, a

contradiction.

Let now F be the presheaf of locally constant functions. Then given an open subset U < X, an open covering

U = UaerUy, and locally constant functions f, € F(Uy) such that

U
PanUB(fa) = pUing (fs) for all o, B € 1.

As we have seen in the example of the (pre)sheaf of continuous functions, there exists a function, f : U — C,
such that f|Uy = fo. This function is automatically locally constant, for any x € U belongs to some U,.
Since fq is locally constant, there exists x € V, < Uy such that fo(Vy) = {f(z)}. But then V, is open in
U and f(Vo,) = foa(Va) = {f(z)}. Thus, the presheaf of locally constant functions is a sheaf. A bit later we
will describe the connection between the presheaves of constant and locally constant functions in more precise

terms.

Example 4.1.13. The skyscraper presheaf: Recall the definition: Let X be a topological space, and fix a point

pe X. Let C be a set (or a group, ring etc.). Let us define

FU) = C ifpel,

{x} otherwise,

here {*} denotes the terminal object. And, for V c U, let us define

a) pY =idc ifpeV c U,

b) pY = unique morphism C — {x} if pe U\V,

¢) pf =idgy ifp ¢ U

Let us show that F is a sheaf. Let U c X be an open set with an open covering U = UaerUy,. Let s,t € F be
such that pga(s) = pga (t) for all a e I.

Case 1. p ¢ U. Then F(U) = {x}, and for any o € I, F(Uy) = {*}, with p{j being the identity maps of {x}.
Then py (s) = pg, (t) implies that s = t.

Case 2. p e U. Then p € U, for some a € I, in which case pga is ido. Again pga(s) = pga (t) implies that

s =t.
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Suppose we are given fo € F(Uy) such that

ngmUﬁ (fa) = Pging(fB) (4.1)

Ifp¢ U, then F(U) = F(Uy) = F(Ua nUg) = {#} for all o, B € I with the restriction maps being the identity
maps. So, tells us that all f, € {*} are equal, and their common element gives a required element of
FU) = {=}.

Suppose now that p € U. Then p € U, for some a € I. Let f = f, € C. It follows from that f = fg for
any B such that p € Ug. This means that f is as required.

Definition 4.1.14. Let F and G be sheaves on a topological space X. A morphism, ¢ : F — G, is simply a

morphism of the underlying presheaves. An isomorphism is a morphism that has a 2-sided inverse.

Sheaves and morphisms of sheaves on a topological space X with values in a category C form a category
denoted by Sh(X) or Sh(X,C). It follows from the above definition that it is a full subcategory of the
category Psh(X).

Some constructions on presheaves when applied to sheaves, result in sheaves and some do not. Here is one

example when they do.

Lemma 4.1.15. Let ¢ : F — G be a morphism of sheaves of abelian groups on a topological space X. Then
the kernel presheaf defined by KC(U) = ker(¢y : F(U) — G(U)) is a sheaf.

Proof. Being a subpresheaf of a sheaf, K(U) is separated, i.e. satisfies axiom @ of a sheaf. Let us now verify
axiom @ Let U < X be an open set with an open covering U = UaerU,, and k, € K(U,) be such that
pgszﬁ (ko) = pgimUB (k) for all o, B € I. (Note that p(K)Y. = p(F)Y for any V < U.) Using the fact that F
is a sheaf, we conclude that there exists k € F(U) such that pf; (k) = kq for all a. We only need to show that
ke K(U),ie. ¢y(k) =0€eG(U). For this we observe that for any « € I we have the following commutative
diagram
FU) -2 6(U)
oY, | |o@.

F(Ua) 225 g(U,)

Since p{ (k) = ko € K (Uy), we conclude that

p(9)Y (pu (k) = 0.

This being true for all a, we see that ¢y (k) = 0 since G is a sheaf. O

We will now examine the situation with the image/quotient.

Example 4.1.16. Let X = St (unit circle). Let F (resp. G) be the presheaf on X of continuous functions
with values in R (resp X ) i.e. for U c X, open

FU) ={f:U — R continuous}
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and
GU)={g9:U — X continuous}

Note that these are sheaves of abelian groups (note that X has a natural group structure). Furthermore, let
¢ : F — G be a morphism of sheaves (of abelian groups) given by ¢y : F(U) — G(U), éu(f) = 2™/ @), The
kernel sheaf is given by

K(U) ={f:U — Z continuous}.

Then image presheaf is given by

I(U) = iméy ~ FU)/KWU).

We note that given any presheaf of abelian groups and its subpresheaf, one can always from the quotient
presheaf. In this example, we will show that image presheaf is NOT a sheaf, which will also show that
quotient of a sheaf by its subpreheaf may not be a sheaf.

First, we observe that every function in Z(X) defines a closed curve in X which is homotopic to a point. This
implies that the identity function g : X —> X, g(x) = x, is not in Z(X). On the other hand, let us consider

the following open subsets,

U1 2

and let g; = g|U;. Since each U; is simply connected, it can be lifted to the universal cover R — S*:

R— St

Ui,

which implies that g; € Z(U;). Clearly, g1 and go agree on Uy n Us (because they are the restrictions of the
same function g), and Uy U Uy = X, but there is no function in Z(X) with the restrictions g1 and go. Thus
Z is NOT a sheaf. (Philosophically, the reason is that ”to belong to the image” is not a local property.)

This example seems to destroy completely any hopes to make the category of, say, the sheaves of the abelian
groups on a topological spaces into an abelian category (which is needed to do homological algebra) as we
do have kernels but not the cokernels. However, there is a way around this problem. More precisely, there is

a natural procedure that attaches a sheaf to every presheaf; this procedure is called sheafification.

Theorem 1. For any presheaf F on a topological space X, there exists a sheaf F* together with a morphism
of presheaves, § : F — F7T such that for any sheaf G and a morphism ¢ : F — @, there exists a unique

morphism 9 : F© — G such that the following diagram commutes.

Rz

Ft.

43



The sheaf 7+, which is defined uniquely up to an isomorphism, is called the sheaf associated with the presheaf
F, or the sheafification of F.

Remark 2. 1) We will review two constructions of sheafification - one is based on the consideration of the
etale space of a presheaf, which does not apply to the sheaves for Grothendieck topologies ; the other employs

the Cech H, which does apply to the sheaves for Grothendieck topologies.

2) If F is a presheaf of abelian groups etc., then F* is a sheaf of abelian groups etc., and 6 is a morphism

of presheaves of abelian groups.

3) There is one very important property, which does not follow from the universal property, but is a conse-
quence of the construction(s). This property says that for every z € X, we have an isomorphism of stalks:
0, : Fp — F;. We will define stalks in the next section. This property is fundamental for controlling F 7,

whose construction is not very tractable.

Another important point is that the construction of sheafification is functorial. More precisely, let F; — Fo
be a morphism of presheaves. Consider the composition F; — Fo — F,7, which is a morphism of of F; to the
sheaf F,". Using the universal property, we obtain a morphism F;" — F; such that the following diagram

comimute.
Fi— F

[

Ff—— F

This implies that sheafification defines a functor S : Psh(X) — Sh(X). Furthermore, the universal property

implies that there is a bijection,
Morgpx)(F*,G) =~ Morpgx)(F,G), ¢ < ¢.

Moreover, this bijection is natural in the sense that given a morphism of presheaves, o : F; — F», and the

corresponding morphism of sheaves, ot : F;~ — F7, the diagram

Mor gy x) (Fi »G) —— Morpgyx)(F1,G)

a;j a*T

Morsh(x) (Fy ,G) —— Morpg(x) (F2,G),
ax(f) := f o a, commutes. This can be rewritten as a natural bijection
MOTSh(X)(S*Fv G) ~ MorPsh(X)(]:> 7G),

where S : Psh(X) — Sh(X) is the sheafification, and T : Sh(X) — Psh(X) is the embedding. This means
that the sheafification is the left adjoint of the embedding functor.
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4.2 Limits and Stalks

We will deal with direct limits which are known as colimits in the category setting. We will begin with

categorical definition, which is indispensable for Grothendieck topologies, and then specialize in our setting.

Let Z and C be categories. Then to each X € ObC, we can associate the constant functor, cx : Z — C, that
takes every object of Z to X, and every morphism to identity morphism on X. Note that any morphism

X — Y in C induces a natural transformation cx — cy.

Let F:Z — C be a functor. We can construct the following covariant functor.

C — Sets,
X — Hom(F,cx).

If this functor is representable, then representing object is called the colimit (or direct limit) of 7 and denoted

by lim . Thus, we are supposed to have a bijection
Hom(F, cx) ~ Hom(lim F, X), (4.2)
for every object X € C, which is natural in X.

Let us unscramble this definition. To give a morphism (natural transformation), F — cx means to give a

morphism (in C), F(i) — X for each i € Ob(Z) so that for each morphism « : i — j in Z, the diagram

commutes. In particular, taking X = lim F and the identity morphism in the right-hand side of (4.2)), we see
that for each i € Z, there is a morphism F (i) — lim 7. Furthermore, for every morphism « : ¢ — j in Z, the

diagram

commutes for any X € Ob(C) and any morphism F — cx. When working with classical (pre)sheaves, we
will only deal with the situation where Z is a subcategory of Op(X). In turn, Op(X) is a particular case of

categories attached to partially ordered sets.

So, let I be a partially ordered set with order (or preorder) relation < (we only need reflexively and tran-

sitivity). When dealing with colimits (direct limits), we almost always assume that I is filtered or directed

which means that for every i, j € I, there exists a k € I with the property 7,5 < k.
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One can associate with I a category Z by taking Ob(Z) = I, and for 4,j € I we define

t:i—j ifi<y
Hom(i, j) = / J
¢ otherwise.

We note that we recover Op(X) from this construction by taking for I the set of all open subsets of X, and

ordering I by reverse inclusion. Then to give a functor F : Z — C means to give an object F(i) =: A; for

each i € I, and morphisms Tij : A; —> A; whenever i < j, so so that the following properties hold: 7/ = ida,,

and Tik = TJ’»“ o Tij whenever ¢ < j < k. This is called a direct (inclusion) system indexed by I.

We also give the following definition of morphisms of direct systems (that comes from functors G : I — I’ and
natural transformations between F and F' o G): If {4}, },cr, then a morphism of direct systems {A4;}ier —
{Al }irer consists of an order-preserving map ¢ : I — I’, and for each i € I, a morphism ¢; : A; — A:b(i)

such that for all ¢ < j, the following diagram commutes.

(i)
Ai = Ay

J " (5)
Tll J{W(i)

»(F) ,
Ai —= Ay

We will now restate the definition of colimit in this setup.

Definition 4.2.1. Let {4;};cr be a direct system in a category C. A direct limit of {4;};c; consists of

a) an object A = lim A of C,

b) a family of morphisms o; : A; — A for all i € I such that the following diagram

commutes for all ¢ < j, such that whenever we have an object B, and a family of morphisms 6; : A;, — B

such that the following diagram

commutes.



We will address the existence of the direct limit in some important situations below, but first we would like
to make the following remark. Let {Ai,Tij}i,jeI and {A;,T’z}i/7jlej/ be two direct systems, and let {4;};er —
{Ai}icr be a morphism between these direct systems. If the direct limits A = lim A; and A’ = lim A; exist,

then the above morphism of direct systems gives rise to a morphism A — A’. Indeed, for each i € I, we can

consider
. i 0
0;: A; A;)(i) A,
we then have the following commutative diagram.
A —0
g Y()
Ty (i)
we A
¥; , Tu)
4 » Ay
which implies the commutativity of
-
Ay —————— A,
A

Then the existence of § : A — A’ follows from the universal property.

Before continuing our discussion of limits, we would like to point out how this construction applies to

presheaves.

Let F be a presheaf on the topological space X, and p € X. We let I, denote thge set of all open subsets U < X
such that p e U. We order I, by reverse inclusion, i.e. U < V iff V' < U. In this case, there is the restriction
map pY : F(U) — F(V). Set 7/ = pY. Then {F(U),7¥ }u,ver, is a direct system. Its limit lim F(U), if
exists, is called the stalk of F at p and denote by F,. Now, let o : 7 — G be a morphism of presheaves on
X, and fix p € X. Then « obviously induces a morphism of the direct systems {F(U)}ver, — {G(U)}ver,,

and hence a morphism of stalks a, : F, = G.

Construction: First, let us discuss the existence of direct limits of direct systems of sets. Let {A;};er be a

direct system of sets. Let
A= |_| A; (disjoint union).
el

Define a relation ~ on A by declaring that a € A; is equivalent to b € A; if there exists k > 4, j such that

It is easy to check that ~ is an equivalence relation. Indeed, we have 7/(a) = 7(a), i.e. a ~ a (reflexive). If

a ~ b, then there exists k > i, j such that 7F(a) = TJk (b), so TJ’»“ (b) = 7F(a) and therefore b ~ a (symmetric).

Now, suppose a ~ b and b ~ ¢ € Ai. This means that there exist [ > 4, j, and m > j, k such that
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Since [ is filtered, we can find n € I such that n > [,m. Applying 77" to the first equality and 7, to the

second, we obtain

implying that a ~ c.

Let A=A/ ~ . Define 0; : A; > A — A. Then for any a € A; and j = i, we have a ~ Tij (a) by definition of

our equivalence relation (77 (a) = /(7] (a))). This means that the diagram

commutes. Then, there is a unique map 6 : A — B that restricts to 6; on each A4;, and we only need to show
that this map factors through the equivalence relation. So suppose a € A; is equivalent to b € A;, i.e. there

exists k > i, j such that

It follows that 6 factors through 6 : A — B, verifying the universal property.

Next, let us show that direct limits exist in other categories such as the category of groups, the category
of rings, etc. For example, let {Ai,rij } be a direct system in the category of groups. Let A = lim 4;
be the direct limit of the direct system of underlying sets. Let us endow A with a group structure as
follows. Let [a],[b] € A/ ~ be two classes with a € A; and b € A;. Find k € I such that k£ > ¢,j. Then
[a] = [7F(a)], [b] = [7}()]. and we declare

One checks that this operator is well-defined, i.e. is independent of the choice k (for this we need to use that

7, are group homomorphisms) and makes A into a group.

Returning to stalks of presheaves, we see from the above construction that given a presheaf of sets F on a
topological space X and a point p € X, the stalk F, consists of the equivalence classes of sections f € F(U)
over some open neighborhood U of p, and two sections f; € F(Uy) and f2 € F(Uz) are considered equivalent if
there exists V' < Uy nUs such that pgl (fr) = pgz (f2). (If we think about the elements of F(U) as “functions”

on U then the equivalence class is precisely what is known as the germ of a function.) Next, for every open
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neighborhood U of p there is a natural map F(U) — F,,, and for U © V' 3 p, the following diagram commutes.

F(U)

If F is a presheaf of groups, rings, etc., then F,, is also a group, ring, etc.

Now, let ¢ : F — G be a morphism of presheaves on X, and p € X. Then ¢ defines a morpsism of direct
systems {F(U)}usp — {G(U)}usp, which results in a map of stalks ¢, : F, — G,. It follows from the

construction of this map that for any U 3 p, the following diagram commutes.

FU) -2 gU)
Pp

|

Fp — Gp.

Let X be a topological space.

Example 4.2.2. Constant presheaf: Here F(U) = C(a fized set) for every open U < X,U + . Then
clearly, for any p € X, the stalk F, is naturally identified with C.

Example 4.2.3. Locally constant presheaf: Let F be the (pre)sheaf of locally constant functions on X with

the value set C'. We claim that in this case the stalk F, at every point p € X is C. For this, let us first
show that f € F(U) and g € F(V) where U,V are open neighborhoods of p, are equivalent, i.e. give the same
element of Fp, if and only if f(p) = g(p). Indeed, if f ~ g then flw = glw for some open W c U NV ; in
particular, f(p) = g(p). Conversely, suppose that f(p) = g(p). Since f and g are locally constant, there exist
peW cUnV such that f(W) = {f(p)} = {g(p)} = g(W). It follows that flw = glw, so f ~ g. Thus, the
maps

FU)=C, f—f(p)

for open U < X,U 3 p, induce a well-defined map

Fp=limF(U) > C

Usp

that yields an identification F, ~ C. Note that the stalks here are the same as for the constant presheaf - we

will see that this is NOT a coincidence.

Example 4.2.4. The skyscraper sheaf: Fix x € X; then the corresponding skyscraper sheaf with the value C
1s defined by

C ifzxelU
FU) =
{x} otherwise
For p = z, we clearly have F, = C. Let us identify F, at an arbitrary point p. There are two cases to

consider.

Case 1. pe m Then every neighborhood of p contains x, hence F(U) = C. Clearly, in this case F, = C
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Case 2. p ¢ @ In this case, there exists a meighborhood U 3 p that does mot contain x, and hence
F(U) = {*}. In this case, any f € F(V) for an open neighborhood V' 3 p, is equivalent to {*}, so F, = {*}.

In particular, if © is a closed point then F, = C and F, = {*} for any p + .

Example 4.2.5. Local rings of points: Let V< K™ be an irreducible algebraic set, i.e. for a Zariski-open

U cV, we have
Ov(U)={fe K(V)|f is defined at every point p € U}

Fizpe V. Then Oy, = lim Oy (U) is simply the union (taken in K(V')) of all Oy (U) for all open neighbor-
hoods U of p. By definition, f € K(V) is defined at p if there is a presentation

with gp,hp € K[V] and hy(p) £ 0. Clearly, if f is defined at p then f is defined on the neighborhood
D(h,) = {x € V| hy(x) £ 0}. So, as a result, Oy, = ring of functions defined at p. On the other hand, it
follows immediately from this definition that the ring of functions defined at p is precisely the localization of
K[V] with respect to the mazimal ideal m, < K[V] of functions that vanish at p. Thus, in this case, the

stalk Oy, coincides with what we call the local ring of of the point p; in particular, it is a local ring.

Some basic theorems. Let F be a presheaf on a topological space X. For any open U ¢ X and any = € U,

we have a natural map pY : F(U) — lim _ F(V) = F, that sends every f € F(U) to the corresponding
equivalence class (i.e. its germ). As the next statement shows, sections of sheaves are determined by their

germs.
Lemma 4.2.6. Let F be a sheaf on a topological space X. Then for any open set U < X, the map
[V : 7))~ ] 7
zeU zeU
18 1njective.

Proof. Let s,t € F(U) such that p¥(s) = pY(t). Then for each x € U, there exists an open neighborhood
xz € U, such that pf (s) = pf_(t). Applying the separation axiom to the covering

U=|]JU.,
xeU

we obtain that s = ¢. O

Next, let us show that morphisms of sheaves are also determined by what they do on the stalks. Let us recall
that given a morphism of presheaves ¢ : F — G, for any x € X there is a morphism of stalks ¢, : F,, — G,.

In fact, for any open U ¢ X and any x € U, the diagram

FU) 2% g(U)

oY [ZC —

is commutative.

50



Lemma 4.2.7. Let X be a topological space, and F be a presheaf of sets, and G be a sheaf of sets on X. If
d)la ¢2 F - g

are two morpshisms of presheaves such that ¢1, = ¢2.5 for all x € X (as morphism Fy — G, ) then ¢1 = ¢a.

Proof. We need to show that ¢1,; = ¢2 v as morphisms F(U) — G(U) for every open U < X. Let s € F(U).
Then it follows from (x) that

p(G)Y (¢1,0(5)) = d1.2(p(F)Y(s)) and
p(G) (62,0(s)) = b2, (p(F)Y (s))

so it follows from the assumption that ¢, , = ¢2 . that

p(9)d (91,0(5)) = p(G) (2,0(5))

Since G is a sheaf, we conclude that ¢1 7(s) = ¢2,u(s), as required. O

Proposition 4.2.8. Let ¢ : F — G be a morphism of presheaves on a topological space X. The following

statements hold:

(1) The map ¢ : Fr — G is injective for all x € X if and only if ¢y : F(U) — G(U) is injective for all
open U.

(2) Assume that both F and G are sheaves. Then ¢, are bijections for all x € X if and only if ¢y are bijections
for all open U < X.

Proof. (1) Suppose the ¢, are injective for all x € X. Let s,t € F(U) and assume that ¢y (s) = ¢y (t). Then

for any x € U, we have

p(G)d (9u(s)) = p(G)5 (¢u (1)),

hence

02 (p5 (F)(s)) = ¢u(pf (F)(2))-

Since ¢, is injective, we conclude that p(F)Y(s) = p(F)Y(t) for all x € U, and therefore s = ¢ since F is a

sheaf.

Conversely, suppose that all the ¢y are injective. Let s;,t, € F, and ¢, (s;) = ¢ (t,). By definition of the
stalk, we can find open neighborhood U 3 z and sy, ty € F(U) such that

50 = pU(su) and t, = p¥(t0).

The fact, that ¢,(sz) = ¢ (t,) means that ¢y (sy) = ¢u(ty) have the same restriction to some smaller
neighborhood V of x. Then

ov(py (sv)) = Py (du(sv)) = pv(du(tu)) = dv (pY (tv)).

Since ¢y is injective, we obtain p¥ (sy) = p¥(ty). But sy and p¥(sy), and ty and p¥(ty) define the same

elements in the stalk, so s, = t,.
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(2) If all ¢y are bijective, then all ¢, are clearly bijective. For the reverse implication, the injectivity of ¢y
follows from (1), so we only need to establish the surjectivity. Let ¢ € G. For z € U, since ¢, is surjective, we
can find s, € F, such that

$a(s2) = p(9) (1).

In turn, s, = p(F)Y=(sy,) for some open neighborhood U, 3 z and some sy, € F(U,). Then

p(9)5" (du. (sv,)) = p(9)F (D).

This means that there exists an open neighborhood U, o V, 3 = such that for sy, = p(]:)g: (su,), we have
that

v, (sv,) = p(9)T, (t). (%)

This proves the possibility of “local lifting”. To complete the proof, we will now show that the elements
sy, € Fy on the open cover U = |,y Vo can be glued together to obtain s € U such that ¢y (s) = t. For

this, we need to check the compatibility condition in the gluing axiom, i.e. for any x1,x2 € U we have

p(‘F)Vmim‘/mz (SVzl) = P(]:)vzfmvmz (8Va,)-

Since ¢v, ~v,, is injective, it is enough to check that

Vi, Vi,
OV, Ve, (PP, v, (872, )) = 0w, v, (0(F)y2 v, (522)),

which is equivalent to

(A A O () H A GO CA)

But the latter holds in view of (%) - both sides are equal to p%szz (t). By the gluing axiom there exists
s € F(U) such that p{/ (s) = sy, for all z € X. Then p(G){, (¢u(s)) = p(G){, () for all z € U and therefore
¢u(s) =t by the separation axiom. O

We will next consider the stalks as they relate to exact sequences. This discussion will lead us to the definition
of an exact sequence of sheaves of abelian groups. We begin by recalling the well-known exactness of property

of direct limits.

Let I be a filtered set, and suppose we have direct systems of abelian groups
A={A;,7(A)]}, B ={B;,7(B)}} and C = {C;,7(C)}}.

Furthermore, let ¢ : A — B and v : B — C be morphisms of direct systems corresponding to the identity
map of I such that the sequence
AL BYC

is exact, which means that for each ¢ we have an exact sequence

A2 B

(2]
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and for ¢ < j the diagram

r(A)ﬂ r(B)ﬂ ﬂ@fl

AjLBjL)Cj

commutes. As we have seen before the morphisms ¢ and v induce morphisms between direct limits
. o . . T .
lim A; — lim B; and lim B; — lim C;.
— — — —

Theorem 2. The sequence

is exact.

Proof. By our assumption, for each i we have v; o ¢; = 0, which implies that ¥ o & = 0, hence im® < ker .
So, we only need to establish the reverse inclusion. Let b € ker W. Then b is represented by some b; € B; such
that 1;(b;) defined the zero element of lim C;. This means that there exists j > i such that

7(C)] (i (by)) = 0.

Then

and consequently, there exists a; € A; such that

7(B)!(b;) = ;(a;).

Let a denote the image of a; in lim A;. Since 7(B)!

obtain that ®(a) = b as required. O

(b;) defines the same element of lim B; as b;, i.e. b, we

Corollary 4.2.9. If the sequences

are exact for all i, then the sequence
— — —
s also exact.

Now, let us connect this with presheaves.

Definition 4.2.10. Let F, G and H be presheaves on a topological space X, andlet ¢ : F > Gandvy : G - H

be morphisms of presheaves. We say that the sequence
Fhgly
is exact in the category of presheaves Psh(X) of abelian groups on X if the sequence
F(U) 25 G(U) ¥ H(O)
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is exact for all open U c X.

Corollary 4.2.11. Let F 4, g % H be an exact sequence of presheaves of abelian groups. Then for each

x € X, the sequence F, P, G, Yo, z s exact. Consequently, if the sequence
0-FLgL U0
is exact in Psh(X), then the sequence
0—F, 256, 2 H, -0

18 exact for all x € X.
We use this statement to define the exactness in the category of sheaves.
Definition 4.2.12. We say that a sequence

FLhgly
of sheaves of abelian groups is exact if the sequence of stalks

Fo 25 G 5 H,

is exact for all z € X.

One may wonder about how this notion relates to the exactness in the category of presheaves. It follows
from the above corollary that if the sequence is exact in the category of presheaves then it is also exact in

the category of sheaves. The converse is only true partially.

Theorem 3. Let 0 — F % g ¥ ‘H be an exact sequence of sheaves of abelian groups on a topological

space X. Then for any open set U — X, the sequence
ou Yu
0—FU)—GWU)— H({U)

is exact.
Proof. We need to check the exactness at F(U) and G(U).

e Exactness at 7(U): By our assumption, the maps F, 22, G, are injective for all z € X. Since F is a

sheaf, ¢y is injective for every open U c X.

e Exactness at G(U): The kernel presheaf
K(U) = ker(G(U) 2% H(U))
is a sheaf. By construction, we have an exact sequence in the category of presheaves
0-K—-G5H
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hence an exact sequence of stalks
0> Ky — Gr 25 H,

for all z € X. In particular, K, = ker(G, Ya, H.). Now, consider the composition ¢ o ¢ : F — H. We

have

(¢0¢>)m :%O% =0
for all x € X. Since H is a sheaf, we obtain that ¢ o ¢ = 0 as a morphism of sheaves. Hence
ou(F(U)) € K(U), i.e. ¢ defines a morphism of sheaves
¢: F— K.

According to the previous remarks, ¢, : F, — G, is an isomorphism for any x € X. Then ¢y : F(U) —

K(U) is an isomorphism. Thus, im(¢y) = ker(ir7), proving the exactness.

An important point is that a short exact sequence
0->F5HG65H -0

of sheaves of abelian groups may not give a short exact sequence of sections over an open set U < X, even when
U = X. Our goal is to construct a cohomology theory that enables one to deal with the failure of exactness
of the functor of global sections. More precisely, one defines abelian groups H'(X, F), H (X,G), H(X,H)

for 4 > 1 that fit into a long exact sequence
0— F(X)—>G(X) > H(X)—> H(X,F) > HY(X,G) > H'(X,H) > H*(X,F) —> - .

Example 4.2.13. Let X < C be an open subset. For an open U < X, we let O(U) denote the C-algebra of
holomorphic functions on U. One easily checks that this defines a sheaf O on X. Let vy : O(U) — O(U)
be the operator of differentiation, i.e. Yy (f) = f'. Clearly, ker(vy) is precisely the algebra C(U) of locally

constant funtions. We then have the following exact sequence of sheaves on X :

0Co>0% 050

We only need to check the exactness at the second O, viz. to show that v is surjective as a morphism of
sheaves. This amounts to showing that the map on stalks O, Yo, O, is onto for every x € X. Fvery element
of O, is represented by some holomorphic function f € O(U) for some open neighborhood U of x. But we
can always find a smaller neighborhood x € U, < U which is simply connected. In that neighborhood, f|u,
has an antiderivative (Morera’s theorem) g € O(Uy). This means that Yy, (9) = flu,, proving that the image
of f in O, lies in the image of .. Thus, ¥ is surjective as a morphism of sheaves. On the other hand,
if X is not simply connected, not every analytic function has an antiderivative, i.e. ¥x(O(X)) £ O(X).
Thus, the surjectivity of a morphism of sheaves on stalks does not imply its surjectivity on sections. So, this
definition requires some justification. For this, we recall that a morphism f: X — Y in a category C is called

an epimorphism if for any two morphisms
g1

Y —= Z,

g2
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the fact that gy o f = go o f implies that g1 = go, i.e. we have right cancellation for morphisms.

Example 4.2.14. . (a) A homomorphism of abelian groups f : X — Y is an epimorphism in the category
of abelian groups AbGrps if and only if it is surjective. Indeed, the surjectivity of f clearly implies that f is
an epimorphism. Conversely, suppose that f is an epimorphism but f(X) +Y. Let Z = Y\f(X) = cokerf,
and take g1 to be the canonical homomorphism, and go to be the zero homomorphism. Then g1 o f = gs o f,

but g1 £ go, contradicting the assumption that f is an epimorphism.

(b) Let X be a topological space. Then again a morphism ¢ : F — G of presheaves of abelian groups is an
epimorphism in the category Psh(X, AbGrps) if and only if ¢y : F(U) — G(U) is surjective for all U. We
only need to prove that if ¢ is an epimorphism then ¢y is surjective. Consider the cokernel presheaf defined
by

C=6U)/¢u(F(U)).

If ¢ is not surjective, then C is not the zero presheaf. So if, we take g1 : G — C to be the canonical morphism
and go : G — C to be the zero morphism, then g1 o ¢ = g o ¢(=0), but g1 + g2 - a contradiction. Thus, ¢

must be surjective.

The argument in (b) breaks down in the category of sheaves of abelian groups, because for a morphism of
sheaves ¢ : F — G, the cokernel presheaf C may not be a sheaf. Instead, we need to consider the associated

sheaf C* together with the canonical homomorphism 6 : C — C*. This leads to the following statement.

Proposition 4.2.15. Let X be a topological space, and ¢ : F — G a morphism of sheaves of abelian groups.

Then the following conditions are equivalent:

(i) ¢ is an epimorphism in the category of sheaves of abelian groups on X ;

(11) Ct = 0 where C is the cokernel presheaf associated to ¢;

(i1i) ¢y : Fu — Gy is surjective for all x € X.

Proof. First, let us prove the equivalence (ii) < (iii). It follows from injectivity of the map [], ., pY :

FU) - 11

hand, we have the following exact sequence of presheaves:

weu Fo that a sheaf of abelian groups is zero if and only if all the stalks are zero. On the other

FLgoc—o.
So for each x € X, the sequence of stalks
Fo 56, >0, —0.
is exact, i.e. C; ~ G,/¢,(F,). Also, as we mentioned earlier, C; = C,. Thus,
Ct=0<Cl=0forallze X & ¢,(F.) = Gs,

as required.

56



Next, let us show that (i) = (i). Suppose we have two morphisms

g1

G —=H,

92

to a sheaf H such that g; o ¢ = g2 0 ¢. Then for any x € X, we have

91,2 © (bx = 92,2 © ¢;E
Since ¢, is surjective, we conclude that g1 , = g2z, hence g1 = gs since H is a sheaf.

Finally, we show that (i) = (ii¢). Suppose that ¢, (Fy,) F Gs, for some z¢ € X. and consider the sequence
¢ g1 6
F—G g:; C —— CH,
2

where g7 is the canonical homomorphism, g5 is the zero homomorphism and C is the cokernel presheaf. We
obviously have g1 o ¢ = g o ¢, hence

fogrop=_00gy0 .

So, invoking (i), we obtain § o0 gy = 6 o go. Then 04, 0 g1.4y = 0z © g2,2,- Since O, : Coy — Cf is an
isomorphism, we obtain ¢1 5, = g2,2,- But g1 4, is the canonical map G, — Guy/dz,(Fao), and g2 4, is the

zero map, a contradiction. Thus, ¢, must be surjective for all x € X. O

We have already used the fact that 6, : C, — CJ is an isomorphism several times. There is one more

application.

Example 4.2.16. Let X be a topological space, C be the constant presheaf on X with the value set E(i.e.
C(U) = E for any nonempty open U < X ), and L be the locally constant sheaf. There is the identity
embedding v : C — L. We have seen that C and L have the same stalks; in fact, for any x € X, 1, : Cp — L,
is an isomorphism. For the sheaf CT associated with C and the corresponding map 6 : C — C*, we have a

commutative diagram

C : L

N4

ct,

for some morphism of sheaves ¢ : CT™ — L. Since v and 0 induce isomorphism on stalks, so does ¢. It follows

that ¢ is an isomorphism of sheaves, i.e. L is actually the sheaf associated with the constant presheaf C.

This argument shows that if ¢ : 7 — G is a morphism of a presheaf F to a sheaf G that induces an isomorphism
of stalks ¢, : F, — G, for any x € X then G is the sheaf associated with the presheaf 7. What we use is
the fact that if ¢ : F — G is a morphism of sheaves that induces isomorphisms on all stalks, then ¢ is
an isomorphism of sheaves. It should be noted that the fact that two sheaves have isomorphic stalks does
not imply in the general case that the sheaves are isomorphic. For one thing, the stalks do not reflect the
restriction maps. So, one can take, for example, X to be a 2-element set X = {0, 1} with the open subsets
X, {1}, . We will now construct two sheaves F,G on X by assigning Z to X and {1}, and 0 to ¢ for both
of them but taking the isomorphism Z — Z for F(X) — F({1}) and the zero homomorphism Z — Z for
G(X) — G({1}). Then the stalks Fo, F; and Gy, Gy are all isomorphic to Z but the sheaves F and G are not

isomorphic.
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Another, more conceptual, example can be obtained by considering nonisomorphic line bundles over a topo-
logical space or a manifold. More concretely, let X = S! be the unit circle, and let E; = X x R be the trivial
line bundle over X, and let Es be the Mobius strip. In either case, we let F; be the sheaf of smooth sections
of E; — X. It is easy to see, using the local triviality of E;, that the stalk F; , at each x € X is isomorphic to
the stalk of the sheaf of smooth functions on X, so all stalks are isomorphic. On the other hand, the sheaves
are NOT isomorphic. Indeed, an isomorphism of sheaves would induce an isomorphism of stalks. Each stalk
is a local ring with the maximal ideal consisting of functions that vanish at that point. This means that if
¢ : F1 — Fa is an isomorphism, then for ¢ x : F1(X) — F2(X), we have the following: f € F;(X) vanishes at
x € X if and only if ¢x(f) € F2(X) vanishes at . But F; has a nowhere vanishing global section, while Fa
doesn’t (as otherwise the line bundle would be trivial). We will now introduce an important class of sheaves

which later will be shown to be cyclic.

Definition 4.2.17. A sheaf F is called flasque(or flabby) if the restriction maps p¥ : F(U) — F(V) are

surjective for all open sets V < U (equivalently, the restriction maps pis : F(X) — F(U) are all surjective).

It is easy to see that a skyscraper sheaf is flasque but we will see many other important examples.

Theorem 4. Let
0-FLHgL U0

be an exact sequence of abelian groups on X.

(i) If F is flasque then the sequence of global sections
¢x Px
0> F(X)—>GX)—=>HX)—0
is exact(and, in fact, we have a similar exact sequence for sections over any open U < X).

(ii) If in addition G is flasque then # is also flasque.

Proof. We only need to show that ¢x : G(X) — H(X) is surjective. Let t € H(X). As we already remarked
above, the surjectivity of ¢, : G, — H, means that there exists a neighborhood U 3 x and a section sy € G(U)
such that

Yu(su) = pis (H)(t)

(“local lifting”). Consider all pairs (U, syy) satisfying this condition. This set can be partially ordered as
follows
(U1, 81) < (Us, 82)

if Uy < Uy and pg’f(SQ) = s1. Suppose we have a chain
{(Uom 504)}(16],

indexed by a set I. Set U = | J_.; Us. Then for any «, 5 € I we have one of the following

ael
(Uas sa) < (Up, s3) or (Ug, s3) < (Ua; Sa)-

In the first case, we have

Uqs %
pUQmUB(SCY) = Sa = pUimUB(Sﬂ)a

58



by the definition of the order relation. Similarly, we have

U U
pUQﬁUg (80‘) = pUimUﬂ (Sﬁ)v

in the second case as well. By the sheaf axioms, there exists a unique s € F(U) such that pf; (s) = sa,
and then (U, s) is an upper bound for our set. By Zorn’s lemma, there exists a maximal element (U, sy7).
If U = X, we are done. Suppose there exists x € X\U. Then as above, there exists an open neighborhood

V 3z and a section sy € G(V') such that

Yy (sv) = p(H)V (1)

Then, on the intersection U n V', we have

Yunv (00 av(G)(s0) = p(@)av(sv)) = plav(E) = pirav(t) =0,

which implies that
p(G)0nv(su) = p(G) [y (sv) € du(F(U N V)).

Since F is flasque, the restriction (V) — F(U n V) is surjective, so there exists r € (V') such that

P(g)gmv(SU) - p(g)ng(Sv) = ¢U0V(Pl‘§mv(7“))~

Set sy, = sy + ¢v(r). Then
Yy (sv) = piav(t),

and
PG~y (s0) = PG Ty (s1)-

Thus, there exists sy y € G(U v V) that restricts to sy on U and s}, on V. Then ¢y v (syov) restricts to
p(H)(t) on U and p(H)ir (t) on V, so

/(/)UUV(SUUV) = p[)f(uVa)

Then (U v V,spov) is strictly greater than (U, sy) with respect to our ordering, which contradicts the
maximality of U. Thus, U = X, which proves (i). In this argument, replacing X with an open subset U < X,

we obtain the exactness of the sequence of sections over U.

(ii) Tt follows from (i) that we have the following commutative diagram with exact rows.

00— F(X) 255 g(x) 25 H1(X) 0
lp(F)ff lp(g)?f lp(ﬂ)fff
19 Yu

0 —— F(U) —— G(U)

We need to show that p(H)7s is surjective. Let h € H(U). There exists g € G(U) such that 1y (g) = h. Since
G is flasque, p(G)# is surjective, so there exists ¢’ € G(X) such that p(G)x(¢') = g. Let h' = 1x(g’). Then

p(H) (W) = p(H)T; (¥x(9) = ¢u (p(G)FF (9) = Yul(g) = h,
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as required. Thus, X is flasque. O

4.3 Sheatfification via étale space

Let F be a presheaf on a topological space X. We will construct a topological space E together with
a local homeomorphism 7 : E — X so that the sheaf of continuous sections of 7 defined by the sets
I'(U,7) = {s: U — F|s continuous and mos = idy}, is precisely the sheaf F* associated with the presheaf F.
It will follow from this construction that the morphism of sheafification 6 : F — F* induces an isomorphism
of stalks 0, : F, — F, for any z € X.

Definition 4.3.1. A map 7 : E — X between two topological spaces is called a local homeomorphism if
for every e € E there exist open neighborhoods O, 3 e, and U, 3 ¢ = 7(e) such that 7o, : O, — U, is a

homeomorphism.

Note that 7 is automatically continuous since for any open set U < X and any e € 7~ (U), one can choose

open neighborhoods O, 3 e, and U, 3 x = 7(e) as in the definition so that U, < U, and then

= J o
v)

eer—1
is open.

Definition 4.3.2. A pair (F, ) consisting of a topological space E and a local homeomorphism 7 : E — X
is called an étale space over X. We will call X the base space, E the total space, and 7 the projection map.

For z € X, the set E, = 7~!(z) is the fiber of 7 over .

We will now state (without proof) some elementary properties of local homeomorphisms.
Proposition 4.3.3. Let 7 : E — X be a local homeomorphism. Then

(i) 7 is an open map;

(ii) We have E =\, x Ex, and the induced topology on each fiber is discrete;

(iii) If s1 : Uy — E and so : Uy — E are two sections over open subsets Uy, Us < X such that si(x) = so(x)

for some x € Uy n Uy then s and sy coincide on some open neighborhood of x.

(iv) For any section s : U — E, the image s(U) is open in E and is homeomorphic to U. Moreover,

s = (mlyw) L.

(v) Sets of the form s(U), for U € X open and s € T'(U, ) form a basis of the topology on E. Consequently,
the topology on E is completely determined by the topology of X and the continuous local sections of 7.

Proposition 4.3.4. Let 7 : E — X be a local homeomorphism. Then F(U) = T'(U,x), with restriction
maps F(U) — F(V) for open V < U given simply by restrictions of sections, defines a sheaf of sets on X.
Furthermore, for any x € X, the stalk F, can be naturally identified with the fiber E, = 7—1(x).
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The verification of the fact that F is a sheaf is standard. So, let us just prove the assertion about the stalk.

Let z € X. Then for every open U 3 x, there is a map
vy : (U, 7) > E;, s+ s(x) € Ey

If two sections s1 : Uy — E and sy : Uy — E are equivalent in the stalk F, then they coincide on some
open neighborhood Uy 3 z contained in Uy n Us; then clearly si(x) = s3(z). This means that we have a
well-defined natural map

Vg : Fu = lii)lF(U,w) — E,.
Usx

This map is surjective since, given e € F,, we can find open neighborhoods O, 3 e and U, 3 x such that
o, : Oc — U,

is a homeomorphism. Then s = (7|p,) ! : U, — FE is a section such that s(z) = e, i.e. v;(s) = e. Finally, let
us show that v, is injective. Suppose s; € I'(Uy, 7) and so € T'(Us, 7) are such that v,(s1) = v;(s2). Then by
part (iii) of the previous proposition, there exists a neighborhood x € Uy < U; n Us such that sq|y, = s2|u,-

This means that s; and s, represent the same element of F,, and v, is injective.

We will now describe a construction of an étale space associated to a presheaf. Let F be a preasheaf on a
topological space X. Set

E = |_| F. (disjoint union of stalks),
zeX

and define 7 : E — X by sending a € F, to z. Our goal is to equip E with the natural topology so that 7

becomes a local homeomorphism.

As we mentioned earlier, given any local homeomorphism 7’ : E/ — X', the sets of the form s(U) where
U c X'isopen and s: U — E’ is a continuous section form a basis for the topology on E’. In our situation,
we topologize E by essentially reversing this process. Given an open subset U and any s € F(U), we define

a section §: U — E by 3(x) = pY(s).

Proposition 4.3.5. (i) There is a topology on E for which the sets 3(U) for all open U < X and all s € F(U)

form a basis.

(i1) If E is equipped with this topology then 7 : E — X is a local homeomorphism and each § : U — E is a

continuous section.
Proof. -Omitted. 0

We are now in a position to prove the following theorem.

Theorem 5 (Sheafification). Let F be a presheaf of sets on a topological space X. Then there exists a
sheaf F* and a morphism of presheaves § : F — F 71 such that

(i) 0, : Fp — F is a bijection

T

(ii) for any morphism ¢ : F — G to a sheaf G, there exists a unique morphism of sheaves ¢ : F* — G such
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that the following diagram commutes.

F—r L Ft

N

Proof. Let m: E — X be the étale space of F, and let FT be the sheaf of continuous sections of , i.e.
FH(U)=T(U,n)
For each open U c X, we have a map
Oy : F(U) - FT(U), s—3

To show that these maps define a morphism of presheaves # : F — F T, we need to check that for V < U,
the diagram
FU) 22 7 (U)

)
<c
)
<

FV) -2 7H(v)

On the other hand,

and the commutativity follows.

Next, let us show that 6, : F, — F, is a bijection. We already know that F,;" ~ 7~!(z) = E, = F, via the

maps
ol FHU) — Fpy tt(2).

Thus, we only need to show that the diagram

commutes. We have for s € F(U),

as claimed. O

Remark 3. In particular, if F is a sheaf, then 6 : ¥ — F* is an isomorphism of sheaves.

To check the universal property, we need the following

62



Lemma 4.3.6. Let ¢ : F — G be a morphism of sets on a topological space X. Denote by nr : Er — X

and g : Eg — X, the étale spaces associated to F and G, respectively. Then, ¢ induces a continuous map

¢:E]:—>Eg, ee}}cE]:r—mﬁx(e)egmcEg,
satisfying Ty = wg © .

Proof. Since Ex = | |,y Fz and Eg = | |,y Gz, it is clear that the diagram

commutes. So, one only needs to show that ¢ is continuous. Consider an arbitrary element #(U) ¢ Eg of the

basis of the topology on Eg, where U — X is open and ¢ € G(U). Then one easily checks that

&) = |3,

where the union is taken over all V. U and s € F(U) such that ¢y (s) = p¥(t). It follows that ¢~ (£(U)) is

open, making (5 continuous. O

The lemma implies that given a morphism of presheaves ¢ : F — G, for any open U < X, we have a map

¢ F(U) =T(U,7r) > G"(U)=T(U,mg), s—dos.
Clearly, the maps ¢;; define a morphism of sheaves ¢+ : F© — G*. Moreover, the diagram

FU) =22 gU)
g

|

o

FHU) —— G7(U)

commutes. Indeed, let s € F(U). Then

This means that

ol e

¢+
T+ y Gt

is a commutative diagram of morphisms of presheaves.
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Suppose now that G is a sheaf. Then, g is an isomorphism, and if we define ¢ = 9;1 ot : Ft — G, then
the diagram

F—? g
A %
Fr
commutes. Besides, such v is unique. Indeed, suppose there are two such morphisms v,%’ : ¥ — G. For

each x € X, we have commutative diagrams for ¢ and ¢’:

ef\ /w R
Fr

Since 0r , is a bijection, we have
7/)90 = ¢m o 0;}1 = 1/1;
Since F* and G are sheaves, we obtain 1 = /.

Remark 4. One can eliminate the explicit use of the étale space from the construction of sheafification. More
precisely, let F be a presheaf on X, and m : E — X be the corresponding étale space. Since E = | |,y Fa,
a section s : U — E can be described by (s;) € | |,cr; Fz» where s, = s(z). Let {(V), where V < U is open

and t € F(V), be a basis element. Then, since s is continuous, the set

sTHEV)) = {z e V]s(z) = 50 = p) (1)}

must be open. This implies that I'(U, w) can be identified with the set of elements (s,) € [ [, F» such that
for each x € U there exists a neighborhood « € W(z) c U and t € F(W(z)) with the property

Sy = pZV(m) (t) for all y € W (x).

This description of sheafification is given for example in Hartshorne’s book. However, the description using

the étale space is much more revealing.

Example 4.3.7. Let C be a fixed set, and let F be the constant presheaf on X with the value set C'. Then
Fz = C for any x € X. So, the corresponding étale space E can be identified with the direct product X x C,
with 7 : E — X being the projection. Let U < X be a nonempty open set, and s € F(U) = C. Then
5(U) = U x {s}. Thus, the topology on E is the product topology if C is equipped with the discrete topology.
Let 0 : U — E be a continuous section. We can write o(x) = (x, f(x)) for some function f: U — C. We

have
oMV x{s)={zeUnV]o(x)=(z,8)}={xeUnV|f(zx)=s}

Taking V = U, we see that f~1(s) = U is open. Since this is true for all s € C, the function f is locally
constant. Conversely, given a locally constant function f : U — C, one easily checks that 0 : U — E, x —

(z, f(x)) defines a continuous section. It follows that FT is the sheaf of locally constant functions.

Sheafification of presheaves of abelian groups. If F is a presheaf of abelian groups on X, then the stalks

Fuz,x € X, are all abelian groups. The existence of a group operation on each of the fibers of the corresponding
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étale map 7 : E — X means that we have a commutative diagram

ExxF ——  F
X
where E x x E = {(e1,e2) € E x E|m(e1) = m(es)} is the fiber product over X. This motivates the following.

Definition 4.3.8. A (surjective) local homeomorphism 7 : ' — X is called an étale space of abelian groups
if
(1) each fiber E, = m—1(x) is an abelian group;

(2) the maps (over X)
ExxESE, E,xE,3(e1,e) —e1 +es € By

ESE E,se— —cckE,

are continuous.

It is easy to see that if s1,s5 : U — E are continuous sections, then

s1+ 82 = ¢o(s1,82), (s1,52)(x) = (s1(2), 52(2))

is also a continuous section, which defines an operation on I'(U, 7). Using —s = ¢ o s, one further establishes

that T'(U, ) is an abelian group. On the other hand, we have the following.

Lemma 4.3.9. Let F be a presheaf of abelian groups on X. Then the corresponding étale map m: E — X

s an €tale space of abelian groups.

Combining these statements, we obtain that given a presheaf F of abelian groups, the sheaf 7+ associated
to F as a presheaf of sets is in fact a sheaf of abelian groups. Moreover, the canonical map 0 : F — F+ is a

morphism of sheaves of abelian groups. This applies also to other algebraic structures.
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Extension by zero and exceptional inverse image.

We have seen that for a closed embedding i: Z <— X of topological spaces, and for a sheaf G on Z, the stalks
of the sheaf F = i, G are described as follows.

G., z€EZ
0, =z¢Z.

Fo=

Moreover, there exists a morphism ng: t™1i,G — G. Since ¢:=! does not change the stalks, one shows
that (9g)s: (t7%i4G), — G, is an isomorphism for every z € Z, so ng is an isomorphism. Interpreting
174G = 17LF as the restriction F|z of F to Zwe can say that F is obtained from G by extension by zero
outside Z.

However, one should keep in mind that the direct image does not always provide this kind of extension.

Example. Let j: U — X be an open embedding with oU # &, and suppose that G is the constant sheaf on
U, U; in value group S. Then is is easy to see that (j+G), = S for all z € U. So, if U # @, is is NOT an

extension by zero outside U.

So, for open embeddings the construction of extension by zero needs to be modified. Let j: U — X be an
open embedding, and let G be a sheaf of abelian groups on U. We define G (“lower shriek”) to be the sheaf

associated to the following presheaf:

g\v), VvcU
HV) = V)
0, otherwise.

It is easy to see that for x € U, the stalks (iG), = H, can be naturally identifies with G, while for z € X\U,
for any neighborhood V' 3 x, we have H(V) = 0, and therefore have j~1H = G, so the sheafification H — 4G
gives rise to a morphism G — j~!51G. Our discussion implies that this morphism induces an isomorphism on
all stalks, hence is an isomorphism of sheaves. Thus, the restriction (71G)|y = 711G of 7G to U coincides

with G, and G is zero outside U.

For uniformity, we define 4y = i, for a closed embedding i: Z — X. Then in both situations we obtain
functors

i1: Sh(Z) — Sh(X) and j: Sh(U) — Sh(X),
both of which are called extensions by zero. Consideration of stalks then leads to

Proposition 4.3.10. The functors iy and ji are exact.

We recall that a subspace X of a topological space Y is called locally closed if it is open in its closure X
(equivalently, X = U n'V where U < Y is open and V < Y is closed, or for any « € X there exists a
neighborhood U < Y of z such that U n X is closed in U). Since we have already define extension by zero
for open and closed embeddings, we can now define it for any locally closed subspace/embedding. We will
see a bit later that is it possible to construct a generalization of extension by zero functor for any continuous

map of locally compact topological spaces f: X — Y.

We will now state a very useful statement which is often used in algebraic geometry.
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Proposition 4.3.11. Let X be a topological space and F be a sheaf of abelian groups on X. Then for any

closed subspace Z < X and its complement U = X\Z, there is an exact sequence
0— ji(Fly) — F —igi " F=iyi ' F —0

of sheaves on X, where i: Z — X and j: U — X are the corresponding embedding.

Sketch of proof: Recall that j(F|yy) is the sheaf associated to the presheaf F defined by

_ FV), VcU
F(V) =
0, otherwise.

Next, we can define a morphism of presheaves by defining

pv: F(V) — F(V)

for every open V < X to be the identity map for V < U, and the zero map for V ¢ U. By sheafification,
we obtain a morphism of sheaves j,(F|y) — F. On the other hand, the morphism F — i,i~1F is simple the

unit of adjunction form the adjointness of i~! and .. The sequence of stalks will look like
0—F, —F,—0—0

if x e U, and

0—0—F, —F, —0
if t¢ U (i.e. x € Z), proving the exactness.

Let us mention another application of the morphism €x: jij~'F — F be constructed in the proof of the
proposition. First, for an open embedding j: U — X and a sheaf G on U, we have a natural isomorphism

ng: G — j7151G. One verifies that g and €7 form a unit and counit of adjunction. So we set the following:

Proposition 4.3.12. For an open embedding j: U — X, the functor ji: SWU) — Sh(X) is the left adjoint
of 571 Sh(X) — Sh(U).

Since j is exact, we obtain the following.

Corollary 4.3.13. For an open embedding j: U — X, and an injective sheaf I on X, the sheaf j—'I

(restriction of I to U) is an injective sheaf on U.

We will now discuss an analog of extension by zero in a more general setting.

Definition 4.3.14. Let F be a sheaf of abelian groups on a topological space X, U < X be an open subset,
and s € F(U) be a section. The support of s is the set

supp(s) = {x e U | pY(s) # 0 in F,}.

Lemma 4.3.15. The set supp(s) is closed in U.
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Proof. Let x € U\supp(s), Then pY(s) = 0. This means that there exists an open neighborhood U, 3  such
that pf; (s) = 0. Then U, < U\supp(s), showing that the latter is open. O

Let j: U — X be an open embedding, and let G be a sheaf on U. It immediately follows from the definitions

that there is a natural morphism of sheaves jiG — j.G. Moreover, for z € U we have the identification

(]'g)x = (]*g)x = Gu,

and (j1G), = 0 for z € X\U = Z. If follows that ¢ is an injective morphism of sheaves, so one can view 5G

as a subsheaf of j.G. In fact,
(HG)(W) ={s€ (jxG)(W) =G(W nU) | supp(s) is closed in W}

(here supp(s) means the suppose of s as a section of G over W n U). Indeed, if s € (5#G)(W) then its
support w.r.t. the sheaf (51G) is closed in W. On the other hand, it is contained in W n U. So, this
support coincides with the support of the restriction of s to W n U. But the support of the restriction is
precisely supp(s). Conversely, suppose supp(s) is closed in W, and set T = W\supp(s). Then T is open
in W,and W = (W nU)uT. We can find t € (5iG)(W) whose restriction to W n U is s|w~u (note that
HG)W nU) = (4jxG)(W nU) = G(W n U)) and whose restriction to T' is zero. By looking at stalks, we
conclude that the image of ¢ in (j,G)(W) is precisely s. Now, if Y is a locally compact space then to say
that S is closed in Y is the same as to say that the identity map & — Y is proper (recall that a continuous
map (of locally compact spaces) f: X — Y is called proper if f~'(C) is compact for every compact C' < Y.)

It is not difficult to show that a proper map of locally compact spaces is closed.

Definition 4.3.16. Let f: X — Y be a continuous map of locally compact topological spaces, and let F be
a sheaf on X. The direct image fiF with proper support is the sheaf defined by

(AF)V) ={se F(f71(V)) | f:supp(s) — V is proper}
In the algebro-geometric context, the topological notion of properness is replaces by the algebro-geometric
one.

Finally, let us indicate the construction of the right adjoint i' of the function iy = iy in the case where
i: Z — X is a closed embedding. Given a sheaf of abelian groups F on X, let Fz be the subsheaf of F

whose sections over an open U < X are given by
Fz(U) ={se F(U) | supp(s) c Z}.

We then define
i =i Fy.

Since for a morphism ¢: F — G of sheaves on X, it is straightforward to check that oy (Fz(U)) < Gz (U)

for every open U < X, this yields a functor
i': Sh(X) — Sh(Z2)
which is usually referred to as the exceptional inverse image functor.
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Proposition 4.3.17. For a closed embedding i: Z < X, the functor i*: Sh(X) — Sh(Z) is left exact.

Sketch of proof. We need to show that if

is an exact sequence in Sh(X), then
0—i'F—i'Gg—i'H

is an exact sequence sequence in Sh(Z). Since the inverse image to an exact functor, it is enough to show
that the sequence
0— Fz — Gz — Hyz (%)

is exact in Sh(X). But we now that for every open U < X, the sequence
0— FU)— GU) — H(U)
is exact, from which is follows that the sequence
0— Fz(U) — Gz(U) — Hz(U)
is also exact, so (x) is exact in the category of presheaves, and therefore exact in the category of sheaves.
Proposition 4.3.18. i, — '

Summary.

e For a continuous map f: X — Y of topological spaces, we have the functors f,: Sh(X) — Sh(Y") (direct
image) and f~!: Sh(Y) — Sh(X) (inverse image). Furthermore, fg is left exact and f~! is exact.

e For a closed subspace Z — X, its open complement U = X\Z, and the inclusion maps (embeddings)
i:Z — X and j: U — X, we have the functors i1 = i,: Sh(Z) — Sh(X) and ji: Sh(U) — Sh(X)
called extension by zero and 4': Sh(X) — Sh(Z) called the exceptional inverse image. The functors 4,

and j are exact, while 7' is left exact. We have the following adjoint pairs
(j!vjil)v (ilai!)a (jilaj*)a and (iilvi* = Z')

Remark. We have seen that the functor f, can be constructed for more general continuous maps f: X — Y
(for example, for arbitrary continuous maps of locally compact topological spaces), however f' has been
constructed only for closed embeddings. For more general maps, a right adjoint f' of fi exists only on the

level of derived categories, which plays a role in Verdier duality.

4.4 Sheaf Cohomology

We will use the general construction of right derived functors in abelian categories. So, for reference, we

record the following.
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Theorem 6. Let X be a topological space. Then the category Sh(X) of sheaves of abelian groups is an

abelian category.

Proof — omitted. (One first checks that Sh(X) is an abelian category, and then verifies the axioms for abelian

categories.)

Recall that an abelian category A has enough injectives if every object A € Ob(A) admits a morphism
O — A — I into an injective object I (which means that for every monomorphism O — A — B, the

corresponding map Hom 4(B, ) — Hom 4(A, I) is surjective.

Proposition 4.4.1. Sh(X) has enough injectives.

Proof. Let F € 0b(Sh(X)), i.e. F is a sheaf of abelian groups. For each point z € X, the stalk F, is an
abelian group, so there is an injection 4, : F, — I, where I, is an injective Z-module (i.e. a divisible abelian
group). We will view i, as a morphism of constant sheaves on {z}. Next, let j,: {x} — X be the inclusion
map. Then j !F = F, (constant sheaf on {z}). By adjunction, we obtain a morphism F — (j,)sI; of
sheaves on X. Setting I = [ [,y (jz)« /> and taking the product of these morphism over all z € X, we obtain
a natural morphism i: F — I. By looking at the stalks, we easily see that ¢ is injective. each (j; )., being
the direct image of an injective sheaf (explain!) I, is injective, and the product of injectives in injective.

Thus, I is an injective sheaf, as required. O

Explicit description. For an open U < X, we have I(U) = [ [,y 1o, and the homomorphism F(U) — I(U)

is the composition

Foy IS TR IS ] L.

zeU zeU

Theorem 7. Let A be an abelian category that has enough injectives. Then

i. Every object A € Ob(A) admits an injective resolution, i.e. there is an exact sequence
I*(A): 0 > A1 T — ...

where all the I7 are injective objects in A.
ii. Let 0 > A — M* be a long exact sequence in A, and I*(A’) be an injective resolution of some
A’ € Ob(A). Then every morphism A — A’ extends to a morphism of complexes

(0> A— M®) - I*(A").

Any two such extensions are chain-homotopic. In particular, if I*(A) and I*(A’) are two injective
resolutions, then every morphism A — A’ extends to a morphism of injective resolutions I*(A4) —

I*(A’), and any two such extensions are chain-homotopic.

ili. Let 0 > A"’ > A — A” — 0 be a short exact sequence in A, and let I*(A’) and I*(A”) be arbitrary
injective resolutions. Then there is an injective resolution I*(A) of A that fits into a short exact

sequence of cochain complexes
0> I*(A) > I*(A) > I*(A") — 0.
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Definition 4.4.2. Let A and B be abelian categories.

(a) A cohomological -functor from A to B is a collection of functors T%: A — B, together with a morphism
§t: TH(A") — T (A’) for every short exact sequence 0 — A’ — A — A” — 0 in A and every i > 0
such that

e for every short exact sequence 0 - A’ - A — A” — 0 in A there is a long exact sequence
0 — TO(A") — T(A) — T0(A") 25 T Ay — ...

in B.

e for each morphism of short exact sequences

0 A A A" 0
|l
0 B’ B B” 0

in A there is a commutative diagram of long exact sequences

0 — TO(A) —— TO(A) —— T0(A") " T1(A) —— ...

|

0 — T°(B') — T%(B) —— T°(B") == TY(B)) — ---

(naturality).

(b) The §-functor T = (T%: A — B);>o is called universal if given any other d-functor T = (T"%), there
exists a unique sequence of natural transformations F*: T* — T" for all i > 0, starting with the given

FY, that commute with the morphism 6° for every short exact sequence in A.

Note that the universality implies that if F: A — B is a covariant additive functor, then there can exist at

most one (up to isomorphism) universal é-functor T = (T%);>¢ with 70 = F.

Definition 4.4.3. An additive functor 7: A — B between abelian categories is said to be effaceable if for
each object A € Ob(A) there exists a monomorphism u: A — M such that F(U) = 0.

Theorem 8 (Grothendieck). Let A and B be abelian categories and T = (T%);>¢ be a cohomological §-

functor. If T7 is effaceable for each i > 0, then T is universal.

Right derived functors. Let A be an abelian category having enough injectives, and let F: A — B be a left

exact additive covariant functor to another abelian category B. For an object A € O'b(A), we pick an injective
resolution
I*(A): 0> A1 T — ...

Applying F to this resolution, we obtain a complex
FI:0—>FI° > FI' - ...
and we define R'F = H*(FI*® to be the ith cohomology of the complex F1I.
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Theorem 9. Let A be an abelian category with enough injectives, and let F: A — B be a left exact additive

covariant functor to another abelian category B.

i.

ii.

iii.

iv.

For each object A € Ob(A) and each i > 0, R*F(A) is independent (up to natural isomorphism) of the

choice of injective resolution I*(A), and each R'F is an additive functor from A — B.
There is a natural isomorphism of functors F =~ ROF.
The collection (R'F);>o defined a cohomological §-functor from A to B.

For every injective object I of A, we have R'F(I) = 0 for all i > 0. Consequently, (R'F);>¢ is a

universal é-functor.

Sketch of proof.

i.

ii.

iii.

Let I*(A) and I*(A’) be injective resolutions of objects A and A’. Then any morphism and any two
such extensions are chain-homotopic. In particular, given two injective resolutions I{(A) and If(A),
the identity morphism A -% A extends to morphisms I¥(A) A, I¥(A) and I (A) , I¥(A), and the

compositions f} o f3 and f3 o f7 are chain-homotopic to the identity. It follows that the induced maps
H'(FI}) — H'(FI3) and H'(FI3) — H'(FI})

are inverses of one another. Consequently, the cohomology objects R'F(A) are independent of the choice
of injective resolution. By the same argument, a morphism A . B gives rise to well-defined morphisms
R'F(A) — R'F(B). Thus, for each I we get a functor R‘'F: A — B. Moreover, given two morphisms
fig: A — B, we can extend them to morphisms of injective resolutions f*,¢*: I*(A) — I*(B), and
then f*® +g*: I*(A) — I*(B) is an extension of f + g: A — B. Using this particular extension, we see
that each R'F is additive.

Since F is left-exact, the sequence
0— F(A) - F(I° — F(I')

is exact, which leafs to an isomorphism of functors ROF =~ F.

Let 0 > A/ - A — A” — 0 be a short exact sequence in A. Then there exist injective resolutions
I*(A’), I*(A), and I*(A”) of A’ A, and A” respectively such that we have a short exact sequence of
complexes

0> I*(A) > I*(A) > I*(A") — 0.

Since every I*(A) is injective, each of the sequences
0— I'(A) - I'(A) - I'(A") -0
remains exact. Thus, we have a short exact sequence of complexes
0 — F(I*(A)-F(I*(A) — F(I*(A")) =0
which by standard techniques gives a long exact sequence of cohomology.
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iv. Since R'F(I) is independent of the choice of injective resolution, we can use the injective resolution

0T 7150

which clearly shows that R'F(I) = 0 for isomorphisms. Since A has enough injectives, Grothendieck’s

theorem implies that (R'F); is a universal -functor.

Definition 4.4.4. Let F: A — B be as above. An object J € Ob(A) is F-acyclic if (R'F)(I) = 0 for all
1> 0.

For example, every injective object is F — acyclic.
Theorem 10. Let A € Ob(A), and let
0-A-J" > J - J> ...

be an F-acyclic resolution of A, i.e. a long exact sequence what all the J* are the F-acyclic objects. Then
(RUF)(A) = HY(Fj®) for all i > 0.

Proof. To keep out notation simple, we will give the argument assuming that 4 and B are (abelian) sub-
categories of the category of abelian groups or more generally the category of modules over a certain ring
(recall that every abelian category can be considered as a subcategory of the category of modules by the
Freyd-Mitchell Embedding Theorem).

First, since F is left-exact, we have
(R°F)(A) = F(A) =~ HY(FJ*).

For each ¢ = 0, let
K" =ker f* = imf'!.

We then have the following short exact sequence:
0— Ki -5 Ji 25 gitl g

where e is the canonical monomorphism, and g is the canonical epimorphism (note that by construction,

fi = et og). Hence for each i, we have the following long exact sequence:
0> FK' > FJ' - FK'"' - (R'F)(K") —» (R'F)(J') —» (R'F)(K'") - (R*F)(K") —
Since each J is acyclic, we have (R'F)(J?) = 0 for all j > 0, so we get natural isomorphisms
(R7F)(K™") =~ (R F)(K').

Consequently,
(R = 1F)(K") = (RPF)(K'™!) = - = (R F)(K°) = (R F)(A).
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On the other hand, from the long exact sequence,
(R'F)(K?) = coker(F.J' 29 FK+1).
Since F is left-exact, the sequences
0 FEK <5 Foi 95 FKFU and 0 - FEO S F i
are exact, from which it follows that
Fq'

coker(FJ' 2% FK™) = FK™ fimFg' ™! = ker FfH imF f' = H'TH(FJ*).

Thus, (RTLF)(A) = H*L(FJ*), as required. O

Sheaf cohomology. Let X be a topological space, and Sh(X) be the category of sheaves of abelian groups on

X. Recall that Sh(X) is an abelian category with enough injectives. Let
I'(X,e): Sh(X) — AbGrps

be the global sections functor F — F(X) and (¢: F — G) — (px: F(X) — G(X)). We have seen earlier

that I'(X, e) is left-exact. So, we can consider the right derived functors.

Definition 4.4.5. Let X be a topological space. We defined the cohomology functors H*(X, e) as the right
derived functors of the global sections functor I'(X,e). For a sheaf F of abelian groups on X, the group
Hi(X,F) is called the ith cohomology group of X with coefficients in F.

Thus, we have H?(X, F) = F(X) for any F € Sh(X), and for any exact sequence
0->F—>G->H—-0
of sheaves of abelian groups on X, there is a long exact sequence
0— F(X)—>G(X)—>HX)—>H (X, F) - H(X,G) > ---

Sheaf cohomology is often difficult to compute directly from the definition. One of the techniques that is
frequently used for this is the comparison with Cech cohomology. We will consider this technique in detail a
bit later, and will now make only one observation. Given a continuous map f: X — Y of topological spaces,

and a sheaf of abelian groups F on X, there is a natural homomorphism
HP(Y, f*F) — HY (X, F)

between Cech cohomology groups, which comes from the map between Cech complexes associated with f.

We will not construct an analogous map in sheaf cohomology.

Proposition 4.4.6. Let f: X — Y be a continuous map, and F be a sheaf of abelian groups on X. Then
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i. There is a natural homomorphism

H™(Y, f*F) » H" (X, F).
ii. If f is an embedding, then H™(Y, f*F) =~ H"(X, F).

For the proof of (i), we need a general fact. We recall that a morphism ¢*: M* — N* of cochain complexes

is a quasi-isomorphism if the induces maps on cohomology H™(M*) — H™(N*) are isomorphisms for all n.

Theorem 11. Let A be an abelian category that has enough injectives, and let m® be a cochain complexes
such that M™ = 0 for n < 0. There is a complex I* in A of injective objects and a quasi-isomorphisms of
complexes ¢*®: M*® — I* such that ¢": M™ — I" is a monomorphism for all n.

Proof — omitted.

Proof of (7). Let G be a sheaf on Y, and let
0-G->J">J ¢
be an injective resolution in Sh(Y"). Since the inverse image functor is exact, the sequence
0 fI1G - f1J0 & Lt Sen

is exact in Sh(X), however the sheaves f~1J% are not necessarily injective. By the previous theorem, there
exists a complex I* of injective objects together with a quasi-isomorphism f~!.J® — I* such that f~1J¢ — I
is injective for all 4 > 0. In particular, since f~'J? is exact, I*® is also exact. The composition f~!G —
f~1J% — IY is injective, and

oﬂfflgﬂjoﬂjlﬁ...

is an injective resolution of f~'G. Moreover, we have a morphism of complexes
(Yy,J*) - I(X,I%)

obtained from the natural map
JUY) = (fTHI)(X) — I"(X),

which yields a homomorphism H"™(Y,G) — H"™(Y, f~1G). Applying this to G = f.F for a sheaf F on X, we
obtain maps
H™ (Y, f+F) — H"(X, ' f+.F)

for all n > 0. Finally, using the counit f~!f,F — F, we obtain the required map
H™(Y, fxF) — H"(X, [ foF) — H"(X, F).

Proof of (ii). Let
0->F->I1">T1! ...

be an injective resolution. Since f, is exact for closed embeddings and always preserves injectives, it follows
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that
0_’f*‘7'—_’f*10—’f*[1 —

is an injective resolution of fyF. Thus, the cohomology groups H™(Y, f+F) can be computed using the
complex

0= (FIO)(Y) > (JuI)(¥) > -

But f.(I)(Y) = I(X), so this complex is identical to
0— fuF > I°(X) - I'(X),
which computes the cohomology groups H" (X, F). Thus, H"(Y, foF = H"(X, F).

Higher direct images. The second important example of right derived functors are higher direct images. Let

f: X — Y be a continuous map of topological spaces and recall the direct image functor fy: Sh(X) — Sh(Y").

Definition 4.4.7. The higher direct image functors R f,: Sh(X) — Sh(Y) are defined as the right derived

functors of the direct image functor f,.

It turns out that for a sheaf F on X, the sheaves R’ f,(F) admit the following concrete description:

Proposition 4.4.8. For each i > 0, the sheaf R f,(F is the sheaf associated to the presheaf
Vi H(fHV), Flrv))

where V 'Y open.

Proof. Let us denote the sheaf associated to the above presheaf by H!(X,F). Since the sheafification is an
exact functor PSh(X) — Sh(X), the functors H*(X, e) yield a §-functor from Sh(X) to Sh(Y’). For i = 0, we
have

HO(X,F) = foF = RS F.

Next, for an injective sheaf I on X, the sheaf fy I is injective, so R’ f(I) = 0 for i > 0. On the other hand, for
each open V Y, the sheaf I|y-1(y) is injective on f~*(V), so H(f~'(V),I|z-1(y)) = 0 for i > 0 and hence
HY(X,I) = 0 for i > 0. Thus, the functors R'f, and H*(X,e) are both effaceable for i > 0, and therefore
the d-functors (R’ fy)i=0 and (H(X,e));>o are universal. So, in view of the equality R°fy(F) = H°(X,F),

we obtain an isomorphism of -functors R’ f, =~ H*(X,e), as needed. O

4.5 Acyclic sheaves
We have seen that sheaf cohomology can be computed using acyclic resolutions. In this section, we will
describe several classes of acyclic sheaves.

Flasque sheaves. Recall that a sheaf F on X is flasque if the restriction maps F(U) — F(V) are surjective
for any open sets V < U < X.

Theorem 12. Let F be a flasque sheaf of abelian groups on X. Then H' x X, F) = 0 for all i > 0.
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For the proof, we will need the following lemma which we will formulate in a somewhat more general form

than we need now.

We recall that a ringed space is a pair (X, O) consisting of a topological space X and a sheaf of commutative
rings O on X. An O-module is a sheaf M of abelian groups on X such that for any open set U ¢ X we are
given a map O(U) x M(U) ™% M(U) that equips M (U) with an O(U)-module structure so that for V < U

the diagram in which the vertical arrows are restriction maps, is commutative.

Lemma 4.5.1. Let (X,0) be a ringed space. Then every injective O-module I is flasque.

Proof. For an open U c X, let j: U — X be the inclusion map, and let Oy = 51(O|y) be the restriction of
O to U extended by zero outside U. Note that Oy has a natural structure of an O-module. Indeed, recall
that Oy is a sheaf associated to the presheaf Fi; defined by

ow), WcU
0, W ¢ W.

Fo(W) =

Clearly, ever a € O(W) acts by left multiplication on Fy(W), and this operation turns Fy (W) into an
O(W)-module. Using the universal property of sheafification, one transfers this structure to Oy, making
it into an O-module (in fact, this module is generated by the identity element 1y € O(U).) For open
V < U c X, we have the inclusion 0 — Oy — Oy of O-modules arising from the obvious inclusion of

presheaves 0 — Fy, — Fy. Since [ is an injective O-module, we have a surjection
Homp (Oyp, I) - Homp(O,,I) — 0.

But any morphism ¢: Fyy — I is completely determined by ¢y (1) € I(U) (where 1y € O(U) is the identity
element); hence the same is true for any morphism Oy — I. Thus, Homp(Oy,I) = I(U) and similarly,
Homp (Oy,I) = I(V). So, we obtain that the restriction I(U) — I(V) is surjective. O

Proof of the theorem. Let F be a flasque sheaf on X. Since Sh(X0 has enough injectives, we can embed F

into an injective sheaf I, and then consider the exact sequence
0-F—-1—-G—-0
where G is the cokernel of of 7 — I. Since F is flasque, we have an exact sequence of global sections
0->F(X)—>I1(X)—>G(X)—>0.

On the other hand, since I is injectives, we have H*(X,I) = 0 for i > 0. The long exact sequence then gives

the exact sequence
0— F(X)—>I(X)—>G(X)—> HYX,F)—0

and isomorphisms

H™YX,6) ~ H'(X,F)

for i > 2. It follows that H!(X,F) = 0. Furthermore, since I is flasque, G is also flasque. So, using the

above we obtain the result by induction on 1.
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Remark 5. In the theorem, we didn’t specify whether F is a sheaf of abelian groups or a sheaf of O-modules
in case (X, O) is a ringed space. The reason is that the notion of a flasque sheaf does not depend on whether
F is viewed in one way of the other. For example, we can take a sheaf of O-modules F, take its injective
resolution @ — F — I*® in the category of O-modules (which is abelian with enough injectives). Then this
resolution is by flasque sheaves of abelian groups. It follows that the sheaf cohomology computed by viewing
F as a sheaf of O-modules coincides with the cohomology computed by viewing F as a sheaf of abelian

groups.

Any sheaf of abelian groups on a topological space X has a canonical flasque resolution called the Godement
resolution. To construct it, we let 7: Er — X étale space associated to F. Recall that Ex = [ [, Fz, and

7 is defined by sending any element of the stalk F, to z. We have seen that for any open U < X, we have
F(U) = {continuous sections s: U — Ex of 7}
Now, for an open U = X we let COF(U) denote the abelian of all (not necessarily continuous) sections
C'F(U){t: U — Ex | mot =idy}

Then we have the identification C°F(U) = [,y Fz. Moreover, for open V < U < X, there is a natural
restriction map

COFU) =] DreUF. - [[ Fe = COF(V),

zeV

and this data assembles to give a flasque sheaf C°F. It follows from the definition that F is a subsheaf of
C°F, the embedding F(U) — C°F(U) is given by f +— (p¥(f))ser- Thus, we have an exact sequence of
sheaves

0>F—>C'F->Q' -0

where Q! is the cokernel of the natural inclusion. Repeating this construction, we obtain exact sequences
0- Q' - % > Q>0
0— Q% - C°Q% - Q-0

and so on. Splicing these sequences together and setting C*F = COQ*, we obtain a long exact sequence
0>F>C'F>C'F—o--

Moreover, since each C*F = C°Q? is flasque, this sequence is a flasque resolution of F.

Fine sheaves. These are important for topological applications.

Definition 4.5.2. Let ¢: F — G be a morphism of sheaves of abelian groups on a topological space X. For

each x € X, denote by ¢, : F, — G, the corresponding morphism of stalks. We define the support of ¢ to be

suppp = {z € X | ¢, # 0}

Definition 4.5.3. Let X be a topological space.
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1. We say that an open cover U = {U,};cs is locally finite if every point € X has a neighborhood that

meets only finitely many of the U;’s.

2. We say that X is paracompact if it is Hausdorff and every open cover of X admits a locally finite

refinement.
Example 4.5.4. 1. Every compact space is paracompact.

2. Ewvery locally compact Hausdorff second-countable space is paracompact (second-countable condition is

essential — long line is not paracompact although it is locally compact).
3. Fvery metric space is paracompact.

Definition 4.5.5. Let F be a sheaf of abelian groups on a topological space X, and let U = {U,};cr be
a locally finite open cover of X. A partition of unity for F subordinate to U is a collection of morphisms
n;: F — F (i € I) such that

1. suppn; < U;, and

2. for each x € X, we have },_,m; o = idr

Note that the sum in (2) is finite because by assumption every = € X has a neighborhood that intersects

only finitely many of the U;, hence «x lies in the support of only finitely many of the ;.

Definition 4.5.6. A sheaf F on a topological space X is fine if for every locally finitely open cover of X

there exists a partition of unity subordinate to this open cover.

Theorem 13. Let X be a topological space in which every open set is paracompact. Given a fine sheaf F
on X, the restriction F|y is acyclic for every open U c X.

The proof proceeds along the same lines as the acyclicity of flasque sheaves using the following statement:

Proposition 4.5.7. Let
0-F-%¢L 10

be an exact sequence of sheaves of abelian groups on a paracompact space X.
i. If F is fine then the sequence of global sections
0 F(X) 25 g(X) 25 1(X) >0

is exact.

ii. Assume moreover that every open subset of X is paracompact. If F if finite and G is flasque then H is

flasque.

Proof. i. We only need to prove that Sx is surjective. Let h € H(X) Since ,: G, — H, is surjective

for every x € X, we can find an open cover U = {U,};er of X such that for each i € I, there exists
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for any ¢,7 € I, we have

v, Since X is paracompact, we can assume that I/ is locally finite. Now,

Uw‘) =h

6U1',j (gi Ui — 95 Uij — h Uiy = 0,

where U;; = U; n U; as in our discussion of Cech cohomology. Since the sequence

ay Bu,

0 — F(Uy) —3 G(Uij) — H(Uyj)

is exact, there exists f;; € F(U;;) such that

Qu;; (fij) = gi Uy — 95Uy,

Then for any i, j,k € I, we have

anjk(fij Uijk — fjk Uijk) = (gi Uijr — 9j Uijk) + (gj Uijk — 9k Uijk) = 9ilUiji — 9k|Uijie = QU i (fzk U/L'jk)

Since F is finte, there exists a partition of unity n,: F — F subordinate to the cover &/{. Then

N5,U; (fl]) € f(UZJ)7
and by construction
Sj :=supp(n;) < Uj.

Consider the open set V;; = U;\S;. Then U; = U;; u V;; and the restriction of n; 4 (fi;) to Us; N Vi
is zero. So, there exists fij € F(U;) that restricts to nj,u.; (fij) on Ui and to zero on Vi;. Set

ti = > f)ik € F(U;)
kel

This sum is understood as follows: each point in U; has a neighborhood where all but finitely many of
the ﬁk are zero, so the restriction of ¢; to this neighborhood makes sense. These “local” sums agree
on overlaps, and hence give rise to the unique element of F(U;). The sums in the computation that

follows are interpreted similarly. On U;;, we have

t,—ty = Z(fik — fix) = Z v, (fie — fix) = Z e, (fij) = fiz

kel kel kel

So,
anj(fi - f]) = anj(fij) = gi‘Uu _gj|Uij7

It follows that
(9: — alfi))lvy; = (g9 — a(fi)lus;,

and hence there exists g € G(X) such that g|y, = g; — a(f;). Then

Bx (9)lv, = Bu,(g:) = hlu,,

and therefore Sx(g) = h, proving the surjectivity of Sx
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ii. If every open subset U < X is paracompact, the preceding argument gives the exactness of
0—-FU)—->GU)—HU)— 0.
If G is flasque, then one easily deduces that H is flasque.

O

Remark 4.5.8. The argument we just gave shows that H'(U,F) = 0 for any fine sheaf F and a locally
finite cover . In fact, in this case H4(U, F) = 0 for all ¢ > 0.

Suppose now that (X, Q) is a ringed space, and assume that for every locally finite cover U = {U;}er, the
sheaf O has a partition of unity subordinate to I in the following sense: there exist global sections s; € O(X)

for all i € I such that supp(s;) < U; and ) ,.; s; = 1, or equivalently >}, _; s;, = 1 in every stalk.

il
Proposition 4.5.9. Let (X, O) be a ringed space. Assume that for every locally finite open cover U = {U,}ier,
the sheaf O has a partition of unity subordinate to U. Then every sheaf F of O-modules is fine.

Proof. Let Any section s € O(X) defined an endomorphism §: F — F such that for any open U < X,
Su: F(U) — F(U) is left multiplication by pis (s). Then, if {s;}ics is a partition of unity subordinate to a
locally finite open cover U = {U;}, for any O-module F, the family {3;}cs is a partition of unity for F. O

Example 4.5.10. Let X be a (connected, second-countable) n-dimensional manifold. Then X is paracom-
pact, and so is every open subset of X. Let O be the sheaf of rings of smooth functions. It is a classical
result that for every locally finite cover U = {U,}icr, there is a partition of unity. It follows that every sheaf
of O-modules has a partition of unity, and hence is acyclic. In particular, the sheaves A% of differential

k-forms are acyclic. This is crucial for the proof of de Rham’s Theorem.

Yet another important class of acyclic sheaves is soft sheaves. We recall that given an embedding of topological
spaces t: A < X, for a sheaf F on X, one defined the inverse image .1 F as the sheafification of the following
presheaf:

GgU) = Vlzif?U)]:(V)'

In particular, there are maps F(X) — G(A) — (:7'F)(A). We say that F is soft if this composite map
is surjective for every closed subset A < X. One shows that if X is paracompact, the flasque and fine
sheaves of abelian groups are soft. On the other hand, for any soft sheaf F on a paracompact space we have
HP(X,F)=0for p>0,ie F isacyclic.

4.6 Cech cohomology and sheaf cohomology

Let X be a topological space, U = {U,}cs is an open cover of X, and F be a sheaf of abelian groups on X.

Earlier, we constructed the Cech resolution of F:

0—F—>CUF)—>C UF)—---
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where €7 (U, F) is the sheaf on X whose sections over an open U < X are given by

U FU) = [  FUAU,.,)

(im... ’»L'p)gjp+1

Given an injective resolution

O—>.7:—>IO—>11—>--~,

there is a morphism of resolutions

0 — F — U, F) — U, F) — -

| l

0 F I° It

Taking global sections, we obtain a commutative diagram of complexes

0 —— €U F)X) — CUF)X) — -+

| |

00— IO(X) _ Il(X) - s

Since the top row computes the Cech cohomology groups H® (U, F), we obtain functorial (in F) maps
HP(U,F) — HP(X,F). Our goal is to establish this map as an isomorphism. But first, we will estab-
lish the Cech acyclicity of flasque sheaves.

Proposition 4.6.1. Let F be a flasque sheaf on a topological space X. Then H”(L{,]-') =0forallp >0

for any open cover U of X.

Proof. We have seen earlier that since F is flasque, the Cech resolution 0 — F — €* (U, F) is also flasque
for any open cover U, and therefore computes the sheaf cohomology. On the other hand, by design, it always
computes Cech cohomology. So, we obtain that HP(U, F) =~ HP(X,F) for all p > 0 and any open cover U.
But H?(X,F) = 0 for p > 0 since F is flasque. So, H?(U,F) = 0 for p > 0. O

We say that an open cover U = {U,};er of X is acyclic for a sheaf F if for any 4o, - -, € I we have

H? (Ui i, Flu

) =0 forall p> 0.

ig,in
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Chapter 5

Grothendieck topologies

WOoJCIECH TRALLE

5.1 Introduction

One of the goals of this talk is to motivate the notions of a Grothendieck site and a sheaf on a site as
generalizations of a topological space and a sheaf on a topological space. The classical definition of a sheaf
begins with a topological space X. A sheaf associates information to the open sets of X. This information
can be phrased abstractly by letting Op(X) be the category whose objects are the open subsets U of X and
whose morphisms are the inclusion maps V < U of open sets U and V of X. We will call such maps open
immersions, just as in the context of schemes. Then a presheaf on X is a contravariant functor from Op(X)
to the category of sets, and a sheaf is a presheaf that satisfies the gluing axiom (here we are including the
separation axiom). The gluing axiom is phrased in terms of pointwise covering, i.e. {U;};cr covers U if and
only if | J,.; U; = U. In this definition, U; is an open subset of X. Grothendieck topologies replace each U;
with an entire family of open subsets; in this example, U; is replaced by the family of all open immersions
Vij — U;. Such a collection is called a site. Pointwise covering is replaced by the notion of a covering family;
in the above example, the set of all {V;; — U;}jes, as i varies is a covering family of U. Sites and covering
families can be axiomatized, and once this is done open sets and pointwise covering can be replaced by other
notions that describe other properties of the space X. Finally, Grothendieck topologies are the necessary
machinery for étale topology used in sheaf cohomology. It turns out that the étale topology is a Grothendieck

topology only but not an ordinary topology.

Definition 5.1.1. Let C be a category. A family of morphisms with a fixed target in C is given by
an object U € C, a set I and for each ¢ € I a morphism U; — U of C with target U. We use the notation
{U; — U}ier to indicate this. It can happen that I is empty.

Definition 5.1.2. A Grothendieck topology 7 on a category C is a collection Cov(C) of families of
morphisms {¢; : U; — U}, with a fixed target, called coverings of C, satisfying the following three properties:

(1) If ¢ : V — U is an isomorphism in C, then {¢ : V' — U} is a covering (e.g. idy : U — U is a covering
for any U € C).
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(2) If {¢; : U; = Ulier is a covering and {1;; : Vi; — U;}jey, is a covering for each i € I, then {¢; o ¥;; :

Vij = Ulier,jes; 18 a covering.

(3) f V — U is a morphism in C and {U; — U} is a covering, then the fiber products U; xy V exist in

C and {U; xy V — V}er is a covering.

Definition 5.1.3. A category C together with a Grothendieck topology T is called a site. We denote it by
(C,T) or simply T if the category C is clear from the context.

Example 5.1.4. Any ordinary topology can also be viewed as a Grothendieck topology. Given a topological
space X, we define Cov(X) to be the families of open covers {U; — U};cr where each U; is open, the Uy — U
are the inclusion maps, and U = | J,.; U;. In this case, the fibered products U; xy V' are just Uy n'V.

In one of the sections that follow we will see an example of a Grothendieck topology that does not come from

an ordinary topology.

Definition 5.1.5. A presheaf on a site 7 is a contravariant functor F from the underlying category C to
Set.

Definition 5.1.6. For each morphism ¢ : V — U, F gives a map F(¢) : F(U) — F(V). When ¢ is specified
or unambiguous from the context we can write F(¢)(s) = s|y. Given any covering {¢; : U; — U}ier, we can

consider the map

FU) - [Fw)

el

given by s — (s|y,)icr. We say that F is separated if this map is injective for every covering in Cov(C).

Definition 5.1.7. A morphism ¢ : F — G of presheaves with values in C is defined as a morphism of

contravariant functors.

Remark 6. If we have a covering {¢; : U; — U}ier, then we also get coverings {U; xy U; — U;}jer and
{Ui xuy Uj = Uj}ier. These give rise to maps F(U;) — F(U; xy U;) and F(U;) — F(U; xy U;). We say that
a pair of elements s; € F(U;) and s; € F(U;) are compatible if

Si UiXUU]‘ = sj UiXUUj'

In order for F to be a sheaf, we need to be able to glue compatible collections, which motivates the following

definition:

Definition 5.1.8. A sheaf is a separated presheaf that satisfies

{(si)ier € | [FW) | silv,xov, = sjluixpu, for all i, j e I} = im(F(U) — | [ F(U:))

el el

for every {U; — U}ier € Cov(C). In other words, a presheaf F is a sheaf if for every {U; — U}ier € Cov(C)

the following diagram is exact in C:

FU) — i FU) == 11, je; F(Ui xuv Uy)

Morphisms of sheaves are defined as morphisms of underlying presheaves.
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Remark 7. Note that in the special case of topological space, U; xy U; becomes U; nU; and we recover the
gluing sheaf axiom. In fact, our new definition of sheaf agrees with the standard definition for topological

spaces.

Definition 5.1.9. Let (7,C) and (77,C’) be two sites. A morphism of Grothendieck topologies 7 — T’

is a functor i : C — C’ of the underlying categories with the following two properties:

(1) If {¢i : Ui = Utier € Cov(C) then {n(¢;) : n(Ui) — n(U)}ier € Cov(C’).

(2) For {U; > U}ier € Cov(C) and V — U is a morphism in C then the canonical morphism
(Ui xu V) = n(Us) Xp@y n(V)

is an isomorphism for all 7 € I.

Example 5.1.10. Let f : X — Y be a continuous map of topological spaces. Let (Tx,Op(X)) and
(Ty, Op(Y)) be the corresponding sites of open sets. We have a functorn : Op(Y') — Op(X) via U — f~1(U).
We claim that this gives a morphism of Grothendieck topologies.

(1) {U; = Ulier € Cov(Op(Y)) < U,; Ui = U. Since the inverse image of a continuous map commutes
with unions, we have | J,o; f~H(U;) = f~HU) = {f 7 (U;) = f~1(U)}ier € Cov(Op(X)).

(2) {U; — Ulier € Cov(Op(Y)) and V. — U a morphism in Op(Y) < U = | J,c; Ui andV € U € Y.

Since the inverse image of a continuous map commutes with intersections, we have (by translating our

i€l
notatation)

TN Uixo V)= fTHU A V) = 7Y U) n f7HV) = F7HU) x gy fHV).

5.2 Two more examples of Grothendieck topologies

Definition 5.2.1. A morphism U — V in C is called an epimorphism, if the map Hom(V, Z) — Hom(U, Z)
is injective for each Z € C. A morphism U — V is called an effective epimorphism, if the following diagram

is exact for each Z € C:
Hom(V, Z) —— Hom(U, Z) —= Hom(U xvy U, Z)

Here the two right-hand maps are induced from the projections of U xy U onto the first and second factor.

Definition 5.2.2. A map U — V is called a universal effective epimorphism, if U xy V' — V' is an

effective epimorphism for each morphism V' — V in C.

Remark 8. These notions generalize to families of morphisms U; — V into a fixed object V', namely a family

{U; — V}ier is a family of epimorphisms if

Hom(V, Z) — | [ Hom(U;, 2)

el
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is injective for each Z € C. It is a family of effective epimorphisms if the diagram
Hom(V, Z) —— [[,e; Hom(U;, Z) —= [, jo; Hom(U; xv Uy, Z)

is exact for each Z € C. Finally, it is a family of universal effective epimorphisms if {U; xy V' — V'},c;

is a family of effective epimorphisms for each morphism V' — V in C.

Definition 5.2.3. Let C be a category where fiber products exist. The canonical topology 7 on C is
defined by taking as the set of coverings, the collection of all families {U; — U};er of universal effective

epimorphisms in C.

Remark 9. One can show that for the canonical topology 7 the axioms (1), (2) and (3) of Definition

hold so the canonical topology gives an example of a Grothendieck topology.

Remark 10. Note that it is now immediate from the definition of 7 that each representable presheaf of
sets, i.e. presheaf of the form U — Hom(U, Z) for a fixed Z € C, is a sheaf.

Definition 5.2.4. Let G be a group. We define the category of (left) G-sets as the catagory whose objects
are sets X with a left G-action. Its morphisms are the G-equivariant maps (recall that if X,Y are sets with
left G-action then a map f: X — Y is called G-equivariant if f(g-x) =g - f(x) for all g€ G,z € X).

Remark 11. One can show that the category of G-sets has fiber products.

Example 5.2.5. An important example of a G-set is oG which is the G-set whose underlying set is G and

the action is given by left multiplication.

Proposition 5.2.6. Let G be an arbitrary group and let C be the category of (left) G-sets. We declare a
family of morphisms {¢; : U; — Ulier to be a family of coverings if

U=Jéi(U).

iel
This way, we obtain a Grothendieck topology, denoted by T on C, i.e. Tg satisfies the axioms (1), (2) and
(3) of Definition[5.1.4

Proof. (1) Let ¢ : V — U be an isomorphism in C. Then {¢: V — U} is a covering because U = ¢(V).

(2) Let {¢;, : U; — Ulier be a covering and {t;; : Vij — U,}jes, be a covering for all ¢ € I. Since
Yy 2 Vii = Us}lieg, is a covering we have U; = | J._; ¥;;(V;;) for all i € I. After applying ¢; we obtain
g+ Vig Jjed; jeg, Wii\Vij

6i(U:) = i | vis (Viy)) = | o 0 vi(Viy).

jedi jeJ;

Taking the union over i € I we get

U=Joi0)= | éiovi;(Viy)

iel iel,jed;
where the first equality follows because {¢; : U; — U}ier is a covering.

(3) Let f : V — U be a morphism in C. Let {¢; : U; — U}, be a covering. We know that the fiber products
U; xy V exist in C so it suffices to show that {p; : U; xu V' — V}ies is a covering, i.e. V = J,.; pi(Ui xu V),

which is clear. O
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Remark 12. A more conceptual explanation why the axioms (1), (2) and (3) hold for G-sets is as follows.
The fiber products of left G-sets are taken in the category of sets. In other words, the forgetful functor from
the category of G-sets to the category of sets commutes with inverse limits (because it has an adjoint, the
functor S — G x S). Thus, taking pullbacks preserve the notion of covering, and it is easy to see the other
axioms are satisfied too: if we have a cover of each of the U; (which cover U), then collecting them gives a

cover of U. Similarly, an isomorphism is a cover. This is obvious from the definition.

Remark 13. We have seen that each left G-set Z defines a sheaf on the topology T7¢ via U — Homg (U, Z)

(see the example of canonical topology). We will show that we obtain all sheaves of sets on T in this way.

Proposition 5.2.7. The functor Z — Homg(—, Z) is an equivalence between the category of (left) G-sets
and the category of sheaves of sets on Tg. The functor F — F(G) from the category of sheaves of sets on
Ta to the category of (left) G-sets is a quasi-inverse to Z — Homg(—, Z).

Proof. Here the structure of 7(G) as a G-set is defined as follows. For g € G and s € F(G) let g-s = F(ag)(s),

where a4 : G — G is the map ¢’ — ¢'g. This is a left action because:

(gl '92) 5= ]:(049192)(8) = ]:(agz © a!h)(s) = ]:(agl)(]:(agz)(s)) =91 (92 : S)-

The composite of the functors Z — Homg(—, Z) and F — F(G) assigns to each left G-set Z the left G-set
Homg (G, Z), which can be canonically identified with Z. The composite of F — F(G) and Z — Homg(—, Z)
assigns to each sheaf F the sheaf Homg(—, F(G)). We have to show that there is an isomorphism

F > Homg(—, F(G))

which is functorial in F. Let U be a left G-set. Then {¢, : G — U},cy is a covering in the topology T¢,
where ¢, (g) is defined for each u € U by ¢,(g) = gu. For a sheaf F we have the exact diagram

‘F(U) — HuEU ‘F(G) :g Hu,veU ‘F(G Xy G)

corresponding to this covering. It remains to show that the image of the injective map ® : F(U) —
[ e F(G) = Hom(U, F(G)) is precisely the subset Homg (U, F(G)) of G-equivariant maps U — F(G).

Once we prove this, we get an isomorphism
F(U) = Homg (U, F(G))
which is functorial in U, hence an isomorphism of sheaves, and it is functorial in F.

Let us prove this remaining claim, i.e. prove that im(®) = Homg (U, F(G)) € [[.,.;y F(G). Denote by

uelU
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d* = p¥ and d? = p} the maps induced by the projections p; : G xyy G — G and py : G xyy G — G. We have

FU) =25 [1yew F(G) = Hom(U, F(G))
S — [‘P(S) U —mmm ]:(g)]

u ———— ¢ii(s) = F(u)(s)
First, note that ®(s) is G-equivariant. In fact,

g9+ (2(s)(w) = ag o ¢y(s) = (du o ag)*(s) = B(s)(gu).

We want to show that the equalizer of d' and d? is Homg (U, F(G)). If s = (sy)uev € [l e F(G) then
d'(s) and da(s) are families d'(s)y ., and d?(s)y, in F(G xy G) = F({(g,h) € G x G| gu = hv}) because the
following diagram commutes

GxyG -G

]

G—U

Also d*(8)u.» = p¥(su) and d?(s) = pi(s,). First, let us show that s = (s,)uer is G-equivariant. We have
pi(su) = p3(sy) for all u,v e U. We want to show that sz, = aj(s)(u) forallue U,ge G. Fixue U, fe G
and let v = fu. Consider the map ¢, : G — GxyG = {(g,h) € GXG| gu = hv} given by g — (gf, g). Observe
the following identities: ps o ¢y = idg and py oty = ay. We compute sp, = s, = L?p;“sv = L?p’fsu = a?su,
so s is G-equivariant as required. Conversely, let s = (s,)uer be G-equivariant, i.e. a?su = Sfy. We want
to show that pfs, = pis, for all u,v € U in F({(g,h) € G x G|gu = hv}). Let E,, = {g € G| fu = v}
and consider the map ¥ : G x E, , — G xy G given by (g, f) — (9f,9). We can view G x E, , as the
disjoint union | | FeEun G so that U is a map of G-sets, componentwise given by the maps ¢y. Note that ¥ is
an isomorphism with inverse (g, h) — (h,h~1g). Since F is a sheaf, it is additive, in the sense that we have

F(Au B) = F(A) x F(B). Thus,

F(GxyG)=F(GxE,)= [[ F@).
fe€Ey v

By construction, an element x € (G xy G) maps to the family (:z)er, ,. Since this is an isomorphism,
to prove pfs, = pis,, it is enough to prove this equality after applying L;‘Z for all f e E,,, i.e. for all f such
that fu = v. We compute

VEDYSu = QFsy = Spu = 5y = LfP5 Sy
which finishes the proof. O

Remark 14. Alternatively, we could have shown the required isomorphism F(U) — Homg (U, F(G)) by
er Oi- Since
F is a sheaf, we have an isomorphism F(U) = F(|l,c; Oi) = [Lic; F(O;). Similarly, Homg(U, F(GQ)) =
[[,c; Homg(O;, F(G)). Thus, we may assume that U is a single orbit. Consider the covering {¢, : G —
Uluev with ¢,(g9) = gu. Fix u € U. We get the map ® = F(¢,) = ¢F : F(U) — F(G). Denote
by H = Stabg(u) the stabilizer of u in G. Since U is a single orbit we have Homg (U, F(G)) = F(G)H

observing the following. Any left G-set U can be written as a disjoint union of orbits, U = | |
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the subset of H-invariant elements and one can check that G xy G = {(g9,gh)|g € G,h € H}. Hence,
F(Gxu G)=F(Upey G) = ey F(G). Thus, the sheaf property reads as follows:

F(U) =2 F(G) : [Tyer F(G)

where p¥ and p# into a factor F(G) differ by multiplication by an element h € H. Hence, F(U) = im(P) =~
F(G)! =~ Homg (U, F(Q)).

5.3 Sheafification and its categorical properties

We would like to have a procedure for turning an arbitrary presheaf into a sheaf. If C is not a topological
space then it no longer makes sense to talk about the stalks of a (pre)sheaf and the familiar method of
sheafification does not work. Fortunately, there is a more general construction that works for a presheaf

defined on any site.

Lemma 5.3.1. Gwen a pair of coverings {U; — Ulier and {V; — U}jes of a given object U of the site T,

there exists a covering which is a common refinement.

Proof. Since T is site we have that for every ¢ € I the family {V; xy U; — U,}jes is a covering. And, then
another axiom implies that {V; xy U; — U}, jer is a covering of U. Clearly, this covering refines both given

coverings. O

The central ingredient of this construction is the zeroth Cech cohomology group:

Definition 5.3.2. If F is a presheaf on C and U = {U; — U}ier is an element of Cov(C), then we define the
zeroth Cech cohomology group by

I:IO(U,]:) = {(Si)ieI € H]:(Ul) | Si|U1‘><UUj = Sj|Ui><UUj for all 4,5 € I}
el
In other words, these are collections of elements with compatible restrictions.

Remark 15. If F is a sheaf then H(i/, F) is isomorphic to F(U).

We also need to know what a morphism of coverings is:

Definition 5.3.3. If i = {U; — U},e; and V = {V; — V'} e are coverings, then a morphism of coverings
V — U consists of three pieces of information denoted by a triple (x, @, x;). Here o : J — I is a map of sets,
X : V. — U is a morphism, and x; : V; — U, is a morphism for each j € J. Finally, we require that the
following diagram commutes for each j € J:

=2 Ua(j)

Vi
L
Vv XU
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Remark 16. Write x¥ to denote F(x;). Then any morphism (x,a, x;) : V — U induces a map
v . ﬁo(u,f) — ﬁO(V,f) defined by (s;)ier — (X;‘(sa(j)))jej.

Proposition 5.3.4. This map is well-defined and depends only on x.

Proof. First we check that the map is well-defined. That is, for (s;)ic; € HO(U, F), we need to check that
(X} (Sa()))jes € HO(V, F). For j,5' € J we need to show that X; (Sa(j)) and XJ(sa(j) have the same

restriction in F(V; xy Vj). The relevant objects in C can be put into a commutative diagram as follows

Ua(1) U
Vi \%
Ua(j) v Ua(yry Ua(j)
" e
Vi xv Vi Vj
After applying F, we get
FUa) F(U)
/ /
F(Vy) J F(V)
FUa(i) xv Uagn) F(Uags))
— —
F (Vi xv Vy) F(Vj)

Here (X} (Sa(j)))jes comes from s,(j) € F(Ua(j)) and X7 (Sa(jr)) comes from s,y € F(Ua(jry). Since (s;)ier €
HO(U, F), we know that

Sa(1)[Uat xvUagry = 8a()Uai x 0l
and from the commutativity of the diagram above it follows that

X5 (Sai)vyxvvy = X5/ (Sa(in) vy x vy -
Thus, (x*(sa(;))) € HO(V, F) as claimed.

Now we want to show that the map depends only on . Suppose that we have two morphisms (x, e, x;) and
(¢, B8,%;) from V to U with x = . Then given an arbitrary (s;)er € HO(U, F), we want to show that for

each j we have

X5 (Sa(i)) = ¥5 (s5())-
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Since (x, @, x;) and (¢, 8,1;) are morphisms, we get the following diagram

Vj
P
Xj
Ua(j) Us ()
v S \ g‘

This means that (x;,;) defines a map from Vj to Uy ;) v Ug(;) making the following diagram commutative

Vi
Xj J’ ¥j
Va() *v Us)
/ \
Ua() Us()
After applying F we get
F(Vj)

FUap) FUs ;)

So to show that X¥(sa(j)) = ¥} (sp(;)) it is enough to show that s,(;) and sg(;) have the same image in

F(Uqa(s) *u Ug(y))- But this is true by assumption since (s;)ier € HOU, F), so we're done. O

Remark 17. If we require that U = V and x = idy, then Proposition tells us that we get exactly one
induced map HO(U, F) — HO(V, F).

Remark 18. Now fix an object U € C. For U and V covers of U, write U < V if there exists a morphism
YV — U with x = idy. Then the covers of U form a direct system. Explicitly, if Y = {U; — U}ier and
V = {V; — U}, e are coverings, then W = {U; xy V; — Ulier jes is a covering and U,V < W. To see that
U < W it suffices to observe we have a morphism (idy, o, x;5) : W — U where « is given by (4, ) — 4 and

Xij is the obvious map U; xy V; — U;. The proof of V < W is similar.

Whenever we have U < V, we get a unique map H°(U, F) — H°(V, F). This means that we can view the
groups HO(U ,F) as a direct system. This motivates the following definition:

Definition 5.3.5. We define 7+ by taking the direct limit of this direct system:

FHU) = lmHU, F).
u

Remark 19. We make F ' into a presheaf by defining restriction maps. Let x : V — U be any morphism.
Then we need to define a homomorphism F*+(U) — F*(V). An element & € F*(U) can be represented by
an element x € H(U, F) for some covering U = {U; — U}icr. By axiom (3) of the Definition |5.1.2) we know
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that there is a covering V = {U; xy V — V}ier, and there is an obvious map V — U. Let y be the image of
2 under the induced map H(U, F) — HO(V, F) and let 7 be the image of y in the direct limit that defines
F*T(V). Then T — 7 is the desired restriction map. By Proposition this map is well-defined.

Lemma 5.3.6. The map 0 : F — F* has the following property: For every object U of C and a section
s € FH(U) there exists a covering U = {U; — U}ier such that s|y, is in the image of Oy, : F(U;) — F+(U;).

Proof. Let {U; — U}er be a covering such that s arises from the element (s;)ic; € HO({U; — Ulier, F).
According to Proposition we may consider the covering {U; — U, }ier and the (obvious) morphism of
coverings {U; — Uy }ier — {U; — Ulier to compute the pullback of s to an element of F*(U;). And in fact,

using this covering we get exactly 0(s;) for the restriction of s to U;. O

Remark 20. We would like to know if F* is a sheaf. The answer is not necessarily yes, but we have the

following useful result:

Theorem 14. Let F be a presheaf of sets. The following hold:

(1) The presheaf F* is separated.
(2) If F is separated, then F7 is a sheaf and the map of presheaves § : F — F7 is an injective.
(3) If F is a sheaf, then 6 : F — F7 is an isomorphism.

(4) The presheaf F*+* is always a sheaf.

Proof. Proof of (1). Suppose that s,s’" € F*(U) and suppose that there exists some covering {U; — U}icr
such that s|y, = ¢
covering U for s as in Lemma and a similar covering U’ for s’. By Lemma [5.3.1] we can find a common

refinement, say {W; — U};. This means we have s;, s’ € F(W;) such that s|w, = 0(s;), similarly for s'[w,,

v, for all i. We now have three coverings of U: the covering {U; — U};cs above, a

and such that 6(s;) = 6(s}). This last equality means that there exists some covering {Wjr — W}y such
that s;[w,, = silw,,. Then since {W;x — U} is a covering, we see that s, s’ map to the same element of
HO({W;x — U}, F) as desired.

Proof of (2). Tt is clear that F — F* is injective because all the maps F(U) — H°(U, F) are injective. It
is also clear that, if 4 — U’ is a refinement, then HO(U’, F) — HO(U,F) is injective. Now, suppose that
{U; — Ulies is a covering, and let (s;);c; be a family of elements of FT(U;) satisfying the sheaf condition
silvixyu; = Sjluixpu, for all 4,5 € I. Choose coverings (as in Lemma {Uij — Ui} such that s;y,, is
the image of the (unique) element s;; € F(U;;). The sheaf condition implies that s;; and s;;» agree over
Ui; xu Uy because it maps to U; x Uy and we have equality there. Hence (s;;) € HO({U;; — U}, F) gives

rise to an element s € F*(U). One easily verifies that sy, = s;.

Proof of (3) is immediate from the definitions because the sheaf property says exactly that every map
F — HOU, F) is bijective (for every covering U of U).

Statement (4) is now obvious. O

Definition 5.3.7. Let T be a Grothendieck topology on a category C and let F be a presheaf of sets on C.
The sheaf F# := F** together with the canonical map F — F7 is called the sheaf associated to F.
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Remark 21. Aside from the fact that F# is always a sheaf, this construction has the categorical properties

that sheafification should have. In fact, we have the following result:

Theorem 15. The canonical map F — F7# has the following universal property: For any map F — G,
where G is a sheaf of sets, there is a unique map F# — G such that F — F# — G equals the given map.

Proof. The association F — (F — F71) is a functor. In fact, if F — G is a map of presheaves then one easily

checks that the following diagram commutes:

F—— F*

|

G —— gt
Thus, we also have the following commutative diagram

F y Tt . T+t

L

g*>Q+ 4>g++.

By Theorem the lower horizontal maps are isomorphisms. The uniqueness follows from Lemma [5.3.6

which says that every section of F# locally comes from sections of F. O

5.4 Direct and inverse image presheaves

Definition 5.4.1. Let u : C — D be a functor between categories. We denote by
uP : PSh(D) — PSh(C)

the functor that associates to the presheaf G on D, the presheaf uPG = G o u, called the direct image

presheaf of G.

Remark 22. For any object V € D, let Zj; denote the category with objects,
O(TE) = {(U,0) |U € C, 61V — u(U)}
and morphisms,
Morzy (U, ¢),(U',¢")) = {f : U — U’ morphism in C|u(f) o ¢ = ¢'}.

We sometimes drop the subscript * from the notation and we simply write Zy,. We will use these categories

to define the inverse image presheaf as a left adjoint to the functor uP.

Lemma 5.4.2. Let u:C — D be a functor between categories. Assume

(1) the category C has a final object X and w(X) is a final object of D, and

(2) the category C has fiber products and u commutes with them.
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Then the index categories (I{)°PP are filtered.

Proof. We see that Zy is a (possibly empty) disjoint union of directed categories. Hence it suffices to show

that Zy is connected.

First, we show that Zy is nonempty. Namely, let X be the final object of C, which exists by assumption.
Let V — u(X) be the morphism coming from the fact that u(X) is final in D by assumption. This gives an
object of Zy .

Second, we show that Zy is connected. Let ¢; : V — w(Uy) and ¢o : V. — w(Usz) be in Ob(Zy). By
assumption, Uy x Us exists and u(Uy x Us) = u(Uy) x u(Usz). Consider the morphism ¢ : V — w(U; x Us)
corresponding to (¢1, ¢2) by the universal property of products. Then the object ¢ : V — u(U; x Usz) maps
to both ¢1 : V — w(Uy) and ¢o : V — u(Us). O

Definition 5.4.3. Given g : V' — V in D we get a functor g : Zy — Zy-, by setting g(U, ¢) = (U,¢ o g) on
objects. Given a presheaf F on C, we obtain a functor
Fy : )PP — Sets, (U,¢)— F(U).

In other words, Fy is a presheaf of sets on Zy . Note that we have Fys o g = Fy,. We define

upF(V) = lim Fy.

opp
IV

As a direct limit, we obtain for each (U, ¢) € Ob(Zy) a canonical map F(U) 29, upF(V). For g : V! -V
as above there is a canonical restriction map ¢* : up,F (V) — upF (V') compatible with Fy» o g = Fy. It is
the unique map that for all (U, ¢) € Ob(Zy) the diagram

F(U) =% w,F(V)

id lg*

FU) 429, F (v

commutes. The uniqueness of these maps implies that we obtain a presheaf. This presheaf will be denoted

upF and called the inverse image presheaf of F.

Lemma 5.4.4. There is a canonical map F(U) — upF(u(U)), which is compatible with restriction maps
(on F and on upF).

Proof. This is just the map c(id, () introduced above. O

Remark 23. Note that any map of presheaves F — F’ gives rise to compatible systems of maps between

functors Fy — F{, and hence to a map of presheaves u,F — u,F’. In other words, we have defined a functor
up : PSh(C) — PSh(D).
Theorem 16. The functor u, is a left adjoint to the functor w”. In other words, the formula
Morpgsyc)(F,u"G) = Morpsnmp)(upF,G)
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holds bifunctorially in F and G.

Proof. Let G be a presheaf on D and let F be a presheaf on C. We will show that the displayed formula holds

by constructing maps either way. One can show that they are mutually inverse.

Given a map « : up, F — G, we get v« : uPu, F — uPG. By Lemma there is a map F — uPu,F. The
composition of the two gives the desired map. Note that by construction it is functorial in everything in

sight.

Conversely, given a map 3 : F — uPG, we get a map u,f : upF — upuPG. We claim that the functor u?Gy
on Zy has a canonical map to the constant functor with value G(Y'). Namely, for every object (X, ¢) of Zy,
the value of uPGy on this object is G(u(X)) which maps to G(Y') by G(¢) = ¢*. This is a transformation of
functors because G is a functor itself. This leads to a map u,u?G(Y) — G(Y'). Another trivial verification
shows that this is functorial in Y leading to a map of presheaves u,u?G — G. The composition u,F —

upuPG = G is the desired map. O
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Chapter 6

Cohomology of sheaves for

Grothendieck topologies

VALIA GAZAKI

6.1 Lecture 1

Let X = (C,T) be a Grothendieck site (always assume C has fiber products). Goal: For an object U € C and

an abelian sheaf F on X to define sheaf cohomology {H®(U, F)};>0. Need:

1. Define the abelian categories Psh(X), Sh(X) and the notion of exactness.

2. "Proceed like in the topological space situation”, i.e. define H*(U, —) = ith right derived functor of
IU,—) : Sh(X) —» Ab,F — F(U)

For 2, we need to show that Sh(X) has enough injective objects (non-trivial).

Definition 6.1.1. 1. An abelian presheaf on F=contravariant functor F : C — Ab, and PSh(X) =
category of abelian presheaves on X (FACT: PSh(X) is an abelian category). A sequence 0 — F' —
F — F”" — 0 in PSh(X) is called exact if YU € Ob(C) the sequence of abelian groups 0 — F'(U) —
F(U) — F'(U) — 0 is exact.

2. An abelian sheaf F on X = abelian presheaf such that the equalizer diagram holds: If {U; %, Ulier

covering, then
FO) - [[F) 2 [[FW0: xv U))
i i
is exact. (separated: if s € F(U) such that F(¢;)(s) = 0 for all ¢ € I, then s = 0. gluing: Write ¢;; :
Ui xyUj — Uy, phiji : Uy xy Uy — Uj. Suppose (si)ier € | [; F(U;) is such that F(¢i;)(si) = F(dyi)(s5)
for all 7, j, then there exists s € F(U) such that F(¢;)(s) = s;.)
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Denote Sh(X) = category of abelian sheaves of X.

Fact: Sh(X) is an abelian category.

e For a morphism F 2, Gin Sh(X), ker ¢ = ker ¢ in PSh(X), i.e. (ker¢)(U) = ker(F(U) 2o, (U)) is a
sheaf.

e Let a : PSh(X) — Sh(X), F — F#(= Ftt = 0(0(F))) be the sheafification functor. Existence
of cokernels: Let ¢ : F — G morphism in Sh(X), we view ¢ as a morphism of presheaves, then
cokerd(U) = G(U)/¢(F(U)) makes coker” presheaf, we sheafify and have cokerg := (coker?)#.

Remark 6.1.2. e A morphism ¢ : F — G in Sh(X) is epi <= coker¢(U) =0 <= VYU € C the map
¢u : F(U) — G(U) is not necessarily onto but Vs € G(U), 3 covering {U; LiN U}, in J such that G(¢:)(s)

U

is in the image of F(U;) fo, G(U,).
e A sequence 0 — F’ 2 F X F" 5 0is a short exact sequence in Sh(X) <= ker¢ = 0,keryp =
img, cokery) = 0 (i.e. ¢ surjective ”locally on coverings”).
Note: im¢ = (im¢?)# where im¢?(U) = im(F'(U) — F(U)).
Theorem 6.1.3. 1. The categories PSh(X), Sh(X) have arbitrary limits and colimits.
2. The forgetful functor i : Sh(X) — PSh(X) is left exact.

3. The sheafification functor a : PSh(X) — Sh(X) is ezact.
Proof. Same as topological spaces. O

Note: a + i is an adjoint pair = 1 is left exact and a is right exact. To show that a is left exact, it suffices
to show that 6 : PSh(X) — PSh(X),F — F7 is left exact. Recall: For U € C, FT(U) = li_r)nHO(Q,]:).
Then lim exact means that it suffices to show for a fixed covering U = {U; 2, U}i, HO(U,—) is exact. This

follows by definition!

Remark 6.1.4. So far with this new notion of Grothendieck topology most stuff seems to generalize naturally.
We don’t have: stalks. For, we don’t work with a fixed topological space X and points z € X but rather we

use all objects U € C.

Recall: For X top space, Sh(X) has enough injectives, this was shown using: F € Sh(X) = foreachxz € X
let i, : F, — I, = injective Z-mod. Take a, : {x} — I, closed embedding, and then — — F — (). () =
injective! (i.e. construction of injective objects used stalks) Next: Will show PSh(X), Sh(X) have enough

injectives using a method of Grothendieck.

Lemma 6.1.5 (Definition). Let A be an abelian category. A family (E;)icr of objects of A is called a family

of generators if the following 2 equivalent conditions hold:
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1. The functor
e: A— AbGp,

gwen by A — [],.; Homa(E;, A) is faithful, i.e. VA, A" € A the map:

Homy (A A') — HomAb(H Homy(E;, A), 1_[ Homy(E;, A)),

iel iel
given by [p: A— Al — [(fi : E; > A); — (P o fi):] is injective.

2. YA € A and every B < A, there exists i € I and there exists a morphism E; 25 A such that i does
not factor through B.

Proof. a = b: Let B < A in A, then we have a short exact sequence 0 — B > A ©> A/B — 0 with
A/B # 0. Then m € Hom 4(A, A/B), w # 0, so by faithfulness there exists ¢ € I such that 7, : Hom(E;, A) —
Hom(E;, A/B) is # 0. Hence there exists f : E; — A such that E; RNy RN A/B which means f does
not factor through B. b = a: Let A,A’ € A and f € Homu(A, A’) such that f; : Homa(E;, A) —

Homy (E;, A") is zero Vi€ I. If f # 0, then ker f & A, take B = ker f and apply (2). O

Example 6.1.6. R = unital ring, A = left R-mods, then {E = R} is a generator for A.

Proof. A5 AbGp, A — Homp(R,A) ~ A = ¢ = forgetful functor and its clearly faithful. O

Definition 6.1.7. We sat the category A has the property:

(AB3) : if any @, ; A; exist in A
(AB4) : if (AB3) holds and forming direct sum is an exact functor

(ABS5) : if (AB3) holds and taking lim is exact.

Similarly, (AB3*) — (AB5*) are defined dually using products/ limits.

Definition 6.1.8. An abelian category A is called a Grothendieck category if (AB5) holds and A has a

family of generators.

Remark 6.1.9. If A is Grothendieck, then A has a single generator E. For, if {F;}er is a family of
generators, set E = ), F;, then [ [, Hom 4(E;, A) ~ Hom4(E, A).

Theorem 6.1.10. If A is Grothendieck, then A has enough injectives, i.e. YA inA, 31 injective object such
that 0 — A L I in A. (Recall: I is injective <= Homy(—,I) is exact <= VY0 — A — B in A the map
Homy(B,I) — Homu(A,I) — 0 is ezact.

Proof. Lecture 2. O

Theorem 6.1.11. Let X = (C,T) be a site. Then PSh(X) and Sh(X) have enough injectives.

Proof. STS PSh(X), Sh(X) are Grothendieck. (AB5) follows similarly to topological spaces. Need to con-

struct a family of generators.
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1. Generators for PSh(X) : Let U € C. Consider the presheaf Z, : V € C — @VL)UZ S f =2 (V).
Note:

z? ()Y

(a) Z7, is a presheaf with restriction maps: if V 2, W in C, then 75 (W)
Z(f © ¢).
(b) There exists a canonical map 3 : Hompgy,x)(Z5;, F) — F(U). For, let ® : Z{] — F morphism

of presheaves, then ®; : ZE(U) — F(U), take ®y(1 - idy) € F(U). We claim that 3 is an
isomorphism, i.e.e Z}, represents the functor PSh(X) RACIWR Ab, F — F(U).

Proof. STS every homomorphism ZF, 2, Fis fully determined by Dy (1-idy) € FU). Let
P : ZY, — F. Let V e C. If there does not exists a morphism V' — U, then Z},(V) = 0 and

dy =0, so assume IV 4, U, and we want to see how @y |z.r is defined. We have

@ zs=2O) Smvi= @z f

s

U—U Vi/_)U

Observe: Z - idy — Z - f by definition. Moreover, since ® is a presheaf homomorphism we have

the following commutative diagram:

Hence ®,(1- f) = F(f)(Pu(1 - idy)) by commutativity and everything is fully determined by
(I)U(l . ZdU) O

Next we claim that the family {Z7 }yec are generators of PSh(X)

Proof. The functor € : PSh(X) — Ab,F — [],cc Hompgpx)(Z, F) = [[yec F(U) is faithful.
For, let F 2> F/. & # 0 = Ju e C such that &y # 0. O

2. Generators for Sh(X): Define Zy = (Z[,)#. Using adjunction between forgeful functor and #, Zy
represents I'(U, —) on Sh(X).

6.2 Lecture 2

Theorem 6.2.1. Let A be an abelian category which is Grothendieck. Then A has enough injective objects.
Reminders:

1. I € Ais injective < Homy(—, I) is exact <= we have the following commutative diagram in A

0—— B —— A

w” 3f
I
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2. A is Grothendieck <= A has family of generators and satisfies AB5.

3. A Grothendieck = A has a single generator U € A, i.e. the functor € : A — AbGp, A — Hom 4 (U, A)
is faithful «< VB ¢ A in A3f : U — A such that f(U) &€ B.

Proposition 6.2.2. Suppose A is Grothendieck. Let I € A. Then I is injective <= we always have the
following commutative diagram

0 —— V —— U = generator

i.e. enough to check condition for 0 - V — U.

Proof. Let

0 —— B —— A

|

in A. We want to show that f extends to f: A — I. Let P = {g: B" — I such that Bc B’ c A and ¢g|p =
f}, Then P # & since f € P since f € P. Because A has colimits, we can apply Zorn’s lemma and obtain
that P has a maximal element. We may assume that f : B — I is maximal. Now we want to show that
B = A. Suppose not, then B & A. U is a generator implies that there exists j : U — A such that j(U) € B.
Set B' = B+ j(U) so that B & B’ ¢ A. We will sow that f extends to B’ (which gives us the contradiction).

Let V = j~1(B), then there exists a commutative diagram

<

0—— — U

<.
—
——

pat - N

J

0—— B —— B,
fl 3h
[

So we get V L UuxBL B - 0,v — (v,—j(v)) and ¢(U,b) = j(U) + b. Claim: The above sequence is

exact:

e j:U — B’ by definition
o (u,b)ekerp < b= —j(u) = u=;"1(B)=V. We have

Vv Y. UxB-—23B _— 0

if ig(want)
1 1

So it is enough to construct f : U x B — I such that foi) = 0. Define f : UxB — I, (u,b) — h(u)+ f(b).
Note that f(1(v)) = f(v, —j(v)) = h(v) = f0j(v) = foj(v) = foj(v) = 0.
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Sketch of proof of Theorem 6.1.10. Will construct (not additive) functor I : A — A with I(A) injective for
all Ae Aand 0 > A — I(A). Step 1: Let A € A, then define S(A) := {g; : V; > A where 0 - V; - U}.

Consider S(A) as an index set, and consider the morphism € : @ V; — A x (Dg(a) U),vi = (—gi(v3),vi)-
Let I1(A) := coker(e1). Let f(A) : A —> Ax (DgaU) = L1(A),a — [a,0]. Easy check: f(A) is injective
(follows by AB4,AB5). Key Property: For every g; € S(A) we have a diagram

0 Vi U
gzi 3391‘
0—— A @ I, (A)

Proof. f(A) o gi(Vi) = [9:(Vi),0] and since [—g;(V;),V;] = 0 in I1(A), we have f(A) o g;(V;) = [0, V;] and so
Gi : U — Ii(A),u — [0,u] (ith component). O

Next: Define an inductive process using transfinite induction.
Construction: For any ordinal number i define an object I(A4) € A and for 2 ordinal numbers i < j an

injective morphism I;(A) < I;(A) such that for i < ig =fixed ordinal {I;(A)}i<;, forms an inductive system.

e Fori =0, [H(A) = A.

e Fori=1,I;(A), Iy(A)=A JA, I;(A) as in Step 1.

o If the construction has been carried out for ordinals < ¢ and i = j + 1, set I;(A) = I1(I;(A4)) and

L(A) LI )

Let k& be the smallest ordinal number whose cardinality is larger than the set of all subobjects of U. Take
I(A) := I;;(A) (If 7 is limit ordinal then set I;(A) = h_n)1j<i I;(A)). Claim: I(A) is injective. Sketch: Previous

proposition shows that it is enough to consider the diagrams

0 1% > U
gl L///’a’g
1(4) = 1(A)
Idea: Show (x)g(V) < I;(A) for some i < k. If yes, apply step 1.
0 \% U
gl 33 T

For (*): AB5 = V = lim _, g Y(I;(A)). The set of subobjects of V has cardinality < k& =
lim, g (I, (A)) for some ig < k (otherwise V would have cardinality k). O
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6.2.1 Sheaf Cohomolgy

Recall: If ¢ : F — G morphism in Sh(X), X = (C, T) asite, then ker ¢ = ker ¢?, i.e. (ker ¢)(U) = ker ¢y for all
U e C. While coker¢) = (coker¢?)#. In general for U € C, the functor I'(U, —) : Sh(X) — AbGp, F — F(U)
is left (but not right) exact. Define: H'(U,—) := R'T(U,—) =ith right derived functor of I'(U,—), i.e.

for F € Sh(X) take an injective resolution 0 — F — I' — [? — ..., get a complex of abelian groups
1 2 . 3
0 - 1'U) & r2U) £ L and define HI(U, F) := X4 Note that HO(U,F) = kerd! = F(U).

Similarly to the case of topological spaces, 2 different injective resolutions give chain homotopic complexes

and so the cohomological groups are independent of choice.

Example 6.2.3. X topological space, and X the induced Grothendieck site (where coverings=open covers in

traditional sense). Then H'(U, F) =usual sheaf cohomology groups as defined earlier for U € Op(X).

Direct+Inverse image sheaves

Let X = (C,7),X' = (C',T"). Let f : X —> X' be a morphism of sites. Recall: This means f :C — (' is a

covariant functor such that

1 {U; %5 Ulier €Cov(C) = {£(U;) L9 £U)}; eCov(c).

2. For {U; 25 U}; eCov(C) and V — U morphism in C, we have f(U; xy V) = f(U;) x ¢y f(V).
Wojciech’s Lecture: f induces morhpsim f? : PSh(X’) — PSh(X) with fPF(U) = F(f(U)) for U € C, F €
PSh(X').

Proposition 6.2.4. Suppose F is a sheaf on X’. Then fPF is a sheaf on X, i.e. f induces a morhpsim

f5:Sh(X") — Sh(X).

Proof. Let U = {U; £ U}; eCov(C). We want to show that

[FU) —— L FU) =3 Hi,j [FU; xu Uj)
Il I [
F(fU) — [LF(fW0) = Hi,j F(fU: xp Uj)) =~ I_LJ F(f W) gy f(U;))

is exact. Then the claim follows by (1) from the previous recall since {f(U;) EACON

and F is a sheaf on X’. O

f(U)}; is a covering in C’

Inverse Image

Define: fs: Sh(X) — Sh(X'),F — (f,F)#. Recall: (f,F)(V) = hmlop Fy = hm(ULP)GIO,, F(U) where I, has
objects (U, ) such that U e C, ¢ : V — f(U).

Proposition 6.2.5. 1. fs is left adjoint to f® and hence f; is right exact, f° is left exact.

102



2. fs commutes with colimits. If fs exact, then f*(injective)=injective.

Proof. 1. Let F € Sh(X),G € Sh(X'). We want to show that

Homgpxn (fsF,G) =~  Homgp)(F, f°G)
1 Il
Homp g2 (fpF, G) Hompgyx) (F, fPG)

12

where the equality follows since fPG is a sheaf and the isomorphism on the second row follows from

Wojciech’s results.

Definition 6.2.6. R'fsF =ith derived functor of f*=H!(f*I*), I*® =injective resolution of F.

Remark 6.2.7. The functors f*, fs correspond to fyx, f~! for traditional spaces. The notation confustion
stems from: If X %> ¥ continuous map of topological spaces, then we have f : O,(Y) — O,(X),U — f~1(U)

morphism of sites.

Remark 6.2.8. Additional Properties of cohomology:

1. As usual if X site and have short exact sequence 0 — F' — F — F” — 0 in Sh(X), then we can get a

long exact sequence for every U € C,

)

connecting

0—H(U,F)—-H(U,F)—HUF" H' (U, F') — ...

2. Similarly for a morphism of sites X L, % and every short exact sequence 0 — F' — F — F” — (0 in

Sh(X'), we get a long exact sequence
..*)Rnfs‘/—_-/HRnfoHRnst//i}RnJrlfsJ—_-/;)”.

Theorem 6.2.9. Let X be a site and F € Sh(X). Let g : V — U be a morphism in C. Then there exists a
canonical restriction homomorphism g* : H (U, F) — H(V, F) for alli = 0. Fori = 0, the map coincides with
F(U) — F(V) the restriction map of F. Thus we obtain an abelian presheaf H'(F) : C — Ab,U — HY(U, F).

Proof. Since H(—, F) was constructed using injective resolutions, we ahve a universal J-functor. Thus, the

result follows by universality (as for topological spaces). Since for ¢ = 0 we have

H(U, F) —— HY(V, F)
I I
F(U) FV)

restriction
g* extends to g* : H' x (U, F) — HY(V, F), for all i > 0. O

Theorem 6.2.10. Let f : X — X' morphism of sites. Then for all F € Sh(X') and for all i > 0, R\ f$F =
sheaf associated to the presheaf U — H'(f(U), F).
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Proof. Let 0 — F — I® — I — ... injective resolution of F in Sh(X’). Then we get a complex in Sh(X):

0— fI° - f5I" — f51% — ..

and Rifsf: ker(f5I'—f°I'th) _ _ker” (ker”)#”” ]

im(fsI*—1—fsI?) (imP)# imP

6.3 Lecture 3
Reminders:

1. Let X = (C, T) Grothendieck site, we showed that Sh(X) has enough injectives, so for U € C, F € Sh(X)
we defined sheaf cohomology groups H*(U, F) := R'T(U < F). we sometimes use notation H*(T; U, F)
to remember the site. If C has final object e, write H (T, F) := H(T;e, F).

2. Grothendieck spectral sequence (composition of functors). Suppose A, B,C abelian categories with
A, B having enough injectives. Let A £, B 5 Cbe composition of 2 left exact functors. Suppose
F(injective) = G-acyclic, then we get a spectral sequence EY? = (RPG o R1F)(A) = RPT(G o F)(A),

and there exists edge homomorphisms E;L 0 B ET Eg .

Example 6.3.1. X = topological space, C = Op(X) = {U open = X}. Then T = {open coverings} = X
is a final object of C. F € Sh(C,T) is the usual sheaf on X and H (T,F) = H (X, F) as previously defined.

Example 6.3.2 (Main example). G group, Tg = Grothendiect topology on left G-sets. Recall: there exist

and equivalence of abelian categories:

Sh(Ta) = {left G-modules}
F— F(G)
Homg(—,A) < A

T has a final object e = 1—eclement G-set, so H (Tg,F) = H(T;e,F). Consider the composition of
functors:

(left G-mods} %> Sh(Te) ~“") Ab, A — Home(—, A), F v T(e, F)

Note: T(e, Homg(—, A) = Homg(e, A) = A® = T(e,~) oV = ()& G-invariants, so for A a left G-module
R™"(T(e,—) o U)(A) = H™(G, A). Grothendieck spectral sequence gives edge homomorphisms ¢, : Ey° —
E™, and so H"(Tg, Homg(—, A)) — H™(G, A). Because the functor U is a n equivalence between abelian
categories, it is exact, and so the ¢, are ~ for all n. Thus, using the new language of Grothendieck sites we

recovered group cohomology!

6.3.1 The Hochschild-Serre spectral sequence

Suppose H <« G. Consider the composition of functors

{G-mods} 2, {G/H-mods} L, AbGps
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A AH s BG/H

Note 1: R'®(A) = H'(H, A)
Note 2: o ®(A) = A — R (Vo ®) = H(G,A).

Hence we get a Grothendieck spectral sequence:
EY? = H'(G/H,H(H, A)) = H"*9(G, A)

for A € G-mods.

5-lower term exact sequence:
0— HY(G/H, A"y - HY(G, A) — H'(H, A" — H?(G/H, A") > H*(G, A).

Q: How to compute group cohomology? Use relation to Cech!

6.3.2 Cech Cohomology

X =(C,T)beasite. Let U e C and U = {U; LiN U}ier be a covering. Let F € PSh(X). Recall from previous
section that HO(U, F) := ker([[,c; F(U:) = [1; ; F(Ui xp Uj). Thus: If F is a sheaf, then H(U, F) = F(U).
Consider this as a functor:

Psh(x) 22, 4p

F—H(U,F)

It is left exact and if we precompose with the forgetful functor Sh(X) 4 PSh(X) we get a composition of
left exact functors. Note: HO(U, —) oi = T\(U, =) : Sh(X) — Ab.

Definition 6.3.3. Let F be a presheaf. Define HY(U, F) := RIH®(U, —) = right derived functors of H*(U, —).

Description in terms of cochains: For ¢ = 0 define the group of g-cochains with values in F:

CUU,F) =[] FU,xv..x Ui,)
(%0,-..s1q)EaHT

and the differential d? : C4(U, F) — C9T1(U, F) is defined as follows: For each j € {0,...,q} let j : Ui, XU

vy Uiy = Uiy Xy xUUij -+ .xy Ui, be the projection. F presheaf implies we get the restriction map F():
FUiy x50, .. oxy Usy) = FUig %u - xy Us,) and di(s) = S50 (=17 F () (sigs - - js- - yige1). This
way we get a complex:

0 O 1 dt
0—-C"(U,F)—C(U,F)— ...

Theorem 6.3.4. Hi(Q, F) is the cohomology of the above complez, i.e. for all ¢ =0,

ker d?

HY(U,F) = a1

Sketch of proof. Set HY(U, F) = kerd?/imdi~". Tt satisfies the functoriality for morphisms of presheaves
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0 : F — G, so it gives an additive functor PSh(X) — Ab, F — HY (U, F). Claims:

1. The sequence {H(U, F )}g=0 forms a cohomological o-functor (i.e. gives long exact sequence in Ab for

each short exact sequence in PSh(X).
2. H,H agree on ¢ =0 (clear from definition).

3. Both {HY(U, F)} =0, {HI(U, F)}4>0 are universal é-functors. Hence, since they agree on HO they agree

everywhere.

Pf of claim 3. {7} ,>¢ universal is clear since HY is the right derived functor of the left exact functor
PSh(X) — Ab. For {H%},=0, need to show the functor is effaceable, i.e. for ¢ > 0 there exists a
monomorphism 0 — F — F” in PSh(X) such that HY(U, F”) = 0. Suffices to show that HI(U,T) = 0
for all I injective presheaves. Recall from Lecture 1 (Valia): The presheaf Z, represents the functor
PSh(X) — Ab, F — F(U) where Z7,(V) = @VL)UZ - f,ie. F(U) ~ Hompgpx)(Zf;, F). Suppose I
is injective, the the complex for I becomes:

oo I(Uy %1+ xu Us) 2 I(Usy <+ %0 U

) —
q+1

d?
e — HomPSh(Z%iOXI“ I) -_— HomPSh(ZpUioxUmx U; I) - ...

xuUiq? UYiger’
I injective implies that the above complex is exact is - -+ «— Z’&io xpxuUsg < Z’(}m xuexuUig,, < is
exact in PSh(X), which holds if and only if for all V' € C, the complex
Bt V) B e (V)
is exact in Ab (skip the proof of this exactness). O
O

6.3.3 From Cech to Sheaf Cohomology

Have composition of functors Sh(X) - PSh(X) D), Ap, Write R = H1( ) so for each F sheaf obtain

a preheaf H9(F) with HO(F) = i(F) = F as a presheaf. Note: Let I be an injective sheaf. It follows from
the proof of Thm 6.3.4 that HY(U,I) = 0 for all ¢ > 0 i.e. i(I) is HO(U, —)-acyclic, and so we obtain the

Grothendieck spectral sequence
EYY =HY U, HY(F) = EPt1 = HPT(U, F)

which is functorial in F and the edge homomorphisms H? (U, F) — HP (U, F).

Corollary 6.3.5. Let U = {U; — U}ier be a covering in 7 and F € Sh(X) such that HY(U;, xy -+ Xy
U; ,F) =0 for all ¢ > 0 and (io,...,i,) € I"*!. Then the edge homomorphisms HP(U, F) — HP(U, F) are

isomorphisms for all p.
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Example 6.3.6. 7o, e = l-element G-set. Consider the covering {G — e} in Tg. We get the edge

homomorphisms for A = left G-module
HP({G — e}, Homg(—, A)) - HP(G, A)

We want to show ~. By the corollary, it suffices to show that HI(G x. --- x. G, Homg(—, A)) = 0.
HY(G, Homg(—, A)): As before this is the qth right derived functor of the composition:

{left G-mods} — Sh(Tg) — Ab

A — Homg(G,A) ~ A as abelian groups

This is just the forgetful functor which is exact, and so HI(G, Homg(—,A)) = 0 for all ¢ > 0. Similar

argument holds for the other cases.

We can use this to compute group cohomology via cochains: HP({G — e}, Homg(—, A)) computed via the

Cech complex:
0
0 — Homg (G, A) <, Homg (G x. G, A) ...

do(f)(JaT) =74 — Ua)vdlf(pv JaT) = f(Tv P) - f(aa p) + f(07 T)v ete...

Remark 6.3.7. This Cech complex recovers computation obtained by projective resolution P, : --- — P, —
7¢ — 7 — 0, P, =free Z—mod with basis the r + 1-tuples (go,...,g,) € G"*! with diagonal action. We
showed the above complex is a projective resolution of Z as a trivial Z[G]—module in previous years. Then
HY(G, A) = H'(Homg(P,, A)) for all A G-module.
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