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Chapter 1

Flatness and Geometry
Hasan Saad

The goal of this chapter is to discuss flatness with an eye towards applications in algebraic geometry.
The discussion is motivated by the following geometric theorem which we shall prove in detail.

Theorem 1.0.1. Let f : X → Y be a flat morphism of finite type between Noetherian schemes. Then,
f is open.

We start by studying flat modules.

1.1 Flat Modules

We start by studying the effect of tensoring on the exactness of a sequence. To this end, we have the
following proposition.

Proposition 1.1.1. If R is a ring, M,M ′,M ′′ and N are R-modules, and

M ′ M M ′′ 0
φ ψ

is an exact sequence, then

M ′ ⊗N M ⊗N M ′′ ⊗N 0
φ⊗1 ψ⊗1

is exact.

Proof. The exactness of the first sequence is equivalent to the existence of an isomorphism ψ :M →M ′′

such that the following diagram

M M ′′

M/ imφ

π

ψ

ψ
(1.1)

commutes. Now, consider the map M ′′ ×N → (M ⊗N)/im(φ⊗ 1N ), which maps (m′′, n) to [m⊗ n],
with m chosen so that ψ(m) = m′′.

First, note that such an m always exists since ψ is bijective. By the exactness of the first sequence,
this map is independent of the choice of m, and therefore it is well-defined.

Second, it is clear that this map is R-bilinear, and therefore lifts to the tensor product.
Furthermore, this is clearly an inverse of the map (M ⊗ N)/im(φ ⊗ 1N ) → M ′′ ⊗ N induced

by the map ψ ⊗ 1. Therefore, we have an analogous diagram to (1.1) with M ⊗ N,M ′′ ⊗ N and
(M ⊗ N)/im(φ ⊗ 1N ) in place of M,M ′′ and M/ imφ. Therefore, the second sequence is exact, and
we are done.
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In contrast to Proposition 1.1.1, we will give two examples to illustrate that the tensor product
does not preserve injectivity in general.

Example 1.1.2. Consider the inclusion map ι : 2Z→ Z. This is clearly an embedding of Z modules.
On the other hand, tensoring with Z/2Z, it is clear that

(ι⊗ 1)(2m⊗ n) = 2m⊗ n = m⊗ 2n = 0,

for any 2m ∈ 2Z, n ∈ Z/2Z.

Example 1.1.3. Let R = C[x, y], I = (x, y), and consider the embedding ι : I → R. It is easy to see
that R ⊗R I ∼= R through the map f ⊗ g → fg. Therefore, to show that ι ⊗ 1I is not injective, it is
equivalent to show that

φ : I ⊗R I → R

f ⊗ g 7→ fg

is not injective. First, note that φ(x⊗ y− y⊗ x) = xy− yx = 0. We will now show that x⊗ y− y⊗ x
is nonzero in the tensor product I ⊗R I. It is easy to show that the map ψ : I × I → R given by
ψ(f, g) = ∂f

∂x (0, 0) ·
∂g
∂y (0, 0) is R-bilinear, and therefore defines a map on I ⊗R I, which we also denote

by ψ. It is also clear that ψ(x⊗ y − y ⊗ x) = 1 ̸= 0, and therefore, x⊗ y − y ⊗ x.

These examples motivate the following definition.

Definition 1.1.4. Let R be a ring and N an R-module. We say that N is flat if for every injective
morphism φ :M ′ →M, φ⊗ 1N :M ′ ⊗N →M ⊗N is also injective.

We now give examples of flat modules.

Example 1.1.5. R is a flat R-module. This is clear because the map φ⊗ 1R :M ′ ⊗R→M ⊗R can
be identified with φ :M ′ →M as in Example 1.1.3.

To give more examples of flat modules, we first study the relation between flatness and direct
sums.

Proposition 1.1.6. Let (Ni)i∈I be a collection of R-modules. Then, N =
⊕
i∈I

Ni is flat if and only if

each Ni is flat.

Proof. This follows clearly from the relation M ⊗N =
⊕
i∈I

M ⊗Ni for any R-module M.

Example 1.1.7. Example 1.1.5 and Proposition 1.1.6 show that all free modules are flat. In fact, all
projective modules are flat. To see this, let Q be a projective module. Then, there exists an R-module
P such that P ⊗ Q is free, and thus flat. Applying Proposition 1.1.6 again, we have that Q is itself
flat.

We have the following equivalent characterizations of flat modules.

Proposition 1.1.8. Let N be an R-module. Then, the following are equivalent.
(1) N is flat.
(2) If the sequence 0→ M ′ → M → M ′′ → 0 of R-modules is exact, then 0→ M ′ ⊗N → M ⊗N →
M ′′ ⊗N → 0 is exact.
(3) If M ′ →M →M ′′ is exact, then M ′ ⊗N →M ⊗N →M ′′ ⊗N is exact.

Proof. That (1) and (2) are equivalent is clear. Also, (3) clearly implies (2). Now, it remains to prove
that (2) implies (3). To this end, note that the rows of the following diagram

0 kerφ M ′ imφ 0

0 kerψ M imψ 0

0 imψ M ′′ M ′′/imψ 0

φ

ψ
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are exact sequences and that it is commutative. Tensoring with N, by (2), we get exact rows as well.
In particular, we have that M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N is exact, and we are done.

Corollary 1.1.9. Let φ : M ′ → M be any morphism of R-modules, and let N be a flat R-module.
Then, ker(φ⊗ 1N ) = ker(φ)⊗N, im(φ⊗ 1N ) = im(φ)⊗N and coker(φ)⊗N.

Proof. This is easy.

An interesting fact is that the flatness of an R-module N is determined by how it tensors with
ideals of R. More precisely, the following proposition holds.

Proposition 1.1.10. Let N be an R-module. Then, the following are equivalent.
(1) N is flat. (2) For all ideals I of R, I ⊗R N → R⊗R N ∼= N is injective, where this map is ι⊗ 1N
with ι the inclusion morphism of I into R.

The fact that (2) follows from (1) is trivial. To prove the reverse implication, we introduce the
notion of M -flatness.

Definition 1.1.11. LetM andN be R-modules. We say thatN isM -flat if for all injective morphisms
φ :M ′ →M, the map φ⊗ 1N :M ′ ⊗R N →M ⊗N is also injective.

From this definition, it is clear that N is a flat R-module if and only if N is M -flat for all modules
M. Therefore, to prove Proposition 1.1.10, we therefore prove that if N satisfies (2), then N is M -flat
for all modules M.

The idea of the proof is as follows. Every R-module M is a quotient of a free R-module, and (2)
says that N is R-flat. Therefore, it is natural to consider how M -flatness behaves when we take direct
sums and quotients of M.

For quotients, we have the following lemma.

Lemma 1.1.12. Let M2 be a quotient module of M. If N is M -flat, then N is M2-flat.

Proof. First, note that if M2 is a quotient module of M, then, by definition of quotient modules, there
exists a submodule a of M such that 0→ a→M →M2 → 0 is exact.

If M ′
2 is an R-module that embeds into M2, we can assume without loss of generality that M ′

2 is
a submodule of M2. This implies that there exists a submodule M1 of M such that M ′

2 =M1/a.
This is all summarized in the following commutative diagram.

0 a M1 M ′
2 0

0 a M M2 0

Tensoring with N, we have the following commutative diagram.

a⊗N M1 ⊗N M ′
2 ⊗N 0

a⊗N M ⊗N M2 ⊗N 0

The map of the first column is an isomorphism. The second map is injective because N is M -flat.
Therefore, the map M ′

2 ⊗N →M2 ⊗N is also injective by the snake lemma.

Before proving the analogous lemma for direct sums, we first show that we can reduce to the case
of finitely generated submodules, and that therefore, we can consider only direct sums.

Lemma 1.1.13. For an R-module N to be M -flat, it is necessary and sufficient that for every finitely
generated submodule M ′ of M, the canonical homomorphism

ι⊗ 1N :M ′ ⊗R N →M ⊗N

is injective.
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Proof. If N is M -flat, the conclusion follows from the definition.
Now, assume the condition holds, and let M ′′ →M be an injective map. We can assume without

loss of generality that M ′′ is a submodule of M. Suppose z =
∑
xi ⊗ yi ∈M ′′ ⊗N is 0 as an element

of M ⊗N. Then, we are to show that z is 0 in M ′′ ⊗N.
But then, considerM ′ to be theR-submodule ofM ′′ generated by xi. Then,M

′ is finitely generated,
and the map M ′ ⊗N → M ⊗N, factors through M ′′ ⊗N, and therefore, takes z → 0. Therefore, by
hypothesis, z = 0 in M ′ ⊗N and thus in M ′′ ⊗N.

Before we prove the analogue for direct sums, we will consider howM ′ ↪→M responds to tensoring
when M ′ is a direct factor of M. This is given by the following lemma.

Lemma 1.1.14. Let N be any R-module, and assume M ′ ⊂M is a direct factor of M. Then, M ′⊗N
embeds into and is a direct factor of M ⊗N.

Proof. This is easy. Let M =M ′⊕M ′′. Then M ⊗N = (M ′ ⊗N)
⊕

(M ′′ ⊗N).

We are now able to prove the following lemma.

Lemma 1.1.15. Let (Mi)i∈I be a collection of R-modules. If N is Mi-flat for all i ∈ I, then N is
M -flat where M =

⊕
i∈I

Mi.

Proof. We first consider the case I = {1, 2}, that is M = M1 ⊕ M2. Consider M
′ ↪→ M, and let

M ′
1 =M1 ∩M ′,M ′

2 =M2 ∩M ′. We are to show that M ′ ⊗N embeds into M ⊗N.
To this end, consider the following commutative diagram.

0 M ′
1 M ′ M ′

2 0

0 M1 M M2 0

ι′ p′

ι p

where ι, ι′ are the inclusion embeddings, and p, p′ are the projection maps. By the definition of direct
sums, it is clear that the rows are exact. Furthermore, the first column and third column maps are
clearly injective as they are inclusions.

Therefore, taking tensor products with N, we get

M ′
1 ⊗N M ′ ⊗N M ′

2 ⊗N

M1 ⊗N M ⊗N M2 ⊗N

ι′⊗1 p′⊗1

ι⊗1 p⊗1

The first and third columns are injective maps because N is M1-flat and M2-flat. Furthermore,
the rows are exact by Proposition 1.1.1. Finally, the map M1 ⊗N →M ⊗N is also injective because
M1 is a direct factor of M. Therefore, by the Snake Lemma, M ′⊗N →M ⊗N is injective, and thus,
we conclude that N is M -flat.

By induction, we have that the lemma holds for any finite direct sum of modules Mi. By the
previous lemma, it suffices to show that ι ⊗ 1N : M ′ ⊗R N → M ⊗R N is injective for any finitely
generated M ′ submodule of M.

Let M ′ be such a submodule. Then, since M ′ is finitely-generated M ′ ⊂
⊕

i∈JMi for some finite
index set J. Since N is MJ -flat, M

′⊗RN →MJ ⊗RN is injective. Furthermore, MJ is a direct factor
of M, so MJ ⊗R N →M ⊗R N is injective, and therefore, the composite map, M ′ ⊗R N →M ⊗R N
is injective, and we are done.

We are now ready to prove Proposition 1.1.10.

Proof of Proposition 1.1.10. By (2), N is R-flat, and therefore, N is M -flat for any free R-module M.
Therefore, N is M ′-flat for any quotient M ′ of a free R-module, and therefore, N is M -flat for any
R-module, that is, N is a flat R-module.
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1.2 Varieties and Schemes

We recall notions about varieties and use them to motivate schemes. Most of the material here is given
without details/proof, and this section simply serves as a motivation and recollection of important
geometric constructions.

The main goal of algebraic geometry is to study the geometry of zero sets of polynomials. This
motivates the following definition.

Definition 1.2.1. Let k be an algebraically closed field, and let Ank = {(a1, . . . , an) ∈ kn} . Let a be
an ideal of k[Ank ] := k[x1, . . . , xn]. We define

Z(a) = {P ∈ Ank , f(P ) = 0 for all f ∈ a}

The sets Z(a) allow us to topologize the space Ank due to the following lemma.

Lemma 1.2.2. The sets {Z(a), a ◁ k[An]} satisfy the axioms for closed sets of a topology. This topology
is called the Zariski topology on Ank

In other words, for every ideal a of k[Ank ], we have a closed subset Z(a) of Ank .
If we take n = 1, a = (x), b = (x2), it is clear that a ̸= b and yet Z(a) = Z(b) = {0}. This indicates

that the correspondence is not bijective.
However, if we define for a set S ⊂ Ank , I(S) := {f ∈ k[An], f(P ) = 0 for all P ∈ S}, a simple

argument shows that I(Z(a)) =
√
a, where

√
a is the radical ideal of a. Therefore, we have a bijec-

tive correspondence between radical ideals of k[An] and Ank , where the maps are give by Z and I
respectively.

We now study this correspondence when we restrict our scope of sets. For example, we consider
the following important definition.

Definition 1.2.3. Let S be a subset of a topological space X. S is said to be irreducible if it cannot be
written as S = S1 ∪ S2 where S1 and S2 are proper subsets of S which are also closed in the subspace
topology of S.

Directly from the definition, one sees that we may think of irreducible subsets as the building
blocks of sets in a topological space.

We will state without proof that the irreducible closed subsets of Ank in the Zariski topology
correspond to the prime ideals of k[An] under the above correspondence.

To conclude our discussion around this correspondence, let us note what sets correspond to the
maximal ideals. To this end, let P ∈ Ank and consider the evaluation map

εP : k[An]→ k

f → f(P ).

It is clear that Z(ker εP ) is precisely {P}. Furthermore, since k is a field and εP is clearly nonzero -
take the constant maps -, then by the first isomorphism theorem, k[An]/ ker εP ∼= k, and therefore,
ker εP . It is a fact that all maximal ideals arise such way, and therefore maximal ideals correspond to
singletons.

Definition 1.2.4. If X is a closed irreducible subset of Ank in the Zariski topology, we say that X is
an affine variety.

In general, we are interested in studying these affine varieties rather than Ank itself, which is unin-
teresting. Whereas two different polynomials over an infinite field, and therefore for any algebraically
closed field, must evaluate to different values for some P ∈ Ank , this is not guaranteed for X.

To illustrate this, consider A2
C and consider the variety X = {(x, y) ∈ A2

C, y = x2}. Then, the
polynomials f(x, y) = x ∈ k[A2] and g(x, y) = x+ y− x2 ∈ k[A2] agree as polynomial functions on X.
To rectify this, we give the following definition.

7



Definition 1.2.5. Let X be an affine variety, say X is an irreducible closed subset of Ank . Then, we
write k[X] := k[Ank ]/I(X), where I(X) is the collection of polynomials in k[Ank ] which vanish on X.
We call k[X] the coordinate ring of X.

As is a recurring theme in mathematics, to understand objects, we aim to define morphisms
between them. Since the polynomials are the building block for these algebraic varieties, the following
definition is natural. We note that this is insufficient motivation, but it is enough for our purposes
here.

Definition 1.2.6. A map ϕ : X → Ank is regular if ϕ = (f1, . . . , fn) where f1, . . . , fn ∈ k[X]. If
ϕ(X) ⊂ Y, where Y is some affine variety, we say that ϕ : X → Y is a regular map.

As we associated algebraic objects (coordinate rings) for geometric objects (affine varieties), we
aim to associate a corresponding algebraic quantity to this geometric morphism (regular map).

To this end, note that if ϕ : X → Y is a regular map, and f ∈ k[Y ], then ϕ∗(f) := f ◦ϕ is in k[X].
Therefore, the regular map ϕ : X → Y gives a k-algebra homormophism ϕ∗ : k[Y ] → k[X]. It is easy
to see that the reverse holds as well.

In fact, for two affine varieties X and Y, we know that X and Y are isomorphic as varieties, that
is, there are regular maps ϕ : X → Y and ψ : Y → X with ϕ ◦ ψ = 1Y and ψ ◦ ϕ = 1X if and only if
k[Y ] and k[X] are isomorphic as k-algebras. This indicates that studying affine varieties is equivalent
to studying finitely generated k-algebras.

To obtain a natural consequence of this, let us fix some notation first. Let X and Y be varieties.
For a ring R, we denote by SpecmR the collection of maximal ideals of R, in other words, the maximal
spectrum. For P ∈ X,Y, we write mP to denote the kernel of the evaluation map at P.

For P ∈ X,Y, we write rP : X,Y to the maximal ideal mP . Also, it is easy to see that (ϕ∗)−1 takes
maximal ideals in k[X] to maximal ideals k[Y ]. We then have the following commutative diagram.

k[X] k[Y ]

X Y

Specm k[X] Specm k[Y ]

ϕ∗

ϕ

rP rϕ(P )

(ϕ∗)−1

Since studying X and Y is equivalent to studying k[X] and k[Y ], and since the diagram commutes
above, a natural generalization is to consider rings A and B in place of k[X] and k[Y ], and where we
can consider their geometry by taking SpecmA and SpecmB.

However, an immediate problem arises. If ϕ : A → B is a ring homomorphism, it is not true in
general that the preimage of a maximal ideal is maximal. To amend this, we consider the next best
thing. Namely, the preimage of a prime ideal is prime, and we consider the collection of prime ideals
of A and B, denoted by SpecA and SpecB respectively.

Therefore, with each ring homomorphism ϕ : A → B, we have an induced map ϕ̂ : SpecB →
SpecA, which maps p ∈ SpecB to ϕ−1(p).

Now, to give a topology on the sets SpecA and SpecB, and study those maps with respect to that
topology, we do an analogue of the definition for varieties. Namely, recall that P ∈ X, where X is
some affine variety in Ank is equivalent to mP ⊃ I(X). Since X = Z(a) for some prime ideal a, we then
have that this is equivalent to mP ⊃ a. Therefore, the closed set I(X), corresponds to the collection
of maximal ideals mP that contain Z(I(X)) = a. Since we are dealing with prime ideals instead of
maximal ideals, we put forward the following definition/lemma.

Definition 1.2.7. Let a be an ideal of a ring A. We write V (a) = {p ∈ SpecA, p ⊃ a} . The sets V (a)
satisfy the axioms for closed sets of a topology, and the induced topology is called the Zariski topology
on SpecA.

In the Zariski topology, we have the following lemma.
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Lemma 1.2.8. If ϕ : A→ B is a ring homomorphism, then ϕ̂ : SpecB → SpecA is continuous.

Proof. The proof is trivial by following definitions.

We are generally interested in Noetherian rings, that is, rings where any ascending chain of ideals
stabilizes. If A is such a ring, SpecA is a Noetherian topological space, that is, any descending chain
of closed subsets stabilizes.

Now that we have defined varieties and SpecA for rings A, we introduce the sheaf of regular map
on varieties and extrapolate to a definition on SpecA.

Note that for a variety X, we considered that it was natural to consider f ∈ k[X]. A question that
arises naturally is why we didn’t consider rational functions on k[X] as regular on X instead. This is
due to the following lemma which we give without proof (see Hartshorne).

Lemma 1.2.9. Let f : X → k be a continuous function such that, for every x ∈ X, there exists a
neighborhood of x on which f is a rational function. Then, f ∈ k[X].

However, since this is not necessarily true if we restrict f to U, we have the following definition.

Definition 1.2.10. If U is an open set, we define

OX(U) :=
{
f : U → k continuous such that for every P ∈ U,

there exists UP an open neighborhood of P with

f |UP
=
g|UP

h|UP

for some g, h ∈ k[X], h(P ) ̸= 0.
}

We call this the collection of regular functions on U.

In fact, OX(U) is more than just a set. To be more precise, we have the following proposition.

Proposition 1.2.11. The following are true.
(1) For each U open in X, the set OX(U) is a ring.
(2) If V ⊂ U is an open set, then the restriction map ρUV : f → f |V maps OX(U) into OX(V ).

Furthermore, (1) and (2) give a presheaf structure on U. The presheaf OX is a sheaf.

Proof. The proof is an easy conclusion of the fact that OX(U) is defined locally.

Even though the definition of OX(U) looks abstract, the ring OX(U) is easy to express on certain
sets called the principal open sets.

Definition 1.2.12. Let X be a variety, f ∈ k[X]. We write D(f) := {P ∈ X, f(P ) ̸= 0}. Such sets
D(f) are called principal open sets.

The sets D(f) are interesting to us in the following sense.

Lemma 1.2.13. The following are true.
(1) The sets D(f) form a basis of X in the Zariski topology.
(2) OX(D(f)) = k[X]f , where k[X]f denotes the localization of k[X] by the multiplicative set S =
{1, f, f2, f3, . . .}.

We now use this lemma to generalize the sheaf of regular functions to SpecA where A is an
arbitrary ring.

First, note that by our rationale before, the natural analogue of D(f) is the set D(a) = {p ∈
SpecA, a ̸∈ p}, where a ∈ A. It is easy to prove that these sets form a basis for the Zariski topology
on SpecA.

To obtain an analogous sheaf, we define O(D(a)) = Aa, where Aa is the localization of A with
respect to the set {1, a, a2, a3, . . .}. Since the sets D(a) form a basis, there is a unique sheaf O on
SpecA such that O(D(a)) = Aa. It is given by the projective limit O(U) = lim←−

D(a)⊂U
Aa, where the

ordering is given by U ≤ V whenever U ⊂ V. This is called the structure sheaf on SpecA.
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Finally, let us explain how to study the local behavior of a regular map on a variety, and give
an analogous definition for sheaves. For P ∈ X, where X is a variety, define the direct system
I := {U open in X,P ∈ U} ordered by reverse inclusion, that is, intuitively, ordered by “how local
it is at P .” From here, it is clear that the direct limit OP = lim−→

P∈U
O(U) encodes the local behavior of

regular functions at P, or so to speak, the germs of regular functions at P.
In this notation, we then have the following lemma.

Lemma 1.2.14. The following are true.
(1) If X is a variety, P ∈ X and O is the sheaf of regular functions on X, then OP = k[X]mP , where
k[X]mP is the localization of k[X] away from mP , in other words, with respect to the set S = {f ∈
k[X] \mP }.
(2) If A is a ring, X = SpecA, p ∈ X, and O is the structure sheaf on X, then Op = AS , where
S = {a ∈ A \ p}.

To encapsulate the notion of SpecA with its topology and sheaf in a more abstract manner, we
give the following definitions.

Definition 1.2.15. We call (X,OX) a ringed space if X is a topological space and OX is a sheaf of
rings on X.

Definition 1.2.16. We say that the ring space (X,OX) is a locally ringed space if OP is a local ring
for every P ∈ X.

Definition 1.2.17. Let (X,OX) and (Y,OY ) be ringed spaces. A map of ringed spaces is a pair

(f, f#) : (X,OX)→ (Y,OY ),

where f : X → Y is a continuous map and for every V ⊂ Y an open subset, we have a map

f#V : OY (V )→ OX(f−1(V )),

such that for all open subsets U, V of Y with U ⊂ V, the following diagram

OY (V ) OX(f−1(V ))

OY (U) OX(f−1(U))

f#V

ρ(Y )VU ρ(X)
f−1(V )

f−1(U)

f#U

commutes. A map of locally ringed spaces is a map of ringed spaces such that the corresponding maps
at a point, that is the map induced on the stalk O(Y )f (P )→ O(X)P for some P ∈ X are local maps.

To show that this is an abstraction of the situation for spectra of rings, let us give a few details
that shows that spectra are an example.

Example 1.2.18. Let A and B be rings, ϕ : A → B be a ring homomorphism. The ring morphism
induces a continuous map f : SpecB → SpecA. For ease of notation, we denote X = SpecB, Y =
SpecA.

We know that (X,OX) and (Y,OY ), where OX and OY are the structure sheaves, are locally
ringed spaces. Therefore, we now aim to construct f# as above.

Since the structure sheaves were constructed in terms of the principal open sets, let us first deter-
mine f−1(DY (g)), where g ∈ A.

We clearly have that

f−1(DY (g)) = {p ∈ SpecB, f(p) ̸∋ g}
= {p ∈ SpecB,ϕ−1(p) ̸∋ g}
= {p ∈ SpecB, p ̸∋ g}
= DX(ϕ(g)).

10



Therefore, we want to first define maps f#DY (g) : OY (DY (g)) → OX(DX(ϕ(g))) in a natural way.

However, note that OY (DY (g)) = Ag and OX(DX(ϕ(g))) = Bϕ(g).

Thus, the natural definition is that f#DY (g) is the map ϕg : Ag → Bϕ(g) induced on the localizations

from ϕ. It is easy to check that this system is compatible (we need some sheaf theory for this), and

we can use these morphisms on basis to construct f#V for all open subsets V of Y.

The example above warrants the following definition.

Definition 1.2.19. A locally ringed space (X,OX) is called an affine scheme if it is isomorphic to
(SpecA,OSpecA), where A is some ring, as locally ringed spaces, that is, there are morphisms of locally
ringed spaces which are inverses of each other.

In the general case, one considers some gluing of affine varieties, and also of schemes. We will not
expand upon this, but we will simply give the definition.

Definition 1.2.20. (X,OX) is called a scheme if for all P ∈ X, there exists an open neighborhood
U of P such that (U,OX |U ) is an affine scheme.

1.3 Proof of Main Result

We will now prove our main result. For clarity of exposition, we first recall it.

Theorem 1.3.1. If f : X → Y is a flat morphism of finite type of Noetherian schemes, then f is
open.

Before we explain what finite type morphisms are, and before we prove the lemmas required, we
first illustrate how badly this fails through an example.

Example 1.3.2. Let X = Y = A2
k, and consider the regular map

f :X → Y

(x, y)→ (x, xy).

An easy computation shows that f(X) = (A1 \ {0} × A1) ∪ {(0, 0)}. Therefore, f(X) is not open.
However (A1 \ {0} × A1) is open and {(0, 0)} is closed. We now introduce an appropriate topological
notion of which this example is an illustration.

Definition 1.3.3. A subset of a topological space X is said to be locally closed if it is the intersection
of a closed and open subset of X. This includes both open and closed sets.

The image f(X) in the example above was a union of two locally closed subsets. This warrants
the following definition.

Definition 1.3.4. A subset of a topological space X is said to be constructible if it is the finite union
of locally closed sets.

Before we state any theorems regarding the constructibility of images of varieties/schemes, let us
first write down some natural properties of the collection of constructible sets.

Lemma 1.3.5. If X1 and X2 are constructible, then so are X1 −X2, X1 ∪X2 and X1 ∩X2.

Proof. We will only prove the case X1 ∩X2. The remaining statements are analogous.
Since X1 and X2 are constructible, then, by definition, there exists open sets U1, . . . , Un, V1, . . . , Vm

and closed sets F1, . . . , Fn, G1, . . . , Gm such that

X1 = (U1 ∩ F1) ∪ . . . ∪ (Un ∩ Fn),

and
X2 = (V1 ∩G1) ∪ . . . ∪ (Vm ∩Gm).

11



Therefore, it is easy to see that

X1 ∩X2 =
⋃

1≤i≤n
1≤j≤m

((Ui ∩ Vj) ∩ (Fi ∩Gj)),

which is clearly constructible.

We now give an alternative more intuitive definition of constructibility in the case of Noetherian
spaces.

Theorem 1.3.6. Let X be a Noetherian topological space. A subset Y of X is constructible if and
only if the following implication holds.

If F is a closed irreducible subset of X and Y ∩ F is dense in F, then there exists an open subset
U of X such that ∅ ≠ U ∩ F ⊂ Y ∩ F.

Proof. First, assume that Y is constructible, and let F be a closed irreducible subset of X such that
Y ∩ F is dense in F. Since Y is constructible, there exists open sets U1, . . . , Un of X, and closed sets
F1, . . . , Fn of X such that Y = (U1 ∩ F1) ∪ . . . ∪ (Un ∩ Fn).

We then have that Y ∩ F = (U1 ∩ (F1 ∩ F ))∪ . . .∪ (Un ∩ (Fn ∩ F )). If Y ∩ F = F, where Y ∩ F is
the closure of Y ∩ F, then we have

F = U1 ∩ F1 ∩ F ∪ . . . ∪ Un ∩ Fn ∩ F .

Since F is assumed to be irreducible, then F = Um ∩ Fm ∩ F for some m ∈ {1, . . . , n}. But then, we
have that

F ⊂ Um ∩ Fm ∩ F ⊂ Fm ∩ F = Fm ∩ F ⊂ F,

and therefore, F = F ∩ Fm. This implies that

Um ∩ F = Um ∩ (Fm ∩ F ) = (Um ∩ Fm) ∩ F ⊂ Y ∩ F,

and we proved our claim.
Now, assume that the implication holds and Y is not constructible. We will use the principle of

Noetherian induction to obtain a contradiction. To this end, define

P := {∅ ≠ Z ⊂ X,Z is closed and Y ∩ Z is not constructible.} .

Since Y is not constructible, P ≠ ∅. Since X is Noetherian, P contains a minimal element, say Z0.
First, we claim that Z0 is irreducible. Assume that Z0 = Z1 ∪ Z2 where Z1 and Z2 are proper

closed subsets of Z0. Then, Y ∩ Z0 = (Y ∩ Z1) ∪ (Y ∩ Z2). By minimality o Z0, we have that Y ∩ Z1

and Y ∩Z2 are constructible, and therefore, Y ∩Z0 is constructible, a contradiction. Therefore, Z0 is
irreducible.

Second, we claim that Y ∩Z0 is dense in Z0. Assume not. Then, Y ∩ Z0 is a proper closed subset
of Z0 and by minimality of Z0 in P, we have that Y ∩ Y ∩ Z0 is constructible. However, it is clear
that

Y ∩ Z0 ⊂ Y ∩ Y ∩ Z0 ⊂ Y ∩ Z0 = Y ∩ Z0,

and therefore, Y ∩ Z0 is constructible, a contradiction. Therefore, Y ∩ Z0 is dense in Z0.
Finally, using the implication, we have that there exists an open subset U of X such that U ∩Z0 ⊂

Y ∩Z0. Since U is open and Z0 is closed, U ∩Z0 is locally closed, and thus constructible. In addition,
we can write

Y ∩ Z0 = (U ∩ Z0) ∪ (Y ∩ (Z0 \ U)).

Since U ∩Z0 ̸= ∅, we have that Z0 \U is a proper closed subset of Z0, and thus, by minimality of Z0,
we have that Y ∩ (Z0 \ U) is constructible, and therefore, Y ∩ Z0, being a union of two constructible
sets, is constructible, a contradiction.

Therefore, Y is constructible, and we are done.
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Now, we give the definition of morphisms of schemes of flat type.

Definition 1.3.7. Let f : X → Y be a morphism of schemes.
(i) We say that f is locally of finite type at x ∈ X if there exists U = SpecB, V = SpecA neighborhoods
of x and f(x) respectively such that the ring morphism ϕ : A → B which induces f |U : U → V is of
finite type, that is, B is finitely generated as an A-algebra through ϕ.
(ii) We say that f is of finite type if it is locally of finite type at all x ∈ X.

We now have the exact theorem which illustrates what happened in Example 1.3.2.

Theorem 1.3.8 (Chevalley’s Theorem). Let f : X → Y be a morphism of finite type of Noetherian
schemes. Then, f(X) is constructible.

An immediate corollary is the following.

Corollary 1.3.9. If f : X → Y is a morphism as in Chevalley’s theorem, and Z is a constructible
subset of X, then f(Z) is constructible.

Proof. This follows by the fact that the restriction f |Z : Z → Y satisfies the hypothesis of Chevalley’s
theorem when Z is constructible.

We now prove Theorem 1.3.8.

Proof of Chevalley’s Theorem. Since Y is a Noetherian scheme, it can be covered by finitely many
affine open sets Vi and since X is a Noetherian scheme, f−1(Vi) can be covered by finitely many open
affine subsets of X. Therefore, it suffices to prove this theorem when X = SpecB, Y = SpecA and
f : X → Y is induced from a ring homomorphism ϕ : A→ B.

Since Y is Noetherian, to show that f(X) is constructible in Y, by Theorem 1.3.6, we are required
to show the following.

If F ⊂ Y is an irreducible closed set with f(X) ∩ F dense in F, then f(X) ∩ F must contain a
nonempty subset U ∩ F with U open in Y.

First, note that the irreducible closed subsets of Y are given by V (p) := {p′ ∈ SpecA, p′ ⊃ p} for
p ∈ SpecA. It is a well-known fact of algebra that the prime ideals contained in V (p) correspond to
the prime ideals of A/p. It can be shown that this holds in a scheme-theoretic sense, in the sense that
V (p) is isomorphic to SpecA/p.

Under this identification, the image f(X)∩V (p) = ϕ−1(SpecB)∩V (p) is identified with the image
of the map SpecB/pB → SpecA/p induced from the natural map ϕ̃ : A/p → B/pB. This is called
base-change.

Since we are interested in the case when f(X) ∩ F is dense in F, we compute the closure of the
image under these identifications.

Let ϕ̃ : A/p→ B/pB. Then,

ϕ̃−1(SpecB/pB) = {ϕ̃−1(q), q ∈ SpecB/pB}
= V (∩ϕ̃−1(q)), where q ranges over SpecB/pB.

= V (ϕ̃−1(∩q))
= V (ϕ̃−1(0))

= {p′ ∈ SpecA/p, p′ ⊃ ker ϕ̃}.

Therefore, f(X) ∩ F is dense in F is equivalent, after identification, to ker ϕ̃ = 0, that is, to
ϕ̃ : A/p→ B/pB.

To recapitulate, we want to prove that if ϕ̃ : A/p → B/pB is injective, then, ϕ̃−1(SpecB/pB)
contains an open set. Therefore, since p is a prime ideal of A, that is A/p is an integral domain, and
B/pB, by our hypothesis, is a finitely generated A/p-algebra, then it suffices to prove the following
algebraic fact.
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If ψ : A→ B is an injective homomorphism where B is a finitely generated A-algebra and A is an
integral domain, then, there exists a nonzero element a ∈ A such that every prime ideal of A lying in
the set D(a) = {p ∈ SpecA, a ̸∈ p} is the inverse image of a prime ideal of B.

To prove this, write B = A[x1, . . . , xn], where x1, . . . , xr are algebraically independent over A and
xr+1, . . . , xn are algebraic over A[x1, . . . , xr]. In other words, for each j, r + 1 ≤ j ≤ n, we have an
equation

pj0x
dj
j + pj1x

dj−1
j + . . .+ pjdj = 0,

where pji ∈ A[x1, . . . , xn] and pj0 ̸= 0. Then
n∏

j=r+1
pj0 is a nonzero polynomial. We take a to be any

nonzero coefficient of this polynomial.

Now, if p is a prime ideal of A that does not contain a, then clearly,
n∏

j=r+1
pj0 ̸∈ p[x1, . . . , xr], and

p[x1, . . . , xr] is a prime ideal of A[x1, . . . , xr], which we denote by p′.

Since
n∏

j=r+1
pj0 ̸∈ p′, we then have that pj0 ̸∈ p′ for all j, and therefore, Bp′ is integral over

A[x1, . . . , xr]p′ . By the going-up theorem, there exists a prime ideal q of Bp′ such that its inverse
image (recall that the map is injective, so we can use the going-up theorem) is p′, and therefore, the
inverse image of q in A is p.

Now, we have proved that for morphisms of finite type of Noetherian schemes, the image of a
constructible set is constructible. Therefore, to prove that the image is open under a certain condition,
it is enlightening to find a condition for which a constructible set is open. To answer this, we first give
the following definitions.

Definition 1.3.10. Let X be a topological space, x, y ∈ X. We say that y is a generalization of x if
x ∈ {y}.

Definition 1.3.11. Let X be a topological space, x ∈ X. We say that x is a generic point of X if
{a} = X.

We now give the following lemma without proof.

Lemma 1.3.12. If X is a Noetherian scheme, then every irreducible closed subset of X contains a
generic point.

Now, we characterize open constructible sets in Noetherian schemes, with an even more generality
than we actually need.

Theorem 1.3.13. Let X be a Noetherian topological space such that every irreducible closed subset
of X has a generic point. Let U be a constructible subset of X and x ∈ U. Then, U contains an open
neighborhood of x (in X) if and only if U contains every generalization of x.

Proof. If U contains an open neighborhood of x, the implication is trivial.
Now, assume U contains every generalization of x. To obtain a contradiction, assume that U

contains no open neighborhood of x. We again argue by Noetherian induction.
To this end, let P := {Z, x ∈ Z ⊂ X is closed and U∩Z contains no open neighbohood of x in Z}.

Since X ∈ P, we have that P ≠ ∅ and therefore, it must contain a minimal element, say Z0.
First, we claim that Z0 is irreducible. Assume not, then Z0 = Z1∪Z2, where Z1 and Z2 are proper

closed subsets of Z0. As a first case, assume that Z1 and Z2 both contain x. By the minimality of Z0,
there exists V1, V2 open neighborhoods of x in X such that V1 ⊂ Z1 ∩ U ∩ Z1 and V2 ⊂ Z2 ∩ U ∩ Z2.
Therefore, we have that (V1 ∪ V2) ∩ U ⊂ Z0 ∩ U, a contradiction with our choice of Z0. As a second
case, assume Z1 contains x and Z2 doesn’t. Then, simply taking V1 as above, we have that V1 \ Z2

contains x, and is therefore nonempty. Then, we have that (V1 \Z2)∩Z = V1 ∩Z1 ⊂ U ∩Z1 ⊂ U ∩Z,
again, a contradiction. The case where Z1 doesn’t contain x and Z2 does is handled in exactly the
same manner. Therefore, Z0 is irreducible.

Second, we claim that U∩Z0 is dense in Z0. Let y be a generic point of Z0. Then, y is a generalization
of x. Therefore, by assumption, U contains y. Therefore, U ∩ Z0 ⊃ y = Z0.s
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Now, since U is constructible, Z0 is irreducible closed subset of X and U ∩ Z0 is dense in Z0, we
have that there exists an open subset V of X such that ∅ ≠ V ∩ Z0 ⊂ U ∩ Z0.

We now claim that V contains x. Assume not. Then, Z0 \ (V ∩Z0) is a proper closed subset of Z0,
and since this proper subset contains x, we have that there exists W an open neighborhood of x such
that W ∩ (Z0 \ (V ∩Z0)) ⊂ U ∩ (Z0 \ (V ∩Z0)). But then, W ∩Z0 =W ∩ (Z0 \ (V ∩Z0))∪W ∩V ∩Z0 ⊂
U ∩ (Z0 \ (V ∩ Z0)) ∪ V ∩ Z0 ⊂ U ∩ Z0, a contradiction with our choice of Z0.

But then, V ∩Z0 is an open neighborhood (in Z0) of x contained in U ∩Z0, again, a contradiction
with our choice of Z0. Therefore, we conclude that U contains an open neighborhood of x.

To recapitulate, let f : X → Y be a flat morphism of finite type of Noetherian schemes. We have
that f(X) is constructible. Therefore, to prove that f(X) is open, we have to show that f(X) is closed
under generalization.

To do this, we first derive an algebraic condition for f(X) to be closed under generalization. This
is encapsulated in the following proposition.

Proposition 1.3.14. Let f : X → Y be a morphism of finite type of Noetherian schemes. Let
x ∈ X, y = f(x). Then, the following are equivalent.
(i) f maps neighborhoods of x to neighborhoods of y.
(ii) For every generalization y′ of y, there exists a generalization x′ of x such that f(x′) = y′.

(iii) (f#x )−1 : SpecOX,x → SpecOY,y is surjective.

Before we prove this proposition, a remark is in order regarding the map (f#x )−1. First, we have

that f#U : OY (U) → OX(f−1(U)) for every open subset U of Y. By taking direct limits, passing to

the stalk, we then have an induced map f#x : OY,y → OX,x. Note that this is a ring morphism, and

therefore, defines a map on the spectra, namely (f#x )−1 : SpecOX,x → SpecOY,y.

Proof of Proposition 1.3.14. We first prove that (ii) and (iii) is equivalent
To this end, by taking affine neighborhoods of x and y, we lose no generality if we assume X =

SpecB, Y = SpecA and f : X → Y is the map induced by the ring morphism ϕ : A→ B.
Now, if y ∈ Y = SpecA and y′ is a generalization of y, that is, y ∈ {y′} = V (y′), that is, y is

a prime ideal containing y′. In other words, the generalizations of y can be identified with the prime
ideals of Ay and the generalizations of x can be identified with the prime ideals of x.

Since OX,x = Bx and OY,y = Ay, and by the remark above, (f#x )−1 is clearly the map on the
spectra induced by ϕx : Ax → By, the equivalence between (ii) and (iii) follows immediately.

Now, we prove that (i) implies (ii). Suppose that y′ is a generalization of y. Let F be the union of
the irreducible components of f−1({y′}) not containing x. Then, X − F is a neighborhood of x, and
f(X − F ) is an open neighborhood of y. Therefore, f(X − F ) contains every generalization of y, and
thus y′ ∈ f(X −F ), say, y′ = f(x1). Then, x1 lies in an irreducible closed component C of X −F. Let
x′ be the generic point of C. Then, x1 ∈ x′, and thus, since f is continuous, y′ = f(x1) ∈ f(x′). On
the other hand, x′ ∈ C ⊂ f−1({y′}), and thus, f(x′) ∈ {y′}. Therefore, f(x′) = y′.

Finally, let us prove that (ii) implies (i). Let U be an open neighborhood of x. Then U is con-
structible, and therefore, f(U) is constructible. Therefore, Furthermore, by (ii), f(U) contains every
generalization of y, and therefore, f(U) contains an open neighborhood of y.

We are now ready to define flat morphisms, where flatness is an algebraic condition, and proceed
to prove our main theorem.

Definition 1.3.15. A morphism f : X → Y of schemes is called flat if OY,y → OX,x is flat as a map
of modules for every x ∈ X, y = f(x), that is, OX,x is a flat OY,f(x)-module under f.

By the previous proposition and its proof, we want to prove the following. Let ϕ : R→ A be a ring
morphism of finite type, q ∈ Spec(A), with ϕ−1(q) = p, and consider the induced map ϕ̃ : Rp → Aq.
If ϕ̃ is flat, then (ϕ̃)−1 : SpecAq → SpecRp is surjective.

Since Aq and Rp are both local rings and ϕ̃ is a local map, we are done if we prove the following
algebraic fact.
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Lemma 1.3.16. Let ϕ : (A,m) → (B, n) be a local morphism of local rings such that B is finitely
generated as an A-algebra, and ϕ is flat. Then, the induced map SpecB → SpecA is surjective.

Proof. Let p be a prime ideal in A, and consider the ring B ⊗A Q(A/p), where Q(A/p) is the field of
fractions of A/p, which is well-defined since A/p is an integral domain.

First, let us prove that B ⊗A Q(A/p) ̸= 0. Since B is a flat A-module, we have that B ⊗A A/p
embeds into B ⊗A Q(A/p). Furthermore, since A/p embeds into A/m and since B is a flat A-module,
we have that B⊗AA/p embeds into B⊗AA/m. Since ϕ is local, we thus have that B⊗AA/m ∼= B/n,
and therefore, is nonzero. Thus, B ⊗A Q(A/p) ̸= 0.

But then, the ring B ⊗A Q(A/p) contains some prime ideal r. Now, r ∩Q(A/p) is a prime ideal of
Q(A/p), and thus, the zero ideal. Therefore, r ∩A = p, and we are done.
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Chapter 2

Faithfully Flat Descent
Wojciech Tralle

Introduction

The theory of faithfully flat descent starts with the theory of flat and faithfully flat modules.

Definition 2.0.1. An A-module M is called flat if for every injective homomorphism of A-modules

N
f−→ N ′ the map

N ⊗AM
f⊗1−−→ N ′ ⊗AM

is injective.

Definition 2.0.2. Let M be a flat A-module. We say that M is faithfully flat over A if for any
A-module N , if M ⊗A N = 0, then N = 0.

Let B be a commutative A-algebra. In this talk we are going to address the following descent
problems.

(1) Let M and N be a pair of A-modules, and g ∈ HomB(M ⊗A B,N ⊗A B). When does g have
the form g = f ⊗ 1 for some f ∈ HomA(M,N)?

(2) Let M be a B-module. When do we have

M ∼= N ⊗A B

for some A-module N?

Note that without strong assumptions on B these questions would be meaningless. However, if
one imposes the condition of faithful flatness on B, the situation changes. In particular, we obtain
the following results.

Theorem 2.0.3. (Descent of Homomorphisms) Let B be a faithfully flat A-algebra over a commutative
ring A, and M,N a pair of A-modules. One defines certain maps F0,F1 so that the following sequence
is exact

0 −→ HomA(M,N)
F−→ HomB(M ⊗A B,N ⊗A B)

F0−F1−−−−→ HomB⊗AB(M ⊗A B ⊗A B,N ⊗A B ⊗A B),

where F(f) = f ⊗ 1. As a consequence, any homomorphism g ∈ HomB(M ⊗A B,N ⊗A B) is of the
form g = f ⊗ 1 for some f ∈ HomA(M,N) if and only if g ∈ ker(F0 − F1).

This theorem gives necessary and sufficient conditions for Question (1) to have a positive answer.
The key assumption is the faithful flatness of B. We will prove the exactness of the sequence above
in Proposition 2.2.4.
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Answering Question (2) is more complicated: one needs to formulate the answer in terms of the
descent datum, that is, in terms of a special homomorphism

g : B ⊗AM −→M ⊗A B

and three homomorphisms g1, g2 and g3 on B ⊗A B ⊗M and on B ⊗AM ⊗A B, respectively. If these
homomorphisms satisfy some additional assumptions, we say that g is a descent datum. The Main
Theorem we want to prove, provides sufficient conditions to obtain a positive answer to Question (2).
It is usually referred to as the Theorem of Faithfully Flat Descent for Modules.

Theorem 2.0.4. (Descent of Modules) Let B be a commutative faithfully flat A-algebra. Let M be
a B-module and let g : B ⊗A M → M ⊗A B be a descent datum for M over B. Then there exists
an A-module N and an isomorphism ν : N ⊗A B → M of B-modules such that the diagram of
B ⊗A B-modules

B ⊗A N ⊗A B B ⊗AM

N ⊗A B ⊗A B M ⊗A B

τ

1⊗ν

ν⊗1

g (2.1)

commutes, where τ(a ⊗ b ⊗ c) = b ⊗ a ⊗ c. Up to isomorphism, these properties uniquely determine
the module N and the isomorphism ν.

It turns out that we can extend Theorem 2.0.4 to algebras. The formulation for algebras is as
follows.

Theorem 2.0.5. (Descent of Algebras) Let B be a commutative faithfully flat A-algebra. Let M be a
B-algebra and g : B⊗AM →M⊗AB be a descent datum for M over B such that g is an isomorphism
of B ⊗A B-algebras. Then there exists an A-algebra N and an isomorphism ν : N ⊗A B → M of B-
algebras such that the diagram of B ⊗A B-algebras

B ⊗A N ⊗A B B ⊗AM

N ⊗A B ⊗A B M ⊗A B

τ

1⊗ν

ν⊗1

g (2.2)

commutes, where τ(a ⊗ b ⊗ c) = b ⊗ a ⊗ c. Up to isomorphism, these properties uniquely determine
the module N and the isomorphism ν.

We can formulate our problem in terms of category theory as follows. There is a functor −⊗A B
from the category of A-modules to the category of B-modules, which sends every A-module N , to its
extension of scalars, namely N ⊗A B, which is naturally endowed with the structure of a B-module.
We are addressing the following question.
Question: When can we go the other way? In other words, when is a B-module M of the form
N ⊗A B for some A-module N?

The technique of faithfully flat descent was developed by A. Grothendieck in a series of Bourbaki
seminars over the period 1959-1962.

2.1 Flatness and faithful flatness

2.1.1 Definitions and examples

Definition 2.1.1. An A-module M is called flat if for every injective homomorphism of A-modules

N
f−→ N ′ the map

N ⊗AM
f⊗1−−→ N ′ ⊗AM

is injective.

18



Remark 2.1.2. The tensor product is known to be right-exact, so flat modules are precisely those
modules that send short exact sequences to short exact sequences.

Example 2.1.3. All free modules (and more generally all projective modules) are flat.

Example 2.1.4. Q is a flat Z-module. In fact, let L
ψ
↪−→M be an inclusion of Z-modules. We want to

show that L⊗Z Q ψ⊗1−−−→ M ⊗Z Q is injective. First, note that every element of L⊗Z Q is of the form
l ⊗ 1

d for l ∈ L, d ∈ Z \ {0}. In fact, let
∑

i li ⊗
ai
bi
∈ L ⊗Z Q with li ∈ L and ai, bi ∈ Z with bi ̸= 0.

Denote di =
∏
j ̸=i bj , d =

∏
j bj and l =

∑
i diaili. We have

∑
i

li ⊗
ai
bi

=
∑
i

aili ⊗
1

bi
=
∑
i

aili ⊗
∏
j ̸=i bj∏
j bj

=
∑
i

aili ⊗
di
d

=
∑
i

diaili ⊗
1

d

= l ⊗ 1

d
.

If l⊗ 1
d ∈ ker(ψ⊗ 1) then ψ(l)⊗ 1

d = 0 in M ⊗ZQ ∼= S−1M with S = Z \ {0} (recall the S−1A-module
isomorphismM⊗AS−1A ∼= S−1M,m⊗ a

s 7→
am
s for any multiplicative set S). Thus, c·ψ(l) = ψ(cl) = 0

for some c ∈ Z \ {0}, so cl = 0 because ψ is injective. Hence, l ⊗ 1
d = l ⊗ c

cd = cl ⊗ 1
cd = 0 in L⊗Z Q.

Consequently, ψ ⊗ 1 is injective as desired.
Note that this example can be easily generalized as follows. Replace Z with any domain A and Q

with the field of fractions Frac(A) of A. We will see that even more is true, namely localizations are
flat.

Example 2.1.5. For any n ≥ 2, Z/nZ is not flat over Z. In fact, after tensoring the canonical
injection

nZ ↪−→ Z

with Z/nZ, the image of nZ⊗Z Z/nZ in Z⊗Z Z/nZ ∼= Z/nZ is equal to n · Z/nZ = 0 but

nZ⊗Z Z/nZ ∼= Z⊗Z Z/nZ ∼= Z/nZ ̸= 0

which shows that the map
nZ⊗Z Z/nZ→ Z⊗Z Z/nZ

is not injective.

Example 2.1.6. k[x] is flat over k[x2]. In fact, k[x] = (k[x2])[x] is a polynomial ring over k[x2] so it
is free and therefore flat.

Example 2.1.7. The A = k[x, xy]-module M = k[x, y] is not flat. We will apply the criterion for
flatness with ideals (see Theorem 2.1.9). Take the ideal I = (x, y) generated by x and y. Then
x ⊗ y − xy ⊗ 1 ̸= 0 in I ⊗A M but it goes to 0 under the canonical map I ⊗A M → IM . In fact,
it is enough to find a bilinear map I ×M → IM that sends (x, y) − (xy, 1) to a nonzero element of
IM . For f =

∑
i,j cijx

iyj ∈ I consider the bilinear map s : I ×M → IM, (f,m) 7→ c10 ·m. Then
s((x, y))− s((xy, 1)) = 1 · y − 0 · 1 = y ̸= 0, so x⊗ y − xy ⊗ 1 ̸= 0.

2.1.2 Properties of flatness

Proposition 2.1.8. Let A be a commutative ring. The following statements hold.

(1) Every free module is flat

(2) (Product) The tensor product of modules that are flat over A is flat over A
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(3) (Base Change) Let B be an A-algebra. If M is flat over A, then M ⊗A B is flat over B

(4) (Transitivity) Let B be a flat A-module. Then every B-module that is flat over B is flat over A.

Proof. We only prove (1) and (3). The other two properties are proved similarly.

(1) If M is free then M =
⊕

i∈I A. Let N ′ ι
↪−→ N be an inclusion of A-modules. Note that

N ′ ⊗AM ∼= N ′ ⊗A
⊕

i∈I A
∼=
⊕

i∈I N
′ ⊗A A ∼=

⊕
i∈I N

′. Similarly, N ⊗AM ∼=
⊕

i∈I N , so the map

N ′ ⊗A M → N ⊗A M is the map
⊕

i∈I N
′

⊕
i∈I ι−−−−→

⊕
i∈I N which is injective because ι is injective.

Hence M is flat.
(3) LetN ′ ↪−→ N be an inclusion of B-modules. ThenN ′⊗B(M⊗AB) ∼= N ′⊗B(B⊗AM) ∼= N ′⊗AM

and similarly, N ⊗B (M ⊗AB) ∼= N ⊗AM so the map N ′⊗B (M ⊗AB)→ N ⊗B (M ⊗AB) is injective
because M is flat over A. Hence M ⊗A B is flat over B.

Theorem 2.1.9. (Criterion for flatness using ideals) Let M be an A-module. Then M is flat if and
only if for any ideal I of A the canonical homomorphism I ⊗AM → IM is an isomorphism.

Proof. Suppose that M is flat and consider the canonical inclusion I
ι
↪−→ A. Then I ⊗A M

ι⊗1
↪−−→

A⊗AM ∼=M and im(ι⊗ 1) = IM so I ⊗AM ∼= IM .
Conversely, suppose that we have this isomorphism for all ideals I of A. Let N ′ ↪−→ N be an

inclusion of A-modules. We argue by considering more and more general cases of N .
Case 1: N is free of finite rank n, so N ∼= An.
If n = 1 then N ∼= A so N ′ can be viewed as an ideal of N , and N ′ ⊗A M ↪−→ N ⊗A M by

assumption. Suppose that n ≥ 2 and suppose that the result holds for all free modules of rank < n.
Write N = N1 ⊕N2 for two free submodules N1, N2. Let N ′

1 = N1 ∩N ′ and N ′
2 be the image of N ′

in N2
∼= N/N1. We get the following commutative diagram with exact horizontal arrows:

N ′
1 N ′ N ′

2

N1 N N2

Tensoring with M gives

N ′
1 ⊗AM N ′ ⊗AM N ′

2 ⊗AM

N1 ⊗AM N ⊗AM N2 ⊗AM

β

α

γ

with horizontal arrows still exact because −⊗AM is right exact. Now

• α is injective (by distributivity of the tensor product over direct sum)

• β and γ are injective (by induction hypothesis applied to Ni)

so N ′ ⊗AM → N ⊗AM is injective. In fact, it follows from exactness of the rows:

0 ker(ϕ) 0

N ′
1 ⊗AM N ′ ⊗AM N ′

2 ⊗AM

N1 ⊗AM N ⊗AM N2 ⊗AM

ϕ

Case 2: N is free of arbitrary rank.
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If N0 is a direct factor of N of finite rank then (N ′∩N0)⊗AM ↪−→ N0⊗AM so (N ′∩N0)⊗AM ↪−→
N ⊗AM because N0 is a direct factor of N . Since every element of the tensor product N ′ ⊗AM is a
finite sum of simple tensors for any x ∈ N ′ ⊗AM , there is N0 such that x is contained in the image
of (N ′ ∩N0)⊗AM ↪−→ N ⊗AM , so N ′ ⊗AM ↪−→ N ⊗AM .

Case 3: N is an arbitrary A-module.
There is a free A-module L and a surjective homomorphism L ↠ N (take L =

⊕
n∈N A and

p : L→ N, (0, . . . , 0, 1, 0, . . .) 7→ n). Let L′ = p−1(N ′). We have the following commutative diagram

ker(p) L′ N ′ 0

ker(p) L N 0

with exact horizontal arrows so after tensoring we get

ker(p)⊗AM L′ ⊗AM N ′ ⊗AM 0

ker(p)⊗AM L⊗AM N ⊗AM 0

f g

with the rows still exact. Since f is injective, g is also injective.

Corollary 2.1.10. Let A be a PID. An A-module M is flat if and only if it is torsion-free.

Proof. For a ∈ A, a ̸= 0, let ta and ua be left multiplication maps by a in A and M , respectively.
For the ideal I := (a), ta : A → I, x 7→ ax is an isomorphism. We have the following commutative
diagram

A⊗AM M I ⊗AM

IM

ta⊗1

f
ua

∼=

If M is flat then ta ⊗ 1 is an isomorphism, so ua is an isomorphism. Hence M is torsion-free.
Conversely, suppose that M is torsion-free. It suffices to show that f is injective. Let x =∑
i axi ⊗mi ∈ I ⊗AM , where I = (a), a ̸= 0 and A is a PID. If x ∈ ker(f) then

f(x) =
∑
i

aximi = a ·
∑
i

ximi = 0,

so
∑

i ximi = 0 because M is torsion-free. Thus, x =
∑

i axi ⊗mi = a ⊗
∑

i ximi = 0, which proves
that f is injective.

Lemma 2.1.11. For any multiplicative set S of A the canonical homomorphism A → S−1A is flat,
i.e. S−1A is flat over A for its A-module structure.

Proof. If N ↪−→ M is an inclusion of A-modules then after tensoring we get S−1N ∼= N ⊗A S−1A →
M ⊗A S−1A ∼= S−1M which is injective because localizations are exact.

Lemma 2.1.12. Let M be an A-module. Then M = 0 if and only if Mm = 0 for all maximal ideals
m ∈ Specmax(A).

Proof. If M = 0 then clearly Mm = 0 for all maximal ideals m of A.
Conversely, suppose that Mm = 0 for all maximal ideals m of A. Let x ∈ M and let I = {a ∈

A | ax = 0}. We claim that I = A. In fact, if I is a proper ideal of A then it must be contained in
some maximal ideal m of A. By assumption, Mm = 0 so there exists s ∈ S = A \m such that sx = 0,
so s ∈ I. Thus, I ̸⊂ m, which is a contradiction. Thus, I = A and 1 ∈ I so x = 1 · x = 0 which proves
that M = 0.
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Proposition 2.1.13. Let M be an A-module. The following are equivalent:

(1) M is flat over A

(2) Mp is flat over Ap for all p ∈ Spec(A)

(3) Mm is flat over Am for all m ∈ Specmax(A).

Proof. (1) ⇒ (2) Suppose that M is flat over A. Let p ∈ Spec(A), S = A \ p. Then Mp = S−1M ∼=
M ⊗A S−1A is flat over S−1A = Ap (follows from base change property, see Proposition 2.1.8).

(2) ⇒ (3) clear.
(3) ⇒ (1) Let N ′ ↪−→ N be an inclusion of A-modules. Let L = ker(N ′ ⊗A M → N ⊗A M). By

Lemma 2.1.11, A→ S−1A is flat for any S, so for any maximal ideal m of A we get an exact sequence

0→ L⊗A Am → (N ′ ⊗AM)⊗A Am → (N ⊗AM)⊗A Am.

which can be rewritten as

0→ L⊗A Am → N ′
m ⊗Am Mm → Nm ⊗Am Mm

In fact, we have the following isomorphism

N ′
m⊗AmMm

∼= S−1N ′⊗S−1AS
−1M ∼= (N ′⊗AS−1A)⊗S−1A(M⊗AS−1A) ∼= N ′⊗AM⊗AS−1A ∼= (N ′⊗AM)⊗AAm.

Since N ′
m ↪−→ Nm andMm is flat over Am, we get N

′
m⊗AmMm ↪−→ Nm⊗AmMm. Thus, L⊗AAm = Lm = 0,

so L = 0 by Lemma 2.1.12.

2.1.3 Relation between projective and flat modules

Definition 2.1.14. A module is projective if it is a direct summand of a free module.

Definition 2.1.15. An A-module M is finitely presented if there is an exact sequence

F1 → F0 →M → 0

where F0, F1 are free with finite bases.

The goal of this section is to prove the following theorem:

Theorem 2.1.16. A finitely presented module is projective if and only of it is flat.

Proposition 2.1.17. Projective modules are flat.

Proof. By definition, projective modules are direct summands of free modules so it is enough to show
that for any A-module M of the form M =

⊕
i∈IMi,

M is flat if and only if each Mi is flat .

Let N
ι
↪−→ L be an inclusion of A-modules. We have the following commutative diagram (with vertical

maps the isomorphisms expressing the bilinearity of ⊗ over ⊕):

N ⊗A (
⊕

i∈IMi) L⊗A (
⊕

i∈IMi)

⊕
i∈I(N ⊗AMi)

⊕
i∈I(L⊗AMi)

∼= ∼=

ι⊗1

Since the top map is injective if and only if the bottom map is injective, the result follows.

Definition 2.1.18. If M is an A-module then its character module is defined by

M∗ = HomZ(M,Q/Z).

It is an A-module by defining a · f(m) = f(am) = f(ma).
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Lemma 2.1.19. A sequence of A-modules

M1
α−→M

β−→M2 (⋆)

is exact if and only if the sequence

M∗
2

β∗
−→M∗ α∗

−→M∗
1 (⋆⋆)

is exact.

Proof. If (⋆) is exact then HomZ(−,Q/Z) carries it into an exact sequence.
Let us prove the converse. We want to show that

ker(α∗) = im(β∗) ⇒ ker(β) = im(α).

Suppose that m1 ∈ M1 and α(m1) ̸∈ ker(β), so β ◦ α(m1) ̸= 0. Since Q/Z is a cogenerator, there
is f : M2 → Q/Z with f ◦ β ◦ α(m1) ̸= 0, f ∈ M∗

2 , so f ◦ β ◦ α ̸= 0. Thus, α∗ ◦ β∗(f) ̸= 0, a
contradiction. This proves that im(α) ⊂ ker(β). Now suppose that there is m ∈ ker(β), m ̸∈ im(α).
Then m+im(α) ̸= 0̄ inM/im(α). Thus, there exists g :M/im(α)→ Q/Z such that g(m+im(α)) ̸= 0.
Consider f := g ◦ π : M → Q/Z where π : M → M/im(α) is the natural projection. Then f(m) ̸= 0
and f(im(α)) = 0, so 0 = f ◦α = α∗(f) and f ∈ ker(α∗) = im(β∗). Hence, f = β∗(h) = h ◦β for some
h ∈M∗

2 , which implies f(m) = h ◦ β(m) = 0 but f(m) ̸= 0, a contradiction.

Lemma 2.1.20. Let A,B be rings. Let M be a finitely presented A-module and N an (A,B)-bimodule
(i.e. a left A-module, a right B-module and (am)b = a(mb) holds for all a ∈ A, b ∈ B,m ∈ N). Then
σ : N∗⊗AM → HomA(M,N)∗ given by ϕ⊗m 7→ [ψ 7→ ϕ(ψ(m))] for ϕ ∈ N∗,m ∈M,ψ ∈ HomA(M,N)
is an isomorphism.

Proof. Since M is finitely presented, there exist m,n ∈ N such that

Am → An →M (⋆)

is an exact sequence of A-modules. We claim that N∗ ⊗A Am ∼= HomA(A
m, N)∗. Tt follows from

properties of Hom functor and the tensor product. In fact,

N∗ ⊗A Am ∼= N∗ ⊗A
m⊕
i=1

A

∼=
m⊕
i=1

(N∗ ⊗A A)

∼=
m⊕
i=1

HomA(A,N)∗

∼=
m⊕
i=1

HomZ(HomA(A,N),Q/Z)

∼= HomZ(
m⊕
i=1

HomA(A,N),Q/Z)

∼= HomZ(HomA(A
m, N),Q/Z)

= HomA(A
m, N)∗

After applying N∗ ⊗A − to (⋆) we get:

N∗ ⊗A Am N∗ ⊗A An N∗ ⊗AM 0

HomA(A
m, N)∗ HomA(A

n, N)∗ HomA(M,N)∗ 0

σ∼=∼=

By the Three Lemma, σ is an isomorphism.
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Fact: P is a projective A-module if an only if HomA(P,−) is right exact.

Proof. (of the Theorem 2.1.16): Let N
ϕ−→ N0 be an exact sequence of A-modules. By the fact above

it is enough to show that

HomA(M,N)
ϕ∗−→ HomA(M,N0) −→ 0

is exact. By Lemma 2.1.19, 0 → N∗
0 → N∗ is exact. After applying − ⊗A M , we get the following

commutative diagram

0 N∗
0 ⊗AM N∗ ⊗AM

0 HomA(M,N0)
∗ HomA(M,N)∗

∼= ∼=

Since M is flat the top row is exact and the vertical maps are isomorphisms so the bottom row is
exact. By Lemma 2.1.19 again, we get that

HomA(M,N)→ HomA(M,N0)→ 0

is exact. Hence, M is projective.

2.1.4 Faithfully flat modules

Proposition 2.1.21. Let M be a flat A-module. Then the following are equivalent:

(1) M ̸= mM for every maximal ideal m of A.

(2) Let N be an A-module. If M ⊗A N = 0, then N = 0.

(3) Let f : N1 → N2 be a homomorphism of A-modules. If f ⊗ 1M : N1 ⊗A M → N2 ⊗A M is an
isomorphism, then so is f .

Proof. See See [[2], Corollary 2.20., pp. 12]

Definition 2.1.22. Let M be a flat module over a ring A. We say that M is faithfully flat over A
if it verifies one of the properties of the proposition above. Let f : A→ B be a ring homomorphism.
We say that B is faithfully flat over A if it is faithfully flat as an A-module. We will also say that f
is faithfully flat.

Remark 2.1.23. One can verify that Proposition 2.1.8 remains true if we replace ”flat” by ”faithfully
flat” and take only non-zero modules.

Corollary 2.1.24. Let f : A → B be a flat ring homomorphism. The following properties are
equivalent:

(1) f is faithfully flat.

(2) For every prime ideal p of A, there exists a prime ideal q of B such that f−1(q) = p.

(3) For every maximal ideal m of A, there exists a maximal ideal n of B such that f−1(n) = m.

Proof. See [[2], Corollary 2.20., pp. 13]
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2.2 Faithfully flat descent

2.2.1 Amitsur complex

Definition 2.2.1. Let θ : A → B be a homomorphism of commutative rings. By B⊗r we denote
B ⊗A · · · ⊗A B, the tensor product of r copies of B. For any 0 ≤ j ≤ r, define the A-module
homomorphisms

ej : B
⊗(r+1) −→ B⊗(r+2)

b0 ⊗ · · · ⊗ br 7→ b0 ⊗ · · · bj−1 ⊗ 1⊗ bj ⊗ · · · ⊗ br

The Amitsur complex for B over A is

0 −→ A
θ−→ B

d0−→ B⊗2 d1−→ B⊗3 d2−→ · · ·

where the coboundary map dr : B⊗(r+1) → B⊗(r+2) is defined by

dr =

r+1∑
i=0

(−1)iei.

We denote the Amitsur complex by C•(B/A).

Remark 2.2.2. One can check that ejei = ei+1ej for j ≤ i, and that this is in fact a complex of
A-modules. In fact, we have

ei+1 ◦ ej(x0 ⊗ · · · ⊗ xn) = ei+1(x0 ⊗ · · ·xj−1 ⊗ 1⊗ xj ⊗ · · · ⊗ xn) where xj appears in the (j + 1)st slot

= x0 ⊗ · · · ⊗ xj−1 ⊗ 1⊗ xj ⊗ · · · ⊗ xi−1 ⊗ 1⊗ xi ⊗ · · · ⊗ xn

where in the last line xi−1 is in the ith slot. On the other hand

ej ◦ ei(x0 ⊗ · · · ⊗ xn) = ej(x0 ⊗ · · ·xi−1 ⊗ 1⊗ xi ⊗ · · · ⊗ xn) where xi appears in the (i+ 1)st slot

= x0 ⊗ · · · ⊗ xj−1 ⊗ 1⊗ xj ⊗ · · · ⊗ xi−1 ⊗ 1⊗ xi ⊗ · · · ⊗ xn

where in the last line xi−1 is in the ith slot, so ei+1ej = ejei.
Now we check that Amitsur complex is in fact a complex. Let b0 ⊗ · · · ⊗ br ∈ B⊗(r+1). Then

dr+1 ◦ dr(b0 ⊗ · · · ⊗ br) = dr+1(

r+1∑
i=0

(−1)iei(b0 ⊗ · · · ⊗ br))

=

r+1∑
i=0

(−1)idr+1ei(b0 ⊗ · · · ⊗ br)

=

r+1∑
i=0

(−1)i
r+2∑
j=0

(−1)jejei(b0 ⊗ · · · ⊗ br)

=
r+1∑
i=0

r+2∑
j=0

(−1)i+jejei(b0 ⊗ · · · ⊗ br)

=

r+1∑
i=0

∑
j≤i

(−1)i+jejei(b0 ⊗ · · · ⊗ br) +
r+1∑
i=0

∑
j≥i+1

(−1)i+jejei(b0 ⊗ · · · ⊗ br)

=

r+1∑
i=0

∑
j≤i

(−1)i+jei+1ej(b0 ⊗ · · · ⊗ br) +
r+1∑
i=0

∑
j≥i

(−1)i+j+1ej+1ei(b0 ⊗ · · · ⊗ br)

=

r+1∑
i=0

∑
j≤i

(−1)i+jei+1ej(b0 ⊗ · · · ⊗ br)−
r+1∑
i=0

∑
j≥i

(−1)i+jej+1ei(b0 ⊗ · · · ⊗ br)

= 0
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Proposition 2.2.3. Let B be a commutative faithfully flat A-algebra.

(1) The Amitsur complex C•(B/A) is an exact sequence.

(2) If M is any A-module, then the complex M ⊗A C•(B/A):

0 −→M
1⊗θ−−→M ⊗A B

1⊗d0−−−→M ⊗A B⊗2 1⊗d1−−−→M ⊗A B⊗3 1⊗d2−−−→ · · ·

is an exact sequence.

Proof. (1) Step 1: We show that C•(B/A) is exact if there exists an A-module homomorphism σ : B →
A which is a left inverse for the structure homomorphism θ : A → B. Define a homotopy operator
kr : B⊗(r+2) → B⊗(r+1) by kr(x0 ⊗ · · · ⊗ xr+1) = σ(x0)x1 ⊗ · · · ⊗ xr+1. It follows from

krdr(x0 ⊗ · · · ⊗ xr) = kr
r+1∑
i=0

(−1)iei(x0 ⊗ · · · ⊗ xr)

= kr(1⊗ x0 ⊗ · · · ⊗ xr)− kr(x0 ⊗ 1⊗ x1 ⊗ · · · ⊗ xr) +
r+1∑
i=2

(−1)ikrei(x0 ⊗ · · · ⊗ xr)

= σ(1) · x0 ⊗ x1 ⊗ · · · ⊗ xr − σ(x0) · 1⊗ x1 ⊗ · · · ⊗ xr +
r+1∑
i=2

(−1)ikrei(x0 ⊗ · · · ⊗ xr)

= x0 ⊗ x1 ⊗ · · · ⊗ xr − σ(x0)⊗ x1 ⊗ · · · ⊗ xr +
r+1∑
i=2

(−1)ikrei(x0 ⊗ · · · ⊗ xr)

and from

dr−1kr−1(x0 ⊗ . . .⊗ xr) = dr−1(σ(x0)x1 ⊗ · · · ⊗ xr)

=

r∑
i=0

(−1)iei(σ(x0)x1 ⊗ · · · ⊗ xr)

= 1⊗ σ(x0)x1 ⊗ x2 ⊗ · · · ⊗ xr − σ(x0)x1 ⊗ 1⊗ x2 ⊗ · · · ⊗ xr

+
r∑
i=2

(−1)iei(σ(x0)x1 ⊗ · · · ⊗ xr)

= σ(x0)⊗ x1 ⊗ x2 ⊗ · · · ⊗ xr − σ(x0)x1 ⊗ 1⊗ x2 ⊗ · · · ⊗ xr

+
r∑
i=2

(−1)iei(σ(x0)x1 ⊗ · · · ⊗ xr)

that krdr + dr−1kr−1 is the identity map on B⊗(r+1). This proves that k is a contracting homotopy
(meaning identity and zero map are homotopic), so the complex is an exact sequence.

Step 2: If C is another commutative A-algebra, then C•(B ⊗A C/C), the Amitsur complex for
B⊗AC over C, is obtained by applying the functor −⊗AC to the complex C•(B/A). This is because

B⊗r⊗AC ∼= B⊗r⊗A (C⊗CC⊗C · · ·⊗CC) ∼= (B⊗AC)⊗C (B⊗AC)⊗C · · ·⊗C (B⊗AC) ∼= (B⊗AC)⊗r.

Step 3: Consider ρ : B → B⊗AB, defined by b 7→ 1⊗b. Define µ : B⊗AB → B, by µ(b⊗b′) = bb′.
Then µ is a left inverse for ρ. In fact, for any b ∈ B, we have µ ◦ ρ(b) = µ(1⊗ b) = 1 · b = b. By Step
1, the Amitsur complex C•(B ⊗A B/B) for ρ : B → B ⊗A B is exact. This complex looks as follows:

0 A⊗A B B ⊗A B B⊗2 ⊗A B B⊗3 ⊗A B · · ·ρ=θ⊗1B d0⊗1B d1⊗1B d2⊗1B

where we identify A ⊗A B ∼= B. Since C•(B ⊗A B/B) is exact and B is faithfully flat, by Step 2
applied to B, it follows that C•(B/A) is exact. In fact, as noted above the complex C•(B ⊗A B/B) is
obtained from C•(B/A) by tensoring it with −⊗A B.
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(2) One argues as in (1) by assuming that if there is a left inverse to θ : A → B then we can
construct a contracting homotopy. In fact, the exact same reasoning works for the maps k̃r = 1M ⊗kr
and d̃r = 1M ⊗ dr, where k̃r plays the role of a new homotopy. The computation as in (1) shows that

k̃rd̃r + d̃r−1k̃r−1 is the identity map on M ⊗A B⊗(r+1), so 1M⊗AB⊗(r+1) determines the zero map on
cohomology, i.e. the complex is exact. We consider the maps ρ̃ = 1M ⊗ ρ and µ̃ = 1M ⊗ µ with ρ and
µ as in Step 3 in (1). One checks that µ̃ is a left inverse for ρ̃, so the complex M ⊗A C•(B ⊗A B/B)
is exact. This complex looks as follows.

0 M ⊗A B (M ⊗A B)⊗B (B ⊗A B) (M ⊗A B)⊗B (B ⊗A B)⊗2 · · ·

M ⊗A B⊗2 M ⊗A B⊗3

ρ̃=1M⊗ρ d̃0⊗1B d̃1⊗1B

Since B is faithfully flat, we conclude that the required complex M ⊗ C•(B/A) is also exact. This
complex looks as follows.

0 M ⊗A A M ⊗A B M ⊗A B⊗2 M ⊗A B⊗3 · · ·θ̃ d̃0 d̃1 d̃2

where θ̃ = 1M ⊗ θ.

2.2.2 The Descent of Homomorphisms

Let B be a commutative A-algebra and M and N a pair of A-modules. Note that one can consider
M ⊗A B and N ⊗A B as B-modules. The goal is to find sufficient conditions on a homomorphism
g ∈ HomB(M ⊗AB,N ⊗AB) so that g = f ⊗1 for some f ∈ HomA(M,N). For i = 0, 1, we can define
the maps

ei :M ⊗A B →M ⊗A B ⊗A B

by e0(x ⊗ b) = x ⊗ 1 ⊗ b and e1(x ⊗ b) = x ⊗ b ⊗ 1. Define homomorphisms Fi by demanding the
following diagram to be commutative

M ⊗A B M ⊗A B ⊗A B

N ⊗A B N ⊗A B ⊗A B

g

ei

ei

Fi(g)

for i = 0, 1. Let us check that it is possible. If g ∈ HomB(M ⊗A B,N ⊗A B), then we can write
g(x⊗ b) =

∑
i xi ⊗ bi where b, bi ∈ B and x ∈M,xi ∈ N . Thus, e0 ◦ g(x⊗ b) =

∑
i xi ⊗ 1⊗ bi, so we

define F0(g)(x⊗ 1⊗ b) =
∑

i xi ⊗ 1⊗ bi and extend it by bilinearity, meaning

F0(g)(x⊗ b⊗ b′) = (b⊗ 1) · F0(g)(x⊗ 1⊗ b′) = (b⊗ 1) ·
∑
i

xi ⊗ 1⊗ b′i =
∑
i

xi ⊗ b⊗ b′i,

where g(x ⊗ b′) =
∑

i xi ⊗ b′i. Similarly, one defines F1 by F1(g)(x ⊗ b ⊗ 1) =
∑

i xi ⊗ bi ⊗ 1, where
g(x⊗ b) =

∑
i xi ⊗ bi.

Proposition 2.2.4. Let A be a commutative ring, B a faithfully flat commutative A-algebra, and M
and N a pair of A-modules. The sequence

0 −→ HomA(M,N)
F−→ HomB(M ⊗A B,N ⊗A B)

F0−F1−−−−→ HomB⊗AB(M ⊗A B ⊗A B,N ⊗A B ⊗A B)

is exact, where F(f) = f ⊗ 1 and F0,F1 are defined as above.
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Proof. Since each Fi is an additive functor, F0−F1 is a Z-module homomorphism. If f ∈ HomA(M,N),
then the diagram

0 M M ⊗A B M ⊗A B ⊗A B

0 N N ⊗A B N ⊗A B ⊗A B

f f⊗1=F(f)

d0

d0

f⊗1⊗1

commutes. Also the rows are exact because these are Amitsur complexes. We claim that F is injective.
In fact, if F(f) = 0, then F(f)(x⊗1) = (f ⊗1)(x⊗1) = f(x)⊗1 = 0 for all x ∈M , so f(x) = 0 for all
x ∈M , proving that f = 0. We claim that im(F) ⊂ ker(F0−F1). In fact, let g = F(f) = f⊗1 ∈ im(F)
for some A-module homomorphism f :M → N . Then

F0(f ⊗ 1)(x⊗ b⊗ b′) = (b⊗ 1) · F0(f ⊗ 1)(x⊗ 1⊗ b′)
= (b⊗ 1) · (f(x)⊗ 1⊗ b′)
= f(x)⊗ b⊗ b′

= (1⊗ b′) · (f(x)⊗ b⊗ 1)

= F1(f ⊗ 1)(x⊗ b⊗ b′)

Thus, g ∈ ker(F0 − F1) as desired. To complete the proof, we show that ker(F0 − F1) ⊂ im(F). Let
g ∈ HomB(M ⊗AB,N ⊗AB) and assume F0(g) = F1(g). Given x ∈M we have e0(x⊗ 1) = e1(x⊗ 1),
so

e0 ◦ g(x⊗ 1) = F0(g) ◦ e0(x⊗ 1) = F0(g) ◦ e1(x⊗ 1) = F1(g) ◦ e1(x⊗ 1) = e1 ◦ g(x⊗ 1).

By exactness of the bottom row (Amitsur complex), we have that

g(x⊗ 1) ∈ ker(e0 − e1) = ker(d0) = im(N → N ⊗A B) = N ⊗A 1 ∼= N.

Define f :M → N by f(x) = g(x⊗ 1). Then g = F(f). In fact, identifying N ⊗A 1 ∼= N , we see that

F(f)(x⊗ b) = (f ⊗ 1)(x⊗ b) = f(x)⊗ b = b · g(x⊗ 1) = g(x⊗ b).

Remark 2.2.5. Note that from the definition of F0 and F1, it follows that g = f ⊗ 1 if and only if g
is in the kernel of F0 − F1.

2.2.3 The Descent Datum and some examples

Let θ : A → B be a homomorphism of commutative rings. We begin with a general construction for
any four B-modulesM,N,L,K. Consider the tensor productsM⊗AN and L⊗AK as B⊗AB-modules.
Let f : M ⊗A N → L ⊗A K be a homomorphism of B ⊗A B-modules. Write f(m ⊗ n) =

∑
i li ⊗ ki,

f(m′ ⊗ n′) =
∑

i′ l
′
i′ ⊗ k′i′ and f(m′′ ⊗ n′′) =

∑
i′′ l

′′
i′′ ⊗ k′′i′′ . Define homomorphisms

f1 : B ⊗AM ⊗A N → B ⊗A L⊗A K

f2 :M ⊗A B ⊗A N → L⊗A B ⊗A K

f3 :M ⊗A N ⊗A B → L⊗A K ⊗A B

by the formulas

f1(b⊗m⊗ n) = b⊗
∑
i

li ⊗ ki,

f2(m
′ ⊗ b⊗ n′) =

∑
i′

l′i′ ⊗ b⊗ k′i′ ,

f3(m
′′ ⊗ n′′ ⊗ b) = (

∑
i′′

l′′i′′ ⊗ k′′i′′)⊗ b.

This means that the fi are obtained from f by tensoring it with the identity map on B in ith position.
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Definition 2.2.6. Let M a B-module and g : B ⊗A M → M ⊗A B a B ⊗A B-module homomor-
phism. We apply the construction above to g, to obtain the following three B ⊗A B ⊗A B-module
homomorphisms

g1 : B ⊗A B ⊗AM → B ⊗AM ⊗A B

g2 : B ⊗A B ⊗AM →M ⊗A B ⊗A B

g3 : B ⊗AM ⊗A B →M ⊗A B ⊗A B,

where gi is obtained by tensoring g with the identity map on B in position i. If g is an isomorphism
of B ⊗A B-modules and g2 = g3 ◦ g1 then we call it a descent datum for M over B.

Example 2.2.7. Suppose that M is already of the form N ⊗A B for some A-module N , i.e. M =
N⊗AB. Then B⊗AM = B⊗AN⊗AB andM⊗AB = N⊗AB⊗AB. We claim that the isomorphism
τ appearing in the diagram in the statement of the Theorem of Faithfully Flat Descent for modules
is a descent datum. Recall that

B ⊗A N ⊗A B
τ−→ N ⊗A B ⊗A B

a⊗ b⊗ c 7→ b⊗ a⊗ c

First, we check that g = τ is a B⊗AB-module homomorphism. In fact, for any b, b′ ∈ B and x, z ∈ B,
y ∈ N , we have

(b⊗ b′) · g(x⊗ y⊗ z) = (b⊗ b′) · (y⊗ x⊗ z) = y⊗ bx⊗ b′z = g(bx⊗ y⊗ b′z) = g((b⊗ b′) · (x⊗ y⊗ z)).

It remains to check the cocycle condition, i.e. g2 = g3g1. In fact, for any n ∈ N and a, b, c ∈ B, we
have

g2(a⊗ b⊗m⊗ c) = m⊗ a⊗ b⊗ c = g3(a⊗m⊗ b⊗ c) = g3g1(a⊗ b⊗m⊗ c),

so g2 = g3g1.

Example 2.2.8. Let A be a commutative ring and α1, . . . , αn a set of n elements of A such that
A = Aα1 + . . .+Aαn. Denote the localization of A with respect to the multiplicative set {αk | k ≥ 0}
by Aα. Write Si = {αkii | ki ≥ 0} for the multiplicative sets corresponding to the generators of A. Let
B =

⊕n
i=1Aαi .

We claim that B is faithfully flat over A. In fact, localizations Aαi are flat and since tensor
products commute with direct sums, B is also flat. In order to check that B is faithfully flat over A
it suffices to show that for any A-module N , if N ⊗A B = 0, then N = 0. Suppose that N ⊗A B = 0.
Then

0 = N ⊗A B =
n⊕
i=1

N ⊗A Aαi
∼=

n⊕
i=1

Nαi ,

where Nαi denotes the localization of N with respect to the multiplicative set Si. Thus, Nαi = 0 for
all i. Let x ∈ N . By definition of localization, for each i, there is ti = αkii ∈ Si such that tix = 0.
Let I be the ideal generated by all ti. Note that I = A. In fact, if I ⊊ A, then I is contained in
some maximal ideal m of A. Then ti = αkii ∈ m. Since m is a prime ideal, we have αi ∈ m for all
i, so A ⊂ m, a contradiction. Hence I = A. We can write 1 =

∑
i aiti for some ai ∈ A. Then

x = 1 · x =
∑

i aitix = 0. Hence, N = 0 which proves that B is faithfully flat.

We identify Aαi ⊗AAαj with Aαiαj . Then B⊗AB =
⊕

1≤i,j≤nAαiαj . Suppose that for each i, Mi

is an Aαi-module. Then M =
⊕n

i=1Mi is a B-module. We have

B ⊗AM =
⊕
i,j

Aαi ⊗AMj

and
M ⊗A B =

⊕
i,j

Mi ⊗A Aαj .
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A descent datum g : B ⊗AM →M ⊗A B consists of a collection of Aαiαj -module isomorphisms

Aαi ⊗AMj
gij−−→Mi ⊗A Aαj

where (i, j) ∈ I2n. The identity g2 = g3 ◦ g1 is equivalent to the statement that the diagram of
Aαiαjαk

-module homomorphisms

Aαi ⊗A Aαj ⊗AMk Mi ⊗A Aαj ⊗A Aαk

Aαi ⊗AMj ⊗A Aαk

gik⊗1

gjk⊗1 gij⊗1

commutes for all triples (i, j, k) ∈ I3n. If a descent datum exists, then by Theorem 2.0.4, there is an
A-module N and for each i an isomorphism Mi

∼= N ⊗A Aαi of Aαi-modules.

Example 2.2.9. Let A be a commutative ring with 1 such that A = Aα1 + . . .+Aαn. For each i let
Si = {αkii | ki ≥ 0} be the corresponding multiplicative set. Denote by Aαi = S−1

i A the localization.
We saw that B =

⊕n
i=1Aαi is faithfully flat over A. For all i, j we identify Aαi⊗AAαj

∼= Aαiαj . Then
the Amitsur complex C•(B/A) looks as follows

0 −→ A
θ−→
⊕
i

Aαi

d0−→
⊕
i,j

Aαiαj

d1−→ · · ·

Since C•(B/A) is exact, any element y ∈ A is completely determined by the set of local data x =
(x1, . . . , xn) ∈ B with xi = xj in Aαiαj where xi =

ai
αki

, xj =
aj

α
kj
j

for some ai, aj ∈ A and ki, kj ≥ 0.

The element y can be constructed from the local data x and the elements αi. For some p ≥ 0, there
exist a1, . . . , an ∈ A such that xi =

ai
αp
i
. Assuming that d0(x) = 0, there exists q ≥ 0 such that for all

i, j, we have
(αiαj)

q(aiα
p
j − ajα

p
i ) = 0⇔ aiα

q
iα

q+p
j = ajα

q+p
i αqj .

Since A = Aαq+p1 + . . .+Aαq+pn , we can write 1 = g1α
q+p
1 + . . .+ gnα

q+p
n for some gi ∈ A. Set

y = g1α
q
1a1 + . . .+ gnα

q
nan.

We claim that y =
aj
αp
j
= xj in Aαj for all j, so that θ(y) = x. It suffices to show this for j = 1. The

condition y = x1 is equivalent to showing that there is r ≥ 0 such that

αr1(a1g1α
q+p
1 + a2g2α

p
1α

q
2 + . . .+ angnα

p
1α

q
n − a1) = 0.

We can multiply the identity 1 = g1α
q+p
1 + . . . + gnα

q+p
n by a1 so that after replacing the term

a1g1α
q+p
1 − a1, the condition above can we rewritten as follows

αr1(a2g2α
p
1α

q
2 − a1g2α

q+p
2 + a3g3α

q
3α

p
1 − a1g3α

q+p
3 + . . .+ angnα

q
nα

p
1 − a1gnα

q+p
n ) = 0.

It is easy to see that for r = q we get this equality.

2.2.4 Proof of the Theorem of Faithfully Flat Descent for Modules

Proof. (of Theorem 2.0.4):

• Existence: Set N = {x ∈M |x⊗ 1 = g(1⊗ x)} and let ν : N ⊗A B →M be the multiplication
map ν(x ⊗ b) = xb. We show that N and ν have the desired properties. Notice that N
is the kernel of the A-module homomorphism ge0 − e1 : M → M ⊗A B, where the maps
e0 :M → B ⊗AM, e1 :M →M ⊗A B are defined as usual. In fact,

ker(ge0 − e1) = {x ∈M | (ge0 − e1)(x) = 0} = {x ∈M | g(1⊗ x)− x⊗ 1 = 0} = N.
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In particular, 0 ∈ N and N is an A-module. Hence the sequence

0 −→ N −→M
ge0−e1−−−−→M ⊗A B (2.3)

is exact.

The proof will follow from:

(1) The commutativity of the diagram

B ⊗A N ⊗A B B ⊗AM

N ⊗A B ⊗A B M ⊗A B

τ

1⊗ν

ν⊗1

g (2.4)

where τ(a⊗ b⊗ c) = b⊗ a⊗ c
(2) The commutativity of the diagram

B ⊗AM B ⊗AM ⊗A B

M ⊗A B M ⊗A B ⊗A B

g

1⊗e1

1⊗e1=e2

g3=g⊗1 (2.5)

(3) The commutativity of the diagram

B ⊗AM B ⊗AM ⊗A B

M ⊗A B M ⊗A B ⊗A B

g

1⊗ge0

1⊗e0=e1

g3=g⊗1 (2.6)

(4) Combine the tensored exact sequence (2.3) with diagrams (2.5) and (2.6) into one commu-
tative diagram

0 B ⊗A N B ⊗AM B ⊗AM ⊗A B

0 M M ⊗A B M ⊗A B ⊗A B.

∃ϕ
1⊗θ

g

1⊗(ge0−e1)

1⊗(e0−e1)
g3

Note however, that ϕ has not been defined yet.

(5) The rows of this diagram are exact. The upper row is exact, because B is faithfully flat,
and therefore, tensoring the exact sequence (2.3), preserves exactness. The bottom row is
exact by the properties of the Amitsur complex for faithfully flat algebras (see Proposition
2.2.3, (2)). Note that ϕ is the required isomorphism, which must be constructed using the
usual diagram chasing. One uses only the characterization of the descent datum: g must
be an isomorphism and consequently g3 is also an isomorphism.

(6) The diagram chasing. This is usual homological algebra. Assume we are given a commu-
tative diagram

0 A B C

0 A′ B′ C ′

α β

α′ β′

γ δϕ

where γ and δ are isomorphisms and the rows are exact. Looking at the diagram we see
that γ(im(α)) = im(α′), so one defines ϕ(a) = a′ where a′ is an element of A′ such that

α′(a′) = γ(α(a)).
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One easily checks that this is a correct definition and it yields an isomorphism. In fact,
suppose that there is another a′′ ∈ A′ such that α′(a′′) = γ ◦α(a). Then a′−a′′ ∈ ker(α′) =
{0}, so a′ = a′′, which proves that ϕ is in fact, well-defined. Now suppose that ϕ(a) = 0.
Then ϕ(a) = a′ = 0, so α(a) ∈ ker(γ) = {0}, and a ∈ ker(α) = {0}. Hence a = 0, which
proves that ϕ is injective. Finally, we prove surjectivity of ϕ. Let ã ∈ A′. Then α′(ã) ∈ B′

and since γ is an isomorphism, there is b ∈ B such that α′(ã) = γ(b). By the commutativity
of the right square

δ ◦ β(b) = β′ ◦ γ(b) = β′ ◦ α′(ã) = 0,

because β′ ◦ α′ = 0 by exactness. Therefore, β(b) ∈ ker(δ) = {0}, so b ∈ ker(β) = im(α).
Thus, b = α(a) for some a ∈ A. Note that by construction we have

α′(ã) = γ(b) = γ ◦ α(a),

so ϕ(a) = ã, as required, which proves that ϕ is surjective.

(7) In order to complete the proof we only need to check the commutativity of the diagrams in
steps (1), (2) and (3).

Commutativity of (1): Over B ⊗A B, the module B ⊗AN ⊗A B is generated by elements of the
form 1⊗ x⊗ 1, for x ∈ N . The diagram commutes because

g ◦ (1⊗ ν)(1⊗ x⊗ 1) = g(1⊗ x) = x⊗ 1 = (ν ⊗ 1)(x⊗ 1⊗ 1) = (ν ⊗ 1) ◦ τ(1⊗ x⊗ 1).

Commutativity of (2): The diagram of B-module homomorphisms

B ⊗AM B ⊗AM ⊗A B

M ⊗A B M ⊗A B ⊗A B

g

1⊗e1

1⊗e1=e2

g3=g⊗1 (2.7)

commutes, since

g3 ◦ (1⊗ e1)(b⊗ x) = g3(b⊗ x⊗ 1) = g(b⊗ x)⊗ 1 = e2 ◦ g(b⊗ x).

Commutativity of (3): Since g2 = g3 ◦ g1, it follows that

g3 ◦ (1⊗ ge0)(b⊗ x) = g3
(
b⊗ g(1⊗ x)

)
= g3 ◦ g1(b⊗ 1⊗ x) = g2(b⊗ 1⊗ x) = e1 ◦ g(b⊗ x).

Therefore, the diagram of B-module homomorphisms

B ⊗AM B ⊗AM ⊗A B

M ⊗A B M ⊗A B ⊗A B

g

1⊗ge0

1⊗e0=e1

g3=g⊗1 (2.8)

commutes.

• Uniqueness: Suppose K is another A-module satisfying the assumptions of the theorem and
let ρ : K ⊗A B → M the corresponding B-module isomorphism. Consider the commutative
diagram

B ⊗A K ⊗A B B ⊗AM B ⊗A N ⊗A B

K ⊗A B ⊗A B M ⊗A B N ⊗A B ⊗A B.

τ

ν⊗1

g

1⊗ν

τ

ρ⊗1

1⊗ρ

(2.9)

In the notation of Proposition 2.2.4, the commutativity of diagram (2.9) means that(
τ◦(1⊗ν)−1◦(1⊗ρ)◦τ−1

)
(a⊗b⊗c) = τ◦(1⊗ν−1ρ)(b⊗a⊗c) = τ(b⊗ν−1ρ(a⊗c)) = F0(ν

−1ρ)(a⊗b⊗c)
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is equal to(
(ν ⊗ 1)−1 ◦ (ρ⊗ 1)

)
(a⊗ b⊗ c) =

(
(ν−1ρ)(a⊗ b)

)
⊗ c = F1(ν

−1ρ)(a⊗ b⊗ c).

By Proposition 2.2.4, there exists λ ∈ HomA(K,N) such that ν−1ρ = F(λ) = λ ⊗ 1. Since B
is faithfully flat over A and ν−1ρ is an isomorphism, λ : K → N is an A-module isomorphism.
Lastly, ρ = ν(λ⊗ 1).

2.2.5 Proof of theorem of descent for algebras

In this section, we will prove the theorem of faithfully flat descent for algebras (see Theorem 2.0.5).
Let us recall the setting. Let A be a commutative ring, B a faithfully flat commutative A-algebra and
M a B-algebra together with multiplication map denoted by µ : M ⊗B M → M . Let N be an A-
module and ν : N⊗AB →M the isomorphism of B-modules provided by the theorem of faithfully flat
descent for modules. The B-module NB := N ⊗AB has a multiplication operation which is defined by
a B-module homomorphism µ : NB⊗BNB → NB. More precisely, we define a multiplicative structure
µ on N ⊗A B by the (module) isomorphism ν so that the following diagram is commutative:

NB ⊗B NB
µ−−−−→ NB

ν⊗Bν

y ν

y
M ⊗B M

µ−−−−→ M.

(∗)

Note that the commutativity of this diagram means precisely that ν is a homomorphism of algebras.
We can now ask the following question.

Question: When does µ descend onto N?

This question means that we want to have a multiplicative structure on N which is inherited from
N ⊗A B. The answer is given by Theorem 2.0.5.

If we identify NB⊗BNB with N⊗AN⊗AB, then µ belongs to HomB(N⊗AN⊗AB,N⊗AB). By
Proposition 2.2.4, the homomorphism µ descends to a unique A-module homomorphism N⊗AN → N
if and only if F0(µ) and F1(µ) induce equal multiplication operations on N ⊗A B ⊗A B. Recall that
we have the following exact sequence.

0 −−−−→ HomA(N ⊗A N,N)
F−−−−→ HomB(N ⊗A N ⊗A B,N ⊗A B)

F0−F1−−−−→ HomB⊗AB(N ⊗A N ⊗A B ⊗A B,N ⊗A B ⊗A B)

We need to check that µ is in the kernel of F0 − F1. Along with the existence and uniqueness of the
A-module N and the B-module isomorphism ν : N ⊗A B →M are guaranteed by Theorem 2.0.4, the
following diagram

B ⊗A N ⊗A B B ⊗AM

N ⊗A B ⊗A B M ⊗A B

τ

ν⊗1

1⊗ν

g (2.10)

commutes, where τ(a⊗ b⊗ c) = b⊗ a⊗ c. The following diagram

B ⊗A (N ⊗A N)⊗A B B ⊗A (M ⊗AM)

(N ⊗A N)⊗A B ⊗A B (M ⊗AM)⊗A B

g⊗Bg

(ν⊗Bν)⊗1

1⊗(ν⊗Bν)

τ (2.11)
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is the counterpart of square (2.10) for N ⊗A N ⊗A B ∼= M ⊗B M and it commutes. In fact, let us
check this.

(g ⊗B g) ◦ (1⊗ (ν ⊗B ν))(b⊗ n⊗ n′ ⊗ b′) = (g ⊗B g)(b⊗ (ν ⊗B ν)(n⊗ n′ ⊗ b′))
= (g ⊗B g)(b⊗ n⊗B n′b′)
= g(b⊗ n)⊗B g(1⊗ n′b′)
= (b⊗ 1)g(1⊗ n)⊗B (1⊗ b′)g(1⊗ n′)
= (b⊗ 1)(n⊗ 1)⊗B (1⊗ b′)(n′ ⊗ 1)

= bn⊗ 1⊗B n′ ⊗ b′

which we can identify with n⊗B bn′ ⊗ b′. On the other hand, we have

((ν ⊗B ν)⊗ 1) ◦ τ(b⊗ n⊗ n′ ⊗ b′) = ((ν ⊗B ν)⊗ 1)(n⊗ n′ ⊗ b⊗ b′)
= (ν ⊗B ν)(n⊗ n′ ⊗ b)⊗ b′

= n⊗B n′b⊗ b′

= n⊗B bn′ ⊗ b′

so the diagram (2.11) commutes. Since g is a B ⊗A B-algebra isomorphism, the diagram

B ⊗AM ⊗AM (B ⊗AM)⊗B (B ⊗AM) B ⊗AM

M ⊗AM ⊗A B (M ⊗A B)⊗B (M ⊗A B) M ⊗A B

gg⊗Bg (2.12)

commutes, where the horizontal arrows are the multiplication maps. We can apply F0 and F1 to the
commutative diagram (∗) which defines µ, to obtain the following two commutative diagrams

(N ⊗A N)⊗A B ⊗A B N ⊗A B ⊗A B

M ⊗B M ⊗A B M ⊗A B.
F0(µ)

(ν⊗Bν)⊗1

F0(µ)

ν⊗1 (2.13)

and

(N ⊗A N)⊗A B ⊗A B N ⊗A B ⊗A B

M ⊗B M ⊗A B M ⊗A B.
F1(µ)

(ν⊗Bν)⊗1

F1(µ)

ν⊗1 (2.14)

From these two diagrams we cannot deduce yet that F0(µ) and F0(µ) induce equal multiplications be-
cause the multiplications F0(µ) and F1(µ) are different. However, we can proceed as follows. Combine
the diagrams (2.10), (2.11), (2.12), (2.13) and (2.14) to get the commutative diagram

(N ⊗A N)⊗A B ⊗A B N ⊗A B ⊗A B

B ⊗AM ⊗AM B ⊗AM

M ⊗AM ⊗A B M ⊗A B

g⊗Bg g

(1⊗ν)τ−1

ν⊗1

Fi(µ)

(ν⊗Bν)⊗1

(1⊗(ν⊗Bν))τ
−1

(2.15)

The diagram commutes for both F0(µ) or F1(µ). Note that the map ν ⊗ 1 is invertible. Therefore,
Fi(µ) induce equal multiplication operations on (N ⊗A N)⊗A B ⊗A B, as required.
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Chapter 3

Flatness and Tor
Peter Abramenko

3.1 Notations

• R is a commutative ring.

• C is a category of R-modules.

• −⊗R − : C × C → C, defined by (A,B) 7→ A⊗R B, is a (covariant) bifunctor.

• Let f : A→ A′ and g : B → B′ be R-module homomorphisms. There exists a unique R-module
homomorphism

f ⊗ g : A⊗R B → A′ ⊗R B′

a⊗ b 7→ f(a)⊗ g(b).

Also, we have an isomorphism

A⊗R B ∼= B ⊗R A
a⊗ b↔ b⊗ a.

• For a fixed A ∈ C, we have a functor

T := TA := A⊗R − : C → C
B 7→ A⊗R B.

Also, for g ∈ HomR(B,B
′) we have

T (g) := 1A ⊗ g ∈ HomR(T (B), T (B′)) : A⊗R B → A⊗R B′.

Remark: For fixed B ∈ C, the functor −⊗R B : C → C has similar properties as A⊗R −; so we
may concentrate on the latter.

3.2 Important Properties of T = A⊗R −
1. T commutes with direct sums, i.e., there exists a natural isomorphism

A⊗R
⊕
i∈I

Bi
∼−→
⊕
i∈I

(A⊗R Bi)

a⊗ (bi)i∈I 7→ (a⊗ bi)i∈I .

In other words, T is an additive functor.

35



2. T commutes with direct limits (of direct systems), i.e.,

A⊗R

(
lim−→
I

Bi

)
∼= lim−→

I

(A⊗R Bi) .

More generally: T commutes with colimits.

3. T is right exact, i.e., if
B1

g1−→ B2
g2−→ B3 → 0

is an exact sequence of R-modules, then so is

A⊗R B1
1A⊗g1−−−−→ A⊗R B2

1A⊗g2−−−−→ A⊗R B3 → 0.

Moreover, A is flat if T is exact, i.e., T also preserves injectivity.

Lemma 3.2.1. For a family of R-modules (Ai)i∈I ,⊗
i∈I

Ai is flat if and only if Ai is flat for all i ∈ I.

Proof. (Sketch) Given 0→ B′ g−→ B, consider(⊕
i∈I

Ai

)
⊗R B′

(⊕
i∈I

Ai

)
⊗R B

⊕
i∈I

(Ai ⊗R B′)
⊕
i∈I

(Ai ⊗R B)

∼
1⊗g

∼⟲
(1Ai

⊗g)

Then 1⊗ g is injective if and only if 1Ai ⊗ g is injective for all i ∈ I.

Corollary 3.2.2. If A is projective, then A is flat.

Remark 3.2.3.

1. So we have in general: free =⇒ projective =⇒ flat.

2. If R is an integral domain, we also have: flat =⇒ torsion free.

Reason: Let K be the field of fractions of R and ϵ : R ↪→ K be an embedding. Consider
1A ⊗ ϵ : A ⊗R R ∼= A → A ⊗R K. We have ker(1A ⊗ ϵ) = t(A) ⊗R R ∼= t(A), where t(A) is the
torsion submodule of A.

Corollary 3.2.4. Let R be a PID and A be a finitely generated R-module. We have:

free =⇒ projective =⇒ flat =⇒ torsion free.

Note: For general integral domains, torsion free ⇏ flat (even if A is f.g.). Moreover, flat ⇏ projective
(e.g. Q is a flat, but not a projective Z-module).

Remark 3.2.5. For any (commutative) R, and any multiplicatively closed subset S ⊂ R, S−1R is a
flat R-module.

Lemma 3.2.6. If all finitely generated submodules of A are flat, then A is flat.

Corollary 3.2.7. If R is a PID, then torsion free ⇐⇒ flat.
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Generalization of the lemma: If (Ai)i∈I is a direct system of R-modules, and all Ai are flat, then
also lim−→

I

Ai is flat.

We now get back to the fact that T = A⊗R− is always right exact but not nescessarily exact (e.g.
if R is an integral domain and t(A) ̸= 0). A main motivation for considering the Tor functors is the
sequence of a long exact sequence associated (naturally) to any exact sequence

0→ B′ f−→ B
g−→ B′′ → 0

of R-modules, namely

. . .→ Torn(A,B
′)

f∗−→ Torn(A,B)
g∗−→ Torn(A,B

′′)
ωn−→ Torn−1(A,B

′)→ . . .

→ Tor1(A,B
′′)

ω1−→ A⊗R B′ 1A⊗f−−−→ A⊗R B
1A⊗g−−−→ A⊗R B′′ → 0

(so in particular ker(1A ⊗ f) = im ω1).
The sequence (TorRn (A,−) : φ → φ)n≥0 is an example of left derived functors which we will now

briefly discuss.
Assumptions: T : φ→ φ is a covariant, additive, right exact functor. Then one defines a sequence

of left derived functors (LnT : φ→ φ)n≥0 as follows:
Given B ∈ φ, choose a projective resolution P of B, i.e., an (infinite) chain complex

P = . . .→ Pn
∂n−→ Pn−1 → . . .→ P1

∂1−→ P0 → 0

such that all Pn are projective R-modules, im ∂n+1 = ker ∂n for all n ≥ 1, and there exists a homo-

morphism ϵ : P0 → B such that P1
∂1−→ P0

ϵ−→ B → 0 is exact, implying that B ∼= P0/im ∂1 = coker ∂1

(and the whole sequence . . .→ Pn
∂n−→ Pn−1 → . . .→ P1

∂1−→ P0
ϵ−→ B → 0 is exact).

Notation: P
ϵ
−↠ B is a projective resolution.

Definition 3.2.8. LnT (B) := Hn(T (P )) ∈ φ.

Facts:

(a) If P ′ ϵ′

−↠ B is another projective resolution of B, then there exists a homotopy equivalence f : P →
P ′ which implies that (since T is additive) T (f) : T (P ) → T (P ′) is a homotopy equivalence, so
Hn(T (P )) ∼= Hn(T (P

′)) for all n.

(b) LnT is a functor (covariant): Given φ ∈ HomR(B,B
′), choose projective resolutions P

ϵ
−↠

B,P ′ ϵ′

−↠ B′, implying that there exists a chain homomorphism f : P → P ′ (unique up to
homotopy) such that

P B

P ′ B′

f

ϵ

φ⟲
ϵ′

commutes. In more detail:

Pn Pn−1 . . . P0 B

P ′
n P ′

n−1 . . . P ′
0 B′

∂n

fn fn−1

ϵ

f0 φ⟲
∂′n ϵ′

⟲

There exists a chain homomorphism T (f) : T (P )→ T (P ′)

φ∗ or φ∗,n = LnT (φ) := T (f)∗ : Hn(T (P )) = LnT (B)→ Hn(T (P
′)) = LnT (B

′).
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Theorem 3.2.9. The sequence (LnT )n≥0 has the following properties:

(a) L0T ∼= T (naturally equivalent).

(b) P projective ⇒ LnT (P ) = 0 for all n ≥ 1.

(c) Let 0 → B′ φ−→ B
ψ−→ B′′ → 0 be an exact sequence of R-module. Then there exist natural exact

sequences

. . .→ LnT (B
′)

φ∗−→ LnT (B)
ψ∗−→ LnT (B

′′)
ωn−→ Ln−1T (B

′)→ . . .

→ L1T (B
′′) L0T (B

′) L0T (B) L0T (B
′′)

→ T (B′) T (B) T (B′′)

ω1 φ0 ψ0

T (φ) T (ψ)

Proof. (a) follows from the def. of L0T (including L0T (φ)) and the right exactness of T.

(b) is trivial; choose . . . 0→ P0 = P
1P−→ P → 0 as projective resolution of P.

(c) requires some work (“horseshoe lemma”; long exact homotopy sequence for short exact sequences
of R-modules).

These properties determine (LnT )n≥0 uniquely, up to natural equivalence, due the following:

Proposition 3.2.10. Let Fn, Gn : C → C (n ≥ 0) be two sequences of covariant additive functors. If

(a) F0 ≃ G0.

(b) Fn(P ) = 0 = Gn(P ) for all projective P and all n ≥ 1.

(c) There exist natural long exact sequences for (Fn) as well as (Gn).

Then Fn ≃ Gn for all n ≥ 0.

Proof. (Idea of proof) Use a presentation of B, i.e., a short exact sequence 0 → K → P → B → 0,
with projective P and construct inclusively isomorphisms tn,B : Fn(B)

∼−→ Gn(B)

n ≥ 2 :

0 Fn(P ) Fn(B) Fn−1(K) Fn−1(P ) 0

0 Gn(P ) Gn(B) Gn−1(K) Gn−1(P ) 0

∼

2tn,B 2tn−1,K

∼

n = 1 : requires a separate argument.

Definition 3.2.11. For A ∈ C, Torn(A,−) := LnT : C → C for T = A⊗R − : C → C.

The above theorem now yields

Theorem 3.2.12. (a) Tor0(A,−) ≃ A⊗R −.

(b) If A is flat or B is projective, then Torn(A,B) = 0 for all n ≥ 1.

(c) For any short exact sequence 0→ B′ → B → B′′ → 0, we get a long exact sequence

. . .→ Torn(A,B
′)→ Torn(A,B)→Torn(A,B

′′)
ωn−→ Torn−1(A,B

′)→

. . .→ Tor1(A,B
′′)

ω1−→ A⊗B′ → A⊗B → A⊗B′′ →
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The additional statement in (b) follows from the construction of Torn(A,−) :
If P

ϵ
−↠ B is a projective resolution, then, by flatness of A, A⊗R P

1A⊗ϵ
−−−↠ A⊗R B is exact, and so

Torn(A,B) = Hn(A⊗R P ) = 0 for all n ≥ 1.

Corollary 3.2.13. For A ∈ C, the following are equivalent:

(i) A is flat.

(ii) Torn(A,B) = 0 for all B ∈ C and all n ≥ 1.

(iii) Tor1(A,B) = 0 for all B ∈ C.

Proof. (iii)⇒ (i) follows from the long exact sequence: If 0 → B′ → B → B′′ → 0 is exact, then so
is

0 = Tor1(A,B
′′)→ A⊗R B′ → A⊗R B → A⊗R B′′ → 0

So A⊗R − is exact if and only if A is flat.

We are now going to resolve the symmetry in (b) above, using the proposition on the previous
page. But first we observe:

Lemma 3.2.14 (Properties of Torn(−, B) for fixed B ∈ C).

(a) Tor0(−, B) ≃ −⊗R B.

(b) Torn(P,B) = 0 for all projective (⇒ flat) P and all n ≥ 1.

(c) For any short exact sequence 0 → A′ → A → A′′ → 0, there exists a natural long exact sequence
. . .→ Torn(A

′, B)→ Torn(A,B)→ Torn(A
′′, B)→ Torn−1(A

′, B)→ . . . .

This all can quickly be verified, e.g.,

Proof. (c) Fix a projective resolution P
ϵ
−↠ B. Then, since all Pn are projective ⇒ flat,

0→ A′ ⊗R P → A⊗R P → A′′ ⊗R P → 0

is an exact sequence of chain complexes. This gives rise to a long exact homology sequence

. . . Hn(A
′ ⊗R P ) Hn(A⊗R P ) Hn(A

′′ ⊗R P ) Hn−1(A
′ ⊗R P ) . . .

Torn(A
′, B) Torn(A,B) Torn(A

′′, B) Torn−1(A
′, B)

ωn

Corollary 3.2.15. Torn(−, B) ≃ Torn(B,−) for all B ∈ C and all n ≥ 0. In particular, we have
Torn(A,B) ∼= Torn(B,A) for all A,B ∈ C and all n ≥ 0.

Corollary 3.2.16. For B ∈ C, the following are equivalent:

(i) B is flat.

(ii) Torn(A,B) = 0 for all A ∈ C and all n ≥ 1.

(iii) Tor1(A,B) = 0 for all A ∈ C.

Remark 3.2.17. Using tensor products of chain complexes, one can give a more concrete argument
for the symmetry of Tor:

Choose projective resolutions P −↠ A,Q −↠ B. Then

Torn(A,−)(B) = Hn(A⊗R Q) ∼= Hn(P ⊗R Q) ∼= Hn(P ⊗R B) = Torn(−, B)(A),

where the above two equivalences will later be proved.
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Hence Torn(A,B) = Hn(A⊗R Q) = Hn(Q⊗R A) = Torn(B,A).

Some connections with torsion for integral domains R:
Let A be an R-module. Then t(A) := {a ∈ A : ∃r ∈ R − {0} : ra = 0} is a torsion submodule and
t : C → C, A 7→ t(A), is a functor.

Facts:

1. If K is the field of fractions of R, then TorR1 (K/R,−) ≃ t.

2. TorRn (A,B) = t(TorRn (A,B)) for all A,B ∈ C and all n ≥ 1.

3. If R is a PID, then TorR1 (A,B) = TorR1 (t(A), t(B)) for all A,B ∈ C and TorRn (A,B) = 0 for all
A,B ∈ C and all n ≥ 2.

Proof. 3. For any B ∈ C, there exists a free (⇒ projective) resolution 0 → F1 ↪→ F0
ϵ−→ B → 0 with

F1 = ker ϵ.

Finally, we want to discuss an application for local rings: In the following, R is a (commutative)
local ring with maximal ideal m and residue field k = R/m.

We do not assume that R is noetherian or an integral domain. For an R-module M, we consider
the following statements:

(i) M is a free R-module.

(ii) M is a projective R-module.

(iii) M is a flat R-module.

(iv) TorR1 (M,k) = 0.

We know that (i)⇒ (ii)⇒ (iii)⇒ (iv), and want to show (iv)⇒ (i) provided that M is finitely
presented.

Recall: M is finitely generated if there exists a finitely generated free R-module F and a surjection
F →M → 0.

Definition 3.2.18. M is called finitely presented if there exists a short exact sequence 0→ K →
F →M → 0 with finitely generated R-modules K and F such that F is free.

Fact: If M is finitely presented and 0 → K ′ → F ′ → M → 0 is another exact sequence with
finitely generated free F ′, then K ′ is also finitely generated. This follows from Schanuel’s Lemma
which implies K ⊕ F ′ ∼= K ′ ⊕ F ⇒ K ′ ∼= K ⊕ F ′/F is finitely generated.

Corollary 3.2.19. If the ideal I ◁R is not finitely generated, then R/I is a finitely generated (cyclic)
but not a finitely presented R-module.

We also recall a standard application of Nakayama’s Lemma for local rings: If N is a finitely
generated R-module with mN = N, then N = 0.

Corollary 3.2.20. If m1, . . . ,mℓ ∈ M are such that the cosets mi + mM for 1 ≤ i ≤ ℓ generate
M/mM for some finitely generated R-module M, then m1, . . . ,mℓ generate M.

Proof. Set L =
ℓ∑
i=1

Rmi ≤M. Then L+mM =M by assumption, so

m ·M/L = (mM + L)/L =M/L⇒M/L = 0⇒ L =M.
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Proof. ((iv)⇒ (i) provided that M is a finitely presented R-module) Since M is in particular finitely
generated, M/mM is a finitely generated k-vector space (recall: k = R/m is a field). Choose a k-basis
x1, . . . , xs of M/mM and preimages m1, . . . ,ms ∈ M, i.e., xi = mi + mM for all 1 ≤ i ≤ s. By the

corollary, M =
s∑
i=1

Rmi. Set F = Rs and consider

0→ K
ι−→ F

φ−→M → 0, ei 7→ mi.

Here {ei : 1 ≤ i ≤ s} is the standard basis of Rs and K := kerφ. Since M is finitely presented, K is
finitely generated by the Fact above.

Using the long exact sequence for Tor∗(−, k), where k = R/m is considered as an R-module, we
get the exact sequence

0 = Tor1(M,k)→ K ⊗R k
ι⊗1k−−−→ F ⊗R k

φ⊗1k−−−→M ⊗R k → 0 (∗)

And φ⊗ 1k : F ⊗R k →M ⊗R k is an isomorphism:

1. F ⊗R k = Rs ⊗R k ∼= (R⊗R k)s ∼= ks has k-basis {ei ⊗ 1: 1 ≤ i ≤ s}.

2. M ⊗R k = M ⊗R R/m ∼= M/mM, m ⊗ (1 + m) ⇔ m + mM has k-basis {mi ⊗ 1: 1 ≤ i ≤ s},
since M/mM has k-basis {xi = mi + mM : 1 ≤ i ≤ s} by construction. So φ ⊗ 1k sends a
k-basis of F ⊗R k to a k-basis of M ⊗R k since φ ⊗ 1k(ei ⊗ 1) = mi ⊗ 1 for all 1 ≤ i ≤ s,
so φ ⊗ 1k is an isomorphism of k-vector spaces, implying that φ ⊗ 1k is an isomorphism of R-
modules. In particular, φ⊗ 1k is injective. So the exact sequence (∗) yields the exact sequence

0→ K⊗Rk
ι⊗1k−−−→ F⊗Rk

φ⊗1k−−−→M⊗Rk, where im ι⊗1k = kerφ⊗1k = 0. Hence 0→ K⊗Rk → 0
is exact, implying K ⊗R k = 0.

But K ⊗R k = K ⊗R R/m ∼= K/mK. So we have K = mK, and it follows from Nakayama’s
lemma (since K is finitely generated!) that K = 0. Hence φ : F

∼−→ M is an isomorphism, and
M is a finitely generated free R-module.

Remark 3.2.21. Assuming still that R is a local ring and M an R-module, the following can be
shown:

(a) (i)⇔ (ii), i.e., M is free ⇔ M is projective (Kaplansky).

(b) For (i)⇔ (iii), we only need that M is finitely generated (not necessarily finitely presented). So
M is finitely generated ⇒ {M is free ⇔ M is flat}.

(c) For a finitely generatedM, (iv)⇒ (iii) is in general not true, i.e., if a finitely generated R-module
M satisfies Tor1(M,k) = 0, it need not be flat.

Remark 3.2.22. For any ring R and a finitely presented R-module M, we have M is flat ⇔ M is
projective.

Question: Does finitely generated and flat already imply projective?
Answer: Not in general. Counter-examples can be obtained as follows: Let R be an absolutely flat

ring, i.e., every R-module is flat. If R has an ideal I which is not finitely generated, then R/I is flat
(since it is an R-module), finitely generated (cyclic) but neither finitely presented nor projective.

Note:

(a) Every finitely generated projective module is finitely presented: If 0→ K → F → P → 0 is a short
exact sequence with a finitely generated free R-module F, then it splits since P is projective,
implying that F ∼= K ⊕ P ⇒ K ∼= F/P is finitely generated.

(b) If I is an ideal of R such that R/I is projective, then I is principal: 0 → I → R → R/I → 0
splits ⇒ R ∼= I ⊕R/I ⇒ I ∼= R/(R/I) is cyclic, i.e., I is a principal ideal.
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Question: How do we get absolutely flat rings R which are not noetherian?
Let’s first discuss a criterion for absolute flatness:

Proposition 3.2.23. For a commutative ring R, the following are equivalent:

(i) R is absolutely flat.

(ii) I2 = I for every principal ideal I of R.

(iii) Every finitely generated ideal I of R is a direct summand of R.

Proof. (i)⇒ (ii) : Tensor the exact sequence 0 → (x)
ι−→ R with R/(x) (for x ∈ R) to get the exact

sequence 0→ (x)⊗R R/(x)
ι⊗1R/(x)−−−−−→ R⊗R R/(x). But the image of ι⊗ 1R/(x) is 0 :

rx⊗ (1 + (x)) = 1⊗ rx(1 + (x)) = 1⊗ 0 = 0 in R⊗R R/(x). So 0→ (x)⊗R R/(x)→ 0 is exact,
implying 0 = (x)⊗R R/(x) ∼= (x)/(x)(x), so (x) = (x)2.

(ii)⇒ (iii) : It follows from (ii) that each principal ideal (x) of R is generated by an idempotent:
(x) = (x2)⇒ ∃a ∈ R with x = ax2 ⇒ (ax) ⊂ (x) ⊂ (ax)⇒ (x) = (e) with e = ax. We also have
e2 = (ax)2 = a(ax2) = ax = e.

In general, any ideal generated by finitely many idempotents is a principal ideal generated by
an idempotent. Consider first I = (e, f) with two idempotents e and f. Then I = (e+ f − ef)
since e(e+ f − ef) = e2 = e and f(e+ f − ef) = f2 = f. And we get

(e+ f − ef)2 = e(e+ f − ef) + f(e+ f − ef)− ef(e+ f − ef) = e+ f − ef.

The general case now easily follows by induction on the number of generators of I. Finally, it is
easy to check that R = (e)⊕ (1− e) if e is an idempotent.

(iii)⇒ (i) : Let M be an R-module and I a finitely generated ideal of R. By (iii), R = I⊕J for some
other ideal J of R. Note that this implies that I and J are projective ⇒ flat R-modules. But
R/I ∼= J, and so also R/I is flat. It follows that Tor1(M,R/I) = 0. By a homological criterion
for flatness (to be discussed below) this implies that M is flat.

Example 3.2.24. Let (kj)j∈J be any (finite or infinite) family of fields. Then, by (ii) above, R =
∏
j∈J

kj

is absolutely flat: It is easy to check that for any x ∈ R, there exists J ′ ⊂ J with (x) =
∏
j∈J ′

kj = (x)2.

And if J is infinite, then R has ideals which are not finitely generated, e.g., I =
⊕
j∈J

kj . Hence R/I is a

flat cyclic R-module which is not finitely presented or projective. We finally discuss the criterion for
flatness used in (iii)⇒ (i) above.

Proposition 3.2.25. For any R-module M, the following are equivalent:

(i) M is flat.

(ii) Tor1(M,R/I) = 0 for every finitely generated ideal I of R.

(iii) The canonical map M ⊗R I →M ⊗R R =M is injective for all finitely generated ideals I of R.

Proof. (i)⇒ (ii) : See Corollary 3.2.13.

(ii)⇒ (iii) : After tensoring the short exact sequence 0→ I
ι−→ R→ R/I → 0, we get the long exact

sequence which ends in

Tor1(M,R/I)→M ⊗R I
1M⊗ι−−−→M ⊗R R→M ⊗R R/I → 0.

So if Tor1(M,R/I) = 0, then 1M ⊗ ι is injective.
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(iii)⇒ (i) : Assuming (iii), we have to show thatM⊗RN ′ →M⊗RN is injective for any R-module N
and any submodule N ′ ≤ N. If an element ofM⊗RN ′ becomes 0 inM⊗RN, then there exists a
finitely generated submodule N0 of N such that this element is already 0 inM⊗R (N ′+N0). So it

suffices to show thatM⊗RN ′ →M⊗RN is surjective if N = N ′+F. Assume that N0 =
ℓ∑
i=1

Rni.

By an easy induction on ℓ, we may reduce further to the case ℓ = 1, i.e., N = N ′ +Rn.

We now consider the “conductor” ideal of N/N ′, i.e., I := {r ∈ R : rn ∈ N ′}. There is a surjective
homomorphism R → N/N ′, r 7→ rn+N ′ with kernel I, and so N/N ′ ∼= R/I. Therefore, we get
a short exact sequence 0→ N ′ → N → R/I → 0 with associated long exact sequence ending in

Tor1(M,R/I)→M ⊗R N ′ →M ⊗R N →M ⊗R R/I → 0.

So to show that M ⊗R N ′ →M ⊗R N is injective, it suffices to show that Tor1(M,R/I) = 0 for
all ideals I of R.

We first note that (iii) implies the injectivity of M ⊗R I → M ⊗R R for all ideals I of R. The
argument is the same as above: If an element of M ⊗R I becomes 0 in M ⊗R R =M, then it is
also an element of M ⊗R I0 for some finitely generated subideal I0 of I which becomes 0 in M.
But by assumption, this element must be 0 in M ⊗ I0 and hence also in M ⊗ I.
Now consider, for any ideal I of R, the short exact sequence 0 → I → R → R/I → 0 with
associated long exact sequence

0 = Tor1(M,R)→ Tor1(M,R/I)→M ⊗R I →M ⊗R R→M ⊗R R/I → 0,

where the first equality holds since R is free. So Tor1(M,R/I) injects into the kernel of the map
M ⊗R I →M ⊗R R, which is 0. Hence Tor1(M,R/I) = 0 for all ideals I of R, and we are done.
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Chapter 4

Étale morphisms
Alejandro de las Peñas Castaño

4.1 Introduction

We want to incorporate the theory of manifolds to scheme theory. However, we cannot do this directly.
To illustrate this difficulty, let

E : y2 = f(x)

be an elliptic curve, that is, f(x) ∈ C[x] is a separable cubic polynomial. The separability condition
implies that (

∂f

∂x

∣∣∣
x=x0

,
∂f

∂y

∣∣∣
y=y0

)
̸= 0

for all (x0, y0) ∈ E ⊂ C2, so the Implicit Function Theorem (IFT) will imply that E is a submanifold
of C2. More precisely, if (in particular) ∂f/∂y ̸= 0, then the IFT tells us that:

(i) ∃ U ⊂ E and open neighborhood of (x0, y0),

(ii) ∃g(x) ∈ C[[x]] a power series,

such that
f(x, y) = 0 ⇐⇒ y = g(x) ∀(x, y) ∈ U,

and thus
E C C E

(x, y) x x (x, g(x))

are analytic isomorphisms when restricted to U .
There are two immediate problems with this approach if we want to generalize to Scheme Theory:

(i) The open neighborhood U is usually too small for the Zariski topology, more precisely, the usual
topology on E ⊂ C2 is stronger than the Zariski topology so the U given in (i) is not generally
open in the Zariski topology.

(ii) The power series g need not be polynomial and so the map x 7→ (x, g(x)) is not generally regular.

The above two hueristics don’t actually prove that E is not a closed subscheme of A2
C of dimension 1

in the sense that E is locally isomorphic to A1
C. The choice of E being an elliptic curve was not idle,

in fact, no such isomorphism can exist since E has genus 1 (by Riemann-Roch) and A1
C is of genus 0.

So we must be clever in order to apply the theory of smooth manifolds to Scheme Theory. In what
follows, we will describe the theory of differential forms from the point of view of commutative algebra
in order to define smooth maps between schemes. This will lead us to study étale morphisms between
schemes.
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4.2 Differential Forms

Throughout this section, we assume the following notation:

• R is a commutative ring with 1,

• A is a commutative R-algebra, and its elements will be denoted with f, g, h, . . ..

• M is an A-module.

Definition 4.2.1. An R-derivation from A to M is a map d : A→M that satisfies:

(i) d is R-linear,

(ii) (Product rule) For all f, g ∈ A, then d(fg) = f · d(g) + g · d(f).

Remarks 4.2.2. (about derivations)

4.2.2.1 The set of R-derivations from A to M is naturally an A-module and we denote it by

DerR(A,M) := {d : A→M | d is an R-derivation}.

4.2.2.2 Derivations vanish on constants. More precisely,

d(r · 1A) = 0 ∀r ∈ R. (4.1)

This can be shown by applying the product rule to 1A = 1A · 1A.

4.2.2.3 We have the classical formula:

d(fn) = nfn−1d(f) ∀n > 0, f ∈ A, (4.2)

which is obtained by repeatedly applying the product formula.

4.2.2.4 By combining (4.1) and (4.2), we see that if A is generated as an R-algebra by a set {xi | i ∈ I},
then any R-derivation d ∈ DerR(A,M) is completely determined by its values on the generators,
more precisely, if d, d′ ∈ DerR(A,M) and d(xi) = d′(xi) for all i ∈ I, then d = d′. This follows
from the fact that derivations are R-linear and from (4.1) and (4.2).

4.2.2.5 Given any R-derivation d : A→M and any A-module homomorphism φ :M → N , then φ◦d is
an R derivation from A to N . Indeed, R-linearity follows from the fact that φ is, in particular,
R-linear and the product rule follows immediately from the product rule and the fact that φ is
A linear: for all f, g ∈ A we have

(φ ◦ d)(fg) = φ(d(fg)) = φ(fd(g) + gd(f)) = fφ(d(g)) + gφ(d(f)) = f(φ ◦ d)(g) + g(φ ◦ d)(f).

We can summarize this as follows: every φ ∈ HomA(M,N) induces a map

Φφ : DerR(A,M) −→ DerR(A,N) defined by d 7→ φ ◦ d.

4.2.2.6 Let ψ : A → B be an R-algebra homomorphism and let M be a B-module. By restriction of
scalars, M is an A-module. More precisely, if x ∈ M and f ∈ A, then f · x = ψ(f)x is an
A-module structure on M ; we denote this A-module as M/A. Now, if d ∈ DerR(B,M) is an
arbitrary R-derivation then, similarly as above, d ◦ ψ is an R-derivation from A to M/A. The
product rule follows from

(d ◦ ψ)(fg) = d(ψ(fg)) = d(ψ(f)ψ(g)) = ψ(f)d(ψ(g) + ψ(g)d(ψ(f)) = ψ(f)(d ◦ ψ)(g) + ψ(g)(d ◦ ψ)(f)
∴ (d ◦ ψ)(fg) = f · (d ◦ ψ)(g) + g · (d ◦ ψ)(f)

We can summarize this as follows: every ψ ∈ HomR-alg(A,B) induces a map

Φψ : DerR(B,M) −→ DerR(A,M/A) defined by d 7→ d ◦ ψ.

for every B-module M .
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Examples 4.2.3. (of derivations)

4.2.3.1 Let A be the polynomial ring A = R[xi : i ∈ I]. Given any family (mi)i∈I ⊂M , there exists an
R-derivation d ∈ DerR(A,M) such that d(xi) = mi, in fact, for p ∈ A,

d(p) =
∑
i∈I

∂p

∂xi
mi

where ∂p/∂xi is defined to be the “formal derivative” of the polynomial p with respect to xi.
Furthermore, by Remark 4.2.2.4, this derivation is uniquely determined. This construction is
analogous to the construction of linear maps between vector spaces by defining them on basis
elements.

4.2.3.2 Consider A⊗R A as a ring and consider the multiplication map:

µ : A⊗R A −→ A defined by µ(f ⊗ g) = fg.

The multiplication map is a surjective ring homomorphism, so it is determined by the ideal

I := kerµ.

Since I is an ideal of A ⊗R A, it is an (A ⊗R A)-submodule of A ⊗R A and thus I/I2 is an
(A⊗R A)-module. However, I/I2 can be viewed as an A-module in three equivalent ways:

• Since multiplication by I annihilates I/I2, i.e. I ⊆ AnnA⊗A(I/I2) then I/I2 naturally
inherits a (A⊗RA)/I-module structure; since (A⊗RA)/I is naturally isomorphic to A via
µ, then I/I2 is an A-module.

• The ring A⊗R A is an A-algebra with structure morphism

ι1 : A −→ A⊗R A defined by f 7→ f ⊗ 1.

So the (A ⊗R A)-module I/I2 can be given the structure of an A modulo by “restricting
scalars” via ι1. That is, for a general element (

∑
fi ⊗ gi) + I2 ∈ I/I2 then the action of

h ∈ A is given by

h ·
(∑

fi ⊗ gi + I2
)
= (h⊗ 1)

∑
fi ⊗ gi + I2 =

∑
hfi ⊗ gi + I2.

• Analogously, I/I2 is an A-module by restricting scalars via

ι2 : A −→ A⊗R A defined by f 7→ 1⊗ f.

With the structure of an A-module, we can define

d : A −→ I/I2 defined by f 7→ (1⊗ f − f ⊗ 1) + I2.

Notice that f 7→ (1 ⊗ f − f ⊗ 1) maps A into I, so d is well-defined. Furthermore, since the
tensor product is over R, then d is R-linear. Finally, if f, g ∈ A, then

g · d(f) + f · d(g)− d(fg) = g · (1⊗ f − f ⊗ 1) + f · (1⊗ g − g ⊗ 1)−
(
(1⊗ fg)− (fg ⊗ 1)

)
+ I2

= (g ⊗ 1)(1⊗ f − f ⊗ 1) + (f ⊗ 1) · (1⊗ g − g ⊗ 1)− 1⊗ fg + fg ⊗ 1 + I2

= g ⊗ f − gf ⊗ 1 + f ⊗ g − fg ⊗ 1− 1⊗ fg + fg ⊗ 1 + I2

= g ⊗ f − gf ⊗ 1 + f ⊗ g − 1⊗ fg + I2

=
(
1⊗ g − g ⊗ 1

)(
1⊗ f − f ⊗ 1

)︸ ︷︷ ︸
∈I2

+ I2

and thus d is an R-derivation of A to I/I2.
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4.2.3.3 Let X be a smooth manifold and p ∈ X. Let A = Cp(X,R) be the R-algebra of germs of smooth
functions around p, i.e.

Cp(X,R) := {f : U → R | U ⊂ X is open, p ∈ U, f is smooth}/∼

where two smooth functions f : U → R and g : V → R are equivalent if there exists an open
neighborhood W of p such that W ⊂ U ∩ V and f |W = g|W . In fact,

Cp(X,R) = lim−→
U∋p

C(U,R)

where the direct limit is taken over all open neighborhoods of p and C(U,R) is simply the
R-algebra of smooth functions U → R.
Clearly, A = Cp(X,R) is a commutative R-algebra since it contains all the constant functions.
Furthermore, evaluation at p induces a ring homomorphism A→ R defined by f 7→ f(p). Thus,
if we set M = R, then M is an A-module via f · x := f(p)x.

Next we define an R-derivation from Cp(X,R) to R. Let α : (−1, 1) → X be a smooth curve
in X passing through p, that is α(0) = p, and take f : U → R a germ in Cp(X,R); we may
assume without loss of generality, that the image of α is contained in U . Then the composition
f ◦ α : (−1, 1)→ R is a smooth function at t = 0 and thus its derivative is well-defined. We can
therefore define:

d : Cp(X,R) −→ R with d(f) :=
d

dt

∣∣∣∣
t=0

(f ◦ α)(t)

This function is clearly well-defined since derivatives are defined locally, and it is an R-derivation
by the basic properties of derivatives. The R-derivation above is called the directional derivative
in the direction of α′(0).

Derivations occur naturally in geometry, but what makes them useful in commutative algebra, and
therefore in algebraic geometry, is the fact that they admit a universal object.

Theorem 4.2.4. Let A be an R-algebra. There exists an A-module O1
A/R and an R-derivation dA/R :

A → O1
A/R that satisfy the following universal property: for any A-module M and any R-derivation

d ∈ DerR(A,M), there exists a unique A-module morphism φ : Ω1
A/R → M the following diagram

commutes:

A M

Ω1
A/R

dA/R

d

φ (4.3)

Remark 4.2.5. The universal property is equivalent to saying that there is a natural bijection

HomA(Ω
1
A/R,M)

∼−→ DerR(A,M) defined by φ 7→ φ ◦ dA/R.

In fact, it is equivalent to saying that the functor

DerR(A,−) : AMod −→ AMod defined by M 7→ DerR(A,M)

is representable and it is represented by Ω1
A/R.

Proof. (of Theorem 4.2.4) First we assume that A is a polynomial ring, i.e. A = R[X] where X =
{xi}i∈I . In this case, set Ω1

A/R = A(I), the free A-module generated by some set (fi)i∈I . By Example

4.2.3.1, there is a unique derivation, say dA/R : A→ A(I), such that dA/r(xi) = fi.

The pair (A(I), dA/R) satisfies the universal property. Indeed, if M is any A-module, and d ∈
DerR(A,M), then

φ : A(I) −→M defined on generators by fi 7→ d(xi),
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is the required A-module homomorphism because, by construction, (4.3) commutes when restricted
to the R-algebra generators xi of A, and thus it still commutes when extended to any element of A
because of the product rule and (4.1).

The general case, when A is not necessarily a polynomial ring, follows from the fact that “deriva-
tions descend to quotients”. More precisely, if A is any R-algebra, then A is a homomorphic image
of some polynomial ring R[xi : i ∈ I] and thus the proof of Theorem 4.2.4 follows from the following
lemma.

Lemma 4.2.6. Let π : A↠ B be a surjective ring homomorphism and let a := kerπ. If the R-algebra,
A admits a solution (Ω1

A/R, dA/R) to the universal property in Theorem 4.2.4, then dA/R induces a
commutative diagram

A Ω1
A/R

B
Ω1

A/R

aΩ1
A/R

+A·dA/R(a)

dA/R

π

dB/R

where (O1
B/R, dB/R) solves the universal property for B. In particular

O1
B/R
∼=

Ω1
A/R

aΩ1
A/R +A · dA/R(a)

Proof. For simplicity, writeN = aΩ1
A/R+A·dA/R(a) and ν : Ω1

A/R ↠ Ω1
A/R/N as its natural projection.

By definition, Ω1
A/R/N is an A-module. If f ∈ a and x ∈ Ω1

A/R, then clearly fx ∈ N so f(x+N) = 0

and thus a ⊆ AnnA(Ω
1
A/R/N). This implies that Ω1

A/R/N is naturally a A/a ∼= B-module with the

following structure: if g ∈ B, there exists f ∈ A such that π(f) = g and if y ∈ Ω1
A/R/N , there exists

x ∈ Ω1
A/R such that ν(x) = y; the B-module structure on Ω1

A/R/N is given by

g · y = π(f) · ν(x) = ν(fx). (4.4)

By Remark 4.2.2.5, the composition

A Ω1
A/R Ω1

A/R/N
dA/R ν

is an R-derivation of A to Ω1
A/R/N . Furthermore, its kernel contains a since A · dA/R(a) ⊆ N . Thus

the above composition factors through the projection π : A ↠ B (which is R-linear if B is given the
R-algebra structure induced by π), that is there exists an R-linear map dB/R : B → Ω1

A/R/N such
that the following diagram commutes

A Ω1
A/R/N

B

ν◦dA/R

π

dB/R

ν ◦ dA/R = dB/R ◦ π (4.5)

We show that the pair (Ω1
A/R/N, dB/R) satisfies the universal property.

Let M be a B-module and d ∈ DerR(B,M). By Remark 4.2.2.6, the composition d ◦ π is
an R-derivation of A to M , the latter considered as an A-module via restriction of scalars. Since
(Ω1

A/R, dA/R) satisfies the universal property (4.3), the R-derivation d ◦ π factors through dA/R. That

is, there exists a unique A-module homomorphism φ : Ω1
A/R →M such that

φ ◦ dA/R = d ◦ π. (4.6)
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We record what the A-module structure of M means for φ: if f ∈ A and x ∈ Ω1
A/R, then being

A-linear means
φ(fx) = f · φ(x) = π(f)φ(x) (4.7)

Now let x ∈ N , then x = f1y + gdA/R(f2) where f1, f2 ∈ a = kerπ, g ∈ A and y ∈ Ω1
A/R. Thus

φ(x) = φ(f1y + gdA/R(f2))
(4.7)
= π(f1)φ(y) + π(g)φ(dA/R(f2))

(4.6)
= π(f1)φ(y) + π(g)d(π(f2)) = 0.

This means that φ|N = 0 and thus factors through a unique A-module homomorphism φ : Ω1
A/R/N →

M , i.e.

φ ◦ ν = φ =⇒ φ ◦ dB/R ◦ π
(4.5)
= φ ◦ ν ◦ dA/R = φ ◦ dA/R

(4.6)
= d ◦ π

Since π is an epimorphism, the above implies that φ ◦ dB/R = d as required. Now f is unique by
construction and it is a B-module homomorphism because of the following: arbitrary elements of B
and Ω1

A/R/N are of the form π(f) and ν(x) for some f ∈ A and x ∈ Ω1
A/R, so that

φ(π(f)ν(x))
(4.4)
= φ(ν(fx)) = φ(fx)

(4.7)
= π(f)φ(x) = π(f)φ(ν(x)).

This finishes the proof.

Definition 4.2.7. Given any R-algebra A, the A-module Ω1
A/R is called the module of relative differ-

entials of A over R and dA/R is called the exterior differential of A over R.

Remarks 4.2.8. (about the module of relative differentials)

4.2.8.1 Since the pair (Ω1
A/R, dA/R) solves a universal property, then the pair is unique up to unique

isomorphism.

4.2.8.2 The proof of Theorem 4.2.4, together with Lemma 4.2.6 implies that if A is generated by {xi}i∈I
as an R-algebra, then Ω1

A/R is generated by {dA/R(xi)}i∈I as an A-module. Furthermore, if A

is the polynomial ring A = R[xi : i ∈ I], then {dA/R(xi)}i∈I is a free generating set.

Examples 4.2.9. (of modules of relative differentials)

4.2.9.1 Let L/K be a finite separable extension, then Ω1
L/K = 0. Indeed, by the Primitive Element

Theorem, L = K(θ) for some θ ∈ L. Let f(x) ∈ K[x] be the minimal polynomial of θ; note that
separability implies that f ′(θ) ̸= 0. By Remark 4.2.8.2, Ω1

L/K is a one dimensional vector space

generated by dL/K(θ). However,

0 = d(0) = d(f(θ)) = f ′(θ)d(θ) =⇒ d(θ) = 0

and thus Ω1
L/K = 0 as required.

4.3 The Sheaf of Differentials

In this section we review the construction of the sheaf of differentials of a scheme X. To do so, we
review some basics of sheaves of modules.

We begin with affine schemes. Let A be a ring and X = SpecA be the prime spectrum of A with
the Zariski Topology. The open sets

D(f) := {p ∈ X | f ̸∈ p}

form a basis for the Zariski Topology. If D(f) ⊆ D(g), then fn = ga for some a ∈ A and n ∈ N. The
natural localization map

ℓf : A −→ Af defined by h 7→ h

1
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thus factors through the localization map ℓg : A→ Ag and we get a natural ring homomorphism

ℓgf : Ag −→ Af defined by
h

gm
=
han

fnm

The above construction yields a sheaf on the basic open sets of X which in turn induces the following
sheaf on X: let Top(X) be the category of open sets on X whose only morphisms are inclusions, then

OX : Top(X) −→ Rings, OX(U) := lim←−
D(f)⊆U

Af , OX(D(f) ↪→ D(g)) = ℓgf

is a sheaf of rings on X and it is called the structure sheaf of X.

Definition 4.3.1. Let (X,OX) be a ringed space. An OX-module is a sheaf F on X such that for
every open U ⊆ X, the abelian group F(U) is an OX(U)-module and such that for every inclusion
V ↪→ U the associated restriction map F(U)→ F(V ) is compatible with the module structures via the
ring homomorphism OX(U)→ OX(V ). A morphism F → G of sheaves is a morphism of OX-modules
if each map F(U)→ G(U) is an OX(U)-module homomorphism.

Remark 4.3.2. The phrase compatible in the previous definition means the following. Since every
F(U) is an OX(U)-module, then there is a structure map θU : OX(U) × F(U) → F(U) acting like
(a, x) 7→ a · x. Then being compatible means that for every inclusion ι : V ↪→ U we have the following
commutative diagram:

OX(U)× F(U) F(U)

OX(V )× F(V ) F(V )

θU

OX(ι)×F(ι) F(ι)

θV

Remarks 4.3.3. (about OX -modules)

4.3.3.1 Most operations allowed in the category of A-modules is also allowed for OX -modules. More
precisely

4.3.3.1.i If (Fi)i∈I is a family of Ox-modules, then⊕
i∈I

Fi,
∏
i∈I

Fi, lim−→
i∈I

Fi, and lim←−
i∈I

Fi are all OX -modules.

4.3.3.1.ii If F′ is a subsheaf of OX -modules of F, then the quotient F/F′ is an OX -module.

4.3.3.1.iii If U ⊆ X is an open subset and F is an OX -module, then F|U is an OX |U -module.

4.3.3.1.iv If F and G are OX -modules, then the tensor product F ⊗OX
G is an OX -module, where

F ⊗ G is the sheaf associated to the presheaf U 7→ F(U)⊗OX(U) G(U).

4.3.3.1.v If F and G are OX -modules, then U 7→ HomOX
(F|U ,G|U ) is an OX -module where HomOX

denotes the group of sheaf morphisms.

4.3.3.2 The OX -module structure can be transferred across morphisms of ringed spaces. More precisely,
if f : (X,OX) → (Y,OY ) is a morphism of ringed spaces, i.e. we have a pair (f, f#) where
f : X → Y is continuous and f# : OY → f∗OX is a morphism of sheaves of rings (where f∗OX
is the direct image sheaf defined by (f∗OX)(V ) := OX(f−1(V ))), then we have the following:

4.3.3.2.i If F is an OX -module, then f∗F is a OY -module in the following manner: firstly, f∗F is
an f∗OX -module, secondly the sheaf homomorphism f# : OY → f∗OX given to us by
definition, makes f∗Ox into a OY -module by restriction of scalars.

4.3.3.2.ii If G is an OY -module, then the inverse image sheaf f−1G, defined as the sheaf associated
to the presheaf

U 7→ lim←−
V⊇f(U)

G(V ),

is a f−1OY -module.
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4.3.3.2.iii The adjoint property of f∗ and f−1 tells us that we have a natural isomorphism

HomShX(f
−1OY ,OX) ∼= HomShY (OY , f∗OX).

Therefore, the morphism f# gives us a natural morphism f−1OY → OX ; this gives OX a
structure of an f−1OY -module. Furthermore, if G is an OY -module, by 4.3.3.2.ii , it is an
f−1OY -module and thus we can extend it to an OX module via extension by scalars. More
precisely, 4.3.3.1.iv allows us to define

f∗G := f−1G⊗f−1OY
OX

Below we describe a very important way to construct OX -modules in the affine case. Let X =
SpecA be an affine scheme with structure sheaf OX and let M be an A-module. Then for any f ∈ A,
we may localize M at f :

Mf =M ⊗A Af .

This means that the functor D(f) 7→ Mf on objects and which sends the inclusion D(f) ↪→ D(g) to
idM ⊗ ℓgf : M ⊗A Ag → M ⊗A Af , is a sheaf on the category of basic open sets of the affine scheme
X = SpecA. Therefore, it extends uniquely to a sheaf on X. Furthermore, this sheaf is an OX -module
because Mf =M ⊗A Af is naturally an Af -module with action (h/fm) · (x⊗ h′) = x⊗ (hh′/fm) and
thus the following diagram is commutative:

Af × (M ⊗A Af ) M ⊗A Af

Ag × (M ⊗A Ag) M ⊗A Ag

ℓgf×(idM⊗ℓgf ) idM⊗ℓgf

This leads to the following definition.

Definition 4.3.4. Let (X,OX) be an affine scheme with X = SpecA for some ring A and let M be

an A-module. The OX -module sheaf associated to M is the OX -module M̃ defined on basic open sets
by

M̃(D(f)) =M ⊗A Af .

Remarks 4.3.5. (about M̃)

4.3.5.1 If X = Spec(A), we have OX ∼= Ã.

4.3.5.2 The functor M 7→ M̃ gives an exact fully faithful functor from AMod to the category of OX -
modules.

4.3.5.3 If M and N are A-modules, then M̃ ⊗A N ∼= M̃ ⊗OX
Ñ .

4.3.5.4 If (Mi)i∈I is a family of A-modules, then ⊕̃iMi
∼= ⊕iM̃i.

4.3.5.5 If B is an A-algebra and f : SpecB → SpecA is the induced map, then for any B-module N we
have

f∗(Ñ) ∼= Ñ/A,

where N/A is the A-module obtained by restriction of scalars.

4.3.5.6 For any A-module M , we have f∗(M̃) ∼= M̃ ⊗A B.

Next we review properties of quasi-coherent and coherent OX -modules.

Definition 4.3.6. Let (X,OX) be a scheme and F an OX -module. We say that F is quasi-coherent
if there exists an open cover X =

⋃
i∈I Ui that satisfies: for every i ∈ I we have

(i) Ui is affine, i.e. there exists a ring Ai such that Ui ∼= SpecAi,
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(ii) there exists an Ai-module Mi such that F|Ui
∼= M̃i.

Furthermore, if each Mi can be taken to be finitely generated as an Ai-module, then we say that F is
coherent.

Remarks 4.3.7. (about quasi-coherent and coherent OX -modules)

4.3.7.1 F is quasi-coherent if and only if for every open affine subset U = SpecA of X, there is an A-
module M such that F|U ∼= M̃ . We can replace “quasi-coherent” with “coherent” if we required
M to be finitely generated and that X be a noetherian scheme.

4.3.7.2 Let X = SpecA. The functor M 7→ M̃ gives an equivalence of categories between A-modules
and the category of quasi-coherent OX -modules; its inverse functor is the global sections functor
Γ(X,F). Furthermore, if A is noetherian, M 7→ M̃ is an equivalence between the category of
finitely generate A-modules and the category of coherent OX -modules.

4.3.7.3 If X = SpecA is an affine scheme and F is a quasi-coherent OX -module, then H1(X,F) = 0, i.e.
the global sections functor Γ(X,−) is exact.

4.3.7.4 Let f : F → G a morphism of OX -modules. Then ker(f), coker(f) and im(f) are all quasi-
coherent. If X is noetherian, then the same is true if we replace “quasi-coherent” with coherent.

4.3.7.5 If 0 → F′ → F → F′′ → 0 is an exact sequence of OX -modules where F′ and F′′ are quasi-
coherent, then F is quasi-coherent. If X is noetherian, then the same is true if we replace
“quasi-coherent” with coherent.

4.3.7.6 Let f : X → Y be a morphism of schemes and let F and G be a OX -module and a OY -module
respectively. Then:

(i) If G is quasi-coherent, then f∗OY is a quasi-coherent OX -module.

(ii) If X is noetherian and F is quasi-coherent, then f∗F is a quasi-coherent OY -module

Definition 4.3.8. Let (X,OX) be a scheme and (Y,OY ) a closed subscheme. If (i, i#) is the inclusion
morphism Y ↪→ X, then the ideal sheaf of Y is defined as

IY := ker(i# : OY → i∗OX).

Proposition 4.3.9. Let X be a scheme. For any closed subscheme Y , the ideal sheaf IY is quasi-
coherent. Conversely, if F is a quasi-coherent OX-module, there exists a unique closed subscheme Y
of X such that F ∼= IY .

4.3.1 The Sheaf of Relative Differentials

Let σ : X → S be an S-scheme and let ∆ : X → X ×S X be the diagonal embedding. If X = SpecA
is affine then this diagonal embedding corresponds to the multiplication map A ⊗ A → A which is
surjective and thus, in the affine case, ∆ is a closed immersion. Thus, in the general case, ∆ is a
locally closed immersion, i.e. there exists an open subscheme W ⊂ X ×S X such that ∆(X) ⊆W and
the corestriction ∆| : X →W is a closed immersion.

By Proposition 4.3.9, there is a quasi-coherent ideal sheaf I associated to ∆(X). By Remark
4.3.7.4, I/I2 is a quasi-coherent OX -module. With this, we can define:

Definition 4.3.10. Let X → S be an S-scheme. The sheaf of relative differentials forms of X/S is
the OX -module

Ω1
X/S := ∆∗(I/I2)

where I is the quasi-coherent ideal sheaf associated to the locally closed immersion ∆ : X → X ×S X.

Remarks 4.3.11. (about Ω1
X/S)
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4.3.11.1 The definition of Ω1
X/S is independent of choice of open set W containing ∆(X) (because the

inverse image sheaf is compatible with restricting to open sets, i.e. ∆∗(I/I2)|U = ∆|∗U (I/I2|W )
if ∆(U) ⊆W ).

4.3.11.2 Remark 4.3.7.6 guarantees that Ω1
X/S is quasi-coherent.

Next we describe Ω1
X/S locally. Let U = SpecA and V = SpecR be open affine subschemes of X

and S respectively where σ(U) ⊆ V . The restriction σ| : U → V corresponds to a ring homomorphism
R→ A and thus A is an R-algebra. Define

I := ker(µ : A⊗R A −→ A)

which is an A-module. We have
I|U×SU

∼= Ĩ

because the diagonal map ∆ is locally the multiplication map. By Remark 4.3.5.6 we have

∆∗(I/I2)|U ∼= ∆∗|U (I/I2|U×U ) ∼= ∆∗|U (Ĩ/Ĩ2) = ∆∗(Ĩ/Ĩ2) ∼= ˜I/I2 ⊗A⊗A A

Since (A⊗A)/I ∼= A via µ, then the above is simply

∆∗(I/I2)|U ∼= Ĩ/I2 ∼= Ω̃1
A/R.

This observation means that we can also construct Ω1
X/S by gluing the the quasi-coherent OX -modules

Ω̃1
A/R along all affine open sets using the standard scheme gluing:

Lemma 4.3.12. Let (Xi)i∈I be a family of schemes. Furthermore, for each pair i, j ∈ I, there is
an isomorphism φij : Xij → Xji where Xij and Xji are open subschemes of Xi and Xj respectively.
Suppose that these objects are subject to the following conditions:

(i) Xii = Xi, φii = id and φji ◦ φij = id.

(ii) For each pair i, j ∈ I and each index k ∈ I, the isomorphism φij restricts to an isomorphism

φ
(k)
ij : Xij ∩Xik −→ Xji ∩Xjk

such that φ
(k)
ij satisfies the cocycle condition

φ
(i)
ik = φ

(i)
jk ◦ φ

(k)
ij .

If all of these conditions hold, there is a scheme X, unique up to canonical isomorphism, together
with a family of morphisms (ψi : Xi → X) that satisfy the following:

(a) For each i ∈ I there is an open subscheme X ′
i ⊆ X such that ψ restricts to an isomorphism

ψi : Xi → X ′
i,

(b) (X ′
i) is an open cover of X,

(c) for all i, j ∈ I we have ψi(Xij) = X ′
i ∩X ′

j,

(d) for all i, j ∈ I we have the following commutative diagram:

Xij

X ′
i ∩X ′

j

Xji

φij

ψi|Xij

ψj |Xji

53



Chapter 5

Henselian rings
Craig Huneke

Topics:

(1) Hensel’s Lemma and Applications

(2) Henselian Rings

(3) Henselizations

There are not many references on Henselian rings. One source written in French is “Anneaux
Locaux Henséliens” by Michel Raynaud [4].

5.1 Hensel’s Lemma and Applications

Notation: By (R,m, κ) we mean a local ring R with maximal ideal m and residue field κ.

Example 5.1.1. Let k be a field and R be the ring of polynomials R = k[x1, ... xn]. Then the
completion of R with respect to the maximal ideal (x1, x2, ... xn) is the ring of power series R̂ =
k[[x1, ... xn]].

Definition 5.1.2. Let (R,m, κ) be a local ring with the m-adic topology. The ring R is called
separated if ∩n≥1m

n = 0. This is because the collection {mn}n∈N is a fundamental system of
neighborhoods of zero. Their intersection being zero ensures that R is Hausdorff (separated) as a
topological ring.

Notation: By overscoring an algebraic object (e.g. R) we mean “modulo m” (R⇝ R/m).

Lemma 5.1.3 (Hensel’s Lemma). Let (R,m, κ) be a local, complete (R = R̂), separated ring and
F ∈ R[x] be a monic polynomial. Suppose F = gḣ in κ[x] where g, h are monic and relatively prime.
Then there exist monic polynomials G, H ∈ R[x] such that F = GH with G = g and H = h.

Aside: Since g, h are relatively prime, (g, h) = κ[x]. If deg f < deg g+deg h, then f = ag+bh for
some polynomials a, b where we claim deg a < deg h and deg b < deg g. This because if f = a′g+ b′h
we can apply the division algorithm in κ[x] to obtain remainder b: b′ = dg + b where deg b < deg g.
Then f = (a′ + dh)g + bh and a := a′ + dh must have degree less than deg h.

Proof of Hensel′s Lemma: (By induction) We claim that there exist monic polynomials Gn, Hn

such that F−GnHn ∈ mnR[x] and Gn = g, Hn = h. We will also construct them to satisfy Gn−Gn−1,
Hn − Hn−1 ∈ mn−1R[x]. Then we set G = limnGn and H = limnHn which are elements of R[x]
because R is complete and F −GH ∈ ∩nmnR[x] = 0 because R is separated.

i) Begin by lifting g and h to monic polynomials G1 and H1. Note F −G1H1 = F − gh = 0 so
F −G1H1 ∈ mR[x].
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ii) Choose y1, ...yl ∈ mn such that F − GnHn =
∑l

i=1 yiLi where each Li ∈ R[x] and deg Li <
degF = deg g + deg h. Write Li = ai g + bi h (choose ai, bi satisfying the aside) and lift them to
ai ⇝ Ai and bi ⇝ Bi keeping the degrees the same.

Note that Li − AiGn − BiHn ∈ mR[x] so that F − GnHn −
∑

i yi(AiGn + BiHn) ∈ mn+1R[x].
We thus set Gn+1 = Gn −

∑
i yiBi and Hn+1 = Hn −

∑
i yiAi so that

Gn+1Hn+1 = GnHn −
∑

i yi(AiGn +BiHn) +
∑

i, j yi yj AiBj
The last term

∑
i, j yi yj AiBj ∈ m2nR[x]. We have that F − Gn+1Hn+1 ∈ mn+1R[x] and Gn+1 ≡

Gn mod m
nR[x], Hn+1 ≡ Hn mod m

nR[x]. Finally, because deg Gn+1 = deg Gn and deg Hn+1 =
deg Hn we have a coherent sequence of polynomials, being elements of our (complete) ring which
provide the desired factorization.

Corollary 5.1.4. Let (R,m, κ) be a local, complete, and separated ring. Suppose F ∈ R[x] is a monic
polynomial and there is some r ∈ R such that F (r) ∈ m but F ′(r) /∈ m (r is a non-repeated root of F
mod m). Then there exists a ∈ R such that a ≡ r mod m and F (a) = 0.

Proof : The polynomial F factors into (x− r)h(x) where ((x− r), h(x)) = R[x] (because r is not
a repeated root). Apply Hensel’s Lemma.

Notation: Let k = k be an algebraically closed field of characteristic 0. We denote the ring of
Laurent series by k((t)) = k[[t]][t−1].

Theorem 5.1.5 (Newton-Puiseaux)). The completion of the ring of Laurent Series, k((t)) = ∪n≥1k[[t
1/n]].

Proof : It suffices to show that the right-hand side is algebraically closed; denote the RHS by L.

Let F (x) ∈ S[x] where S = ∪n≥1k[[t
1/n]] be monic, of degree at least two. It suffices to show that F

splits in L.
Then F = a1x

n−1 + ...+ an where each coefficient ai ∈ k[[t1/mi ]] and without loss of generality we
may assume each mi = 1 by changing variables t1/lcm{mi} ⇝ t. Furthermore, we may change variables
x′ = x+ 1

na1 (recall char k ̸= 0) which allows us to assume a1 = 0.
Next, we want to show one of a2, ...an is a unit iff there is some ai such that ai(0) ̸= 0. Assume
this is not the case and let r = min{ordt(ai(t)) /i} so that r is a positive, rational number. Then
for each i = 2, ...n, tri |ai(t) so define bi = ai(t)/t

ri and X = trY . Then F becomes F (X) =
(trY )n + ... + tribi(t

rY )n−i + ... + trnbn = trn(Y n + ... + biY
n−i + ... + bn). The polynomial G(Y ) =

Y n + ... + biY
n−i + ... + bn has at least one coefficient a unit. By renormalizing the power of t to

assume F ∈ k[[t]], a1 = 0, and at least one ai is a unit for i = 2, ...n.
Now we use Hensel’s Lemma. It suffices by Hensel’s Lemma to prove that F factors into two relatively
prime polynomials. Since k = k, F factors into linear factors, there is no problem unless F = (x−α)n
for some α ∈ k. But 0 = a1 = nα =⇒ α = 0 so F = xn would mean a2 = ... = an = 0 contradicts
one is nonzero.

5.2 Henselian Rings

Let (R,m, κ) be a local ring. The following are equivalent:

Theorem 5.2.1. 1. If F (x) ∈ R[x] is monic and there is some r ∈ R such that F (r) ∈ m,
F ′(r) /∈ m, then there is some a ∈ R where a ≡ r mod m such that F (a) = 0.

2. Every elementary (pointed) étale neighborhood R→ S is an isomorphism.

3. If F1, ... , Fn ∈ R[x1, ... , xn] and r ∈ Rn satisfying Fi(r) ∈ m for all i = 1, ... , n and
|∂Fi/∂xj |r /∈ m, then there exists a s ∈ Rn such that s − r ∈ mRn such that Fi(s) = 0 for
all i = 1, ... , n.

4. If F ∈ R[x] is monic, F = g h, where g and h are monic and relatively prime, then F = GH
with G, H monic G = g and H = h.

5. Every module-finite extension R→ S (S is a finite R-mod) is a (finite) product of local rings.
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Definition 5.2.2. A local ring satisfying these definitions is called Henselian.

Examples/Remarks:

1. If R is local, complete, and separated, then R is Henselian.

2. Quotients of Henselian rings are Henselian (R =⇒ R/I).

3. A ring R is Henselian iff R/
√

(0) is Henselian.

4. The ring C << x1, ... , xn >> (convergent power series) is Henselian.

Definition 5.2.3. An elementary étale neighborhood is an étale morphism between local rings ϕ :
R→ S where S/mS ≃ R/mR.

Theorem 5.2.4 (Structure Theorem for Elementary Étale Neighborhood). If ϕ : R → S is an

elementary étale neighborhood, then S ≃ ( R[x]
(F (x)))Q for some a ∈ R, F ∈ R[x] is monic, Q = (x −

a,mR[x]), and F ′(a) /∈ m.

Proof : We will first prove the equivalence of 1. through 4. Recall (R,m, κ) is a local ring.
(4. =⇒ 1.) DONE

(1. =⇒ 2.) Let ϕ : R → S be an elementary étale neighborhood. By the Structure Theorem,

S ≃ ( R[x]
(F (x)))Q for some r ∈ R, F ∈ R[x] is monic, Q = (x − r,mR[x]), and F ′(r) /∈ m. As assumed

in 1, there is some a ∈ R such that a ≡ r mod m and F (a) = 0 so F factors as F (x) = (x− a)G(x).
Because F ′(r) /∈ m, G(x) /∈ Q and becomes a unit when localized with respect to Q. Thus S ≃
( R[x]
((x−a)G(x)))Q ≃ ( R[x]

(x−a))Q ≃ R. We remark most of the work of this part is done by the Structure
Theorem.

(2. =⇒ 3.) Recall the set up of 3: let F1, ... , Fn ∈ R[x1, ... , xn] and r ∈ Rn satisfying Fi(r) ∈ m
for all i = 1, ... , n and |∂Fi/∂xj |r /∈ m. Set S = (R[x1, ... , xn]

(F1, ... , Fn)
)Q where Q = (xi − ri,mR[x1, ... , xn])

because of the Jacobian condition of the Fi, ϕ : R→ S is étale and SQ/QSQ = κ. So S is an elementary
étale neighborhood. By 2 we know that ϕ is an isomorphism so there are si where ϕ(si) = xi and
Fi(s1, ... , sn) for all i = 1, ... , n. Moreover si ≡ ri mod m.

(3. =⇒ 4.) Let F be a monic polynomial in R[x] where F = gh, g and h are monic and
relatively prime. Then write F = xn + rn−1x

n−1 + ... r0, g = xa + αa−1x
a−1 + ... + α0, h = xb +

βn−1x
n−1 + ... + β0 where the coefficients ri ∈ R, αi, βi ∈ κ. Note our equation F = gh means

that α0β0 = r0, [α1β0 + α0β1 = r1], ... [βa + αa−1β1 + ... + α0βa = ra], ... [αa−1 + βb−1 =
rn−1]. Consider the following system of equations (of the variables Y0, Y1, ... Ya−1, Z0, Z1, ... Zb−1):

F0(...) = Y0Z0 − r0
F1(...) = Y1Z0 + Y0Z1 − r1

...
Fa(...) = Z0 + Ya−1Z1 + ... + Y0Za − ra

...
Fn−1(...) = Ya−1 + Zb−1 − rn−1

So each Fj ∈ R[Y0, Y1, ... Ya−1, Z0, Z1, ... Zb−1] are functions of n variables. We want to find a
solution lifting α0, ... αa−1, β0, ... βb−1. Then defining G, H in the obvious way gives F = GH. Note
that there is a solution mod m. We need to prove that |∂Fi/∂Yi or ∂Zi|(α0, ... αa−1, β0, ... βb−1) ̸= 0
in κ to be able to use the assumption from 3. Consider the matrix J :

∂Z0 Y0 Y1 ... Ya−1 1 0 0 ... 0
∂Z1 0 Y0 ... Ya−2 Ya−1 1 0 ... 0
...

...
. . .

. . . ...
. . .

. . .
. . . ...

...
∂Zb−1 0 0 ... Y0 Y1 ... ... Ya−1 1
∂Y0 Z0 Z1 ... Zb−1 1 0 0 ... 0
∂Y1 0 Z0 ... Zb−2 Zb−1 1 0 ... 0
...

...
. . .

. . . ...
. . .

. . .
. . . ...

...
∂Ya−1 0 0 ... Z0 Z1 ... ... Zb−1 1
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Assume that det(J) = 0 when evaluated at (α0, ... αa−1, β0, ... βb−1). Then there exists a nonzero
solution to (t0, ... ta−1, s0, ... sb−1)J(α0, ... αa−1, β0, ... βb−1) = 0. Said a different way, there are
(t0, ... ta−1, s0, ... sb−1) such that [t0α0+s0β0 = 0], [t0α1+ t1α0+s0β1+s1β0 = 0], ... [tb−1+sa−1 = 0].
So define the polynomials t(x) = tb−1x

b−1 + ... + t0 and s(x) = sa−1x
a−1 + ... s0. The previous

equations imply t(x)g + s(x)h = 0. But deg t = b − 1 and deg s = a − 1, so g and h cannot be
relatively prime because if they were, h|t.

This shows 1. through 4. are equivalent, but before proving the equivalence of 5. we must first
discuss splittings.

Definition 5.2.5. A commutative ring S is said to decompose if S ≡ S1 × S2 × ... × Sl where
(Si, mi) is a local ring.

Examples:

1. Any local ring decomposes.

2. Any Artinian ring decomposes.
Proof : If S is an Artinian ring, then Spec(S) = {M1, ... , Ml} and each Mi ⊂ (M1 ∩ ... ∩
Ml)

√
(0). Then there is some n ∈ N such that Mn

1 ...M
n
l = 0 and because Mn

i is comaximal to
Mn
j for i ̸= j, the Chinese Remainder Theorem tells us S = S/(Mn

1 ...M
n
l ) = S/Mn

1 × ... ×S/Mn
l

where each S/Mn
i is a local ring.

3. Any homomorphic image of a decomposable ring decomposes.
Proof : Note that any ideal of a product of rings R1× ... ×Rl is of the form I1× ... × Il where
Ij is an ideal of Rj . The statement follows.

4. If R is Henselian and F (x) ∈ R[x] is monic, then R[x]/(F (x)) decomposes.
Proof : Factor F = g1 ... gl with each (gi, gj) = 1 for i ̸= j. Since R is Henselian, the gi lift to
Gi which are monic since F = G1 ... Gl. Then R[x]/(F ) ≡ R[x]/(G1) × ... × R[x]/(Gl). Since
mS ⊂ Jac(S) (S is module-finite over R) and mod m

√
(gi) is maximal. The product follows

using the Chinese Remainder Theorem.

5. If S decomposes S = S1 × ... × Sl where (Si,mi) are local, then Max(s) = {M1, ... , Ml} where
Mi = (x1, ... , xi−1, mi, xi+1, ... , xl) and SMi = Si.

General Discussion of Idempotents: Setup: let (R, m, κ) be a local ring and R→ S is finite as an
R−module. Recall that Idem(S) := {e ∈ S : e2 = e}.

Lemma 5.2.6. The map Idem(S)→ Idem(S) is 1− 1.

Proof : Suppose e and f are idempotents of S and e = f so e − f ∈ mS. Then (e − f)3 =
e3− 3e2f +3ef2+−f3 = e− f so ((e− f)2− 1)(e− f) = 0. Because (e− f)2− 1 ∈ mS so (e− f)2− 1
is a unit =⇒ e = f .

Proposition 5.2.7. The following are equivalent:

• The map Idem(S)→ Idem(S) is surjective.

• S decomposes

• If we write the (Artinian) ring S = S1× ... ×Sl, denote ei = (0, ... , 1, ... , 0), then the ei lift to
Idem(S).

Proof : The fact that 1. ⇐⇒ 3. is follows from Idem(S) = {ei1 + ... + eim} since the only
idempotents in a local ring are 0 and 1.

(2. =⇒ 3.) Lift each ei to ei ∈ Idem(S) and note eiej lifts eiej = 0 for i ̸= j so by injectivity
eiej = 0. Now e1 + ... + el ∈ Idem(S) lifts 1 = e1 + ... el so by the lemma 1 = e1 + ... + el. We thus
have a set of orthonormal idempotents which shows S ≡ Se1 × ... × Sel and Sei = Si is local hence
Sei is local.
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(3. =⇒ 2.) This follows from the (not proven here) fact that decompositions are essentially
unique.
We are now ready to prove the equivalence of statement 5. of a Henselian ring.

Theorem 5.2.8. A local ring R is Henselian iff every (module) finite extension R→ S decomposes.

Proof : ( =⇒ ) Assume R is Henselian, R → S is a module-finite map, then S is Artinian hence
decomposes and Max(S) = {M1, ...Ml}. (Using the Jacobson radical and going mod M1, we obtain
a finite-dimensional vector space. Then S ≡ (S)M1 × ... × (S)Ml

.) By the previous proposition and
without loss of generality, it suffices to lift e = e1 = (1, 0, ... , 0) to an idempotent in S. Choose any
c ∈ S such that c = e. Then c ∈M2 ∩ ... ∩Ml and c− 1 ∈M1.

Consider the maps R
R
↪−→ [c] ↪−→ S and R[x]/(F (x)) → R[c] where because S is finite over R, we

let F (x) be a minimal polynomial such that F (c) = 0. Because R[x]/(F (x)) decomposes and surjects
onto R[c], so does R[c], being a homomorphic image.

The maximal ideals of R[c] are exactly Mi ∩ R[c] so we write Q = M1 ∩ R[c]. Notice since
c ∈ M2 ∩ ... ∩Ml, Q

′ := Mi ∩ R[c] = (c,mR[c]) for all i = 2, ... l. So there are only two maximal
ideals: R[c] ≡ R[c]Q × R[c]Q′ containing an idempotent ϵ := (1, 0). Notice ϵ ∈ M2 ∩ ... ∩Ml ⊂ S so
ϵ = (1, 0, ... , 0) ∈ S. So ϵ lifts e.

Exercise: The other direction is easier.

Remark: If (R,m, k) is a Henselian ring and a domain, p ∈ Spec(R) which is neither 0 nor m,
then Rp is never Henselian.

Proof : Choose z ∈ m−p and a ∈ p, a ̸= 0 such that a /∈ mn for some n ∈ N with n·1 /∈ p. Suppose
by way of contradiction that Rp is Henselian. Consider the monic polynomial f(T ) = Tn− (a+ zn) so
going mod pRp we obtain Tn − zn which has a root z. Also, f ′(z) = nzn−1 ̸= 0 so there is a root u of
f(T ) in Rp. Without loss of generality take u ∈ R so that un − (a+ zn) = 0 =⇒ a = un − zn ∈ mn

which is a contradiction.

5.3 Henselizations

Definition 5.3.1. Let (R,m, k) be a local ring. AHenselization (Rh,m, k) of (R,m, k) is a Henselian
ring (containingR by way of a local ring map ι : R→ Rh) that satisfies the following universal property.
Given a Henselian ring S and a local map ϕ : R→ S, there exists a unique local map Φ : Rh → S.

Remark: Since Rh is Henselian, it must contain all roots of monic polynomials over R with simple
roots mod m, i.e. elementary étale neighborhoods must map to Rh because for example:

R[T ]
(f(T )) → S sending T 7→ root of f(T ).

Conversely, if Rh is henselian then we proved every een S of Rh is trivial i.e. the map Rh → S is
the identity. Our idea is to try to use the direct limit of the elementary étale neighborhoods.

Proposition 5.3.2. Suppose that S, T are een of (R,m, k)

1. If I ⊂ R, then R/I → S/IS is an elementary étale neighborhood.

2. Let Q = ker(S ⊗R T → k ⊗R k), then (S ⊗R T )Q is an een of R.

3. There exist at most one R-homomorphism from S → T . If such a homomorphism exists, then
T is an een of S.

4. If there is an R-homomorphism S → T and another R-homomorphism T → S, then S ≃ T .

Proof : 1. follows from base change for étale maps and the fact that their residue fields are the
same.
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2. By the Structure Theorem for een, S ≃ ( R[X]
(f(X)))Q1 where f is a monic polynomial, Q1 =

(X − a,mR[X]), and f ′(a) /∈ m. Also, T ≃ ( R[Y ]
(g(Y )))Q2 , g is monic, Q2 = (Y − b,mR[Y ]), and

g′(Y ) /∈ m. Then R[X]
(f(X)) ⊗

R[Y ]
(g(Y )) ≃

R[X,Y ]
(f,g) and the Jacobian of (f, g) is just

(
f ′(X) 0

0 g′(Y )

)
with

determinant not in mR[X,Y ]. So R→ (S ⊗ T )Q is étale and by construction
(S⊗T )Q
Q(S⊗T )Q ≃ k.

3. Suppose we have two R-homomorphisms α, β : S → T . This gives a map ϕ : S ⊗R S → T
defined by ϕ = [α⊗β]. Let Q = ϕ−1(mT ). It is enough to show that (S⊗RS)Q ≃ S by multiplication.

We use the exact sequence 0 → Θ → S ⊗ S → S → 0 where by assumption 0 = ΩS/R ≃ Θ/Θ2.
Note Θ is finitely generated and Θ = Θ2 so Θ is generated by an idempotent. Therefore (Θ)Q = 0 (̸=
1) =⇒ (S ⊗ S)Q ≃ S. Then 0 = 1⊗ S − S ⊗ 1 is mapped to α(s)− β(s). Use localization.

For the second part of 3. we use the Jacobi-Zariski sequence; R→ S → T induces:
0 = ΓT/R → ΓT/S → T ⊗ ΩS/R → ΩT/R → ΩT/S → 0.

(Recall that GammaT/S = I/I2). Because the first, third, and fourth terms of the above exact
sequence are 0 (by étaleness) we have that ΓT/S = 0 and ΩT/S = 0 =⇒ T is étale. Finally, because
T/mT = S/mS we have that T is an een of S.

Lastly, 4. follows from 3.

To form the diect limit of elementary étale neighborhoods of R, we first need to define a partial
ordering on the een. We define S ≤ T if there is some R-homomorphism ϕST : S → T . Under this
partial ordering we get a directed system. For instance, by 3. of Proposition 5.3.2 if we have two een
S, T we get an upper bound R ⇒ S, T ⇒ (S ⊗ T )Q. By taking isomorpism classes of een of R, we
obtain a set of een.

Define B = lim−→S over all S an een of R (see Milne’s notes 2.8.8).

Proposition 5.3.3. Consider a family of local rings (Aλ,mλ,kλ)λ with local morphisms ϕλµ which
makes it into a directed system of local rings. Let A = lim−→Aλ. Then:

1. The ring A is local with maximal ideal lim−→mλ and residue field lim−→ kλ.

2. If mµ = mλ for all µ ≥ λ, then we have m = mλA for all λ.

3. If Aµ is flat over Aλ for all µ ≥ λ, then A is flat over λ for all λ.

4. If 2. and 3. hold, and Aλ are Noetherian, so is A.

The proofs of 1. - 3. are relatively easy and are left as exercises. We give the following hint for
4. If you have an ascending chain of ideals in A, they contract to stabilizing chains in each Aλ. By
faithful flatness, if they restrict to the same, they are the same.

Theorem 5.3.4. The following hold:

1. The ring B is Henselian.

2. The ring B is a Henselization of R.

3. The map R→ B is flat and unramified.

4. If R→ T is an een, then Rh = T h = B.

5. The compeletions are equal: R̂ ≃ R̂h.

6. If R is Noetherian, then Rh is Noetherian (by prop 5.3.3 part 4.).
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One way to think of Henselizations are that “the Henselization is the algebraic part of the com-
pletion”.

These will be proven shortly, but first note some implications of Prop 5.3.3. Part 1. =⇒ B is a
local ring with residue field k. Part 2. =⇒ mB = mB. Part 3. =⇒ B is flat over R (and all of S
as well). Part 4. implies that B is Noetherian if R is Noetherian.

The next theorem is an extension of the results of this talk. For certain rings, we can completely
characterize the Henselization.

Theorem 5.3.5. If (R,m, k) is an excellent, normal, Noetherian, local ring, then Rh = Rm̂∩R (mean-

ing Rh is an approximation ring) where R is the integral closure of R in R̂. For p ∈ Spec(R) define
k(p) = Rp/pRp, then k(p)⊗R R̂ is regular.

Note: if R is not an excellent ring, then Rh doesn’t need to be an approximation ring.

Proof: Let F (X) be a monic polynomial in B[X] and assume there is some b ∈ B with F (b) ∈ mB,
F ′(b) /∈ mB, and there exists some elementary étale neighborhood S of R such that F (X) ∈ S[X] and

b ∈ S. Then S → ( S[X]
(F (X)))(x−b,mS[X]) → B is an een of S where the second map exists from the fact

S is a direct limit. Then the image of X gives a root b′ ∈ B of F such that b′ − b ∈ mB = mB.

We now return to prove Theorem 5.3.4.
Proof 1 follows from the previous discussions.
Proof 2: Consider the commutative diagram between two Henselizations S,B of R and another

Henselian ring C:

R

S B

C

Then C has no een and by the Structure Theorem S ≃ ( R[X]
(F [X]))(x−b,mR[X])

and F ′(b) /∈ m so we have SC = ( C[X]
(F (X)))(x−b,mR[X]) = C

Proof 3: Recall that B is flat by 3. of Prop 5.3.3 and the result follows because Ωlim−→S/R =

lim−→ΩS/R = 0.

Proof 4: This is done.

Proof 5: By base change, (R/mn)h = Rh/(mRh)h because R/mn is complete and therefore it is

Henselian. Because (R/mn)h = R/mn =⇒ R̂ = lim−→R/mn = lim−→Rh/(mRh)h = R̂h.

Proof 6: This is done by part 4. of Prop 5.3.3.
Some further topics of study include the Artin Approximation Theorem. In the literature, Henseliza-

tions allow us to construct counterexamples to certain statements by starting with a counterexample
in some ring and pushing it down a chain to counterexamples in different rings. For example, if we
start in a ring R we might proceed as follows:

R→ R̂→ Rh → S → SA → Sk
where S is a finite extension of Rh over C, A is a finitely generated Z, and k has charactersitic p.

Exercise : Let R be a local ring and R → S be module-finite with max(S) = {n1, ... , nk}, then
S ⊗R Rh ≃ (Sn1)

h × ... × (Snk
)h.

We conclude this section with one final theorem (without proof).

Theorem 5.3.6. Let R be an excellent, Henselian, Noetherian, local ring. If fi(x1, ... , xn) = 0 is a
finite system of polynomial equations over R with a solution if R̂, they have a solution in R. (Also,
we obtain solutions that approximate power series solutions).
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Chapter 6

Étale fundamental group
Kian Cheong Aik

Most of the material here is based on Szamuely’s Galois Groups and Fundamental Groups Chapter 5.
Missing proofs and details can be found there.

6.1 Motivation

We begin with a classical theorem, that is, Grothendieck’s categorical reformulation of Galois Theory.

Theorem 6.1.1. Let k be a field and G = Gal(ks/k) be the absolute Galois Group. Then we have the
following contravariant equivalence of categories:{

finite separable

extensions of k

}
←→

{
finite sets with

transitive action of G

}
L/k 7−→ Homk(L/ks)

There is a very similar theorem in algebraic topology on covering spaces:

Theorem 6.1.2. Let X be a connected and locally simply connected topological space, x ∈ X a base
point. Then we have the following equivalence of categories:{

finite connected covering

spaces of X

}
←→

{
left π1(X,x) sets

with transitive action

}

We state some immediate observations:

1. In the first theorem we have a contravariant equivalence, while in the second we have a covariant
equivalence. This is resolved by taking Spec of the fields.

2. The choice of basepoint in algebraic topology really corresponds to the choice of ks in Galois
theory. In our case, this is really just choosing a geometric point of Spec k.

6.2 The Fundamental Group

We begin with our setup and some basic notions. Let S be a scheme, and FetS denote the category
of finite étale covers of S (and morphisms are morphisms of schemes over S). We define a geometric
point of a scheme S as a morphism s : SpecΩ→ S where Ω is algebraically closed. Then by definition,
the image of s is a point s such that Ω is an algebraically closed extension of k(s).

Example 6.2.1. SpecΩ→ Spec k ⇐⇒ Ω/k is an algebraically closed extension.
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Given a morphism ϕ : X → S and a geometric point s : SpecΩ→ S, define the geometric fibre Xs

of ϕ over s as the fibre product X ×S SpecΩ. Let Fibs(X) denote the underlying set of X ×S SpecΩ,
and given a morphism of S schemes X → Y , we get an induced morphism Xσ → Yσ. Then we can
consider the functor Fibσ : FetS → Set, and we call this the fibre functor at the geometric point σ.

Definition 6.2.2. Given a scheme S and a geometric point σ, we define the algebraic (or étale)
fundamental group π1(S, σ) as the automorphism group of the fibre functor Fibσ on FetS .

We can now state the fundamental theorem of étale funcamental groups, which we will prove in
the last section.

Theorem 6.2.3 (Grothendieck). Let S be a connected scheme, σ : SpecΩ→ S a geometric point.

1. Fibσ is pro-representable.

2. The group π1(S, σ) is profinite, and its action on Fibσ(X) is continuous for every X ins FetS.

3. The functor Fibσ induces an equivalence of FetS with the category of finite continuous left
π1(S, σ)-sets. In other words, we have the following equivalence of categories:

{Fetσ} ←→

{
finite continuous left

π(S, σ)-sets

}
Furthermore, connected covers correspond to transitive action, and Galois covers correspond to
finite quotients of π1(S, σ).

We end this section with an example showing that classical Galois Theory is a special case of our
setup.

Example 6.2.4. Let S = Spec k. Then a finite étale S-scheme X is the spectrum of finite product of
finite separable extensions of K. To see this, observe that X is finite implies X = SpecL where L is
a finite k-algebra, which means L is Artinian and so it decomposes into local rings. Unramified then
means that all these local rings are fields. If X is connected, then X is simply SpecL where L/k is
finite separable. For a geometric point σ, the fibre functor maps X to Spec(K ⊗k Ω), which is a finite
set indexed by Homk(L,Ω), so in this case Fibσ(X) ≃ Homk(L, ks) and we get Galois Theory.

6.3 Galois Theory for finite étale covers

This section will be a collection of results that we will need to prove the fundamental theorem.

Lemma 6.3.1. Let ϕ : X → S and ψ : Y → X be morphisms of schemes. Then

1. If ϕ ◦ ψ is finite and ϕ is separated, then ψ is finite.

2. If moreover ϕ ◦ ψ and ϕ are finite étale, then so is ψ.

Proof. We will only prove the second statement, the first is similar. We have

Y

Y ×S X Y

X

X S

p2

p1

ψ

ϕ

ϕ

ψ

id

i.e. a map Γψ : Y → Y ×S X. By base change property, p2 is finite étale, and since Γψ is the base
change of the diagonal morphism, we have that ψ = p2 ◦ Γψ is finite étale.
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Proposition 6.3.2. Let ϕ : X → S be a finite étale cover s : S → X be a section of ϕ (i.e. ϕ◦s = idS).
Then s induces an isomorphism of S with an open and closed subscheme of X. In particular, if S is
connected, then s maps S isomorphically onto a whole connected component of X.

Proof. By lemma 6.3.1, S is finite étale, and hence its image is opened and closed in X.

Corollary 6.3.3. If Z → S is a connected S-scheme and ϕ1, ϕ2 : Z → X are two S-morphisms to a
fintie étale S-scheme X with ϕ1 ◦ z = ϕ2 ◦ z for some geometric point z : Spec(Ω)→ Z, then ϕ1 = ϕ2.

Proof.

Z

Z ×S X X

Z S

ψi

finite étale

ϕ1

id

If ϕ1 ◦ z = ϕ2 ◦ z, then ψ1 ◦ z = ψ2 ◦ z. By the base change property, we have Z ×S X → Z is finite
étale. If ψ1 = ψ2, then ϕ1 = ϕ2, so we may take Z → Z ×S X → Z as our new candidates. By
proposition 6.3.2 Z → Z ×S X is an isomorphism onto an open and closed subscheme, and since Z is
connected, we have that Z ≃ C for some connected component of Z ×S X. In particular, ψ1 and ψ2

map to the same connected component since they agree on z. On the other hand, there can only be
one morphism Z → C over Z.

Given a morphism of schemes ϕ : X → S, define Aut(X | S) to be the group of scheme autmor-
phisms of X preserving ϕ. For a geometric point σ : Spec(Ω) → S there is a natural left action of
Aut(X | S) on Xσ by base change from its action on X.

Corollary 6.3.4. If ϕ : X → S is a connected finite étale cover, the nontrivial elements of Aut(X | S)
act without fixed points on each geometric fibre. Hence Aut(X | S) is finite.

Proof. Apply previous corollary to ϕ1 = ϕ, ϕ2 = ϕ ◦ λ and we get the first statement. Then the
permutation representation of Aut(X | S) on the underlying sets of geometric fibres is faithful. But
the underlying sets are finite.

Definition 6.3.5. We call a connected finite étale cover X → S Galois if its S−automorphism group
acts transitively on geometric fibres.

Remark 6.3.6. If S = Spec(k), then X = Spec(L) where L/k finite separable. Then X → S
Galois implies that Aut(L | k) acts transitively on Hom(L, ks) → Hom(L, ks), which means that
|Aut(L | k)| ≥ |Hom(L, ks)| = [L : k], which means that L/k is Galois.

The following is the analogue of the usual Galois Theory:

Proposition 6.3.7. Let ϕ : X → S be a finite étale Galois cover. If Z → S is a connected finite étale
cover fitting into a commutative diagram

X Z

S

ϕ
ψ

π

Then π : X → Z is a finite étale Galois cover, and actually Z ≃ H/X for some subgroup H of
G = Aut(X | S). In this way, we get a bijection between subgroups of G and intermediate covers of
Z as above. The cover ψ : Z → S is Galois if and only if H is a normal subgroup of G, in which case
Aut(Z | S) ≃ G/H.
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Proof. Skipped, see Szamuely Chapter 5.

The last proposition in this section is a generalization of a basic statement in field theory; that
every finite separable field extension can be embedded in a finite Galois extension and there is a smalles
such extension, the Galois closure.

Proposition 6.3.8 (Galois Closure). Let ϕ : X → S be a connected finite étale cover. There is a
morphism π : P → X such that ϕ ◦ π : P → S is a finite étale Galois cover, and moreoever every
S-morphism from a Galois cover to X factors through P .

Proof. We will break this into 4 steps.

Step 1: Construct P .

Fix a geometric point σ : Spec(Ω) → S. Let F = {x1, . . . , xn} be the fintie set of the geometric
gibre Xσ. Consider the n-fold fibre product Xn := X ×S · · · ×S X and let x := (x1, x2, . . . xn) ∈ Xn.
Let P be the connected component of Xn containing x, and let π : P → X be the map induced by
first projection. Then P is a finite étale cover of S.

Step 2: Show P has distinct coordinates.

Consider the projection πij : X
n → X×SX to the i, jth component for some 1 ≤ i, j,≤ n. Then ∆(X)

is open and closed and πij is continuous means that π−1
ij (∆(X)) is open and closed. Since P ⊂ Xn is

connected, π−1
ij (∆(X)) ∩ P is either empty or all of P . But x ∈ P means the intersection is empty,

and so P has distinct coordinates.

Step 3: P is Galois.

Let xσ := (xσ(1), . . . , xσ(n)) ∈ P . By step 2, σ ∈ Sn, and σ induces an S-automorphism ϕσ of
Xn by permuting its components. Then ϕσ ◦ x = xσ =⇒ ϕσ(P )∩P is not empty. But P and ϕσ are
connected, so ϕσ(P ) = P =⇒ ϕσ ∈ Aut(P | S), which proves the induced action is transitive.

Step 4: If q : Q→ X is a Galois S-morphism, then it factors through P .

Choose y such that q(y) = x1. Since q is surjective (as X connected), by composing with ap-
propriate elements of Aut(Q | S) such that qi : Q → X, y 7→ xi. Then we get a S−morphism
γ :=

∏
qi : Q→ Xn, y 7→ (x1, . . . , xn) = x. Connectedness of Q implies that γ : Q→ P , and q = π ◦γ

because they both map y to x1.

6.4 Grothendieck’s Fundamental Theorem

Now we return to the Fundamental Theorem, and begin by proving the that the fibre functor is
pro-representable.

Proposition 6.4.1. Fibσ is pro-representable.

Proof. We first construct the inverse system. Let Λ denote the indexing set, given by the finite étale
Galois covers Pα → S, and we say Pβ ≥ Pα if there exists ϕ : Pβ → Pα. This is directed due to 6.3.8.
The objects of our inverse system will be given by Hom(Pα, X), and morphisms are those given by
precomposition with a morphism Pα → Pβ. By construction, there exists at least one such morphism
if Pβ ≥ Pα, but this is not unique in general. To rigidy the situation, we fix an arbitrary element
pα ∈ Fibσ(Pα) for each α. By definition of Galois covers, there is a transitive action on the Fibσ(Pα),
and so we can find a ϕαβ : Pβ → Pα such that Fibσ(ϕαβ)(pβ) = pα.

Now, for every X ∈ FetS and Pα ∈ Λ, we define a map Hom(Pα, X) → Fibσ(X), ϕ 7→ Fibσ(ϕ)(pα).
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This map is compatible with the ϕαβ by construction, and so we get a functorial map lim−→Hom(Pα, X)→
Fibσ(X). Finally, to show this is an isomorphism, it suffices to construct an inverse. We may assume
X is connected (otherwise just take disjoint unions). By 6.3.8, there exists π : P → X the Galois
closure, and so by definition P = Pα ∈ Λ. By the transitive property, for each x ∈ Fibσ(X), we can
find a unique S-automorphism of Pα and compose it with π such that it maps pα 7→ x (where pα is
our distinguished element we fixed earlier). Hence, we may assume that our original π maps pα to x,
and then our inverse sends x ∈ Fibσ(X) to [π] ∈ lim−→Hom(Pα, X).

An inspection of the proof shows that the maps ϕαβ in the system pro-representing the functor
Fibσ depend on the choice of the system of geometric points {pα}. Once such a system is fixed, the
pro-representing system becomes unique.

Corollary 6.4.2. The automorphism groups Aut(Pα)
op form an inverse system whose limit is π1(S, σ).

Proof. If Pβ ≥ Pα, then there exists ϕαβ : Pβ → Pα. Since the covers are Galois, there is a natural
surjective group homomorphism Aut(Pβ | S)↠ Aut(Pα | S), i.e. given λβ ∈ Aut(Pβ | S), there exists
a unique λα ∈ Aut(Pα | S) that maps pα to pα

′ fitting into the following diagram:

Fibσ(Pβ) Fibσ(Pβ)

pβ pβ
′

pα pα
′

Fibσ(Pα) Fibσ(Pα)

Fibσ(λβ)

Fibσ(ϕαβ) Fibσ(ϕαβ)

Then we have that λα ◦ ϕαβ = ϕαβ ◦ λβ, i.e. the diagram commutes, because the maps agree on a
single geometric point (see 6.3.3).

Now, the elements of the inverse limit lim←−Aut(Pα) are given by {(λα) ∈
∏

Aut(Pα | S) | λα ◦ ϕαβ =
ϕαβ ◦ λβ for β ≥ α}. These are precisely the automorphisms of the system (Pα, ϕαβ). Now we con-
struct the correspondence between π1(S, σ) and the automorphisms of (Pα, ϕαβ). Given ϕ ∈ π1, ϕ
maps the set of distinguished elements {pα} to another set {pα′}. Since Pα are Galois, for each α there
is a unique λα ∈ Aut(Pα | S) such that Fibσ(λα)(pα) = pα

′. These are compatible with ϕαβ since ϕ
is an automorphism of the fibre functor. On the other hand, given (λα) compatible automorphisms,
we can define an automorphism of Fibσ via its pro-representability. For each X ∈ FetS , we need an
autommorphism on Fibσ(X). Now, each x ∈ Fibσ(X) corresponds to a class [π] ∈ lim−→Hom(Pα, X).
Then we send [π] 7→ [π ◦ λα]. One checks that this is well-defined, natural, and an isomorphism.
Hence, we get the following correspondences:

lim←−Aut(Pα | S) ⇐⇒ (λα) sequence of compatible automorphisms

⇐⇒ automorphisms of Fibσ, i.e. π1(S, s)

Then we have π1(S, s) ≃ lim←−Aut(Pα | S)op, where the opposite arises due to the contravariance of the
Hom functor.

Now we show the continuity of the π1 action on Fibσ(X): Each x ∈ Fibσ(X) comes from a class
in Hom(Pα, X), then the action of π1(S, σ) = lim←−Aut(Pα | S)op factors through Aut(Pα | S)op, i.e.

lim←−Aut(Pα | S)op × lim−→Hom(Pα, X) Aut(Pα | S)op × lim−→Hom(Pα, X)

lim−→Hom(Pα, X)

prα×id

ϕ
[π]7→[π◦λα]
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Here prα× id is continuous by definition of the profinite topology, and ϕ is continuous since everything
has the discrete topology, and so their composition is continuous. Finally, we prove the last statement
of the fundamental theorem. We shall focus on the case where we have connected covers, which
correspond to transitive actions, the general case is similar.

Theorem 6.4.3. The functor Fibσ induces an equivalence of FetS with the category of finite contin-
uous left π1(S, σ)-sets.

Proof. Faithful: Let ψ1, ψ2 : X → Y ∈ Hom(X,Y ) in FetS such that Fibσ(ψ1) = Fibσ(ψ2). Since X
is connected, morphisms are determined by a geometric point (by 6.3.3), so ψ1 = ψ2.

Full: Let ϕ : Fibσ(X) → Fibσ(Y ) be π1-equivariant map. Then we want ψ ∈ Hom(X,Y ) such
that Fibσ(ψ) = ϕ. Fix x ∈ Fibσ(X), since π1 is transitive and ϕ is π1-map, ϕ(x) = y determines ϕ.
Find a Galois cover Q→ S, and q ∈ Fibσ(Q) such that

πX : Q→ X, Fibσ(πX)(q) = x

πY : Q→ Y, Fibσ(πY )(q) = y

By 6.3.7, Aut(Q | X)\Q ≃ X (this is the quotient notation used in the text). If πY is constant on the
orbits of Aut(Q | X), then πY factors through πX . Let h ∈ Aut(Q | X), then Fibσ(h)(q) ∈ Fibσ(Q),
by transitivity of π1 action, there exists f ∈ π1(S, s) such that fQ(q) = Fibσ(h)(q) (here fQ denotes the
induced map of f on Fibσ(Q)). Using the definitions, naturality, π1-equivariance and other properties,
we obtain the following equalities:

Fibσ(πY ◦ h)(q) = Fibσ(πY )(Fibσ(h)(q)

= Fibσ(πY )(fQ(q))

= fY (Fibσ(πY )(q))

= fY (y)

= fY (ϕ(x))

= ϕ(fX(x))

= ϕ(fX(Fibσ(πX)(q)))

= ϕ(Fibσ(πX)(fQ(q)))

= ϕ(Fibσ(πX)Fibσ(h)(q))

= ϕ(Fibσ(πX ◦ h)(q))
= ϕ(Fibσ(πX)(q))

= ϕ(x)

= y = Fibσ(πY )(q)

By 6.3.3, πY ◦ h = πY , i.e. πY is constant on Aut(Q | X) orbits as desired. Hence we have an
S-morphism ψ : X → Y such that πY = ψ ◦ πX . By construction, Fibσ(ψ)(x) = y, so Fibσ(ψ) = ϕ.

Essentially surjective: Let E be a transitive π1-set. Fix x ∈ E, let Ux be its stabilizer under π1.
Then π1(S, σ)/Ux ≃ E (where f 7→ f(x)) as π1-sets. Now Ux is open in π1 by continuity, so ∃α such
that Vα ⊂ Ux, where Vα = ker pα the canonical projection pα : π1 → Aut(Pα | S)op. Let U := pα(Ux).
Consider

ϕ : π1(S, σ)→ Fibσ(Pα), f 7→ fα(pα)

This is surjective since π1 acts transitively on connected covers. We then have

π1(S, σ)/Ux ≃ U
op \ Fibσ(Pα) ≃ Fibσ(U

op \ Pα)

But this means E ≃ Fibσ(U
op \ Pα) as desired.
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Chapter 7

Galois categories
Miika Tuominen

7.1 Introduction

The notion of a Galois category, originating in [6]1, unifies some categorical properties of finite étale
covers of a connected scheme in algebraic geometry and finite-sheeted covering spaces in algebraic
topology. We define Galois categories and study a sequence of properties they possess, as well as
their connected objects and Galois objects. We describe an arbitrary Galois category by means of
the fundamental theorem of Galois category theory, which we prove, and we conclude our study of
Galois categories with a detailed treatment of the example of finite-sheeted covering spaces. We prove
many results in detail to demonstrate some techniques in the study of Galois categories, and we also
accompany our study with an appendix on category theory to extend these notes’ accessibility to as
broad a spectrum of audience fluency in category theory as possible, as well as a table of standard
categories to prevent notational confusion.

7.1.1 Acknowledgments

Chapters 7.2 through 7.7 are notes from Miika Tuominen’s University of Virginia Galois-Grothendieck
seminar talks on Galois categories in spring 2023, typed on LATEX by Eleftherios Chatzitheodoridis.
Eleftherios is grateful to Miika for the enlightening set of talks and the consistent and painstaking
support throughout this initiative, and to Wojciech Tralle for patiently putting these notes together.

Chapters 7.8 and 7.9 are independent addenda that were added by Eleftherios Chatzitheodoridis.

7.2 Definition, examples, and first properties of Galois categories

We begin with the definition of a Galois category and its associated fiber functor, followed by some
examples:

Definition 7.2.1 (Galois category). An essentially small category2 C is Galois with associated
fiber functor F : C → Setf , where Setf denotes the category of finite sets, if C satisfies the axioms
below:

1[6] also goes by the name ‘SGA I’, for it is the first volume of notes from the Séminaire de Géométrie Algébrique
(SGA) du Bois Marie, which took place at the Institut des Hautes Études Scientifiques (IHÉS) in Le Bois Marie,
Bures-sur-Yvette, France from 1960 to 1969 and was run by Alexander Grothendieck. SGA I consists of notes taken in
1960-1961.

2A category is essentially small if the isomorphism classes of its objects form a set, rather than a proper class.
Thus, every small category - one whose objects form a set, rather than a proper class - is essentially small, but the
category Setf of finite sets and the category C−Vectfd of finite-dimensional complex vector spaces both are essentially
small but not small. All categories in our study are locally small: for every pair of objects, the morphisms between
them form a set, rather than a proper class.
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1. C has a terminal object ∗ and all fiber products (pullbacks);

2. C has all finite coproducts, including an initial object ∅ (empty coproduct), and all quotients by
finite groups;

3. every morphism f : X → Y in C factors in C as:

X Y

Z Z
∐
Z ′

ϕ

ιZ

ψ ∼=

f

where ϕ is a strict epimorphism in C, ιZ is the coproduct morphism from Z to the coproduct
Z
∐
Z ′ and is required to be a monomorphism in C, and ψ is an isomorphism in C;

and F : C → Setf satisfies the axioms below:

4. F preserves the terminal object ∗ of C - that is, F (∗) is a singleton set in Setf - and F also
preserves all fiber products (pullbacks) of C;

5. F preserves all finite coproducts of C - in particular, F preserves the initial object ∅ of C, sending
it to the empty set in Setf - and all quotients by finite groups in C;

6. F preserves all strict epimorphisms in C: if f is a strict epimorphism in C, then F (f) is a
surjective set map of finite sets in Setf ;

7. F reflects isomorphisms: f is an isomorphism in C if and only if F (f) is a bijection of finite sets
in Setf .

Remark 7.2.2. Fiber functors are also sometimes called ‘fundamental functors’.

Remark 7.2.3. Equivalently, every morphism f : X → Y in a Galois category C factors in C as:

X Y

Z

f

ϕ i

where ϕ is a strict epimorphism in C and i := ψιZ is the composite of monomorphisms, thus a
monomorphism, in C of the coproduct morphism ιZ from Z to the coproduct Z

∐
Z ′, which is required

to be a monomorphism in C, post-composed with the isomorphism ψ in C.

Remark 7.2.4. Since every Galois category has a terminal object and all fiber products, we infer that
it has all finite products and all equalizers, thus all finite limits - in particular, all group quotients.
Similarly, since every fiber functor F associated with a Galois category C preserves the terminal object
and all fiber products of C, we infer that it preserves all finite products and all equalizers of C, thus all
finite limits of C - in particular, all group quotients in C - as well as all monomorphisms in C: if f is
a monomorphism in C, then F (f) is an injective set map of finite sets in Setf . Lastly, recall that the
category Setf of finite sets has all finite limits and colimits, but neither all small limits nor all small
colimits.

Example 7.2.5. If G is a profinite group3, then the category G− Setf of finite and discrete G-spaces
and G-equivariant continuous maps between them is a Galois category whose associated fiber functor
is the forgetful functor Λ : G− Setf → Setf . In section 5, the fundamental theorem of Galois category
theory will inform us that this is the essentially universal example of a Galois category.

3A profinite group G is a topological group which is isomorphic to an inverse limit of finite and discrete topological
groups. For example, for every prime p, the abelian topological group Zp := lim←−Z/pnZ of the p-adic integers is a profinite
group. Less interestingly, every finite and discrete topological group is profinite, with the infinite abelian topological
group of the p-adic integers, Zp := lim←−Z/pnZ, being a counterexample to the converse implication.
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Example 7.2.6. If S is a path-connected, locally path-connected, and semi-locally simply connected
pointed space - that is, a pointed space satisfying the hypotheses in the Galois correspondence theorem
for covering spaces - with basepoint s0, then the category CovSf of finite-sheeted covering spaces of
S and finite-sheeted covering space maps over S is a Galois category whose associated fiber functor
F : CovSf → Setf sends each finite-sheeted covering space of S to its finite fiber at s0 and each finite-
sheeted covering space map over S to its induced set map of finite fibers at s0. This example from
algebraic topology will be our focus as an example of a Galois category in section 6.

Example 7.2.7. If S is a connected scheme, then the category FétS of finite étale covers of S is
a Galois category from algebraic geometry. Note that finite étale covers of S are closed under base
change.

We first observe that the fiber functor associated with a Galois category reflects more than isomor-
phisms:

Lemma 7.2.8. The fiber functor F associated with a Galois category C preserves and reflects the
initial object, terminal object, all strict epimorphisms, and all monomorphisms in C.

Proof. We prove all 4 claims in the order in which we stated them:

1. We know F preserves the initial object ∅ of C. Conversely, suppose X is an object of C such that
F (X) is the empty set in Setf . Then, the initial object morphism fX : ∅ → X of C is sent by F
to the identity map of the empty set in Setf . Because F reflects isomorphisms, this implies that
fX is an isomorphism in C, so X is an initial object of C, as required.

2. We know F preserves the terminal object ∗ of C. Conversely, suppose X is an object of C such
that F (X) is a singleton set in Setf . Then, the terminal object morphism gX : X → ∗ of C is
sent by F to a bijection of singleton sets in Setf . Because F reflects isomorphisms, this implies
that gX is an isomorphism in C, so X is a terminal object of C, as required.

3. We know F preserves all strict epimorphisms in C. Conversely, suppose f : X → Y is a morphism
in C such that F (f) : F (X)→ F (Y ) is a surjective set map of finite sets in Setf . We factor f in
C as:

X Y

Z Z
∐
Z ′

ϕ

ιZ

ψ ∼=

f

where ϕ is a strict epimorphism in C, ιZ is the coproduct morphism from Z to the coproduct
Z
∐
Z ′ and a monomorphism in C, and ψ is an isomorphism in C. We apply F to the above

factorization of f to obtain the factorization of the surjective set map of finite sets F (f) in Setf
below:

F (X) F (Y )

F (Z) F (Z)
∐
F (Z ′)

F (ϕ)

ιF (Z)

F (ψ) ≈

F (f)

because F preserves all finite coproducts in C, where F (ϕ) is also a surjective set map of finite
sets in Setf because F preserves all strict epimorphisms in C, ιF (Z) is the inclusion of F (Z) in
F (Z)

∐
F (Z ′), and F (ψ) is a bijection of finite sets in Setf . Since the composite of set maps of

finite sets F (ψ)−1F (f) = ιF (Z)F (ϕ) in Setf is surjective, the inclusion ιF (Z) is not only injective,
but also surjective, thus a bijection of finite sets in Setf . Because F reflects isomorphisms, this
implies that the coproduct morphism ιZ is an isomorphism in C, so f factors as follows in C:

X Y

Z Z
∐
Z ′

ϕ

ιZ ∼=
ψ ∼=

f
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At last, we conclude that f = ψιZϕ is a strict epimorphism in C because ϕ is a strict epimorphism
in C and both ιZ and ψ are isomorphisms in C.

4. We know F preserves all monomorphisms in C. Conversely, suppose f : X → Y is a morphism
in C such that F (f) : F (X)→ F (Y ) is an injective set map of finite sets in Setf . We factor f in
C as:

X Y

Z Z
∐
Z ′

ϕ

ιZ

ψ ∼=

f

where ϕ is a strict epimorphism in C, ιZ is the coproduct morphism from Z to the coproduct
Z
∐
Z ′ and a monomorphism in C, and ψ is an isomorphism in C. We apply F to the above

factorization of f to obtain the factorization of the injective set map of finite sets F (f) in Setf
below:

F (X) F (Y )

F (Z) F (Z)
∐
F (Z ′)

F (ϕ)

ιF (Z)

F (ψ) ≈

F (f)

because F preserves all finite coproducts in C, where F (ϕ) is a surjective set map of finite
sets in Setf because F preserves all strict epimorphisms in C, ιF (Z) is the inclusion of F (Z) in
F (Z)

∐
F (Z ′), and F (ψ) is a bijection of finite sets in Setf . Since the composite of set maps

of finite sets F (ψ)−1F (f) = ιF (Z)F (ϕ) in Setf is injective, the surjective set map of finite sets
F (ϕ) is also injective, thus a bijection of finite sets in Setf . Because F reflects isomorphisms,
this implies that ϕ is an isomorphism in C, so f factors as follows in C:

X Y

Z Z
∐
Z ′

ϕ ∼=
ιZ

ψ ∼=

f

At last, we conclude that f = ψιZϕ is a monomorphism in C because ιZ is a monomorphism in
C and both ϕ and ψ are isomorphisms in C.

Corollary 7.2.9. In a Galois category C with associated fiber functor F , a morphism f is an isomor-
phism in C if and only if it is both a monomorphism and a strict epimorphism in C.

Proof. Because F reflects isomorphisms, f is an isomorphism in C if and only if F (f) is a bijection
of finite sets in Setf , which is equivalent to F (f) being both an injective and a surjective set map of
finite sets in Setf . Because F also reflects all monomorphisms and all strict epimorphisms in C by
lemma 7.2.8, this is, in turn, equivalent to f being both a monomorphism and a strict epimorphism
in C. This completes the proof.

The reflection of monomorphisms in lemma 7.2.8 relieves us of some irksome confusion in our study:

Corollary 7.2.10. In a Galois category C with associated fiber functor F , every finite coproduct
morphism is a monomorphism in C.

Proof. If ι is a finite coproduct morphism in C, then we apply the fiber functor F , which preserves
all finite coproducts in C, to ι to obtain the disjoint union inclusion map of finite sets F (ι), which
is injective, thus a monomorphism in Setf . Because the fiber functor F reflects monomorphisms by
lemma 7.2.8, we conclude that ι is a monomorphism in C, as required.

What is more, the special factorization of morphisms in a Galois category is essentially unique:
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Lemma 7.2.11. In a Galois category C with associated fiber functor F , given two factorizations of a
morphism f : X → Y in C as below:

W W
∐
W ′

X Y

Z Z
∐
Z ′

f

ϕ

ιZ

ψ ∼=

κ λ ∼=

ιW

where ϕ and κ are strict epimorphisms in C, ιZ is the coproduct morphism from Z to the coproduct
Z
∐
Z ′ and a monomorphism in C and ιW is the coproduct morphism fromW to the coproductW

∐
W ′

and a monomorphism in C, and ψ and λ are isomorphisms in C, there exists an isomorphism ω :W
∼=−→

Z in C, not necessarily unique, such that the diagram below commutes in C:

W

X Y

Z

f

ϕ

κ j

i

where i := ψιZ is the composite of monomorphisms, thus a monomorphism, in C of the coproduct
morphism ιZ from Z to the coproduct Z

∐
Z ′ post-composed with the isomorphism ψ in C, and j := λιW

is the composite of monomorphisms, thus a monomorphism, in C of the coproduct morphism ιW from
W to the coproduct W

∐
W ′ post-composed with the isomorphism λ in C.

Proof. Since ϕ is a strict epimorphism in C, we have the pullback square in C below:

X ×Z X X

X Z
ϕ

ϕp

q

and ϕ is a co-equalizer of the pair of pullback maps p : X ×Z X → X and q : X ×Z X → X. Similarly,
since κ is a strict epimorphism in C, we have the pullback square in C below:

X ×W X X

X Wκ

κp′

q′

and κ is a co-equalizer of the pair of pullback maps p′ : X ×W X → X and q′ : X ×W X → X. We
write down the commutative diagram in C below:

X ×Z X X Z

W

p

q
ϕ

κ

where the first row commutes as a co-equalizer in C, and we compute in C that:

jκp = fp = iϕp = iϕq︸ ︷︷ ︸
ϕp=ϕq

= fq = jκq

which implies that κp = κq because j is a monomorphism in C. Then, the universal property of
co-equalizers yields a unique morphism ω :W → Z in C such that the diagram in C below commutes:

X ×Z X X Z

W

p

q
ϕ

κ
ω
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Similarly, we write down the commutative diagram in C below:

X ×W X X W

Z

p′

q′
κ

ϕ

where the first row commutes as a co-equalizer in C, and we compute in C that:

iϕp′ = fp′ = jκp′ = jκq′︸ ︷︷ ︸
κp′=κq′

= fq′ = iϕq′

which implies that ϕp′ = ϕq′ because i is a monomorphism in C. Then, the universal property of
co-equalizers yields a unique morphism σ : Z →W in C such that the diagram in C below commutes:

X ×W X X W

Z

p′

q′
κ

ϕ
σ

Then, we write down the commutative diagram in C below:

X ×Z X X Z

Z

p

q
ϕ

ϕ
σω

where the first row commutes as a co-equalizer in C, and we compute in C that σωϕ = σκ = ϕ.
However, we also have the commutative diagram in C below:

X ×Z X X Z

Z

p

q
ϕ

ϕ

and the uniqueness in the universal property of co-equalizers forces σω = 1Z . Similarly, we write down
the commutative diagram in C below:

X ×W X X W

W

p′

q′
κ

κ
ωσ

where the first row commutes as a co-equalizer in C, and we compute in C that ωσκ = ωϕ = κ.
However, we also have the commutative diagram in C below:

X ×W X X W

W

p′

q′
κ

κ

and the uniqueness in the universal property of co-equalizers forces ωσ = 1W . The equations σω = 1Z

and ωσ = 1W in C together inform us that ω :W
∼=−→ Z is an isomorphism in C with unique two-sided
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inverse isomorphism σ : Z
∼=−→W in C. Finally, we verify that the diagram in C below commutes:

W

X Y

Z

f

ϕ

κ j

i

by recalling that ωκ = ϕ in C and computing in C that iωκ = iϕ = f = jκ to infer that iω = j because
κ, as a strict epimorphism in C, is an epimorphism in C. This completes the proof.

Lastly, Galois categories inherit the following property from finite sets by means of their associated
fiber functor:

Lemma 7.2.12. Every Galois category C with associated fiber functor F is Artinian.

Proof. For every descending chain of monomorphisms in C:

· · · X2 X1 X0
f2 f1

we obtain a descending chain of injective set maps of finite sets in Setf by applying the fiber functor
F , which preserves monomorphisms:

· · · F (X2) F (X1) F (X0)
F (f2) F (f1)

and the above descending chain of injective set maps of finite sets in Setf stabilizes, by cardinality
considerations, at a natural number n ∈ N, which depends on the given chain: for every natural number
m ≥ n, the injective set map of finite sets F (fm) is a bijection of finite sets in Setf . Because the fiber
functor F reflects isomorphisms, this is equivalent to the given descending chain of monomorphisms
in C stabilizing at n: for every natural number m ≥ n, the monomorphism fm is an isomorphism in
C. We conclude that C is Artinian, as required.

7.3 Connected objects of Galois categories

We introduce (or recall, for the eagle-eyed reader of the attached appendix!) the categorical notion of
a connected object:

Definition 7.3.1 (Connected object). A connected object in a category C with an initial object
∅ is an object X of C such that, if we have X ∼= Y

∐
Z in C, then we must have (i) X ∼= Y and Z ∼= ∅

in C or (ii) X ∼= Z and Y ∼= ∅ in C.

Example 7.3.2. Initial objects are connected.

Example 7.3.3. In the category Set of sets, the connected objects are precisely the empty set and
all singleton sets.

Example 7.3.4. In the category Top of spaces, a connected object is precisely a connected space,
justifying our terminology.

We proceed with proving some properties related to connected objects of Galois categories.

Lemma 7.3.5. In a Galois category C with associated fiber functor F , a morphism f : X → Y of
C is a monomorphism if and only if there exists an object X ′ of C such that Y ∼= X

∐
X ′ in C and

f : X → Y is a coproduct morphism in C under this isomorphism in C.
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Proof. If f : X → Y is a monomorphism in C, then we factor f in C as:

X Y

Z Z
∐
Z ′

ϕ

ιZ

ψ ∼=

f

where ϕ is a strict epimorphism in C, ιZ is the coproduct morphism from Z to the coproduct Z
∐
Z ′

and a monomorphism in C, and ψ is an isomorphism in C. Then, ψ−1f = ιZϕ is a monomorphism
in C as a composite of monomorphisms in C, so ϕ is not only a strict epimorphism in C, but also a
monomorphism in C, and we infer that ϕ is an isomorphism in C by corollary 7.2.9. Conversely, if there
exists an object X ′ of C such that Y ∼= X

∐
X ′ in C and f : X → Y is a coproduct morphism in C

under this isomorphism in C, then we apply the fiber functor F , which preserves all finite coproducts
of C, to f to obtain the inclusion F (f) : F (X) → F (X)

∐
F (X ′) of F (X) in F (X)

∐
F (X ′) in the

category Setf of finite sets, which is a monomorphism in Setf . Because F reflects all monomorphisms
in C by lemma 7.2.8, we infer that f : X → Y is a monomorphism in C, as required.

Lemma 7.3.6. If an object X of a Galois category C is disconnected, then there exist a connected and
non-initial object X ′ of C and an object X ′′ of C such that X ∼= X ′∐X ′′ in C.

Proof. We apply the following algorithm. Firstly, since X is disconnected, we know that X is a non-
initial object of C and that there exist non-initial objects X1 and X ′

1 of C such that X ∼= X1
∐
X ′

1.
If X1 is a connected object of C, then we are done. Otherwise, X1 is disconnected, so we know that
X1 is a non-initial object of C and that there exist non-initial objects X2 and X ′

2 of C such that
X1
∼= X2

∐
X ′

2, and we repeat this algorithm until we obtain a connected object Xn of C for some
n ∈ N. The reason why our algorithm terminates in some finite time n ∈ N is because it yields a
descending chain of coproduct monomorphisms, by corollary 7.2.10, in C:

· · · X3 X2 X1
ι3 ι2

which stabilizes at a natural number n ∈ N, which depends on the chain, for the Galois category C is
Artinian.

Lemma 7.3.7. Let f : X → Y be a morphism in a Galois category C with associated fiber functor F .

1. If X is a non-initial object of C and Y is a connected object of C, then f is a strict epimorphism
in C.

2. If X is a connected object of C and f is a strict epimorphism in C, then Y is a connected object
of C.

Proof. We prove both claims in the order in which we stated them:

1. If X is a non-initial object of C and Y is a connected object of C, then we factor f in C as:

X Y

Z Z
∐
Z ′

ϕ

ιZ

ψ ∼=

f

where ϕ is a strict epimorphism in C, ιZ is the coproduct morphism from Z to the coproduct
Z
∐
Z ′ and a monomorphism in C, and ψ is an isomorphism in C. Then, X being a non-initial

object of C forces Z ′ ∼= ∅ in C: if Z ′ were a non-initial object of C, then the connectedness of
Y would force Z ′ ∼= Y and Z ∼= ∅, and ϕ would be a strict epimorphism in C from a non-initial
object of C to an initial object of C, which is impossible. Thus, we have Z ′ ∼= ∅ in C, which
implies Z

∐
Z ′ ∼= Z

∐
∅ ∼= Z in C, and the coproduct morphism ιZ is the identity morphism of

Z under said isomorphism in C. At last, we conclude that f = ψιZϕ is a strict epimorphism in
C because ϕ is a strict epimorphism in C and both ιZ and ψ are isomorphisms in C.
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2. If X is a connected object of C and f is a strict epimorphism in C, then we show that Y is
a connected object of C by way of contradiction: we suppose that Y is a disconnected, thus
non-initial, object of C. Then, by lemma 7.3.6, there exist a connected and non-initial object Y ′

of C and an object Y ′′ of C such that Y ∼= Y ′∐Y ′′ in C. We form the fiber product in C of the
two morphisms:

X

Y ′ Y
ιY ′

f

where f is a strict epimorphism in C and ιY ′ is the coproduct morphism from Y ′ to the coproduct
Y ∼= Y ′∐Y ′′ and a monomorphism in C by corollary 7.2.10, and said fiber product in C is:

X ′ X

Y ′ Y
ιY ′

f

q

p

where p is a monomorphism in C as a base change of the monomorphism ιY ′ in C. We verify
that X ′ is a non-initial object of C by gathering the data below:

(a) Because the fiber functor F reflects the initial object of C by lemma 7.2.8 and Y ′ is a
non-initial object of C, we know that F (Y ′) is a non-empty finite set.

(b) Because the fiber functor F preserves strict epimorphisms in C and f is a strict epimorphism
in C, we know that F (f) is a surjective set map of finite sets in Setf .

(c) Because the fiber functor F preserves all finite coproducts of C and ιY ′ is the coproduct
morphism from Y ′ to the coproduct Y ∼= Y ′∐Y ′′ and a monomorphism in C, we know that
F (ιY ′) is the inclusion of F (Y ′) in the disjoint union of finite sets F (Y ) ≈ F (Y ′)

∐
F (Y ′′)

in Setf .

We employ the data above to perform the computation in Setf below:

∅ ≠ F (Y ′) ⊂ F (Y ) = (F (f)) (F (X))

The above computation in Setf implies that, as is the case for F (Y ′), F (X) is a non-empty
finite set. Because the fiber functor F preserves all fiber products of C, we infer that F (X ′) is a
non-empty finite set. As the fiber functor F preserves the initial object of C, we conclude that
X ′ is a non-initial object of C.

Knowing that X ′ is a non-initial object of C, we use the previous claim in this lemma to infer that
p is also a strict epimorphism in C because Y ′ is a connected object of C, thus an isomorphism
in C by corollary 7.2.9, as well as that q is a strict epimorphism in C because X is a connected
object of C. Thus, our Cartesian square at hand in C is:

X ′ X

Y ′ Y
ιY ′

f

q

p ∼=

where p is an isomorphism in C and q is a strict epimorphism in C. We have the two factorizations
of the strict epimorphism fq : X ′ → Y in C, the composite of the strict epimorphisms q and f
in C, below:

Y Y

X ′ Y

Y ′ Y ′∐Y ′′

fq

p ∼=
ιY ′

ψ ∼=

fq
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where the isomorphism p and fq both are strict epimorphisms in C, ιY ′ is the coproduct morphism

from Y ′ to the coproduct Y ′∐Y ′′ and a monomorphism in C, and ψ : Y ′∐Y ′′ ∼=−→ Y is an

isomorphism in C. By lemma 7.2.11, there exists an isomorphism ω : Y
∼=−→ Y ′ in C, not

necessarily unique, such that the diagram below commutes in C:

Y

X ′ Y

Y ′

fq

p ∼=

fq

i

where i := ψιY ′ is the composite of monomorphisms, thus a monomorphism, in C of the coproduct
morphism ιY ′ from Y ′ to the coproduct Y ′∐Y ′′ post-composed with the isomorphism ψ in C.
Since Y is assumed to be a disconnected object of C and Y ′ is a connected object of C, the
existence of an isomorphism ω : Y

∼=−→ Y ′ in C constitutes our desired contradiction, thanks to
which we safely conclude that Y is a connected object of C, as required.

We are now ready to show that every object of a Galois category C admits an essentially unique
decomposition as a finite coproduct of connected objects of C:

Proposition 7.3.8. Let X be a non-initial object of a Galois category C with associated fiber functor
F .

1. There is a natural number n ∈ N and n connected objects X1, . . . , Xn of C such that X ∼=
∐n
i=1Xi

in C.

2. Given an integer m ∈ N and m connected objects X ′
1, . . . , X

′
m of C such that X ∼=

∐m
j=1X

′
j in C,

we must have n = m and, after suitable re-ordering, Xi
∼= X ′

i in C for every i ∈ {1, . . . , n}.

Proof. We prove the existence and the essential uniqueness of a decomposition of every object X of a
Galois category C as a finite coproduct of connected objects of C.

Existence: If X is already a connected object of C, then we are done. Otherwise, lemma 7.3.6 guar-
antees that there exist a connected and non-initial object X1 of C and an object X ′

1 of C such that
X ∼= X1

∐
X ′

1 in C. If X ′
1 is also a connected object of C, then we are done. Otherwise, we again apply

lemma 7.3.6 to X ′
1 to obtain a connected and non-initial object X2 of C and an object X ′

2 of C such
that X ′

1
∼= X2

∐
X ′

2 in C, and we repeat this algorithm until we obtain a connected object X ′
n of C

for some n ∈ N. The reason why our algorithm terminates in finite time is that it yields a descending
chain of coproduct monomorphisms, by corollary 7.2.10:

· · · X ′
2 X ′

1 X
ι3 ι2

which stabilizes at a natural number n ∈ N, which depends on the chain, for the Galois category C is
Artinian.

Uniqueness: The existence claim of this lemma yields a natural number n ∈ N and n connected
objects X1, . . . , Xn of C such that X ∼=

∐n
i=1Xi in C. Removing redundant initial objects of C with-

out loss of generality if need be, we suppose that Xi is a non-initial connected object of C for every
i ∈ {1, . . . , n}. Let Y be a non-initial connected object of C and let f : Y → X be a monomorphism
in C. We gather the data below:

1. Because the fiber functor F reflects the initial object of C by lemma 7.2.8 and Y is a non-initial
object of C, we know that F (Y ) is a non-empty finite set.
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2. Because the fiber functor F reflects the initial object of C by lemma 7.2.8 and Xi is a non-initial
object of C for every i ∈ {1, . . . , n}, we know that F (Xi) is a non-empty finite set for every
i ∈ {1, . . . , n}.

3. Because the fiber functor F preserves monomorphisms in C and f is a monomorphism in C, we
know that F (f) is an injective set map of finite sets in Setf .

4. Because the fiber functor F preserves all finite coproducts of C and X ∼=
∐n
i=1Xi in C, we know

that F (X) ≈
∐n
i=1 F (Xi) in Setf .

We also know that there exists some j ∈ {1, . . . , n} such that the intersection of finite sets F (Y )∩F (Xj)
is a non-empty finite set. We form the fiber product in C of the two morphisms:

Xj

Y X

ιj

f

where f is a monomorphism in C and ιj is the coproduct morphism from Xj to the coproduct X ∼=∐n
i=1Xi and a monomorphism in C by corollary 7.2.10, and said fiber product in C is:

Y ′ Xj

Y X

ιj

f

q

p

where q is a monomorphism in C as a base change of the monomorphism f in C and p is a monomor-
phism in C as a base change of the coproduct monomorphism ιj in C. Because the fiber functor F
preserves all fiber products of C, we know that F (Y ′) ≈ F (Y ) ∩ F (Xj) is a non-empty finite set.
Thus, because the fiber functor F preserves the initial object of C, we infer that Y ′ is a non-initial
object of C, which we combine with the connectedness of the objects Xj and Y of C to infer, by the
first claim in lemma 7.3.7, that the monomorphisms q and p in C are also strict epimorphisms in C,
thus isomorphisms in C by corollary 7.2.9. Thus, our Cartesian square at hand in C is:

Y ′ Xj

Y X

ιj

f

q ∼=

p ∼=

where both q and p are isomorphisms in C, which we compose to produce qp−1 : Y
∼=−→ Xj in C.

We conclude this section with the following property of connected objects of Galois categories:

Lemma 7.3.9. If n ∈ N is a natural number and X and Y1, . . . , Yn are connected objects of a Galois
category C with associated fiber functor F , then we have the bijection of Hom sets:

n∑
i=1

(ιi)∗ :

n∐
i=1

Hom(X,Yi)
≈−→ Hom

(
X,

n∐
i=1

Yi

)

where, for every j ∈ {1, . . . , n}, ιj is the coproduct morphism from Yj to the finite coproduct
∐n
i=1 Yi

in C.

Proof. Let f : X →
∐n
i=1 Yi be a morphism of C. We factor f in C as:

X
∐n
i=1 Yi

Z Z
∐
Z ′

ϕ

ιZ

ψ ∼=

f
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where ϕ is a strict epimorphism in C, ιZ is the coproduct morphism from Z to the coproduct Z
∐
Z ′

and a monomorphism in C, and ψ is an isomorphism in C. Equivalently, we factor f in C as:

X
∐n
i=1 Yi

Z

f

ϕ i

where ϕ is a strict epimorphism in C and i := ψιZ is the composite morphism in C of the coproduct
morphism ιZ from Z to the coproduct Z

∐
Z ′ post-composed with the isomorphism ψ in C, so i is a

monomorphism in C as a composite of monomorphisms in C. Because X is a connected object of C
and ϕ is a strict epimorphism in C, claim 2 in lemma 7.3.7 informs us that Z is a connected object of
C. Moreover, by the essential uniqueness claim in proposition 7.3.8, the monomorphism i in C informs
us that Z ∼= Yk in C for a unique k ∈ {1, . . . , n}, so, under this isomorphism in C, the morphism
ϕ : X → Yk of C is the unique pre-image of f under

∑n
i=1 (ιi)∗.

7.4 Categories of elements of fiber functors

We proceed with defining the category of elements of a general set-valued functor:

Definition 7.4.1 (Category of elements). The category of elements el(F ) of a set-valued functor
F : C → Set from a category C has:

1. objects (X, ζ), where X is an object of C and ζ is an element of the set F (X), and

2. morphisms f : (X, ζ)→ (Y, η), where f is a morphism of C such that (F (f)) (ζ) = η ∈ F (Y ).

A connected element (X, ζ) of el(F ) is one such that X is a connected object of C.

The projection associated with el(F ) is the functor P : el(F )→ C defined:

1. on the objects of el(F ) by P (X, ζ) := X, and

2. on the morphisms of el(F ) by P (f) := f .

Remark 7.4.2. We will be focusing on the category of elements el(F ) of the fiber functor F associated
with a Galois category C, where we are technically enlarging the target category of F from the category
Setf of finite sets to the category Set of sets.

Remark 7.4.3. Because, by lemma 7.2.8, the fiber functor F associated with a Galois category C
reflects the initial object of C, the image of the projection functor P : el(F )→ C on objects consists of
all non-initial objects of C.

We also define the evaluation at an element of a general set-valued functor:

Definition 7.4.4 (Evaluation). The evaluation at an element (X, ζ) of a set-valued functor F :
C → Set from a category C is the natural transformation evζ : Hom (X,−) → F of functors from the
category C to the category Set of sets object-wise defined at an object Y of C by the set map:

evζ(Y ) : Hom (X,Y )→ F (Y ), (evζ(Y )) (f) := (F (f)) (ζ) ∈ F (Y )

Remark 7.4.5. Given a morphism ϕ : Y → Z, we verify that the naturality diagram of set maps
below commutes:

Hom(X,Y ) Hom (X,Z)

F (Y ) F (Z)
F (ϕ)

ϕ∗

evζ(Y ) evζ(Z)

by computing, for every morphism f : X → Y of C, that:

(evζ(Z)ϕ∗) (f) := (evζ(Z)) (ϕf) := (F (ϕf)) (ζ) = (F (ϕ)F (f)) (ζ) =: (F (ϕ)evζ(Y )) (f)
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Remark 7.4.6. We will be focusing on the evaluation at an element of the fiber functor F associated
with a Galois category C, where we are enlarging the target category of F from the category Setf of
finite sets to the category Set of sets also because the image of the covariant Hom functor Hom(X,−)
associated with some object X of C may extend beyond the category of finite sets.

We begin with showing that evaluation at a connected element of the fiber functor associated with a
Galois category is always object-wise injective:

Lemma 7.4.7. If (X, ζ) is a connected element of the fiber functor F of a Galois category C, then
the evaluation evζ : Hom (X,−)→ F at (X, ζ) is object-wise injective.

Proof. Let Y be an object of C. If Y is an initial object of C, then evζ(Y ) is the identity map
of the empty set, which is injective. Otherwise, if Y is a non-initial object of C, then consider
two morphisms f : X → Y and g : X → Y in C such that (evζ(Y )) (f) = (evζ(Y )) (g), that is,
(F (f)) (ζ) = (F (g)) (ζ) ∈ F (Y ). We form the equalizer in C of the two morphisms f : X → Y and
g : X → Y in C:

eq(f, g) X Y

f

g
i

where the equalizer morphism i is a monomorphism in C. Because the fiber functor F preserves all
equalizers of C, applying F to the above equalizer in C yields the equalizer in the category Setf of
finite sets:

eq (F (f), F (g)) F (X) F (Y )

F (f)

F (g)
j

where j is the inclusion of the equalizer eq (F (f), F (g)) in F (X). We know that ζ ∈ eq (F (f), F (g)) ⊂
F (X), so eq (F (f), F (g)) is a non-empty finite set, and so is its superset F (X). Because the fiber
functor F preserves the initial object of C and F (eq(f, g)) ≈ eq (F (f), F (g)) is a non-empty finite
set, we know that eq(f, g) is a non-initial object of C. Combining this with the connectedness of the
object X of C and applying the first claim in lemma 7.3.7, we infer that the equalizer monomorphism

i : eq(f, g)→ X of C is also a strict epimorphism of C, thus an isomorphism i : eq(f, g)
∼=−→ X of C by

corollary 7.2.9, which is equivalent to f = g in C, as required.

Corollary 7.4.8. If X is a connected object of a Galois category C with associated fiber functor F ,
then, for every object Y of C, the Hom set Hom(X,Y ) is a finite set. In particular, if X is a non-
initial connected object of C, then, for every object Y of C, the Hom set Hom(X,Y ) is a finite set of
finite cardinality |Hom(X,Y ) | ≤ |F (Y )|.

Remark 7.4.9. If X is an initial object of C, then the Hom set Hom(X,X) of endomorphisms of X
in C is a singleton set, whereas F (X) is the empty set because the fiber functor F preserves the initial
object of C, so the finite cardinality inequality in the second claim in corollary 7.4.8 does not extend
to any initial object X of C.

Henceforth, for two objects X and Y of a Galois category C, we write X ≥ Y if Hom(X,Y ) is a
non-empty set. Similarly, for two elements (X, ζ) and (Y, η) of the fiber functor F associated with a
Galois category C, we write (X, ζ) ≥ (Y, η) if Hom ((X, ζ) , (Y, η)) is a non-empty set, that is, if there
exists a morphism f : X → Y of C such that (F (f)) (ζ) = η ∈ F (Y ). Note that (X, ζ) ≥ (Y, η)
implies X ≥ Y . Our notation alludes to a partial order: indeed, ≥ is reflexive and transitive, but it
need not be even essentially antisymmetric - that is, antisymmetric up to isomorphism in C - so not
dispelling this allusion will do more harm than good. Instead, we note that the relation ≥ makes a
Galois category C directed. We view lemma 7.4.7 through our new lens:

Corollary 7.4.10. If (X, ζ) is a connected element of the fiber functor F of a Galois category C and
(Y, η) is an element of F such that (X, ζ) ≥ (Y, η) in C, then (X, ζ) ≥ (Y, η) in C is witnessed by
a unique morphism f : X → Y of C: there exists a unique morphism f : X → Y of C such that
(F (f)) (ζ) = η ∈ F (Y ).

Proof. A morphism f : X → Y of C witnesses (X, ζ) ≥ (Y, η) in C if and only if (evζ(Y )) (f) = η.
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A different way to view lemma 7.4.7 through our new lens is:

Corollary 7.4.11. If (X, ζ) is a connected element of the fiber functor F of a Galois category C, then,
for every element (Y, η) of F , the set Hom((X, ζ) , (Y, η)) is either the empty set or a singleton set.

We use our new perspective to state and prove some new results:

Lemma 7.4.12. If (Y1, η1) , . . . , (Yn, ηn) are n connected elements of the fiber functor F of a Galois
category C, then there exists a connected element (X, ζ) of F such that (X, ζ) ≥ (Yi, ηi) in C for every
i ∈ {1, . . . , n}.

Proof. We employ proposition 7.3.8 to essentially uniquely decompose the finite product
∏n
r=1 Yr in

C as a finite coproduct of connected objects
∏n
r=1 Yr

∼=
∐m
j=1Xj in C. Because the fiber functor F

preserves both finite products and finite coproducts in C, we have
∏n
r=1 F (Yr) ≈

∐m
j=1 F (Xj) in the

category Setf of finite sets, and we set:

η := (η1, . . . , ηn) ∈
n∏
r=1

F (Yr) ≈
m∐
j=1

F (Xj)

Then, there exists a unique k ∈ {1, . . . ,m} such that η ∈ F (Xk), and, for every i ∈ {1, . . . , n}, the
composite morphism piιk in C of the coproduct morphism ιk : Xk →

∐m
j=1Xj post-composed with the

product morphism pi :
∏n
r=1 Yr → Yi witnesses (Xk, η) ≥ (Yi, ηi) in C, and actually does so uniquely

by corollary 7.4.10.

We extract the following useful consequence to conclude this section:

Corollary 7.4.13. If Y is an object of a Galois category C with associated fiber functor F , then there
exists a connected element (X, ζ) of F such that the evaluation set map evζ(Y ) : Hom(X,Y )

≈−→ F (Y )
is a bijection of finite sets.

Proof. By lemma 7.4.7, it suffices to produce a connected element (X, ζ) of F such that the evaluation
set map evζ(Y ) : Hom(X,Y )→ F (Y ) is surjective. If F (Y ) is the empty set - which is equivalent to
Y being an initial object of C, because the fiber functor F reflects the initial object of C by lemma
7.2.8 - then we are done. Otherwise:

F (Y ) = {η1, . . . , ηn}

is a non-empty finite set of non-zero cardinality n ∈ N. Lemma 7.4.12 provides us with a connected
element (X, ζ) of F such that (X, ζ) ≥ (Y, ηi) in C for every i ∈ {1, . . . , n}. Equivalently, for every i ∈
{1, . . . , n}, there exists a unique, by corollary 7.4.10, morphism fi : X → Y such that (evζ(Y )) (fi) =
ηi. Hence, (X, ζ) is a connected element of F such that the evaluation set map evζ(Y ) : Hom(X,Y )→
F (Y ) is surjective, as required.

7.5 Galois objects of Galois categories

We begin with noting the observation below:

Lemma 7.5.1. If X is a connected object of a Galois category C with associated fiber functor F , then
every endomorphism of X in C is an automorphism of X in C.

Proof. Let f : X → X be an endomorphism of X in C. By the first claim in lemma 7.3.7, the
connectedness of X implies that f is a strict epimorphism in C. Because the fiber functor F preserves
strict epimorphisms in C, we know that F (f) : F (X) → F (X) is a surjective self-map of the finite
set F (X), thus a permutation of the finite set F (X) by the pigeonhole principle. At last, because the

fiber functor F reflects isomorphisms, this implies that f : X
∼=−→ X is an automorphism of X in C, as

required.

We restate lemma 7.5.1 as follows:
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Corollary 7.5.2. If X is a connected object of a Galois category C with associated fiber functor F ,
then End(X) = Aut(X), that is, the set End(X) of endomorphisms of X in C is equal to, rather than
a proper superset of, the group Aut(X) of automorphisms of X in C.

It is now time for us to define and study Galois objects of a Galois category:

Definition 7.5.3 (Galois object). A Galois object X of a Galois category C with associated fiber
functor F is a connected object X of C such that:

1. X is an initial object of C or

2. there exists some ζ ∈ F (X) at which the evaluation set map:

evζ(X) : Aut(X)
≈−→ F (X)

where End(X) = Aut(X) by corollary 7.5.2, is a bijection of finite sets.

A Galois element (X, ζ) of F is one such that X is a Galois object of C.

Remark 7.5.4. Note that we logically need to separately postulate that all initial objects of a Galois
category C be Galois: because the fiber functor F associated with a Galois category C preserves the
initial object of C, the existence condition fails for all initial objects of C as an existence condition
placed on the empty set.

We characterize non-initial Galois objects in many different ways:

Lemma 7.5.5. Let X be a non-initial connected object of a Galois category C with associated fiber
functor F . The following are equivalent:

1. X is a Galois object of C.

2. The left group action of the group Aut(X) of automorphisms of X in C on the finite set F (X)
defined by ω · ζ := (F (ω)) (ζ) ∈ F (X) is regular4, that is, both free and transitive.

3. The finite set F (X) and the group Aut(X) of automorphisms of X in C have equal finite cardi-
nality.

4. The group quotient object X/Aut(X) of C is terminal in C.

The second characterization of non-initial Galois objects in lemma 7.5.5 - in particular, the transitivity
of the group action of the group Aut(X) of automorphisms of X in C on the finite set F (X) - sheds
light on:

Lemma 7.5.6. If X is a Galois object of a Galois category C with associated fiber functor F , then,
for every ζ ∈ F (X), the evaluation set map:

evζ(X) : Aut(X)
≈−→ F (X)

where End(X) = Aut(X) by corollary 7.5.2, is a bijection.

Remark 7.5.7. Lemma 7.5.6 vacuously holds for all initial objects of C: the fiber functor F preserves
the initial object of C, thus rendering the statement in lemma 7.5.6 a vacuously satisfied property of
the empty set.

4A free group action of a group G on a set S is one such that its associated group homomorphism σ : G→ Sym(S)
from G to the symmetric group Sym(S) on S is injective. A transitive group action of a group G on a set S is one
whose unique orbit is S itself. A regular group action of a group G on a set S is a free and transitive one.
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Hence, if X is a connected object of a Galois category C with associated fiber functor F for which
we find some element ζ of the finite set F (X) satisfying the non-initial Galois object condition, then
lemma 7.5.6 informs us that every element of the finite set F (X) satisfies the non-initial Galois object
condition.

We proceed with defining a Galois closure of an object of a Galois category:

Definition 7.5.8 (Galois closure). A Galois closure of an object X of a Galois category C with
associated fiber functor F is a Galois object X̂ of C such that X̂ ≥ X in C.

Example 7.5.9. If X is already a Galois object of C, then a sensible choice of a Galois closure of X
is X itself.

The existence theorem below guarantees that every object of a Galois category has a Galois closure:

Theorem 7.5.10. Every object X of a Galois category C with associated fiber functor F has a Galois
closure X̂.

Proof. If X is already a Galois object of C, then a Galois closure of X is X itself. Otherwise, corollary
7.4.13 informs us that there still exists a connected element (Y, ζ) of F such that the evaluation set

map evζ(X) : Hom(Y,X)
≈−→ F (X) is a bijection of finite sets. If n is the common finite cardinality of

the Hom set Hom(Y,X) and the finite set F (X), we enumerate:

Hom (Y,X) = {f1, . . . , fn}

and:
F (X) = {ζ1, . . . , ζn}

so that, for every i ∈ {1, . . . , n}, we have:

(evζ(X)) (fi) := (F (fi)) (ζ) = ζi

Then, the morphism f := (f1, . . . , fn) : Y → Xn :=
∏n
i=1X of C satisfies (F (f)) (ζ) = (ζ1, . . . , ζn)

and factors in C as:

Y Xn

X̂ X̂
∐
X̂ ′

ϕ

ι
X̂

ψ ∼=

f

where ϕ is a strict epimorphism in C, ι
X̂

is the coproduct morphism from X̂ to the coproduct X̂
∐
X̂ ′

and a monomorphism in C, and ψ is an isomorphism in C. We note that:

1. by the second claim in lemma 7.3.7 X̂ is a connected object of C because ϕ is a strict epimorphism
in C with connected source object Y of C as (Y, ζ) is a connected element of F , and

2. X̂ ≥ X in C, witnessed by the composite morphism p1ψιX̂ : X̂ → X in C, where p1 : Xn → X
is the first product morphism in C.

We justify our suggestive notation by showing that X̂ is a Galois object of C. Knowing that X̂ is a
connected object of C, we are left with the task of finding an element ζ̂ of the finite set F (X̂) at which
the evaluation:

ev
ζ̂
(X̂) : Aut(X̂)

≈−→ F (X̂)

where End(X̂) = Aut(X̂) by corollary 7.5.2, is a bijection of finite sets. We show that ζ̂ := (F (ϕ)) (ζ) ∈
F (X̂) is such an element. By lemma 7.4.7, it suffices to show that the evaluation set map at ζ̂ is
surjective. Let η be an element of the finite set F (X̂). We find an element ω of the group Aut(X̂) of
automorphisms of X̂ in C such that:(

ev
ζ̂
(X̂)

)
(ω) := Fω

(
ζ̂
)
= η ∈ F (X̂)
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By lemma 7.4.12, there exists a connected element (Z, θ) of F such that (Z, θ) ≥ (X̂, η) and (Z, θ) ≥
(Y, ζ) in C, where Z is a non-initial connected object of C. This is witnessed by two morphisms
of elements v : (Z, θ) → (X̂, η) and u : (Z, θ) → (Y, ζ) whose underlying morphisms are strict
epimorphisms in C by the first claim in lemma 7.3.7 because their common source object is the non-
initial connected object Z of C and their targets X̂ and Y both are connected objects of C. We shall

need an automorphism σ : Xn
∼=−→ Xn of Xn in C making the diagram in C below commute:

Y X̂

Z Xn

X̂ Xn

u

v

i

ϕ

i

∼= σ

where i := ψι
X̂

is the composite of monomorphisms, thus a monomorphism, in C of the coproduct

morphism ι
X̂

from X̂ to the coproduct X̂
∐
X̂ ′ post-composed with the isomorphism ψ in C. To

that effect, we first show that, under the bijection of finite sets F (Xn) ≈ (F (X))n because the fiber
functor F preserves all finite products of C, in (F (i)) (η) = (ζi1 , . . . , ζin) ∈ (F (X))n, the elements
ζi1 , . . . , ζin of the finite set F (X) are pairwise distinct. We do so by equivalently showing that, if
pj (F (i)) (η) = pk (F (i)) (η) for two natural numbers j and k, where pj is the j-th Cartesian product
projection map and pk is the k-th Cartesian product projection map, then we must have j = k. To
do so, we first compute that:

pj (F (i)) (η) = (F (pji)) (η)︸ ︷︷ ︸
F preserves all finite products in C

= (F (pjiu)) (θ) =: (evθ(X)) (pjiu)

pk (F (i)) (η) = (F (pki)) (η)︸ ︷︷ ︸
F preserves all finite products in C

= (F (pkiu)) (θ) =: (evθ(X)) (pkiu)

By lemma 7.4.7, the set map evθ(X) is injective, so our two computations above together imply that
pjiu = pkiu in C. Because u is a strict epimorphism in C, we infer that pji = pki in C, and we obtain
that:

fj = pjf = pjiϕ︸ ︷︷ ︸
f=iϕ

= pkiϕ = pkf = fk

At last, fj = fk forces j = k, so (F (i)) (η) = (ζi1 , . . . , ζin) ∈ (FX)n has pairwise distinct entries, as
required. Because the symmetric group on n letters Sn acts transitively by permutations on said n
letters, we safely choose σ ∈ Sn such that σ (F (i)) (η) = (ζ1, . . . , ζn) ∈ (FX)n, and we show that its

induced automorphism σ : Xn
∼=−→ Xn of Xn in C which permutes the n factors of the finite product

Xn :=
∏n
i=1X in C by the permutation σ ∈ Sn is an automorphism of Xn in C which makes our

previous diagram commute in C, that is, we show that iϕu = σiv. To that effect, we compute that:

(evθ (X
n)) (σiv) := (F (σiv)) (θ) = σ (F (i)) (η) = (ζ1, . . . , ζn) =

= (F (f)) (ζ) = (F (fu)) (θ) = (F (iϕu)) (θ)︸ ︷︷ ︸
f=iϕ

=: (evθ (X
n)) (iϕu)

By lemma 7.4.7, the set map evθ (X
n) is injective, so our computation above implies that iϕu = σiv,

and the diagram below commutes in C:

Y X̂

Z Xn

X̂ Xn

u

v

i

ϕ

i

∼= σ
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We apply lemma 7.2.11 to iϕu = σiv in C to obtain our desired automorphism ω : X̂
∼=−→ X̂ of X̂ in C,

which is induced by the factorizations of iϕu = σiv in C in the commutative diagram in C below:

Y X̂

Z Xn

X̂ Xn

u

v

i

ϕ

i

∼= σ

ϕu

σi

ω ∼=

where both ϕu and v are strict epimorphisms in C, the former as a composite of two strict epimorphisms
in C, and both i := ψι

X̂
and σi are monomorphisms in C as composites of two monomorphisms in C.

At last, we compute that:(
ev
ζ̂
(X̂)

)
(ω) := (F (ω))

(
ζ̂
)
= (F (ωϕ)) (ζ) = (F (ωϕu)) (θ) = (F (v)) (θ)︸ ︷︷ ︸

ωϕu=v

= η ∈ F (X̂)

The above computation proves that the evaluation set map at ζ̂ is surjective, thus completing the
proof.

A useful consequence of the existence theorem 7.5.10 is the following:

Corollary 7.5.11. If X1, . . . , Xn are n objects of a Galois category C with associated fiber functor F ,
then there exists a common Galois closure X̂ of X1, . . . , Xn.

Proof. We form the finite product
∏n
j=1Xj in the Galois category C, which satisfies

∏n
j=1Xj ≥ Xi

for every i ∈ {1, . . . , n}, witnessed by the i-th product morphism. Theorem 7.5.10 provides us with a
Galois closure X̂ of

∏n
j=1Xj , which is a common Galois closure of X1, . . . , Xn by the transitivity of

the ≥ relation.

Another consequence of the existence theorem 7.5.10 in the language of the relation ≥ is the following:

Corollary 7.5.12. Let G be the full subcategory5 of the Galois objects of a Galois category C with
associated fiber functor F , and let F |G be the restriction6 of F to G. Then, with respect to the relation
≥, the category of elements el (F |G) of F |G is cofinal in the category of elements el (F ) of F .

We conclude this section with the following result:

Proposition 7.5.13. Let (X, ζ) be a Galois element of the fiber functor F associated with a Galois
category C, and let CX be the full subcategory of C of all objects Y of C such that X ≥ Y in C. Then,
the evaluation evζ at ζ restricted to CX is a natural isomorphism:

evXζ : HomCX (X,−)
∼=−→ F |CX

where, to be precise, the restriction evXζ is the natural transformation evζ ◦ iX , where iX : CX → C
denotes the full subcategory inclusion functor.

5A full subcategory G of a category C is one such that, for every pair of objects X and Y of G, we have HomG (X,Y ) =
HomC (X,Y ) rather than just HomG (X,Y ) ⊂ HomC (X,Y ) - in other words, such that the inclusion functor i : G → C is
full, hence the choice of terminology. For example, the category Ab of abelian groups is a full subcategory of the category
Grp of groups, but not a full subcategory of the category Set of sets: the constant self-map of Z with constant value
1, albeit a perfectly valid set map, is not an abelian group endomorphism of Z because it fails to respect its additive
identity element 0.

6This restriction is the composite functor Fi of the full subcategory inclusion functor i : G → C post-composed with
F .
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Remark 7.5.14. An object Y of C fails to also be an object of CX if and only if Hom(X,Y ) is the
empty set. Combining this with the fact that the fiber functor F reflects the initial object of C by lemma
7.2.8, we realize that, for every non-initial object Y of C which fails to also be an object of CX , the set
Hom(X,Y ) is the empty set but the set F (Y ) is a non-empty finite set, so the claim in proposition
7.5.13 may fail to extend beyond the full subcategory CX of a Galois category C.

Proof. Firstly, let Y be a connected object of C such that X ≥ Y in C, and let f : X → Y be a
morphism witnessing Y ≥ X in C. By lemma 7.4.7, since (X, ζ) is assumed to be a Galois element,
thus a connected element of the fiber functor F , it suffices to show that the evaluation set map

evXζ (Y ) : HomCX (X,Y )
∼=−→ F (Y ) at ζ is surjective. Because (X, ζ) is a Galois element of the fiber

functor F , the naturality commutative diagram of set maps for f : X → Y is:

Aut (X) Hom (X,Y )

F (X) F (Y )
F (f)

f∗

evζ(X) ≈ evζ(Y )

Moreover, (X, ζ) being an element of the fiber functor F forces X to be a non-initial object of C, which
we combine with the assumed connectedness of Y to infer that f : X → Y is a strict epimorphism in C
by the first claim in lemma 7.3.7. Because the fiber functor F preserves all strict epimorphisms in C,
this implies that F (f) is a surjective set map of finite sets. Thus, the set map F (f)evζ(X) = evζ(Y )f∗
is surjective as a composite of two surjective set maps, which implies that the evaluation set map
evXζ (Y ) at ζ is surjective, as required.

Now, let Z be a disconnected, thus non-initial object of C such that X ≥ Z in C. We employ
proposition 7.3.8 to essentially uniquely decompose Z in C as a finite coproduct of connected objects
Z ∼=

∐n
i=1 Yi in C. Under this essentially unique decomposition of Z in C, the evaluation set map

evXζ (Z) at ζ is
∑n

i=1 ev
X
ζ (Yi), which is a bijection because, for every i ∈ {1, . . . , n}, the evaluation

set map evXζ (Yi) is a bijection by our previous argument for connected objects of C because Yi is a
connected object of C. This completes the proof.

Corollary 7.5.15. Let X be a Galois element of the fiber functor F associated with a Galois category
C, and let CX be the full subcategory of C of all objects Y of C such that X ≥ Y in C. Then, the
restriction F |CX of F to CX is a representable functor.

Lastly, we combine the cofinality result in corollary 7.5.12 with proposition 7.5.13 to conclude that:

Corollary 7.5.16. The fiber functor F of a Galois category C with full subcategory G of the Galois
objects of C satisfies the natural isomorphisms:

F ∼= colim−−−→
X∈G

Hom(X,−) ∼= colim−−−→
X∈C

Hom(X,−)

7.6 The fundamental theorem of Galois category theory

The fundamental theorem of Galois category theory uses the fundamental group of a Galois category:

Definition 7.6.1 (Fundamental group). The fundamental group π1 (C, F ) of a Galois category
C relative to its associated fiber functor F is the automorphism group of F :

π1 (C, F ) := Aut(F ) :=
{
t : F

∼=−→ F
}

that is, π1 (C, F ) is the group of natural automorphisms of the fiber functor F .

We shall make reference to the following central result about the fundamental group of a Galois
category:
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Proposition 7.6.2. The fundamental group π1 (C, F ) of a Galois category C relative to its associated
fiber functor F is a profinite group acting continuously on the finite set F (X) for every object X of C.
In particular, denoting by G the full subcategory of C of its Galois objects, we have that π1 (C, F ) is a
profinite group as the inverse limit:

π1 (C, F ) ∼= lim
X∈G

Aut(X)

of the finite, by corollary 7.4.8, and discrete groups of automorphisms in C of the Galois objects of C.

Remark 7.6.3. The proof of proposition 7.6.2 makes use of the essential smallness in the definition
of a Galois category, thus demystifying this requirement for a category to be Galois.

We also state and prove the auxiliary lemma below:

Lemma 7.6.4. Let Z be a non-initial Galois object, let X be a connected object, and let f : Z → X
be a morphism in a Galois category C with associated fiber functor F . Under the right group action
by pre-composition of the finite, by corollary 7.4.8, group Aut(Z) of automorphisms of Z in C on the
finite, by corollary 7.4.8, Hom set Hom(Z,X) defined by g · ω := gω, let H denote the stabilizer of f .
Then, we have X ∼= Z/H in C.

Remark 7.6.5. The subgroup H of the finite, by corollary 7.4.8, group Aut(Z) of automorphisms of
Z in C acts on Z by the symmetries of Z in C, and the quotient Z/H by this finite group action exists
in the Galois category C.

Proof. Because the finite group H is the stabilizer of f , there exists a unique morphism f̃ : Z/H → X
in C such that the diagram in C below commutes:

Z X

Z/H

q

f

f̃

where q : Z → Z/H is the quotient morphism. By the first claim in lemma 7.3.7, because Z is a non-
initial object of C and X is a connected object of C, the morphism f : Z → X is a strict epimorphism
in C. Similarly, the uniquely induced morphism f̃ : Z/H → X is also a strict epimorphism in C.
Therefore, by corollary 7.2.9, it suffices to show that f̃ : Z/H → X is a monomorphism in C, which
is equivalent to showing that the set map of finite sets F (f̃) is injective because the fiber functor F
reflects all monomorphisms in C by lemma 7.2.8. Because the fiber functor F preserves all quotients
by finite groups in C, the image under F of the previous commutative diagram in C is the commutative
diagram of set maps of finite sets below:

F (Z) F (X)

F (Z)/H

p

F (f)

F (f̃)

where p : F (Z) → F (Z)/H is the quotient map, and both F (f) and F (f̃) are surjective because
the fiber functor F preserves all strict epimorphisms in C. Suppose that two elements ζ and ζ ′ of

the finite set F (Z) satisfy the equation
(
F (f̃)

)
([ζ]) =

(
F (f̃)

)
([ζ ′]) in F (X). Applying the second

characterization of non-initial Galois objects in lemma 7.5.5 to Z, we find an automorphism ω of Z
in C such that ω · ζ := (F (ω)) (ζ) = ζ ′ in F (Z), and we compute that:

(evζ(X)) (fω) := (F (fω)) (ζ) = (F (f)F (ω)) (ζ) = (F (f)) (ζ ′) =
(
F (f̃)p

)
(ζ ′) =

=
(
F (f̃)

) (
[ζ ′]
)
=
(
F (f̃)

)
([ζ]) =

(
F (f̃)p

)
(ζ) = (F (f)) (ζ) =: (evζ(X)) (f)

Combining our above computation with the injectivity of the evaluation set map evζ(X) guaranteed
to us by an application of lemma 7.4.7 to the connected object (Z, ζ) of the fiber functor F , we infer
that fω = f , so the automorphism ω of Z in C is an element of the stabilizer H of f . At last, this
implies [ζ] = [ω · ζ] = [ζ ′].
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We are now ready to state and prove the fundamental theorem of Galois category theory:

Theorem 7.6.6 (Fundamental theorem of Galois category theory). If C is a Galois category
with associated fiber functor F and full subcategory G of its Galois objects, then F induces an equiv-
alence of categories F̃ : C ≃−→ π1 (C, F ) − Setf from C to the Galois category π1 (C, F ) − Setf of finite
and discrete π1 (C, F )-spaces7 such that the diagram of functors below commutes:

C Setf

π1 (C, F )− Setf

F̃ ≃

F

Λ

where the forgetful functor Λ is the fiber functor associated with the Galois category π1 (C, F )− Setf .

Remark 7.6.7. The fundamental theorem of Galois category theory states that the example of the
category of finite and discrete G-spaces and G-equivariant continuous maps for a profinite group G,
with which we associate the forgetful functor to the category Setf of finite sets, is the essentially
universal example of a Galois category.

Proof. It is equivalent8 to prove that the fiber functor F induces a functor F̃ : C → π1 (C, F ) − Setf
from C to the Galois category π1 (C, F ) − Setf of finite and discrete π1 (C, F )-spaces such that the
diagram of functors below commutes:

C Setf

π1 (C, F )− Setf

F̃

F

Λ

where the forgetful functor Λ is the fiber functor associated with the Galois category π1 (C, F )− Setf
and F̃ is both essentially surjective9 and fully faithful10. The commutativity of the above diagram of
functors combined with the fact that Λ is a forgetful functor forces F̃ to be defined as the fiber functor
F is, and we prove that this functor F̃ : C → π1 (C, F ) − Setf induced by F is essentially surjective,
faithful, and full, in that order.

Essentially surjective: By the preservation of the initial object and all finite coproducts of C by F com-
bined with proposition 7.3.8, our work reduces to considering a non-empty, connected, finite π1 (C, F )-
set E, where ϕ : π1 (C, F ) → Sym(E) is the group homomorphism from π1 (C, F ) to the symmetric
group Sym(E) of the finite set E defining the group action of the profinite group π1 (C, F ) on E. We
know that the kernel ker(ϕ) of the group homomorphism ϕ is an open normal subgroup of the profinite
group π1 (C, F ), and that ϕ uniquely induces a group homomorphism ϕ̃ : π1 (C, F ) /ker(ϕ)→ Sym(E)
such that the diagram of group homomorphisms below commutes:

π1 (C, F ) Sym(E)

π1 (C, F ) /ker(ϕ)

ϕ

q
ϕ̃

7Recall that, by proposition 7.6.2, the fundamental group π1 (C, F ) of C relative to F is profinite.
8A reference for the theorem in category theory we are employing here, which states that a functor is an equivalence

of categories if and only if it is both essentially surjective and fully faithful, is [8], p. 31, theorem 1.5.9.
9An essentially surjective functor is a functor such that every object of its target category is isomorphic to an

object in its image. For example, the forgetful functor from finite groups to non-empty finite sets, albeit not surjective
on objects, is essentially surjective by virtue of finite cyclic groups alone, but the forgetful functor from finite groups to
finite sets fails to be even essentially surjective due to the empty set.

10A full functor is a functor that is surjective on morphisms. A faithful functor is a functor that is injective on
morphisms. A fully faithful functor is a functor that is both full and faithful, that is, a functor that is bijective on
morphisms.
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where q is the quotient group homomorphism and ϕ̃ is a group monomorphism. Since, by proposition
7.6.2, the fundamental group π1 (C, F ) of C relative to F is profinite as the inverse limit:

π1 (C, F ) ∼= lim
X∈G

Aut(X)

of the finite, by corollary 7.4.8, and discrete groups of automorphisms in C of the Galois objects of C,
we infer that there exists a Galois object Y of C such that:

π1 (C, F ) /ker(ϕ) ∼= Aut(Y )/ker(ϕ) ∼= F (Y )/ker(ϕ)︸ ︷︷ ︸
lemma 7.5.5, characterization 3

∼= F (Y/ker(ϕ)) ∼= Aut (Y/ker(ϕ))︸ ︷︷ ︸
lemma 7.5.5, characterization 3

At last, applying the orbit-stabilizer theorem for the transitive group action of π1 (C, F ) /ker(ϕ) ∼=
Aut (Y/ker(ϕ)) on the non-empty finite π1 (C, F )-set E to an element e of E, we conclude that:

E ≈ Aut (Y/ker(ϕ)) /stab(e) ≈ F (Y/ker(ϕ)) /stab(e)︸ ︷︷ ︸
lemma 7.5.5, characterization 3

≈ F ((Y/ker(ϕ)) /stab(e))

where Aut (Y/ker(ϕ)) /stab(e) denotes the finite set of left cosets of the subgroup stab(e) of Aut (Y/ker(ϕ)),
which need not be normal in Aut (Y/ker(ϕ)).

Faithful: By proposition 7.3.8, our work reduces to considering two morphisms f : X → Y and
g : X → Y in C with non-initial and connected source object X of C such that F (f) = F (g). Because
the fiber functor F reflects the initial object of C by lemma 7.2.8, we know there exists an element ζ
of F (X), so (X, ζ) is a connected element of F . We evaluate at ζ to compute that:

(evζ(Y )) (f) := (F (f)) (ζ) = (F (g)) (ζ)︸ ︷︷ ︸
F (f)=F (g)

=: (evζ(Y )) (g)

We combine the above computation with lemma 7.4.7 to conclude that f = g, as required.

Full: By proposition 7.3.8, our work reduces to considering a π1 (C, F )-equivariant map of finite
π1 (C, F )-sets ũ : F (X) → F (Y ) where X and Y are non-initial and connected objects of C. Be-
cause the fiber functor F reflects the initial object of C by lemma 7.2.8, we know that both F (X) and
F (Y ) are non-empty finite sets. By proposition 7.5.13, we may choose a Galois element (Z, ζ) of the

fiber functor F such that Z ≥ X in C and the evaluation set map evζ(Y ) : Hom (Z, Y )
≈−→ F (Y ) at

ζ is a bijection of finite sets. Let f : Z → X be a morphism in C witnessing Z ≥ X in C. By the
first claim in lemma 7.3.7, f is a strict epimorphism in C, so F (f) is a surjective set map of finite sets
because the fiber functor F preserves all strict epimorphisms in C. We observe that ũ (F (f)) (ζ) is
an element of the non-empty finite set F (Y ), and the evaluation set map evζ(Y ) being a bijection of
finite sets yields a unique morphism f ′ : Z → Y in C such that:

(evζ(Y )) (f ′) :=
(
F (f ′)

)
(ζ) = ũ (F (f)) (ζ) ∈ F (Y )

Moreover, by lemma 7.6.4 and using the notation in the statement of lemma 7.6.4, we have X ∼= Z/H
in C. Because the fiber functor F preserves all quotients by finite groups in C and by the transitivity
in characterization 3 in lemma 7.5.5 applied to the Galois object Z of C, we obtain the commutative
diagram of set maps of finite sets:

F (Z) F (Z)/H

F (Y )

F (f)

F (f ′)
ũ

Then, for every element ω of the finite stabilizer H := stab(f) of f , we compute that:

F
(
f ′ω
)
= F (f ′)F (ω) = ũF (f)F (ω) = ũF (fω) = ũF (f)︸ ︷︷ ︸

ω∈H:=stab(f)

= F (f ′)
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Having established faithfulness, we infer that f ′ω = f ′ for every element ω of H, so there exists a
unique morphism u : Z/H → Y in C such that the diagram below commutes in C:

Z Z/H

Y

f

f ′
u

We apply the fiber functor F to the above commutative diagram in C to obtain the commutative
diagram of set maps of finite sets below:

F (Z) F (Z)/H

F (Y )

F (f)

F (f ′)
F (u)

and we compute that ũF (f) = F (f ′) = F (u)F (f). At last, because F (f) is a surjective set map of
finite sets, we conclude that ũ = F (u), as required. This completes the proof.

7.7 Example: Finite-sheeted covering spaces

We conclude our study of Galois category theory with expanding our discussion of the following ex-
ample of a Galois category from section 1. If S is a path-connected, locally path-connected, and
semi-locally simply connected pointed space - that is, a pointed space satisfying the hypotheses in
the Galois correspondence theorem for covering spaces - with basepoint s0, then the category CovSf of
finite-sheeted covering spaces of S and finite-sheeted covering space maps over S is a Galois category
whose associated fiber functor F : CovSf → Setf sends each finite-sheeted covering space of S to its
finite fiber at s0 and each finite-sheeted covering space map over S to its induced set map of finite
fibers at s0.

Given a finite-sheeted covering space pX : X → S of S, we categorically describe the finite fiber
F (pX) := p−1

X (s0) of pX at s0 by the Cartesian square below:

F (pX) X

∗ S

gF (pX )

i

s0

pX

where gF (pX) is the terminal map of the finite fiber F (pX) and i is the inclusion of said finite fiber
F (pX) in X. What is more, every finite-sheeted covering space map over S is locally determined near
s0 by its induced set map of finite fibers at s0: given two finite-sheeted covering spaces pX : X → S
and pY : Y → S of S, a finite-sheeted covering space map f : X → Y over S from pX to pY , and an
open neighborhood U of S that contains s0 and is evenly covered both by pX and by pY , we have the
commutative diagram of local triviality in U below:

U × F (pX) U × F (pY )

U
p1 p′1

1U×F (f)

where p1 and p′1 are the respective Cartesian product projections to the first coordinate, F (pX) :=
p−1
X (s0) is the finite fiber of pX at s0, F (pY ) := p−1

Y (s0) is the finite fiber of pY at s0, and the set map
F (f) of finite fibers at s0 induced by the finite-sheeted covering space map f over S locally determines
f near s0 in the precise sense of the above commutative diagram of continuous maps.

We gather some remarks on this example of a Galois category under the umbrella of the proposi-
tion below:
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Proposition 7.7.1. The category CovSf of finite-sheeted covering spaces of and finite-sheeted covering
space maps over a path-connected, locally path-connected, and semi-locally simply connected pointed
space S with basepoint s0 is a Galois category whose associated fiber functor F : CovSf → Setf sends
each finite-sheeted covering space of S to its finite fiber at s0 and each finite-sheeted covering space
map over S to its induced set map of finite fibers at s0.

Proof. After noting that CovSf is essentially small by an application of the Galois correspondence
theorem that S is rigged by its assumed topological properties to satisfy, we gather some remarks on
the satisfaction of each enumerated axiom in the definition of a Galois category with its associated
fiber functor:

1. The terminal object of CovSf is the identity map 1S : S
=−→ S of S, a single-sheeted covering

space of S. As for the construction of fiber products in CovSf , given two finite-sheeted covering
space maps over S with the same target:

Y

X Z

S

pZ

pY

pX

g

f

we form their fiber product in the continuous category Top of topological spaces:

X ×Z Y Y

X Z

S

pZ

pY

pX

g

fp

q

and pX×ZY := pXp = pY q : X ×Z Y → S is another finite-sheeted covering space of S: given an
open neighborhood U of S that is evenly covered by pX , pY , and pZ , we compute that:

p−1
X×ZY

(U) ∼= p−1
X (U)×p−1

Z (U) p
−1
Y (U) ∼= (U × F (pX))×(U×F (pZ)) (U × F (pY ))︸ ︷︷ ︸

U is evenly covered

∼=

∼= U ×
(
F (pX)×F (pZ) F (pY )

)
where the fiber product F (pX)×F (pZ) F (pY ) is a finite set because F (pX), F (pY ), and F (pZ)
all are.

2. The initial object of CovSf is the initial map fS : ∅ → S of S, the unique zero-sheeted covering
space of S. As for the construction of finite coproducts in CovSf , given two finite-sheeted covering
spaces pX : X → S and pY : Y → S of S, we define pX

∐
Y : X

∐
Y → S to be the composite of

continuous maps below:

X
∐
Y

S
∐
S

S

pX+pY

1S+1S

pX
∐

Y

where 1S + 1S is the folding map of S. This is another finite-sheeted covering space of S: given
an open neighborhood U of S that is evenly covered both by pX and by pY , we compute that:

p−1
X

∐
Y (U) = p−1

X (U)
∐

p−1
X (U) ∼= (U × F (pX))

∐
(U × F (pY ))︸ ︷︷ ︸

U is evenly covered

∼= U ×
(
F (pX)

∐
F (pY )

)
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where the disjoint union F (pX)
∐
F (pY ) is a finite set as a disjoint union of two finite sets.

Lastly, as for the construction of quotients by finite groups in CovSf , given a finite group G
acting by deck transformations on a finite-sheeted covering space pX : X → S of S, there exists
a unique continuous map pX/G : X/G → X such that the diagram of continuous maps below
commutes:

X S

X/G

q

pX

pX/G

where q is the orbit space map. This is another finite-sheeted covering space of S: given an open
neighborhood U of S that is evenly covered by pX , we compute that:

p−1
X/G(U) = p−1

X (U)/G ∼= (U × F (pX)) /G︸ ︷︷ ︸
U is evenly covered

∼= U × (F (pX) /G)

where the quotient set F (pX) /G is a finite set as a quotient of a finite set.

3. A morphism in CovSf - that is, finite-sheeted covering space map over S - is a strict epimorphism
in CovSf if and only if it is an epimorphism in CovSf . Moreover, all finite coproduct morphisms in
CovSf are finite disjoint union inclusions, thus injective, thus monomorphisms (left-cancellable)
in CovSf .

4. The fiber functor F preserves the terminal object of CovSf because F (1S) = {s0}, and it preserves
all fiber products of CovSf by the following computation in our remark on axiom 1:

p−1
X×ZY

(U) ∼= U ×
(
F (pX)×F (pZ) F (pY )

)
which implies F (pX×ZY ) ≈ F (pX)×F (pZ) F (pY ) in the category Setf of finite sets.

5. The fiber functor F preserves the initial object of CovSf because F (fS) = ∅, it preserves all finite
coproducts of CovSf by the following computation in our remark on axiom 2:

p−1
X

∐
Y (U) ∼= U ×

(
F (pX)

∐
F (pY )

)
which implies F

(
pX

∐
Y

)
≈ F (pX)

∐
F (pY ) in the category Setf of finite sets, and it preserves

all quotients by finite groups in CovSf by the following computation in our remark on axiom 2:

p−1
X/G(U) ∼= U × (F (pX) /G)

which implies F
(
pX/G

)
≈ F (pX) /G in the category Setf of finite sets.

6. Every (strict) epimorphism f in CovSf induces a surjective set map F (f) of finite fibers at s0.

7. If a finite-sheeted covering space map f over S induces a bijection F (f) of finite fibers at s0,
then f is forced to be a homeomorphism over S, that is, an isomorphism in CovSf . The converse
implication holds in the greatest generality: every functor preserves all isomorphisms.

If S is a path-connected, locally path-connected, and semi-locally simply connected pointed space with
basepoint s0, then we know that S admits a universal cover p̃ : S̃ → S, where ‘universality’ means that
S̃ is a simply connected space. Moreover, the Galois correspondence theorem applied to S informs
us that the group Aut (p̃) of deck transformations of the universal cover p̃ of S is isomorphic to the
fundamental group π1(S) of the pointed space S at its basepoint s0: Aut (p̃) ∼= π1(S). We can say a
bit more:
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Proposition 7.7.2. If S is a path-connected, locally path-connected, and semi-locally simply connected
pointed space with basepoint s0 and universal cover p̃ : S̃ → S, and CovSf is the Galois category of
finite-sheeted covering spaces of and finite-sheeted covering space maps over S, with associated fiber
functor F : CovSf → Setf sending each finite-sheeted covering space of S to its finite fiber at s0 and
each finite-sheeted covering space map over S to its induced set map of finite fibers at s0, then, for
every finite-sheeted covering space p of S, we have the natural bijection of finite sets:

F (p) ≈ Hom(p̃, p)

in other words, we have the natural isomorphism F ∼= Hom(p̃,−) of set-valued functors from CovSf ,
and the fiber functor F is representable with representing object11 p̃ in CovSf .

An application of proposition 7.6.2 enables us to also describe the fundamental group π1
(
CovSf , F

)
of

the Galois category CovSf relative to its associated fiber functor F :

Proposition 7.7.3. If S is a path-connected, locally path-connected, and semi-locally simply connected
pointed space with basepoint s0, and CovSf is the Galois category of finite-sheeted covering spaces of
and finite-sheeted covering space maps over S, with associated fiber functor F : CovSf → Setf sending
each finite-sheeted covering space of S to its finite fiber at s0 and each finite-sheeted covering space map
over S to its induced set map of finite fibers at s0, then the profinite fundamental group π1

(
CovSf , F

)
of CovSf relative to F is isomorphic to the profinite completion12 π̂1(S) of the (discrete) fundamental
group π1(S) of S at s0:

π1
(
CovSf , F

) ∼= π̂1(S)

We combine proposition 7.7.3 with the fundamental theorem of Galois category theory to infer that:

Corollary 7.7.4. If S is a path-connected, locally path-connected, and semi-locally simply connected
pointed space with basepoint s0, and CovSf is the Galois category of finite-sheeted covering spaces of
and finite-sheeted covering space maps over S, with associated fiber functor F : CovSf → Setf sending
each finite-sheeted covering space of S to its finite fiber at s0 and each finite-sheeted covering space
map over S to its induced set map of finite fibers at s0, then F induces an equivalence of categories

F̃ : CovSf
≃−→ π̂1(S)− Setf from CovSf to the Galois category π̂1(S)− Setf of finite and discrete π̂1(S)-

spaces such that the diagram of functors below commutes:

CovSf Setf

π̂1(S)− Setf

F̃ ≃

F

Λ

where the forgetful functor Λ is the fiber functor associated with the Galois category π̂1(S)− Setf .

Corollary 7.7.5. If S is a path-connected, locally path-connected, and semi-locally simply connected
pointed space with basepoint s0, and CovSf is the Galois category of finite-sheeted covering spaces of
and finite-sheeted covering space maps over S, with associated fiber functor F : CovSf → Setf sending
each finite-sheeted covering space of S to its finite fiber at s0 and each finite-sheeted covering space
map over S to its induced set map of finite fibers at s0, then, for every pair pX and pY of finite-sheeted
covering spaces of S, F induces a bijection of Hom sets:

F̃X,Y : Hom (pX , pY )
≈−→ Hom

π̂1(S)
(F (pX), F (pY ))

11It is a consequence of the Yoneda lemma ([8], p. 57, theorem 2.2.4) that the representing object of a representable
functor is unique up to isomorphism.

12The profinite completion of a discrete group G is the profinite group Ĝ defined to be the inverse limit Ĝ :=
lim[G:N ]<∞ G/N over all finite and discrete quotients of G. By the universal property of inverse limits, there is always

a canonical continuous group homomorphism τG : G → Ĝ from a discrete group G to its profinite completion Ĝ. For
example, the profinite completion Ẑ of the discrete group Z is Ẑ := limn∈N Z/nZ ∼=

∏
p Zp, the product of the profinite

group Zp of the p-adic integers over all primes p.
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where Hom
π̂1(S)

(F (pX), F (pY )) is the Hom set of π̂1(S)-equivariant continuous maps from the finite

and discrete fiber F (pX) to the finite and discrete fiber F (pY ). In particular, for every finite-sheeted
covering space pX of S, F induces an isomorphism of endomorphism monoids:

F̃X,X : End (pX)
∼=−→ End

π̂1(S)
(F (pX))

We conclude this section with studying two different types of actions that arise in the Galois category
CovSf . If pX : X → S is a finite-sheeted covering space of a path-connected, locally path-connected,
and semi-locally simply connected pointed space S with basepoint s0, then the group Aut (pX) of
deck transformations of pX is a subgroup of the group Homeo (X) of self-homeomorphisms of X, thus
continuously acting on the space X from the left by self-homeomorphisms of X. What is more, the
fundamental group π1(S) of S acts on X from the right as follows. Let x̃ be a point in X, write
x := pX(x̃) in S, and let [γ] be an element of the fundamental group π1(S) of S at x represented by
a loop γ : [0, 1] → S with γ(0) = γ(1) = x in S. We equip the closed unit interval [0, 1] with the
basepoint 0 and we write down the diagram of pointed continuous maps below:

{0} X

[0, 1] S

x̃

pX

γ

i

where i denotes the pointed subspace inclusion. By the unique path lifting property of the finite-
sheeted covering space pX of S, we infer that the path γ admits a unique lift γ̃ : [0, 1] → X, which
need not be a loop in X, such that γ̃(0) = x̃ in X in the precise sense of the commutative diagram of
pointed continuous maps below:

{0} X

[0, 1] S

x̃

pX

γ

i
γ̃

At last, we describe a well-defined right action of the fundamental group π1(S) of S on X by:

x̃ · [γ] := γ̃(1) ∈ X
We verify that the left action of the group Aut (pX) of deck transformations of pX on X by self-
homeomorphisms of X and the above right action of the fundamental group π1(S) of S on X commute.

Given a deck transformation ϕ : X
∼=−→ X of pX , a point x̃ of X with x := pX(x̃) in S, and an element

[γ] of the fundamental group π1(S) of S at x represented by a loop γ : [0, 1]→ S with γ(0) = γ(1) = x
in S, we write down the commutative diagram of pointed continuous maps below:

{0} X X

[0, 1] S

x̃

pX

γ

i
γ̃

ϕ ∼=

pX

and we employ the uniqueness in the unique path lifting property of the finite-sheeted covering space
pX of S to compute in X that:

(ϕ · x̃) · [γ] := ϕ (x̃) · [γ] := ϕγ̃(1)︸ ︷︷ ︸
uniqueness of the lift

=: ϕ · (x̃ · [γ])

Thus, in the precise sense of the above computation in X, the left action of the group Aut (pX) of deck
transformations of pX on X by self-homeomorphisms of X and the right action of the fundamental
group π1(S) of S on X commute. Lastly, note that:

1. the left action of the group Aut (pX) of deck transformations of pX onX by self-homeomorphisms
of X restricts to a left action of the group Aut (pX) of deck transformations of pX on X on the
finite fiber F (pX) of pX at s0, and

2. the right action of the fundamental group π1(S) of S on X also restricts to a right action of the
fundamental group π1(S) of S at its basepoint s0 on the finite fiber F (pX) of pX at s0.
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7.8 Appendix on category theory

We explain some notions from category theory which arise in these notes, redirecting the reader in-
terested in their comprehensive treatment or our presupposed background in category theory to the
textbooks [7], [9], and [8] and the crash courses in category theory in chapter 1 of [10] and in section
2 of [5].

Although categorical definitions precede concrete examples in our exposition to render definitions
easy and quick to find, the reader should keep in mind that, historically, categorical definitions for-
malize and generalize concrete examples in the world of sets, topological spaces, (abelian) groups,
vector spaces and modules, and other ubiquitous mathematical structures whose study historically
predates the advent of category theory, the brainchild of Samuel Eilenberg and Saunders Mac Lane,
in the 1940s.

7.8.1 Initial, terminal, and zero objects

We begin with studying initial, terminal, and zero objects and various examples of such:

Definition 7.8.1 (Initial object). An initial object of a category C is an object ∅ of C satisfying
the universal property that, for every object X of C, there exists a unique morphism fX : ∅ → X in C.

Remark 7.8.2. A category C need not have an initial object, and if it does, then it is unique up to
unique isomorphism in C, thus allowing us to speak of ‘the’ initial object of C.

Remark 7.8.3. If ∅ is an initial object of C and D is a full subcategory13 of C with ∅, then ∅ is an
initial object of D.

Example 7.8.4. As our notation deliberately suggests, the empty set ∅ is the initial object of the
category Set of sets, as well as its full subcategory Setf of finite sets (unique not only up to set bijection,
but actually on the nose in these special cases). However, its full subcategory Set≥1 of non-empty sets
is an example of a category with no initial object, reminding us that a category need not have one.

Example 7.8.5. The empty space ∅ is the initial object of the category Top of topological spaces,
as well is every full subcategory of Top containing it, such as its full subcategory T2 of Hausdorff
spaces14, its full subcategory MS of metric spaces, or its full subcategory Top≥2 of simply connected
spaces (again, unique not only up to homeomorphism, but actually on the nose in these special cases).

Example 7.8.6. The singletons are precisely the initial objects of the category Top∗ of pointed spaces
and pointed continuous maps between them. Pointedness excludes ∅ from the objects of the category
Top∗.

Example 7.8.7. The zero group 0 is the initial object of the category Grp of groups, as well as
in its full subcategory Ab of abelian groups, its full subcategory Grpf of finite groups, and its full
subcategory Div of divisible abelian groups. However, its full subcategory Grp̸=0 of non-zero groups
is an example of a category with no initial object.

Example 7.8.8. The zero module 0 is the initial object of the category R-Mod of left modules over a
unital ring R, with the case R = Z recovering the above example in the category Ab of abelian groups.

13A full subcategory G of a category C is one such that, for every pair of objects X and Y of G, we have HomG (X,Y ) =
HomC (X,Y ) rather than just HomG (X,Y ) ⊂ HomC (X,Y ) - in other words, such that the inclusion functor i : G → C is
full, hence the choice of terminology. For example, the category Ab of abelian groups is a full subcategory of the category
Grp of groups, but not a full subcategory of the category Set of sets: the constant self-map of Z with constant value
1, albeit a perfectly valid set map, is not an abelian group endomorphism of Z because it fails to respect its additive
identity element 0.

14The notation T2 follows the Kolmogorov classification of increasingly, index-wise, properly stricter separation ax-
ioms for topological spaces, where T stands for the German word ‘Trennungsaxiom’ literally translating to English to
‘separation axiom’.
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Example 7.8.9. The ring of integers Z is the initial object of the category CRing of commutative,
unital rings and ring homomorphisms respecting the multiplicative unit.

Example 7.8.10. The initial object, if it exists, of the poset category associated with a poset is the
minimal element of said poset. For example, the poset category N associated with the poset (N,≤)
with the usual partial order ≤ has (unique, on the nose) initial object 1, whereas the poset category
Z associated with the poset (Z,≤) with the usual partial order ≤ has no initial object because the
poset (Z,≤) has no minimal element. Moreover, for every set X, the poset category P (X) associated
with the power set poset (P (X) ,⊂) with the subset partial order ⊂ has (unique, on the nose) initial
object ∅.

The dual notion to that of an initial object is that of a terminal object:

Definition 7.8.11 (Terminal object). A terminal object of a category C is an object ∗ of C
satisfying the universal property that, for every object X of C, there exists a unique morphism gX :
X → ∗ in C.

Remark 7.8.12. A category C need not have a terminal object, and if it does, then it is unique up
to unique isomorphism in C, thus allowing us to speak of ‘the’ terminal object of C. In particular, a
category C having an initial object need not have a terminal object, and vice versa. Moreover, if C has
both an initial and a terminal object, they need not be isomorphic in C.

Remark 7.8.13. If ∗ is a terminal object of C and D is a full subcategory of C with ∗, then ∗ is a
terminal object of D.

Remark 7.8.14. ‘Duality’ precisely translates to the fact that, for a category C:

1. ∗ being a terminal object of C is equivalent to ∗ being an initial object of the opposite category
Cop and

2. ∅ being an initial object of C is equivalent to ∅ being a terminal object of the opposite category
Cop.

Example 7.8.15. As our notation deliberately suggests, the singletons are precisely the terminal
objects of the category Set of sets, as well as its full subcategory Setf of finite sets and its full
subcategory Set≥1 of non-empty sets, the latter having no initial object. However, its full subcategory
Set ̸=1 of non-singleton sets has the unique initial object ∅ but no terminal object.

Example 7.8.16. The singleton spaces are precisely the terminal objects of the category Top of
topological spaces, as well as its full subcategory T2 of Hausdorff spaces, its full subcategory MS of
metric spaces, and its full subcategory Top≥2 of simply connected spaces.

Example 7.8.17. The singleton spaces are precisely the terminal objects of the category Top∗ of
pointed spaces, coinciding with the initial objects in Top∗.

Example 7.8.18. The zero group 0 is the terminal object of the category Grp of groups, as well
as its full subcategory Ab of abelian groups, its full subcategory Grpf of finite groups, and its full
subcategory Div of divisible abelian groups, coinciding with the initial object in all the aforementioned
categories. However, its full subcategory Grp ̸=0 of non-zero groups is an example of a category with
no terminal or initial object.

Example 7.8.19. The zero module 0 is the terminal object of the category R-Mod of left modules
over a unital ring R, coinciding with its initial object, with the case R = Z recovering the above
example in the category Ab of abelian groups.

Example 7.8.20. The zero ring 0 is the terminal object of the category CRing of commutative, unital
rings and ring homomorphisms respecting the multiplicative unit.
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Example 7.8.21. The terminal object, if it exists, of the poset category associated with a poset is
the maximal element of said poset. For example, neither the poset category N associated with the
poset (N,≤) with the usual partial order ≤ nor the poset category Z associated with the poset (Z,≤)
with the usual partial order ≤ has a terminal object because neither the poset (N,≤) nor the poset
(Z,≤) has a maximal element. Moreover, for every set X, the poset category P (X) associated with
the power set poset (P (X) ,⊂) with the subset partial order ⊂ has (unique, on the nose) terminal
object X.

The occasional coincidence of the initial and terminal object gives rise to the notion of a zero object:

Definition 7.8.22 (Zero object). A zero object of a category C is an object 0 that is both initial
and terminal.

Remark 7.8.23. A category C need not have a zero object, and if it does, then it is unique up to
unique isomorphism in C, thus allowing us to speak of ‘the’ zero object of C. In particular, a category
C having an initial object and a terminal object need not have a zero object, for the initial and the
terminal object of C need not be isomorphic.

Remark 7.8.24. If 0 is a zero object of C and D is a full subcategory of C with 0, then 0 is a zero
object of D.

Remark 7.8.25. A category C has a zero object if and only if C has both an initial and a terminal
object and the two are isomorphic in C.

Example 7.8.26. As our notation deliberately suggests, the zero group 0 is the zero object of the
category Grp of groups, as well as its full subcategory Ab of abelian groups, its full subcategory Grpf
of finite groups, and its full subcategory Div of divisible abelian groups.

Example 7.8.27. The zero module 0 is the zero object of the category R-Mod of left modules over a
unital ring R, with the case R = Z recovering the above example in the category Ab of abelian groups.

Example 7.8.28. The category Set of sets has the empty set as its (unique, on the nose) initial object
and the singletons as its terminal objects, but Set has no zero object because no singleton can be in
bijection with the empty set. Similarly, the category Top of topological spaces has the empty space
as its (unique, on the nose) initial object and the singleton spaces as its terminal objects, but Top
has no zero object because no singleton space can be in bijection with, let alone homeomorphic to the
empty space.

Example 7.8.29. The category CRing of commutative, unital rings has the ring of integers Z as its
initial object and the zero ring 0 as its terminal object, but CRing has no zero object because the ring
of integers Z is not even in bijection with, let alone isomorphic to the zero ring 0.

Example 7.8.30. The zero object, if it exists, of the poset category associated with a poset is
simultaneously both the minimal and the maximal element of said poset. This forces our poset to
be a 1-element poset, such as the power set of the empty set with the subset partial order, whose
associated poset category consists of 1 object and its identity morphism.

7.8.2 Products, coproducts, and connected objects

We proceed with studying products and coproducts and various examples of such:

Definition 7.8.31 (Product). A product of given objects {Xi}i∈I of a category C, where I is an
indexing set, is an object

∏
i∈I Xi of C together with, for each j ∈ I, a morphism pj :

∏
i∈I Xi → Xj

satisfying the universal property that, for every object Y of C together with, for each j ∈ I, morphisms
p′j : Y → Xj , there exists a unique morphism

∏
i∈I p

′
i : Y →

∏
i∈I Xi such that, for all j ∈ I, the

diagram below commutes in C:
Xj

Y
∏
i∈I Xi

p′j pj∏
i∈I p

′
i
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In the finite case I = {1, 2}, we obtain that a binary product of two given objects X1 and X2 of a
category C is an object X1 ×X2 of C and two morphisms p1 : X1 ×X2 → X1 and p2 : X1 ×X2 → X2

satisfying the universal property that, for every object Y of C together with two morphisms p′1 : Y →
X1 and p′2 : Y → X2, there exists a unique morphism p′1 × p′2 : Y → X1 ×X2 such that the diagram
below commutes in C:

X1

Y X1 ×X2

X2

p1

p2

p′1

p′2

p′1×p′2

Remark 7.8.32. A product of a given set, or even a pair, of objects of a category C need not exist in
C, and if it does, then it is unique up to canonical isomorphism in C provided by its universal property,
thus allowing us to speak of ‘the’ product of said set, or pair, of objects.

Remark 7.8.33. In the degenerate case I = ∅, the definition of a product reduces to the definition of
the terminal object of the category at hand C.

Remark 7.8.34. In the degenerate case I = {1}, a product of a given object X is sensibly chosen to
be X itself with its identity morphism 1X : X

=−→ X.

Remark 7.8.35. By an induction argument, the existence of arbitrary finite products in a category C
is equivalent to that of arbitrary binary products, but the latter does not generally imply the existence
even of arbitrary countably infinite products, as we will discuss in the examples below.

Remark 7.8.36. The universal property of products extends to the categorical setting the following
natural associativity and commutativity isomorphisms whenever both sides are defined in the category
at hand:

1. Associativity: (X1 ×X2)×X3
∼= X1 × (X2 ×X3)

2. Commutativity: X1 ×X2
∼= X2 ×X1

Moreover, if the category at hand possesses a terminal object ∗, then the universal property of products
extends to the categorical setting the following natural unitality isomorphism whenever both sides are
defined in the category at hand:

3. Unitality: X × ∗ ∼= X

Combined with the commutativity isomorphism of products, the above isomorphism implies that ∗×X ∼=
X whenever both sides are defined in the category at hand.

Example 7.8.37. As our notation deliberately suggests, a product of given sets {Xi}i∈I , where I is
an indexing set, is their Cartesian product

∏
i∈I Xi together with, for each j ∈ I, the j-th projection

map pj :
∏
i∈I Xi → Xj . In the finite case I = {1, 2}, a binary product of given sets X1 and X2

is their Cartesian product X1 × X2 together with the two projection maps p1 : X1 × X2 → X1 and
p2 : X1 × X2 → X2. This construction justifies the notation used to denote products and works
verbatim in the category Top of topological spaces and its full subcategories T2 of Hausdorff spaces,
MS of metric spaces, and Top≥2 of simply connected spaces - by the fundamental group isomorphism
π1 (X × Y ) ∼= π1 (X)× π1 (Y ) - as well as in the category Top∗ of pointed spaces, the category Grp of
groups, the category Ab of abelian groups, the category R-Mod of left modules over a unital ring R,
and the category CRing of commutative, unital rings, so all these categories have all products.

Example 7.8.38 (Diagonal morphisms). For every object X of a category C in which the binary
product X × X exists, the universal property of products yields the diagonal morphism ∆X :=
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1X × 1X : X → X ×X as below:

X

X X ×X

X

p1

p2

∆X

When the binary product X × X is constructed by means of the Cartesian product construction in
the previous example, the diagonal morphism ∆X : X → X ×X is the diagonal set map defined by
∆X (x) := (x, x) ∈ X ×X, justifying our terminology and notation for general diagonal morphisms.

Example 7.8.39. If {fi}i∈I are isomorphisms in a category C, so is
∏
i∈I fi, with

(∏
i∈I fi

)−1
=∏

i∈I f
−1
i .

Example 7.8.40. The category Setf of finite sets, albeit closed under all finite products by the
Cartesian product construction, is not closed even under countably infinite products, for the countably
infinite Cartesian product

∏
i∈N {0, 1} =: 2N ≈ P (N), the set of binary sequences or, equivalently, the

power set of the set of all natural numbers N, lies outside Setf because it is (countably) infinite.
Similarly, the category C−Vectfd of finite-dimensional complex vector spaces, albeit closed under all
finite products by the Cartesian product construction, is not closed even under countably infinite
products, for the countably infinite Cartesian product

∏
i∈NC =: CN of complex sequences lies outside

C−Vectfd as it is (countably) infinite-dimensional.

Example 7.8.41. The product, if it exists, of given objects {xi}i∈I , where I is an indexing set, in the
poset category associated with a poset is the meet

∧
i∈I xi of the elements {xi}i∈I of said poset. For

example, for every set X, the poset category P (X) associated with the power set poset (P (X) ,⊂)
with the subset partial order ⊂ has all products because the poset (P (X) ,⊂) has all meets, which
are intersections. However, the poset category Z associated with the poset (Z,≤) with the usual
partial order ≤, even though it has all finite products because it has all finite meets, does not have
the (countably) infinite product

∏
n∈Z n because the poset (Z,≤) has no minimal element.

The dual notion to that of a product is that of a coproduct:

Definition 7.8.42 (Coproduct). A coproduct of given objects {Xi}i∈I of a category C, where I is
an indexing set, is an object

∐
i∈I Xi of C together with, for each j ∈ I, a morphism ιj : Xj →

∐
i∈I Xi

satisfying the universal property that, for every object Y of C together with, for each j ∈ I, morphisms
ι′j : Xj → Y , there exists a unique morphism

∑
i∈I ι

′
i :
∐
i∈I Xi → Y such that, for all j ∈ I, the

diagram below commutes:

Xj

∐
i∈I Xi Y

ιj ι′j∑
i∈I ι

′
i

In the finite case I = {1, 2}, we obtain that a binary coproduct of two given objects X1 and X2 of a
category C is an object X1

∐
X2 of C and two morphisms ι1 : X1 → X1

∐
X2 and ι2 : X2 → X1

∐
X2

satisfying the universal property that, for every object Y of C together with two morphisms ι′1 : X1 → Y
and ι′2 : X2 → Y , there exists a unique morphism ι′1 + ι′2 : X1

∐
X2 → Y such that the diagram below

commutes in C:
X1

X1
∐
X2 Y

X2

ι1

ι2

ι′1

ι′2

ι′1+ι
′
2

Remark 7.8.43. A coproduct of a given set, or even a pair, of objects of a category C need not exist in
C, and if it does, then it is unique up to canonical isomorphism in C provided by its universal property,
thus allowing us to speak of ‘the’ coproduct of said set, or pair, of objects.
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Remark 7.8.44. In the degenerate case I = ∅, the definition of a coproduct reduces to the definition
of the initial object of the category at hand C.

Remark 7.8.45. In the degenerate case I = {1}, a coproduct of a given object X is sensibly chosen
to be X itself with its identity morphism 1X : X

=−→ X.

Remark 7.8.46. By an induction argument, the existence of arbitrary finite coproducts in a category C
is equivalent to that of arbitrary binary coproducts, but the latter does not generally imply the existence
even of arbitrary countably infinite coproducts, as we will discuss in the examples below.

Remark 7.8.47. The universal property of coproducts extends to the categorical setting the following
natural associativity and commutativity isomorphisms whenever both sides are defined in the category
at hand:

1. Associativity: (X1
∐
X2)

∐
X3
∼= X1

∐
(X2

∐
X3)

2. Commutativity: X1
∐
X2
∼= X2

∐
X1

Moreover, if the category at hand possesses an initial object ∅, then the universal property of coproducts
extends to the categorical setting the following natural unitality isomorphism whenever both sides are
defined in the category at hand:

3. Unitality: X
∐
∅ ∼= X

Combined with the commutativity isomorphism of coproducts, the above isomorphism implies that
∅
∐
X ∼= X whenever both sides are defined in the category at hand.

Remark 7.8.48. ‘Duality’ precisely translates to the fact that:

1. a product in a category C is equivalent to a coproduct in the opposite category Cop and

2. a coproduct in a category C is equivalent to a product in Cop.

Example 7.8.49. As our notation deliberately suggests, a coproduct of given sets {Xi}i∈I , where I
is an indexing set, is their disjoint union

∐
i∈I Xi together with, for each j ∈ I, the j-th inclusion

map ιj : Xj →
∐
i∈I Xi. In the finite case I = {1, 2}, a binary coproduct of given sets X1 and

X2 is their disjoint union X1
∐
X2 together with the two inclusion maps ι1 : X1 → X1

∐
X2 and

ι2 : X2 → X1
∐
X2. This construction justifies the notation used to denote coproducts and works

verbatim in the category Top of topological spaces.

Example 7.8.50. In the category Top∗ of pointed spaces, a coproduct of given pointed spaces {Xi}i∈I ,
where I is an indexing set, is their wedge sum

∨
i∈I Xi together with, for each j ∈ I, the j-th inclusion

map ιj : Xj →
∨
i∈I Xi. In the finite case I = {1, 2}, a binary coproduct of given pointed spaces X1

and X2 is their disjoint union X1 ∨X2 together with the two inclusion maps ι1 : X1 → X1 ∨X2 and
ι2 : X2 → X1 ∨ X2. The discrepancy between the construction of coproducts in the category Top
and that in the category Top∗ is due to the fact that spaces in Top∗ are equipped with a designated
basepoint each, and continuous maps in Top∗ all are also required to preserve said basepoints.

Example 7.8.51. In the category Ab of abelian groups, a coproduct of given abelian groups {Xi}i∈I ,
where I is an indexing set, is their direct sum

⊕
i∈I Xi together with, for each j ∈ I, the j-th inclusion

map ιj : Xj →
⊕

i∈I Xi. In the finite case I = {1, 2}, a binary coproduct of given abelian groups X1

and X2 is their direct sum X1 ⊕ X2 together with the two inclusion maps ι1 : X1 → X1 ⊕ X2 and
ι2 : X2 → X1 ⊕ X2. This construction generalizes verbatim to the category R-Mod of left modules
over a unital ring R.
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Example 7.8.52. In the category Grp of groups, a coproduct of given groups {Xi}i∈I , where I is
an indexing set, is their free product ∗i∈IXi together with, for each j ∈ I, the j-th inclusion map
ιj : Xj → ∗i∈IXi. In the finite case I = {1, 2}, a binary coproduct of given groups X1 and X2 is their
free product X1 ∗X2 together with the two inclusion maps ι1 : X1 → X1 ∗X2 and ι2 : X2 → X1 ∗X2.

Note that the binary coproduct of Z/2Z with itself as an abelian group is the Klein 4-group Z/2Z⊕
Z/2Z, whereas the binary coproduct of Z/2Z with itself as a group is the free product Z/2Z ∗ Z/2Z,
and:

Z/2Z⊕ Z/2Z ̸∼= Z/2Z ∗ Z/2Z
as groups because the Klein 4-group Z/2Z ⊕ Z/2Z is abelian and has 4 elements, whereas the free
product Z/2Z ∗ Z/2Z is non-abelian and infinite!

Example 7.8.53. In the category CRing of commutative, unital rings, a coproduct of given commu-
tative rings groups {Xi}i∈I , where I is an indexing set, is their tensor product

⊗
i∈I Xi together with,

for each j ∈ I, the j-th structure map ιj : Xj →
⊗

i∈I Xi. In the finite case I = {1, 2}, a binary
coproduct of given commutative rings X1 and X2 is their tensor product X1 ⊗X2 together with the
two structure maps ι1 : X1 → X1 ⊗X2 and ι2 : X2 → X1 ⊗X2.

Example 7.8.54 (Folding morphisms). For every object X of a category C in which the binary
coproduct X

∐
X exists, the universal property of coproducts yields the folding morphism 1X+1X :

X
∐
X → X as below:

X

X
∐
X X

X

ι1

ι2

1X+1X

In the category Top of topological spaces, the folding morphism 1X + 1X : X
∐
X → X of a space X

is the folding map which folds both disjoint copies of X to X, justifying our terminology for general
folding morphisms.

Example 7.8.55. If {fi}i∈I are isomorphisms in a category C, so is
∑

i∈I fi, with
(∑

i∈I fi
)−1

=∑
i∈I f

−1
i .

Example 7.8.56 (Connected objects). A connected object in a category C with an initial object
∅ is an object X of C such that, if we have X ∼= Y

∐
Z in C, then we must have (i) X ∼= Y and Z ∼= ∅

in C or (ii) X ∼= Z and Y ∼= ∅ in C.

Initial objects are connected. In the category Set of sets, the connected objects are precisely the
empty set and all singleton sets. In the category Top of spaces, a connected object is precisely a
connected space, justifying our terminology.

Example 7.8.57. The category Setf of finite sets, albeit closed under all finite coproducts by the
disjoint union construction, is not closed even under countably infinite coproducts, for the countably
infinite disjoint union

∐
i∈N {0, 1} lies outside Setf because it is (countably) infinite. Similarly, the cate-

gory C−Vectfd of finite-dimensional complex vector spaces, albeit closed under all finite coproducts by
the direct sum construction, is not closed even under countably infinite coproducts, for the countably
infinite direct sum

⊕
i∈NC =: C⊕N of complex sequences with finitely many non-zero entries, which

is a proper complex subspace of CN, lies outside C−Vectfd as it is (countably) infinite-dimensional.

Example 7.8.58. The coproduct, if it exists, of given objects {xi}i∈I , where I is an indexing set, in
the poset category associated with a poset is the join

∨
i∈I xi of the elements {xi}i∈I of said poset. For

example, for every set X, the poset category P (X) associated with the power set poset (P (X) ,⊂)
with the subset partial order ⊂ has all coproducts because the poset (P (X) ,⊂) has all joins, which
are unions. However, the poset category Z associated with the poset (Z,≤) with the usual partial
order ≤, even though it has all finite coproducts because it has all finite joins, does not have the
(countably) infinite coproduct

∐
n∈Z n because the poset (Z,≤) has no maximal element.
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7.8.3 Equalizers and co-equalizers

We proceed with studying equalizers and co-equalizers and various examples of such:

Definition 7.8.59 (Equalizer). An equalizer of a pair of morphisms with the same source and
target h : X → Y and h′ : X → Y in a category C is a morphism f : eq(h, h′)→ X in C satisfying the
universal property that:

1. the diagram below commutes in C:

eq(h, h′) X Y
f

h

h′

that is, hf = h′f , and

2. if g : Q→ X is a morphism in C such that the diagram below commutes in C:

Q X Y

eq(h, h′)

h

h′
g

f

that is, such that hg = h′g, then there exists a unique morphism ϕ : Q → eq(h, h′) in C such
that the diagram below commutes in C:

Q X Y

eq(h, h′)

h

h′
g

f
ϕ

Remark 7.8.60. An equalizer of a pair of morphisms with the same source and target in C need not
exist in C, and if it does, then it is unique up to canonical isomorphism in C provided by its universal
property, thus allowing us to speak of ‘the’ equalizer of said pair of morphisms.

Remark 7.8.61. In the degenerate case h = h′, an equalizer of h = h′ is sensibly chosen to be the
identity morphism 1X : X

=−→ X. For example, only such degenerate cases occur in a poset category
associated with a poset.

Example 7.8.62. In the category Set of sets, given an arbitrary pair of set maps with the same source
and target h : X → Y and h′ : X → Y , we construct their equalizer eq(h, h′) by defining:

eq(h, h′) :=
{
x ∈ X : h(x) = h′(x) ∈ Y

}
⊂ X

a subset of X, and f : eq(h, h′) → X to be the subset inclusion. This construction works verbatim
in the category Setf of finite sets, the category Top of topological spaces, the category Grp of groups,
the category Ab of abelian groups, the category R-Mod of left modules over a unital ring R, and the
category CRing of commutative, unital rings, so all the aforementioned categories have all equalizers.

Example 7.8.63. In the category Set of sets, given a pair of set maps with the same source and target
h : X → Y and h′ : X → Y where Y is non-empty and h′ (x) := y ∈ Y for all x ∈ X, by the above
explicit construction, their equalizer is the fiber h−1(y) of y ∈ Y . This example works verbatim in the
category Setf of finite sets, the category Top of topological spaces, and the category Top∗ of pointed
spaces, but only works to categorically describe kernels in Grp, Ab, and R-Mod for every unital ring
R as group homomorphisms and (left) R-linear maps both must preserve identity elements.
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Example 7.8.64. In the category Set of sets, given a self-map h : X → X, by the above explicit
construction, the equalizer of h and the identity map 1X is the fixed-point subset Fh of X. This
example works verbatim in the category Setf of finite sets, the category Top of topological spaces, the
category Top∗ of pointed spaces, the category Grp of groups, the category Ab of abelian groups, the
category R-Mod of left modules over a unital ring R, and the category CRing of commutative, unital
rings.

The dual notion to that of an equalizer is that of a co-equalizer:

Definition 7.8.65 (Co-equalizer). A co-equalizer of a pair of morphisms with the same source
and target h : X → Y and h′ : X → Y in a category C is a morphism f : Y → coeq(h, h′) in C
satisfying the universal property that:

1. the diagram below commutes in C:

X Y coeq(h, h′)
h

h′
f

that is, fh = fh′, and

2. if g : Y → Q is a morphism in C such that the diagram below commutes in C:

X Y coeq(h, h′)

Q

h

h′
f

g

that is, such that gh = gh′, then there exists a unique morphism ϕ : coeq(h, h′) → Q in C such
that the diagram below commutes in C:

X Y coeq(h, h′)

Q

h

h′
f

g ϕ

Remark 7.8.66. A co-equalizer of a pair of morphisms with the same source and target in C need not
exist in C, and if it does, then it is unique up to canonical isomorphism in C provided by its universal
property, thus allowing us to speak of ‘the’ co-equalizer of said pair of morphisms.

Remark 7.8.67. In the degenerate case h = h′, a co-equalizer of h = h′ is sensibly chosen to be the
identity morphism 1Y : Y

=−→ Y . For example, only such degenerate cases occur in a poset category
associated with a poset.

Remark 7.8.68. ‘Duality’ precisely translates to the fact that:

1. an equalizer in a category C is equivalent to a co-equalizer in the opposite category Cop and

2. a co-equalizer in a category C is equivalent to an equalizer in the opposite category Cop.

Example 7.8.69. In the category Set of sets, given an arbitrary pair of set maps with the same source
and target h : X → Y and h′ : X → Y , we construct their co-equalizer coeq(h, h′) by defining:

coeq(h, h′) :=
Y

h(x) ∼ h′(x), x ∈ X

a quotient of Y , and f : Y → coeq(h, h′) to be the quotient map. This construction works verbatim
in the category Setf of finite sets and the category Top of topological spaces. Mutatis mutandis, it
also works in the category Grp of groups by defining the group:

coeq(h, h′) :=
Y

⟨⟨h(x) (h′(x))−1 : x ∈ X⟩⟩
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quotienting by the suitable normal closure, as well as in the category Ab of abelian groups and, more
generally, the category R-Mod of left modules over a unital ring R by defining:

coeq(h, h′) :=
Y

⟨h(x)− h′(x) : x ∈ X⟩

quotienting by the suitable subspace, and the category CRing of commutative, unital rings by defining:

coeq(h, h′) :=
Y

⟨h(x)− h′(x) : x ∈ X⟩

quotienting by the suitable ideal. Thus, Set, Setf , Top, Grp, Ab, R-Mod, and CRing all have all
co-equalizers.

7.8.4 Fiber products (pullbacks) and pushouts

We proceed with studying fiber products (pullbacks) and pushouts and various examples of such:

Definition 7.8.70 (Fiber product (Pullback)). A fiber product or pullback of a pair of mor-
phisms in a category C with the same target:

A

C B

f

g

is an object A ×B C of C together with two morphisms q : A ×B C → A (base change of g) and
p : A×B C → C (base change of f) in C satisfying the universal property that:

1. the pullback square, or Cartesian square, below commutes in C:

A×B C A

C B

f

g

p

q

2. and, for every commutative diagram in C as below:

D A

C B

f

g

p′

q′

there exists a unique morphism ω : D → A×B C such that the diagram below commutes in C:

D

A×B C A

C B

f

g

p′

q′

p

q

ω

Remark 7.8.71. A fiber product of a pair of morphisms in C with the same target need not exist in
C, and if it does, then it is unique up to canonical isomorphism in C provided by its universal property,
thus allowing us to speak of ‘the’ fiber product of said pair of morphisms.

Remark 7.8.72. Although the ‘pullback’ term is more prevalent in topology, the ‘fiber product’ term
is more prevalent in algebraic geometry, so we mostly follow the latter terminology for the purposes of
the seminar.
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Example 7.8.73. In the category Set of sets, given an arbitrary pair of set maps with the same
target:

A

C B

f

g

we construct the fiber product A×B C by defining:

A×B C := {(a, c) ∈ A× C : f(a) = g(c) ∈ B} =
⋃
b∈B

f−1(b)× g−1(b) ⊂ A× C

and taking q : A×BC → A and p : A×BC → A to be the restrictions to the fiber product A×BC of the
respective product maps. This construction justifies the notation and terminology for fiber products
and works verbatim in the category Setf of finite sets, the category Top of topological spaces, the
category Top∗ of pointed spaces, the category Grp of groups, the category Ab of abelian groups, the
category R-Mod of left modules over a unital ring R, and the category CRing of commutative, unital
rings, all of which have all fiber products.

Example 7.8.74. In a category C with a terminal object ∗, the fiber product of the pair of terminal
object morphisms:

A

B ∗
gA

gB

if it exists in C, is precisely the binary product A × B of A and B. This applies to the category Set
of sets, the category Setf of finite sets, the category Top of topological spaces, the category Top∗ of
pointed spaces, the category Grp of groups, the category Ab of abelian groups, the category R-Mod
of left modules over a unital ring R, and the category CRing of commutative, unital rings.

Example 7.8.75. In a category C having two morphisms h : X → Y and h′ : X → Y and the binary
product Y × Y , the fiber product:

X

Y Y × Y
h×h′

∆Y

if it exists in C, is precisely the equalizer of the pair h and h′. This applies to the category Set of sets,
the category Setf of finite sets, the category Top of topological spaces, the category Top∗ of pointed
spaces, the category Grp of groups, the category Ab of abelian groups, the category R-Mod of left
modules over a unital ring R, and the category CRing of commutative, unital rings.

Example 7.8.76. In the category Set of sets, the fiber product of the pair of set maps with the same
target:

A

∗ B

f

g

where B is non-empty and g (∗) := b ∈ B, is, by the above explicit construction, (sensibly identified
with) the fiber f−1(b) of b ∈ B. This example works verbatim in the category Setf of finite sets,
the category Top of topological spaces, and the category Top∗ of pointed spaces, but only works to
categorically describe kernels in Grp, Ab, and R-Mod for every unital ring R as group homomorphisms
and (left) R-linear maps both must preserve identity elements.

Example 7.8.77. In the category Set of sets, the fiber product of the pair of subset inclusions:

A

C B
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is, by the above explicit construction, (sensibly identified with) the intersection A ∩C. This example
works verbatim in the category Setf of finite sets, the category Top of topological spaces, the category
Top∗ of pointed spaces, the category Grp of groups, the category Ab of abelian groups, the category
R-Mod of left modules over a unital ring R, and the category CRing of commutative, unital rings.

Example 7.8.78. In the poset category associated with a poset, the fiber product of:

a

c b

is the meet a ∧ c of the elements a and c of said poset. For example, for every set X, the poset
category P (X) associated with the power set poset (P (X) ,⊂) with the subset partial order ⊂ has
all fiber products because the poset (P (X) ,⊂) has all binary meets, which are binary intersections.
Moreover, the poset category Z associated with the poset (Z,≤) with the usual partial order ≤ has all
fiber products because the poset (Z,≤) has all binary meets, as does the poset category N associated
with the poset (N,≤) with the partial order ≤.

The dual notion to that of a fiber product is that of a pushout:

Definition 7.8.79 (Pushout). A pushout of a pair of morphisms in a category C with the same
source:

A C

B

f

g

is an object B ∪A C of C together with two morphisms j : B → B ∪A C (co-base change of g) and
i : C → B ∪A C in C (co-base change of f) satisfying the universal property that:

1. the pushout square, or co-Cartesian square, below commutes in C:

A C

B B ∪A C
f

g

j

i

2. and, for every commutative diagram in C as below:

A C

B D

f

g

j′
i′

there exists a unique morphism w : B ∪A C → D such that the diagram below commutes in C:

A C

B B ∪A C

D

f

g

j

i

j′

i′

w

Remark 7.8.80. A pushout of a pair of morphisms in C with the same source need not exist in C,
and if it does, then it is unique up to canonical isomorphism in C provided by its universal property,
thus allowing us to speak of ‘the’ pushout of said pair of morphisms.
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Remark 7.8.81. ‘Duality’ precisely translates to the fact that:

1. a fiber product in a category C is equivalent to a pushout in the opposite category Cop and

2. a pushout in a category C is equivalent to a fiber product in the opposite category Cop.

Example 7.8.82. In the category Set of sets, given an arbitrary pair of set maps with the same
source:

A C

B

f

g

we construct the pushout B ∪A C by defining:

B ∪A C :=
B
∐
C

f(a) ∼ g(a), a ∈ A

and taking j : B → B ∪A C and i : C → B ∪A C in C to be the respective coproduct maps followed
by the quotient map. This gluing construction works verbatim in the category Setf of finite sets,
as well as in the category Top of topological spaces, where it lies at the heart of the definition and
study of CW complexes because it formally describes the geometric procedure of gluing cells (often
uncountably many of them, via involved attaching maps, or inductively ad infinitum, or all at once).
Mutatis mutandis, it also works in the category Grp of groups by defining the free product with
amalgamation:

B ∗A C :=
B ∗ C

⟨⟨f(a) (g(a))−1 : a ∈ A⟩⟩
that is, forming the free product of B and C - the group-theoretic coproduct of B and C - and
quotienting by the suitable normal closure, as well as in the category Ab of abelian groups and, more
generally, the category R-Mod of left modules over a unital ring R by defining:

B ⊕A C :=
B ⊕ C

⟨(f(a),−g(a)) : a ∈ A⟩

that is, forming the direct sum of B and C - the module-theoretic coproduct of B and C - and
quotienting by the suitable subspace, and the category CRing of commutative, unital rings by defining:

B ⊗A C :=
B ⊗ C

⟨(f(a)⊗ 1)− (1⊗ g(a)) : a ∈ A⟩

that is, forming the tensor product of B and C - the ring-theoretic coproduct of B and C - and
quotienting by the suitable ideal. Thus, Set, Setf , Top, Grp, Ab, R-Mod over a unital ring R, and
CRing all have all pushouts.

Example 7.8.83. In a category C with an initial object ∅, the pushout of the pair of initial object
morphisms:

∅ A

B

fB

fA

if it exists in C, is precisely the binary coproduct A
∐
B of A and B. This applies to the category Set

of sets, the category Setf of finite sets, the category Top of topological spaces, the category Top∗ of
pointed spaces, the category Grp of groups, the category Ab of abelian groups, the category R-Mod
of left modules over a unital ring R, and the category CRing of commutative, unital rings.
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Example 7.8.84. In a category C having two morphisms h : X → Y and h′ : X → Y and the binary
coproduct X

∐
X, the pushout:

X
∐
X X

Y

h+h′

1X+1X

if it exists in C, is precisely the co-equalizer of the pair h and h′. This applies to the category Set
of sets, the category Setf of finite sets, the category Top of topological spaces, the category Top∗ of
pointed spaces, the category Grp of groups, the category Ab of abelian groups, the category R-Mod
of left modules over a unital ring R, and the category CRing of commutative, unital rings.

Example 7.8.85. In the poset category associated with a poset, the pushout of:

a c

b

is the join b ∨ c of the elements b and c of said poset. For example, for every set X, the poset
category P (X) associated with the power set poset (P (X) ,⊂) with the subset partial order ⊂ has
all pushouts because the poset (P (X) ,⊂) has all binary joins, which are binary unions. Moreover,
the poset category Z associated with the poset (Z,≤) with the usual partial order ≤ has all pushouts
because the poset (Z,≤) has all binary joins. The same is true for the poset category N associated
with the poset (N,≤) with the usual partial order ≤.

7.8.5 Limits and colimits and their preservation

We follow section 2 of [5] in our study of general limits and colimits, which unifies all our previous
discussions, at the expected cost of higher abstraction. We shall need the following functor:

Definition 7.8.86 (Constant functor). Let C and D be two categories. The constant functor
∆ : C → CD from C to the functor category CD of functors from D to C is defined:

1. on the objects of C by assigning to X the constant functor ∆(X) : D → C sending all objects of
D to X and all morphisms of D to 1X , the identity morphism of X in C, and

2. on the morphisms of C by assigning to f : X → Y the natural transformation of constant functors
∆(f) : ∆(X)→ ∆(Y ) defined object-wise to be f : X → Y .

We first define general limits using the language of constant functors:

Definition 7.8.87 (Limit). A limit of a functor F : D → C, where D is a small15 category, is an
object limF of C together with a natural transformation t : ∆ (limF ) → F satisfying the universal
property that, for every other object X of C together with a natural transformation t′ : ∆ (X) → F ,
there exists a unique morphism f : X → limF of C such that the diagram below commutes in the
functor category CD:

∆(X) F

∆(limF )

t′

t∆(f)

15A category is small if its objects form a set, rather than a proper class. Moreover, especially in our current setting,
a functor F : D → C is often called a D-shaped diagram, for it formalizes a specific type of diagram in C, as illustrated
in our examples.
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Remark 7.8.88. A limit of a functor F : D → C out of a small category D need not exist, and if
it does, then it is unique up to canonical isomorphism in C provided by its universal property, thus
allowing us to speak of ‘the’ limit of said functor. If every functor F : D → C out of every small (resp.
finite16) category D - that is, every small (resp. finite) diagram in C - has a limit in C, then we say
that C has all small (resp. finite) limits. A category with all small limits is also often called
‘complete’ or ‘small-complete’.

If every functor F : D → C out of a specific small category D has a limit in C, then taking limits
of functors out of D assembles to a limit functor lim : CD → C, which is right adjoint to the constant
functor ∆ : C → CD.

Remark 7.8.89. Limits are often referred to as ‘inverse limits’ or ‘projective limits’ to distinguish
them from colimits.

We describe how general limits unify our aforementioned categorical constructions:

Example 7.8.90 (Terminal objects). When D is the empty category and F : D → C is the unique
functor out of the empty category to C, the limit limF , if it exists, is the same as the terminal object
∗ of C.

Example 7.8.91 (Products). When D is the discrete small category consisting of a set of objects
I and their identity morphisms, a functor F : D → C is precisely a selection {Xi}i∈I of objects of C
indexed by I, and the limit limF , if it exists, is precisely the same as the product

∏
i∈I Xi in C. In

the finite case I = {1, 2}, we recover the binary product X1 ×X2 in C, if it exists.

Example 7.8.92 (Equalizers). When D is a 2-object small category with 2 non-identity morphisms:

• •

where the 2 identity morphisms are suppressed, a functor F : D → C is a selection of a pair of
morphisms with the same source and target in C, and the limit limF , if it exists, is the same as its
equalizer in C.

Example 7.8.93 (Fiber products (Pullbacks)). When D is a 3-object small category with 2
non-identity morphisms:

•

• •

where the 3 identity morphisms are suppressed, a functor F : D → C is a diagram of the following
type in C:

A

C B

f

g

and the limit limF , if it exists, is precisely the same as the fiber product (pullback) A×C B in C.

Example 7.8.94 (Projective limits and the ring Zp of p-adic integers). The poset category N
associated with the poset (N,≤) with the usual partial order ≤ has non-identity morphisms:

1 2 3 · · · n n+ 1 · · ·

where all identity morphisms are suppressed, so its opposite category Nop has non-identity morphisms:

1 2 3 · · · n n+ 1 · · ·

16A category is finite if its objects form a finite set.
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and a functor F : Nop → C is a countably infinite string of composable morphisms in C as below:

X1 X2 X3 · · · Xn Xn+1 · · ·f2 f3 fn+1

When C is the category CRing of commutative, unital rings, p is a prime number, and the diagram
below in CRing consists of the countably infinite string of quotient projections below:

Z/pZ Z/p2Z Z/p3Z · · · Z/pnZ Z/pn+1Z · · ·q2 q3 qn+1

the projective limit exists in CRing and it is called the ring Zp of p-adic integers. An alternative,
non-categorical definition of Zp is that of the closed unit disk in the p-adic numbers Qp with the p-adic
norm.

Example 7.8.95. As explained in [5], pp. 9-10, the category Set of sets, the category Top of topo-
logical spaces, and the category R-Mod of left modules over a unital ring R all have all small limits,
vastly generalizing the existence of a terminal object and all products and fiber products in all the
aforementioned 3 categories. However, the category Setf of finite sets is not closed under infinite
products, thus does not have all small limits, and the category Set ̸=1 of non-singleton sets lacks a
terminal object, thus does not have all finite limits.

The dual notion to that of a limit is that of a colimit:

Definition 7.8.96 (Colimit). A colimit of a functor F : D → C, where D is a small category, is an
object colimF of C together with a natural transformation s : F → ∆(colimF ) satisfying the universal
property that, for every other object X of C together with a natural transformation s′ : F → ∆(X),
there exists a unique morphism f : colimF → X of C such that the diagram below commutes in the
functor category CD:

∆ (colimF ) F

∆(X)

s

s′
∆(f)

Remark 7.8.97. A colimit of a functor F : D → C out of a small category D need not exist, and
if it does, then it is unique up to canonical isomorphism in C provided by its universal property, thus
allowing us to speak of ‘the’ colimit of said functor. If every functor F : D → C out of every small
(resp. finite) category D - that is, every small (resp. finite) diagram in C - has a colimit in C, then we
say that C has all small (resp. finite) colimits. A category with all small colimits is also often
called ‘co-complete’ or ‘small-co-complete’.

If every functor F : D → C out of a specific small category D has a colimit in C, then taking col-
imits of functors out of D assembles to a functor colim : CD → C, which is left adjoint to the constant
functor ∆ : C → CD.

Remark 7.8.98. Colimits are often referred to as ‘direct limits’ or ‘inductive limits’ to distinguish
them from limits.

Remark 7.8.99. ‘Duality’ precisely translates to the fact that:

1. a limit in a category C is equivalent to a colimit in the opposite category Cop and

2. a colimit in a category C is equivalent to a limit in the opposite category Cop.

A category C has all small (finite) limits if and only if its opposite category Cop has all small (finite)
colimits.

We describe how general colimits unify our aforementioned categorical constructions:
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Example 7.8.100 (Initial objects). When D is the empty category and F : D → C is the unique
functor out of the empty category to C, the colimit colimF , if it exists, is the same as the initial object
∅ of C.

Example 7.8.101 (Coproducts). When D is the discrete small category consisting of a set of objects
I and their identity morphisms, a functor F : D → C is precisely a selection {Xi}i∈I of objects of C
indexed by I, and the colimit colimF , if it exists, is precisely the same as the coproduct

∐
i∈I Xi in

C. In the finite case I = {1, 2}, we recover the binary coproduct X1
∐
X2 in C, if it exists.

Example 7.8.102 (Co-equalizers). When D is a 2-object small category with 2 non-identity mor-
phisms:

• •

where the 2 identity morphisms are suppressed, a functor F : D → C is a selection of a pair of
morphisms with the same source and target in C, and the colimit colimF , if it exists, is the same as
its co-equalizer in C.

Example 7.8.103 (Pushouts). When D is a 3-object small category with 2 non-identity morphisms:

• •

•

where the 3 identity morphisms are suppressed, a functor F : D → C is a diagram of the following
type in C:

A C

B

f

g

and the colimit colimF , if it exists, is precisely the same as the pushout B ∪A C in C.

Example 7.8.104 (Inductive limits and the CW topology). The poset category N associated
with the poset (N,≤) with the usual partial order ≤ has non-identity morphisms:

1 2 3 · · · n n+ 1 · · ·

where all identity morphisms are suppressed, so a functor F : N → C is a countably infinite string of
composable morphisms in C as below:

X1 X2 X3 · · · Xn Xn+1 · · ·f1 f2 fn

When C is the category Top of topological spaces and the diagram below in Top consists of the
countably infinite string of subspace inclusions below:

X1 X2 X3 · · · Xn Xn+1 · · ·i1 i2 in

the inductive limit exists in Top and it is, sensibly, the ascending union
⋃∞
j=1Xj equipped with the

colimit topology: a subset V of
⋃∞
j=1Xj is closed if and only if, for every j ∈ N, the subset V ∩Xj

of Xj is closed in Xj . This topology is also called the CW topology because, in the context of CW
complexes, Xj is the j-th skeleton of the CW complex one is constructing, and the resulting CW
complex

⋃∞
j=1Xj assembled by gluing cells is endowed, by the definition of a CW complex, with the

aforementioned colimit topology.

Example 7.8.105. As explained in [5], pp. 7-8, the category Set of sets, the category Top of topo-
logical spaces, and the category R-Mod of left modules over a unital ring R all have all small colimits,
vastly generalizing the existence of an initial object and all coproducts and pushouts in all the afore-
mentioned 3 categories. However, the category Setf of finite sets is not closed under infinite coproducts,
thus does not have all small colimits, and the category Set≥1 of non-empty sets lacks an initial object,
thus does not even have all finite colimits.
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We state a theorem, and its dual result, on the existence of limits and colimits in functor categories,
such as categories of presheaves in algebraic geometry and the category of simplicial sets - or other
simplicial objects, such as simplicial abelian groups - in (simplicial) homotopy theory:

Theorem 7.8.106 ([7], p. 116, corollary). If a category C has all small (resp. finite) limits, then so
does every functor category CK of functors mapping to C from K.

Remark 7.8.107 ([5], p. 11). Under the hypothesis of theorem 7.8.106, limits in a functor category
CK of functors mapping to C from K are evaluated point-wise: if X : D → CK is a functor out of a
small category D and we wish to evaluate the limit functor limX in CK at an object a of K, then we
study the associated functor Xa : D → C defined on objects by Xa(d) := (X(d)) (a) and on morphisms
by Xa(f) := (X(f)) (a), whose limit exists by the hypothesis of theorem 7.8.106, and we employ the
following natural isomorphism in C:

(limX) (a) ∼= limXa

Corollary 7.8.108. If a category C has all small (resp. finite) colimits, then so does every functor
category CK of functors mapping to C from K.

Remark 7.8.109. Under the hypothesis of corollary 7.8.108, colimits in a functor category CK of
functors mapping to C from K are evaluated point-wise: if X : D → CK is a functor out of a small
category D and we wish to evaluate the colimit functor colimX in CK at an object a of K, then we
study the associated functor Xa : D → C defined on objects by Xa(d) := (X(d)) (a) and on morphisms
by Xa(f) := (X(f)) (a), whose colimit exists by the hypothesis of corollary 7.8.108, and we employ the
following natural isomorphism in C:

(colimX) (a) ∼= colimXa

Lastly, we state without proof two powerful theorems, and their dual results, which significantly reduce
one’s work when they are studying whether a specific category has all small, or at least all finite, limits
or colimits:

Theorem 7.8.110 ([7], p. 113, corollary 1). A category has all finite limits if and only if it has a
terminal object, all equalizers, and all binary products - equivalently, if and only if it has all finite
products and all equalizers.

Remark 7.8.111. Recall that the empty product is the terminal object.

Corollary 7.8.112. A category has all finite colimits if and only if it has an initial object, all co-
equalizers, and all binary coproducts - equivalently, if and only if it has all finite coproducts and all
co-equalizers.

Remark 7.8.113. Recall that the empty coproduct is the initial object.

Theorem 7.8.114 ([7], p. 113, corollary 2). A category has all small limits if and only if it has all
equalizers and all products (including the empty product, which is the terminal object).

Corollary 7.8.115. A category has all small colimits if and only if it has all co-equalizers and all
coproducts (including the empty coproduct, which is the initial object).

The category Setf of finite sets has all finite limits and colimits, but neither all small limits nor all
small colimits.

We proceed with defining and studying the preservation of limits by functors:

Definition 7.8.116 (Preservation of limits). A functor G : C → C′ preserves all small (resp.
finite) limits if, for every functor F : D → C out of a small (resp. finite) category D such that limF
exists in C:
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1. limGF exists in C′ and

2. we have the isomorphism limGF ∼= G (limF ) in C′.

Remark 7.8.117. Alluding to calculus, some authors refer to functors preserving all small limits as
‘continuous’ functors.

Example 7.8.118. All identity functors and all covariant Hom functors ([7], p. 116, theorem 1),
thus all covariant representable functors17, preserve all small limits, and the composite of two functors
preserving all small (resp. finite) limits also preserves all small (resp. finite) limits.

Example 7.8.119 (Terminal objects). A functor G : C → C′ vacuously preserves the terminal
object of C if C has no terminal object. Otherwise, G preserves the terminal object of C if:

1. C′ also has a terminal object and

2. G sends the terminal object of C to that of C′.

The forgetful functor from groups to sets preserves the terminal object, as does the inclusion functor
from non-singleton sets to sets, albeit vacuously in the latter example. The inclusion functor from the
terminal18 category ∗ consisting of 1 object and its identity morphism to the poset category {1, 2}
associated with the poset ({1, 2} ,≤) with the usual partial order ≤ which sends the unique object of
∗ to 1 fails to preserve the terminal object: the unique, on the nose, terminal object of ∗ is its unique
object, and the unique, again on the nose, terminal object of {1, 2} is its unique maximal element 2
with the usual partial order ≤, but the inclusion functor at hand sends the unique terminal object of
∗ to 1, and 1 ̸∼= 2 in the poset category {1, 2} because 1 ̸= 2 in the poset ({1, 2} ,≤).

Example 7.8.120 (Products). A functor G : C → C′ vacuously preserves the product of a given set
{Xi}i∈I of objects of C, where I is an indexing set, if said product does not exist in C. Otherwise, G
preserves the product

∏
i∈I Xi in C if:

1. the product
∏
i∈I G (Xi) also exists in C′ and

2. we have the isomorphism
∏
i∈I G (Xi) ∼= G

(∏
i∈I Xi

)
in C′.

In the finite case I = {1, 2}, a functor G : C → C′ vacuously preserves the product of two objects X1

and X2 of C if said product does not exist in C. Otherwise, G preserves the product X1 ×X2 in C if:

1. the product G (X1)×G (X2) also exists in C′ and

2. we have the isomorphism G (X1)×G (X2) ∼= G (X1 ×X2) in C′.

The inclusion functor from finite sets to sets preserves all products: finite products are essentially sent
to themselves, only in a larger category, and most infinite products are preserved vacuously because
they do not exist in the category of finite sets. The fundamental group functor π1 from pointed spaces
to groups also preserves all products, none of them vacuously, as does the forgetful functor from spaces
to sets.

Example 7.8.121 (Equalizers). A functor G : C → C′ vacuously preserves the equalizer of a pair
of morphisms with the same source and target h : X → Y and h′ : X → Y in C if said equalizer does
not exist in C. Otherwise, G preserves its equalizer in C if:

1. the equalizer of the pair of morphisms with the same source and target G(h) : G(X) → G(Y )
and G(h′) : G(X)→ G(Y ) also exists in C′ and

17A covariant representable functor is a functor that is naturally isomorphic to a covariant Hom functor.
18In the category Cat of small categories and functors between them, the terminal category ∗ is the terminal object

of Cat.
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2. G sends the equalizer of h and h′ to that of G(h) and G(h′).

For example, the inclusion functor from finite sets to sets preserves all equalizers, none of them
vacuously.

Example 7.8.122 (Fiber products (Pullbacks)). A functor G : C → C′ vacuously preserves the
fiber product (pullback) of a given diagram in C:

A

C B

f

g

if said fiber product does not exist in C. Otherwise, G preserves the fiber product A×C B in C if:

1. the fiber product G(A)×G(C) G(B) of the diagram in C′ below:

G(A)

G(C) G(B)

G(f)

G(g)

also exists in C′ and

2. we have the isomorphism G (A×C B) ∼= G(A)×G(C) G(B) in C′.

The inclusion functor from finite sets to sets preserves all fiber products, none of them vacuously,
as does the forgetful functor from spaces to sets. The fundamental group functor π1 from pointed
spaces to groups does not generally preserve all pullbacks, but it preserves pullback under the sensible
hypotheses of the Seifert-van Kampen theorem. Not even analogues of this decomposition theorem
hold for higher homotopy groups - that is, for the higher homotopy group functors πn from pointed
spaces to abelian groups for n ≥ 2 - adding to the notorious difficulty of their computation.

We dually define and study the preservation of colimits by functors:

Definition 7.8.123 (Preservation of colimits). A functor G : C → C′ preserves all small (resp.
finite) colimits if, for every functor F : D → C out of a small (resp. finite) category D such that
colimF exists in C:

1. colimGF exists in C′ and

2. we have the isomorphism colimGF ∼= G (colimF ) in C′.

Remark 7.8.124. Alluding to calculus, some authors refer to functors preserving all small colimits
as ‘co-continuous’.

Example 7.8.125. All identity functors preserve all small colimits, and the composite of two functors
preserving all small (resp. finite) colimits also preserves all small (resp. finite) colimits.

Example 7.8.126 (Initial objects). A functor G : C → C′ vacuously preserves the initial object of
C if C has no initial object. Otherwise, G preserves the initial object of C if:

1. C′ also has an initial object and

2. G sends the initial object of C to that of C′.

The inclusion functor from finite sets to sets preserves the initial object, as does the inclusion functor
from non-empty sets to sets, albeit vacuously in the latter example. The forgetful functor from abelian
groups to groups also preserves the initial object, as does the forgetful functor from left modules over
a unital ring R to groups. However, the forgetful functor from groups to sets does not preserve the
initial object, for it sends the zero group to its ambient singleton set, which is non-empty. The same
applies to the forgetful functor from abelian groups to sets and, more generally, the forgetful functor
from left modules over a unital ring R to sets.
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Example 7.8.127 (Coproducts). A functor G : C → C′ vacuously preserves the coproduct of a
given set {Xi}i∈I of objects of C, where I is an indexing set, if said coproduct does not exist in C.
Otherwise, G preserves the coproduct

∐
i∈I Xi in C if:

1. the coproduct
∐
i∈I G (Xi) also exists in C′ and

2. we have the isomorphism
∐
i∈I G (Xi) ∼= G

(∐
i∈I Xi

)
in C′.

In the finite case I = {1, 2}, a functor G : C → C′ vacuously preserves the coproduct of two objects
X1 and X2 of C if said coproduct does not exist in C. Otherwise, G preserves the coproduct X1

∐
X2

in C if:

1. the coproduct G (X1)
∐
G (X2) also exists in C′ and

2. we have the isomorphism G (X1)
∐
G (X2) ∼= G (X1

∐
X2) in C′.

The inclusion functor from finite sets to sets preserves all coproducts: finite coproducts are essentially
sent to themselves, only in a larger category, and most infinite coproducts are preserved vacuously
because they do not exist in the category of finite sets. The abelianization functor from groups to
abelian groups also preserves all coproducts, as does the forgetful functor from spaces to sets. However,
the forgetful functor from abelian groups to groups does not preserve even binary coproducts, for the
groups:

Z/2Z ∗ Z/2Z ̸∼= Z/2Z⊕ Z/2Z

are not isomorphic: the free product of groups Z/2Z ∗ Z/2Z is non-abelian and infinite, whereas the
group Z/2Z ⊕ Z/2Z is abelian with 4 elements. Moreover, the forgetful functor from groups to sets
does not preserve even binary coproducts, for the sets:

Z/2Z
∐

Z/2Z ̸≈ Z/2Z ∗ Z/2Z

are not in bijection: the disjoint union of sets Z/2Z
∐

Z/2Z is finite with 2+ 2 = 4 elements, whereas
the ambient set of the free product Z/2Z∗Z/2Z is infinite. Similarly, the forgetful functor from abelian
groups to sets does not preserve even binary coproducts, for the sets:

Z/2Z
∐

Z/3Z ̸≈ Z/2Z⊕ Z/3Z

are not in bijection: the disjoint union of sets Z/2Z
∐

Z/3Z has 2 + 3 = 5 elements, whereas the
ambient set of the direct sum Z/2Z⊕ Z/3Z has 2 · 3 = 6 elements. Lastly, the forgetful functor from
pointed spaces to spaces does not preserve even binary coproducts, for the spaces:

S1 ∨ S1 ̸∼= S1
∐

S1

are not homeomorphic: the wedge sum of two circles S1 ∨ S1 is path-connected, whereas the disjoint
union of two circles S1

∐
S1 consists of 2 path components.

Example 7.8.128 (Co-equalizers). A functor G : C → C′ vacuously preserves the co-equalizer of a
pair of morphisms with the same source and target h : X → Y and h′ : X → Y in C if said co-equalizer
does not exist in C. Otherwise, G preserves its co-equalizer in C if:

1. the co-equalizer of the pair of morphisms with the same source and target G(h) : G(X)→ G(Y )
and G(h′) : G(X)→ G(Y ) also exists in C′ and

2. G sends the co-equalizer of h and h′ to that of G(h) and G(h′).

For example, the inclusion functor from finite sets to sets preserves all co-equalizers, none of them
vacuously. The abelianization functor from groups to abelian groups also preserves all co-equalizers,
none of them vacuously.
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Example 7.8.129 (Pushouts). A functor G : C → C′ vacuously preserves the pushout of a given
diagram in C:

A C

B

f

g

if said pushout does not exist in C. Otherwise, G preserves the pushout B ∪A C in C if:

1. the pushout G(B) ∪G(A) G(C) of the diagram in C′ below:

G(A) G(C)

G(B)

G(f)

G(g)

also exists in C′ and

2. we have the isomorphism G (B ∪A C) ∼= G(B) ∪G(A) G(C) in C′.

The inclusion functor from finite sets to sets preserves all pushouts, none of them vacuously. The
abelianization functor from groups to abelian groups also preserves all pushouts. Since binary coprod-
ucts of sets, groups, and abelian groups are pushouts of pairs of initial object maps, the failure of the
forgetful functor from groups to sets and the forgetful functor from abelian groups to sets to preserve
binary coproducts implies the failure of the forgetful functor from groups to sets and the forgetful
functor from abelian groups to sets to preserve pushouts.

Theorem 7.8.110 has the following consequences, the latter being the categorical dual of the former:

Theorem 7.8.130. A functor preserves all finite limits if and only if it preserves the terminal object,
all equalizers, and all binary products - equivalently, if and only if it preserves all finite products and
all equalizers.

Remark 7.8.131. Recall that the empty product is the terminal object.

Corollary 7.8.132. A functor preserves all finite colimits if and only if it preserves the initial object,
all co-equalizers, and all binary coproducts - equivalently, if and only if it preserves all finite coproducts
and all co-equalizers.

Remark 7.8.133. Recall that the empty coproduct is the initial object.

Similarly, theorem 7.8.114 has the following consequences, the latter being the categorical dual of the
former:

Theorem 7.8.134. A functor preserves all small limits if and only if it preserves all equalizers and
all products (including the empty product, which is the terminal object).

Corollary 7.8.135. A functor preserves all small colimits if and only if it preserves all co-equalizers
and all coproducts (including the empty coproduct, which is the initial object).

We also state a theorem, and its dual result, on the preservation of limits and colimits under adjunc-
tions:

Theorem 7.8.136 ([8], p. 136, theorem 4.5.2). Right adjoint functors preserve all small limits.

Corollary 7.8.137 ([8], p. 138, theorem 4.5.3). Left adjoint functors preserve all small colimits.
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Theorem 7.8.136 and corollary 7.8.137 both are most powerful given the ubiquity of adjunctions across
mathematics: we infer from free-forget adjunctions that the free construction at hand preserves all
small colimits and the forgetful functor at hand preserves all small limits, and we also combine said
results with tensor-Hom adjunctions. Moreover, a functor that has both a left adjoint and a right
adjoint is then known to preserve all small limits and colimits. Such a functor is the forgetful functor
from spaces to sets, whose left adjoint is the discrete topology functor and whose right adjoint is the
indiscrete topology functor.

Lastly, the contrapositives of theorem 7.8.136 and corollary 7.8.137 imply that a functor which fails
to preserve a small limit cannot possibly have a left adjoint functor and, dually, that a functor which
fails to preserve a small colimit cannot possibly have a right adjoint functor. For instance, the forget-
ful functor from pointed spaces to spaces and the forgetful functor from groups to sets both cannot
possibly have a right adjoint functor, for they both fail to preserve even binary coproducts. Another
application is that the Cartesian product endofunctor19 of the category Set of sets X ×− associated
with a set X has a left adjoint functor if and only if X is a singleton set: if X is a singleton set, then
X ×− is naturally isomorphic to the identity endofunctor of Set, whose left and right adjoint functor
is itself; otherwise, X ×− fails to preserve the terminal object of Set by cardinality considerations, so
it does not have a left adjoint functor by the contrapositive of theorem 7.8.136. On the same note, for
every set X, the Cartesian product endofunctor of the category Set of sets X ×− associated with X
is left adjoint to the Hom endofunctor Hom (X,−) of Set associated with X, so X × − preserves all
small colimits by corollary 7.8.137, and theorem 7.8.136 recovers that the Hom functor Hom (X,−)
preserves all small limits, as all covariant Hom functors ([7], p. 116, theorem 1), thus all covariant
representable functors do.

7.8.6 G-objects and their group quotient objects and fixed-point objects

We apply our theory on general limits and colimits by studying G-objects, where G is a group, and
their associated group quotient objects and fixed-point objects. The key idea is to view a group G as
a category:

Definition 7.8.138 (Group category). The group category G associated with a group G is the
category with unique object ∗ with endomorphism monoid20 End(∗) := G with morphism composition.

Remark 7.8.139. All morphisms in G are automorphisms of its unique object ∗.

Remark 7.8.140. A functor between group categories is equivalent to a group homomorphism at the
level of morphisms. In fact, we have a full embedding functor21 F : Grp→ Cat of the category Grp of
groups in the category Cat of small categories sending each group G to its associated group category
and each group homomorphism to the functor between group categories that it uniquely defines at the
level of morphisms. Under this full embedding, we can, and often do, think of Grp as a full subcategory
of the category Cat of small categories.

Example 7.8.141. The group category associated with the zero group is the terminal category ∗
consisting of a unique object and its identity morphism.

Viewing a group G as a category allows us to define the general notion of a G-object:

Definition 7.8.142 (G-object). A G-object X of a category C is a functor X : G → C sending ∗
to X at the level of objects and being defined at the level of morphisms by a group homomorphism
X : G→ Aut(X) from G to the automorphism group Aut(X) of X in C.

19An endofunctor is a functor whose source category and whose target category are the same.
20A monoid is a pair (M, ◦) of a set M equipped with a binary operation ◦ on M which is associative and unital,

though an element of M need not have a two-sided inverse with respect to the binary operation ◦. Thus, every group is
a monoid, but (Z, ·) is an abelian monoid which is not an abelian group, for only 1 and −1 are integers whose two-sided
multiplicative inverse exists and is also an integer. Similarly, (N, ·) is also an abelian monoid which is not an abelian
group, for only 1 is a natural number whose two-sided multiplicative inverse exists and is also a natural number.

21A full functor is a functor that is surjective on morphisms. A faithful functor is a functor that is injective on
morphisms. An embedding functor is a functor that is both faithful and injective on objects.
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Remark 7.8.143. A functor X : G → C sending ∗ to X at the level of objects is a priori defined
at the level of morphisms by a monoid homomorphism22 X : G → End(X) from G to the endomor-
phism monoid End(X) of X in C, which is then jazzed up by the group structure of G to be a group
homomorphism X : G→ Aut(X) from G to the automorphism group Aut(X) of X in C. This group
homomorphism defines how G acts on the object X by its symmetries in C and renders X a G-object
in the standard sense.

Example 7.8.144. A G-object of the category Set of sets is precisely a G-set.

Example 7.8.145. A G-object of the category Top of topological spaces is precisely a G-space.

Example 7.8.146. If X is an object of a category C and G is a subgroup of the automorphism group
Aut(X) of X in C, then G acts on X by the symmetries of X in C, and X is a G-object of C.

With a G-object of a category C, we may associate a group quotient object of C:

Definition 7.8.147 (Group quotient object). A group quotient object of a G-object X in a
category C is an object X/G of C together with a morphism π : X → X/G in C satisfying the universal
property that:

1. for all g ∈ G, the diagram below commutes in C:

X

X/G

X

X(g)∼=

π

π

2. and, for every morphism f : X → Y in C such that, for all g ∈ G, the diagram below commutes
in C:

X

Y

X

X(g)∼=

f

f

there exists a unique morphism f̃ : X/G → Y such that, for all g ∈ G, the diagram below
commutes in C:

X

X/G Y

X

X(g)∼=

π

π

f

f

f̃

Equivalently, a group quotient object of a G-object X in a category C is a colimit of the functor
X : G→ C.

Remark 7.8.148. As is the case for general colimits, a group quotient object of a G-object of a
category C need not exist, and if it does, then it is unique up to canonical isomorphism in C provided
by its universal property, thus allowing us to speak of ‘the’ group quotient object of said G-object.

22A monoid homomorphism f : M → M ′ is a set map between two monoids M and M ′ which preserves the
monoid operation and the unit element: we have f(xy) = f(x)f(y) ∈M ′ for all x, y ∈M , as well as f (1M ) = 1M′ ∈M ′.
Note that the permissible lack of two-sided inverses now forces us to require the preservation of the unit element on
top of the preservation of the monoid operation, which is redundant when defining group homomorphisms. Thus, every
group homomorphism is a monoid homomorphism, but the inclusion of the abelian monoid (N, ·) in the abelian monoid
(Z, ·) is an abelian monoid homomorphism which is not an abelian group homomorphism, for neither its source nor its
target is a group.
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Example 7.8.149. The category Set of sets has all group quotient objects, which are group quotient
sets.

Example 7.8.150. The category Top of topological spaces has all group quotient objects, which are
orbit spaces.

With a G-object of a category C, we may dually associate a fixed-point object of C:

Definition 7.8.151 (Fixed-point object). A fixed-point object of a G-object X in a category
C is an object XG of C together with a morphism ι : XG → X in C satisfying the universal property
that:

1. for all g ∈ G, the diagram below commutes in C:

X

XG

X

ι

ι

∼=X(g)

2. and, for every morphism f : Y → X in C such that, for all g ∈ G, the diagram below commutes
in C:

X

Y

X

f

f

∼=X(g)

there exists a unique morphism f̂ : Y → XG such that, for all g ∈ G, the diagram below
commutes in C:

X

Y XG

X

ι

ι

∼=X(g)

f

f

f̂

Equivalently, a fixed-point object of a G-object X in a category C is a limit of the functor X : G→ C.

Remark 7.8.152. As is the case for general limits, a fixed-point object of a G-object of a category
C need not exist, and if it does, then it is unique up to canonical isomorphism in C provided by its
universal property, thus allowing us to speak of ‘the’ fixed-point object of said G-object.

Remark 7.8.153. ‘Duality’ precisely translates to the fact that:

1. a group quotient object in a category C is equivalent to a fixed-point object in the opposite category
Cop;

2. a fixed-point object in a category C is equivalent to a group quotient object in the opposite category
Cop.

Example 7.8.154. The category Set of sets has all fixed-point objects, which are fixed-point sets.

Example 7.8.155. The category Top of spaces has all fixed-point objects, which are fixed-point
spaces.
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7.8.7 Monomorphisms and epimorphisms and their preservation

We segue into studying monomorphisms and epimorphisms and various examples of such:

Definition 7.8.156 (Monomorphism). A monomorphism is a left-cancellable morphism f : X →
Y in a category C: for every pair of morphisms g : Z → X and g′ : Z → X in C such that the diagram
below commutes:

Z X Y

g

g′
f

that is, such that fg = fg′, we have g = g′.

Remark 7.8.157. Equivalently, a monomorphism is a morphism f : X → Y in a category C such
that the commutative square below is Cartesian in C:

X X

X Y
f

f

Equivalently, a monomorphism is a morphism f : X → Y in a category C such that, for every object
Z of C, the set map of Hom sets f∗ : Hom (Z,X) → Hom(Z, Y ) given by post-composition with f in
C is injective.

Example 7.8.158. Isomorphisms are monomorphisms.

Example 7.8.159. Composites, products, base changes, and retracts of monomorphisms are monomor-
phisms.

Example 7.8.160. If a composite morphism gf is a monomorphism, then so is f .

Example 7.8.161. Every morphism whose source object is terminal is a monomorphism.

Example 7.8.162. If f is a monomorphism in a category C and D is a subcategory of C containing
f , then f is a monomorphism in D.

Example 7.8.163. In Set, Setf , Top, Top∗, and T2, a map is a monomorphism if and only if it is
injective.

Example 7.8.164. In R-Mod, an R-linear map is a monomorphism if and only if it is injective. Every
injective R-linear map is left-cancellable as a set map, thus a monomorphism in R-Mod. Conversely,
if f : X → Y is a monomorphism in R-Mod, then the commutative diagram below in R-Mod:

ker(f) X Y
i

0
f

where i is the R-submodule inclusion of the kernel ker(f) of f , forces ker(f) = 0, which is equivalent
to f being injective. This argument applies verbatim to the categories Ab and Grp and the category
Grpf of finite groups.

Example 7.8.165. In the category CRing of commutative, unital rings and ring homomorphisms re-
specting the multiplicative unit, a ring homomorphism is a monomorphism if and only if it is injective,
but the above argument fails in CRing: unless a ring homomorphism maps to the zero ring, its kernel
is not a unital ring, for the preservation of the multiplicative unit by said ring homomorphism forces
the unit out of said kernel.

Instead, we proceed as follows. Every injective ring homomorphism is left-cancellable as a set map,
thus a monomorphism in CRing. Conversely, we suppose f : R → S is a monomorphism in CRing,
and we show that f is injective. By way of contradiction, we assume there exist distinct a, b ∈ R such
that f(a) = f(b) ∈ S. We define a ring homomorphism g : Z[X]→ R by g(X) := a and another ring
homomorphism g′ : Z[X] → R by g′(X) := b, and g ̸= g′ because g(X) := a ̸= b =: g′(X). However,
we compute fg(X) := f(a) = f(b) =: fg′(X), so we have fg = fg′ and g ̸= g′, contradicting the
hypothesis that f is a monomorphism in CRing. We conclude that f is injective, and that, in CRing,
a ring homomorphism is a monomorphism if and only if it is injective.
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Example 7.8.166. All coproduct morphisms are monomorphisms in Set, Setf , Top, and R-Mod, but
that is not the case in CRing: the binary coproduct of the commutative, unital rings Q and Z/2Z
vanishes, so neither the coproduct morphism ιQ nor the coproduct morphism ιZ/2Z is a monomorphism
in CRing, for neither ιQ nor ιZ/2Z is injective. Alternatively, one can verify that neither ιQ nor ιZ/2Z
is a monomorphism in CRing ad hoc, in similar fashion to our proof of the previous characterization
of monomorphisms in CRing by their injectivity, but without resorting to it: if g0 : Z[X] → Q is the
ring homomorphism defined by g0(X) := 0 and g1 : Z[X] → Q is the ring homomorphism defined by
g1(X) := 1, then we have ιQg0 = ιQg1 = 0, but g0 ̸= g1 because g0(X) := 0 ̸= 1 =: g1(X), so ιQ is
not a monomorphism in CRing. Similarly, if g′

0
: Z[X]→ Z/2Z is the ring homomorphism defined by

g′
0
(X) := 0 and g′

1
: Z[X] → Z/2Z is the ring homomorphism defined by g′

1
(X) := 1, then we have

ιZ/2Zg
′
0
= ιZ/2Zg

′
1
= 0, but g′

0
̸= g′

1
because g′

0
(X) := 0 ̸= 1 =: g′

1
, so ιZ/2Z is not a monomorphism in

CRing, either.

Example 7.8.167. In the full subcategory Div of Ab consisting of divisible abelian groups, the
quotient map q : Q → Q/Z is a monomorphism, albeit not injective. Note that the above argument
for Ab does not apply to q, for its kernel ker(q) = Z is not divisible, so the inclusion of the kernel
i : Z→ Q is not a morphism in Div. Given a commutative diagram as below in Div:

W Q Q/Z
g

g′
q

where qg = qg′, we show that g− g′ = 0. By way of contradiction, we assume there exists x ∈W such
that g(x)− g′(x) ̸= 0, where such an element x must be non-zero. We know that q (g(x)− g′(x)) = 0
in Q/Z, so n := g(x) − g′(x) must be a non-zero integer. Since W is divisible, we can divide x by
the non-zero integer 2n to obtain an element y ∈ W such that (2n)y = x, and we also know that
q (g(y)− g′(y)) = 0 in Q/Z, so g(y)−g′(y) must be an integer. At last, we arrive at the contradiction:

1

2
=

n

2n
=

1

2n

(
g(x)− g′(x)

)
= g(y)− g′(y)︸ ︷︷ ︸

g(y)= 1
2n
g(x) and g′(y)= 1

2n
g′(x)

∈ Z

We conclude that g − g′ = 0, so q is a monomorphism in Div. Note that q is not a monomorphism
in Ab by the previous example and that our argument made heavy use of the additional divisibility
property in Div. Lastly, note that injective group homomorphisms between divisible abelian groups
are left-cancellable as set maps, thus being monomorphisms in Div.

Example 7.8.168 (Split monomorphisms). A split monomorphism is a left-invertible morphism
f : X → Y in a category C: there exists a left inverse morphism g : Y → X of f in C such that gf = 1X .

Every split monomorphism is a monomorphism, and the two notions are equivalent in Set and in Setf ,
for a set map is injective if and only if it has a left inverse set map. However, in Top, the subspace
inclusion i : S1 → D2 of the unit circle S1 as the boundary of the unit disk D2 is a monomorphism,
for it is injective, which is not split: S1 is not a retract of D2 because, at the level of fundamental
groups, π1

(
S1
) ∼= Z is not a retract of the zero fundamental group π1

(
D2
)
of the contractible unit

disk D2.

Hence, we have the following strict implications:

isomorphism split monomorphism monomorphismp p

The following result, important in its own right, will be recalled in our study of strict monomorphisms:

Proposition 7.8.169. Every equalizer is a monomorphism.

Proof. Let f : eq(h, h′)→ X be an equalizer of a pair of morphisms h : X → Y and h′ : X → Y in a
category C, so we have hf = h′f . Given a pair of morphisms g :W → eq(h, h′) and g′ :W → eq(h, h′)
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in C such that the diagram below commutes in C:

W eq(h, h′) X

g

g′
f

that is, such that fg = fg′, we write down the commutative diagram below in C:

W

eq(h, h′) X Y
h

h′
f

fg=fg′

where hfg = h′fg because hf = h′f . At last, we have the two commutative diagrams below in C:

W W

eq(h, h′) X Y eq(h, h′) X Y
h

h′
f

fg=fg′g

f
h

h′

fg=fg′
g′

and the uniqueness in the universal property of equalizers implies that g = g′, so f is a monomorphism
in C.

The dual notion to that of a monomorphism is that of an epimorphism:

Definition 7.8.170 (Epimorphism). An epimorphism is a right-cancellable morphism f : X → Y
in a category C: for every pair of morphisms g : Y → Z and g′ : Y → Z in C such that the diagram
below commutes in C:

X Y Z
f

g

g′

that is, such that gf = g′f , we have g = g′.

Remark 7.8.171. Equivalently, an epimorphism is a morphism f : X → Y in a category C such that
the commutative square below is co-Cartesian in C:

X Y

Y Y

f

f

Equivalently, an epimorphism is a morphism f : X → Y in a category C such that, for every object Z
of C, the set map of Hom sets f∗ : Hom (Y, Z)→ Hom(X,Z) given by pre-composition with f in C is
injective.

Remark 7.8.172. ‘Duality’ precisely translates to the fact that:

1. a monomorphism in a category C is equivalent to an epimorphism in the opposite category Cop
and

2. an epimorphism in a category C is equivalent to a monomorphism in the opposite category Cop.

Example 7.8.173. Isomorphisms are epimorphisms.

Example 7.8.174. Composites, coproducts, co-base changes, and retracts of epimorphisms are epi-
morphisms.

Example 7.8.175. If a composite morphism gf is an epimorphism, then so is g.

Example 7.8.176. Every morphism whose target object is initial is an epimorphism.
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Example 7.8.177. If f is an epimorphism in a category C and D is a subcategory of C containing f ,
then f is an epimorphism in D.

Example 7.8.178. In Set and in Setf , a set map is an epimorphism if and only if it is surjective.

Example 7.8.179. In T2, the dense subspace inclusion ι : Q→ R is an epimorphism by virtue of its
dense image, albeit not surjective. However, surjective continuous maps between Hausdorff spaces are
right-cancellable as set maps, thus being epimorphisms in T2.

Example 7.8.180. In R-Mod, an R-linear map is an epimorphism if and only if it is surjective. Every
surjective R-linear map is right-cancellable as a set map, thus an epimorphism in R-Mod. Conversely,
if f : X → Y is an epimorphism in R-Mod, then the commutative diagram below in R-Mod:

X Y coker(f)
f

q

0

where q is the quotient map to the cokernel coker(f) of f , forces coker(f) = 0, so f is surjective. This
argument applies verbatim to Ab, as well as the category Div of divisible abelian groups, for quotients
of divisible abelian groups are divisible, so the quotient map to the cokernel in our argument is a
morphism in Div.

Example 7.8.181. In Grp, a group homomorphism is an epimorphism if and only if it is surjective,
but the above argument is invalid in Grp, for we cannot always form the cokernel of a group homo-
morphism because its image need not be normal in the target group: the inclusion homomorphism
i : Z/2Z→ A5 mapping 1 to the even involution (1 2) (3 4) of A5 does not have normal image in A5 -
in fact, A5 is a simple group.

Instead, we proceed as follows. Every surjective group homomorphism is right-cancellable as a set
map, thus an epimorphism in Grp. Conversely, if f : X → Y is an epimorphism in Grp, then we can
always define S := Y/im(f), the set of left cosets of the image subgroup im(f) in Y , to which we can
attach a disjoint element23 ∗ to define the set S∗ := S

∐
{∗}. The left action of Y on S induces a

group homomorphism g : Y → Sym(S∗) to the symmetric group on the set S∗, and its image im(g)
is a subgroup of the stabilizer subgroup stab(∗) of Sym(S∗), so we have the ascending chain of sub-
groups im(g) ≤ stab(∗) ≤ Sym(S∗). Let τ ∈ Sym(S∗) be the transposition in Sym(S∗) transposing ∗
with the left coset im(f), and let cτ be the inner automorphism of Sym(S∗) given by conjugation by
τ ∈ Sym(S∗). Let g′ := cτg : Y → Sym(S∗) be the composite group homomorphism. Then, for every
x ∈ X, we know that gf(x) ∈ Sym(S∗) stabilizes both ∗ and the left coset im(f), so gf(x) commutes
with the transposition τ in Sym(S∗), and we compute that:

g′f(x) := cτgf(x) := τ (gf(x)) τ−1 = (gf(x)) ττ−1︸ ︷︷ ︸
τ(gf(x))=(gf(x))τ

= gf(x)

Thus, we have g′f = gf , which implies g′ = g because f is assumed to be an epimorphism in Grp.
This means that, for every y ∈ Y , we have g′(y) := cτg(y) := τ (g(y)) τ−1 = g(y) in Sym(S∗), which
implies that g(y) commutes with the transposition τ in Sym(S∗), and this further implies that g(y)
stabilizes the left coset im(f). From this, we infer that, for every y ∈ Y , we have y ∈ im(f). In other
words, f is surjective, as required.

Note that the above argument circumvents the use of amalgamated products and works verbatim
in the category Grpf of finite groups: if X and Y are finite groups, then S∗ is a finite set, and the
symmetric group Sym(S∗) on S∗ is also a finite group. Thus, in Grpf , a group homomorphism is an
epimorphism if and only if it is surjective.

23The practice of attaching a disjoint element to a set or a disjoint basepoint to a space (to make it pointed) is always
valid by the non-existence of a universal set from set theory: for every set, we can find such a disjoint element not
contained in said set.
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Example 7.8.182. In Set and Setf , there is a pathological case when Cartesian product projection
maps fail to be epimorphisms, that is, they fail to be surjective: if X is any non-empty finite set, then
the binary product X ×∅ is the empty set, so the Cartesian product projection map pX : X ×∅ → X
is the unique set map from the empty set to the non-empty finite set X, which is not surjective, thus
not an epimorphism in Set or in Setf .

Example 7.8.183. In the category CRing of commutative, unital rings and ring homomorphisms
respecting the multiplicative unit, the inclusion j : Z → Q is an epimorphism, albeit not surjective.
Consider a commutative diagram in CRing as below:

Z Q W
j

g

g′

that is, such that gj = g′j. Then, for all integers a and all non-zero integers b, we compute that:

g
(a
b

)
= g(a) · g

(
1

b

)
= g′(a) · g

(
1

b

)
︸ ︷︷ ︸

g(a)=g′(a) because a∈Z

= g′(b) · g′
(a
b

)
· g
(
1

b

)
=

= g′
(a
b

)
· g′(b) · g

(
1

b

)
= g′

(a
b

)
· g(b) · g

(
1

b

)
︸ ︷︷ ︸

g′(b)=g(b) because b∈Z

= g′
(a
b

)
· g(1) = g′

(a
b

)
︸ ︷︷ ︸

g(1)=1

Thus, we have g = g′, so j is an epimorphism in CRing. Note that surjective ring homomorphisms
respecting the multiplicative unit are right-cancellable as set maps, thus being epimorphisms in CRing.

Example 7.8.184 (Split epimorphisms). A split epimorphism is a right-invertible morphism
f : X → Y in a category C: there exists a right inverse morphism g : Y → X of f in C such that
fg = 1Y .

Every split epimorphism is an epimorphism, and the two notions are equivalent in Set and in Setf
because a set map is surjective if and only if it has a right inverse set map. However, in Ab, the
quotient abelian group homomorphism π : Z→ Z/2Z is an epimorphism, for it is surjective, which is
not split: the only abelian group homomorphism from Z/2Z to Z is 0, and π0 = 0 ̸= 1Z/2Z.

Hence, we have the following strict implications:

isomorphism split epimorphism epimorphismp p

The following dual result to that of proposition 7.8.169 will be recalled in our study of strict epimor-
phisms:

Proposition 7.8.185. Every co-equalizer is an epimorphism.

Our proof is the dual argument to that in our proof of proposition 7.8.169.

Proof. Let f : Y → coeq(h, h′) be a coequalizer of a pair of morphisms h : X → Y and h′ : X → Y in a
category C, so we have fh = fh′. Given a pair of morphisms g : coeq(h, h′)→ Q and g′ : coeq(h, h′)→
Q in C such that the diagram below commutes in C:

Y coeq(h, h′) Q
f

g

g′

that is, such that gf = g′f , we write down the commutative diagram below in C:

X Y coeq(h, h′)

Q

h

h′
f

gf=g′f
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where gfh = gfh′ because fh = fh′. We have the two commutative diagrams below in C:

X Y coeq(h, h′) X Y coeq(h, h′)

Q Q

h

h′
f

gf=g′f
g

h

h′
f

gf=g′f
g′

and the uniqueness in the universal property of co-equalizers implies g = g′, so f is an epimorphism
in C.

We proceed with studying the preservation and reflection of monomorphisms and epimorphisms:

Definition 7.8.186 (Preservation of monomorphisms). A functor G : C → C′ preserves
monomorphisms if, for every monomorphism f of C, its image morphism G(f) under G is a
monomorphism in C′. It reflects monomorphisms if the converse implication is true: a morphism
f of C is a monomorphism if its image morphism G(f) under G is a monomorphism in C′.

Example 7.8.187. The inclusion functor from Setf to Set and the forgetful functors from Top,
R−Mod, Ab, Grp, Grpf , or CRing to Set all preserve and reflect monomorphisms, as do the inclusion
functors from Ab or Grpf to Grp and the forgetful functor from R−Mod to Ab. However, neither the
inclusion functor from Div to Ab nor that from Div to Grp, both of which reflect monomorphisms,
preserves monomorphisms: the quotient map q : Q → Q/Z is a monomorphism in Div, but not in
Ab or in Grp, for it is not injective. Lastly, the fundamental group functor π1 : Top∗ → Grp neither
preserves nor reflects monomorphisms: the subspace inclusion i : S1 → D2 of the unit circle S1 as
the boundary of the unit disk D2 is a monomorphism in Top∗ for it is injective, but it induces the
terminal map of Z at the level of fundamental groups, which is not a monomorphism in Grp for it is
not injective; conversely, the terminal map gR : R → ∗ is not a monomorphism in Top∗ for it is not
injective, but it induces the identity of the zero group at the level of fundamental groups.

Example 7.8.188. Every right adjoint functor preserves monomorphisms because it preserves Carte-
sian squares by virtue of theorem 7.8.136. This implies that the fundamental group functor π1 :
Top∗ → Grp cannot possibly have a left adjoint, for it fails to preserve monomorphisms.

Example 7.8.189. Every faithful functor G : C → C′ reflects monomorphisms: if G(f) is a monomor-
phism in C′ and we have fg = fg′ in C, then we apply the functor G to fg = fg′ and deduce by the
functoriality of G that G(f)G(g) = G(f)G(g′) in C′, which implies G(g) = G(g′) in C′ because G(f)
is a monomorphism in C′, and this, in turn, implies g = g′ in C, as required, because G is assumed to
be a faithful functor.

For example, the inclusion functor from Setf to Set and the forgetful functors from Top, R −Mod,
Ab, Grp, Grpf , or CRing to Set all preserve and reflect monomorphisms, as do the inclusion functors
from Ab or Grpf to Grp and the forgetful functor from R−Mod to Ab. However, neither the inclusion
functor from Div to Ab nor that from Div to Grp, both of which reflect monomorphisms, preserves
monomorphisms, so faithful functors may fail to preserve monomorphisms.

Definition 7.8.190 (Preservation of epimorphisms). A functor G : C → C′ preserves epimor-
phisms if, for every epimorphism f of C, its image morphism G(f) under G is an epimorphism in C′.
It reflects epimorphisms if the converse implication is true: a morphism f of C is an epimorphism
if its image morphism G(f) under G is an epimorphism in C′.

Example 7.8.191. The inclusion functor from Setf to Set and the forgetful functors from R−Mod,
Ab, Div, Grp, or Grpf to Set all preserve and reflect epimorphisms, as do the inclusion functors from
Ab or Grpf to Grp and the forgetful functor from R −Mod to Ab. However, the forgetful functor
from T2 to Set reflects but does not preserve epimorphisms: the dense subspace inclusion ι : Q→ R is
an epimorphism in T2, but not in Set, for it is not surjective. Similarly, by the previous example, the
forgetful functor from CRing to Set also reflects but does not preserve epimorphisms: the inclusion
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j : Z→ Q is an epimorphism in CRing, but not in Set, for it is not surjective. Lastly, the fundamental
group functor π1 : Top∗ → Grp neither preserves nor reflects epimorphisms: the universal cover
p̃ : R → S1 of the unit circle S1 is an epimorphism in Top∗ for it is surjective, but it induces the
initial map of Z at the level of fundamental groups, which is not an epimorphism in Grp for it is
not surjective; conversely, the continuous map f0 : ∗ → R2 picking out the origin 0 of R2 is not an
epimorphism in Top∗, for the identity map of R2 and the constant self-map of R2 at its origin both
preserve the origin but are not equal, but it induces the identity map of the zero group at the level of
fundamental groups.

Example 7.8.192. Every left adjoint functor preserves epimorphisms because it preserves co-Cartesian
squares by virtue of corollary 7.8.137. This implies that the fundamental group functor π1 : Top∗ →
Grp cannot possibly have a right adjoint, either, for it fails to preserve epimorphisms. The same
applies to the forgetful functor from T2 to Set - in contrast to the forgetful functor from Top to Set,
which has both a right adjoint and a left adjoint - and the forgetful functor from CRing to Set.

Example 7.8.193. Every faithful functor G : C → C′ reflects epimorphisms: if G(f) is an epimor-
phism in C′ and we have gf = g′f in C, then we apply the functor G to gf = g′f and deduce by the
functoriality of G that G(g)G(f) = G(g′)G(f) in C′, which implies G(g) = G(g′) in C′ because G(f)
is an epimorphism in C′, and this, in turn, implies g = g′ in C, as required, because G is assumed to
be a faithful functor.

For example, the inclusion functor from Setf to Set and the forgetful functors from R − Mod, Ab,
Div, Grp, or Grpf to Set all preserve and reflect epimorphisms, as do the inclusion functors from Ab
or Grpf to Grp and the forgetful functor from R −Mod to Ab. However, by the previous example,
neither the forgetful functor from T2 to Set nor that from from CRing to Set, both of which reflect
epimorphisms, preserves epimorphisms, so faithful functors may fail to preserve epimorphisms.

7.8.8 Balanced, Artinian, and Noetherian categories

We begin with a discussion on balanced categories and various examples of such:

Definition 7.8.194 (Balanced category). A balanced category is a category in which a morphism
is an isomorphism if and only if it is both a monomorphism and an epimorphism.

Remark 7.8.195. Every isomorphism is both a monomorphism and an epimorphism, but the converse
implication fails in some ubiquitous categories, as we explain in the examples below.

Example 7.8.196. The categories Set, Setf , R-Mod, Grp, and Grpf all are balanced.

Example 7.8.197. The category T2 of Hausdorff spaces is not balanced: the subspace inclusion
ι : Q → R is both a monomorphism in T2, for it is injective, and an epimorphism in T2 by virtue of
its dense image, but it is not an isomorphism in T2 - that is, it is not a homeomorphism - for it is not
surjective, thus not bijective.

Example 7.8.198. The category CRing of commutative, unital rings and ring homomorphisms re-
specting the multiplicative unit is not balanced: the inclusion j : Z→ Q is both a monomorphism in
CRing, for it is injective, and an epimorphism in CRing, albeit not surjective, but it is not an isomor-
phism in CRing - that is, it is not a ring isomorphism - for it is not surjective, thus not bijective.

Example 7.8.199. The category Div of divisible abelian groups is not balanced: the quotient map
q : Q→ Q/Z is both a monomorphism in Div, albeit not injective, and an epimorphism in Div, for it
is surjective, but it is not an isomorphism in Div - that is, it is not a group isomorphism - for it is not
injective, thus not bijective.

We proceed with defining and studying Artinian categories and various examples of such:
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Definition 7.8.200 (Artinian category). An Artinian category is a category C whose mor-
phisms satisfy the descending chain condition, which states that, for every descending chain of
monomorphisms in C:

· · · X2 X1 X0
f2 f1

there exists a natural number n ∈ N, which depends on the given chain, such that the given chain
stabilizes at n: for every natural number m ≥ n, the monomorphism fm is an isomorphism in C.

Remark 7.8.201. The above definition and terminology are derived from the notion from commutative
algebra of an Artinian commutative ring, which is defined to be a commutative ring whose ideals
satisfy the descending chain condition, which states that, for every descending chain of ideals of said
commutative ring:

· · · ⊂ I2 ⊂ I1 ⊂ I0
there exists a natural number n ∈ N, which depends on the given chain, such that the given chain
stabilizes at n: for every natural number m ≥ n, we have Im = In.

Example 7.8.202. The category Setf of finite sets and the category Grpf of finite groups both are
Artinian by cardinality considerations.

Example 7.8.203. However, the category Set of sets, the category Grp of groups, and the category
Ab of abelian groups all are not Artinian, for the descending chain of inclusions of abelian groups:

· · · 4Z 2Z Zi2 i1

which are monomorphisms in Set, in Grp, and in Ab fails to stabilize. Endowing the above descending
chain of inclusions with the discrete topology or the indiscrete topology provides a descending chain
of monomorphisms in the category Top of topological spaces which fails to stabilize, so Top is also not
Artinian.

We define and study the dual notion of a Noetherian category and various examples of such:

Definition 7.8.204 (Noetherian category). A Noetherian category is a category C whose mor-
phisms satisfy the ascending chain condition, which states that, for every ascending chain of
monomorphisms in C:

X0 X1 X2 · · ·f1 f2

there exists a natural number n ∈ N, which depends on the given chain, such that the given chain
stabilizes at n: for every natural number m ≥ n, the monomorphism fm is an isomorphism in C.

Remark 7.8.205. The above definition and terminology are derived from the notion from commutative
algebra of a Noetherian commutative ring, which is defined to be a commutative ring whose ideals
satisfy the ascending chain condition, which states that, for every ascending chain of ideals of said
commutative ring:

I0 ⊂ I1 ⊂ I2 ⊂ · · ·

there exists a natural number n ∈ N, which depends on the given chain, such that the given chain
stabilizes at n: for every natural number m ≥ n, we have Im = In.

Remark 7.8.206. ‘Duality’ precisely translates to the fact that:

1. if a category C is Artinian, then its opposite category Cop is Noetherian, and

2. if a category C is Noetherian, then its opposite category Cop is Artinian.

Example 7.8.207. The category Setf of finite sets, the category Grpf of finite groups, the category
Set of sets, the category Grp of groups, and the category Ab of abelian groups all are not Noetherian,
for the ascending chain of inclusions of finite abelian groups:

0 Z/2Z Z/4Z · · ·i1 i2
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which are monomorphisms in Setf , in Grpf , in Set, in Grp, and in Ab fails to stabilize. Endowing the
above ascending chain of inclusions with the discrete topology or the indiscrete topology provides an
ascending chain of monomorphisms in the category Top of topological spaces which fails to stabilize,
so Top is not Noetherian.

7.8.9 Strict monomorphisms and strict epimorphisms and their preservation

We now study a strengthening of the notion of a monomorphism and a strengthening of the notion of
an epimorphism, the latter featuring in the definition of a Galois category:

Definition 7.8.208 (Strict monomorphism). A strict monomorphism is a morphism f : X → Y
in a category C such that:

1. the pushout square below exists in C:

X Y

Y Y ∪X Y

f

f

j

i

2. and f : X → Y is an equalizer in C of the pair of pushout maps i : Y → Y ∪X Y and
j : Y → Y ∪X Y .

Remark 7.8.209. Beware that the terminology for strict monomorphisms is ambiguous: they are
sometimes called ‘effective monomorphisms’, and the term ‘strict monomorphism’ is sometimes used
to name a different kind of strengthening of the notion of a monomorphism. We are only using the
term ‘strict monomorphism’.

Example 7.8.210. Isomorphisms, as well as composites of strict monomorphisms, are strict monomor-
phisms.

Example 7.8.211. Every strict monomorphism is an equalizer, thus, by proposition 7.8.169, a
monomorphism.

Example 7.8.212. In the category Div of divisible abelian groups, the quotient map q : Q → Q/Z
is a monomorphism but not a strict monomorphism. We know the quotient map q : Q → Q/Z is
a monomorphism in Div. We also know that q is an epimorphism in Div, for q is surjective, so the
pushout at hand is:

Q Q/Z

Q/Z Q/Z

q

q

We show q : Q → Q/Z is not an equalizer of the pair of pushout maps 1Q/Z = 1Q/Z. Consider the
commutative diagram in Div:

Z/2Z Q/Z Q/Z

Q

g

q

where g
(
1
)
:= 1

2 . However, the only group homomorphism from Z/2Z to Q is the zero homomorphism
because Q is torsion-free, but the diagram below in Div does not commute:

Z/2Z Q/Z Q/Z

Q

g

q
0
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since q0 = 0 ̸= g. Hence, q : Q → Q/Z is not an equalizer of the pair of pushout maps 1Q/Z = 1Q/Z
in Div, thus failing to be a strict monomorphism in Div. Overall, the quotient map q : Q→ Q/Z is a
monomorphism but not a strict monomorphism in Div.

Example 7.8.213. In T2, the inclusion ι : Q→ R is a monomorphism but not a strict monomorphism.
We know the inclusion ι : Q→ R is a monomorphism in T2, for it is injective. We also know that ι is
an epimorphism in T2, for ι is a dense subspace inclusion, so the pushout at hand is:

Q R

R R

ι

ι

We show ι : Q→ R is not an equalizer of the pair of pushout maps 1R = 1R. Consider the commutative
diagram in T2:

R R R

Q
ι

Since R is path-connected and Q is totally disconnected, every continuous map from R to Q is forced
to be constant, and no constant map from R to Q fills out the above diagram of continuous maps so
that it commutes. Hence, ι : Q → R fails to be an equalizer of the pair of pushout maps 1R = 1R in
T2, thus failing to be a strict monomorphism in T2. Overall, ι : Q→ R is a monomorphism but not a
strict monomorphism in T2.

Proposition 7.8.214. Let f : X → Y be a set map. The following are equivalent:

1. f is injective.

2. f is a monomorphism in Set.

3. f is a strict monomorphism in Set.

Proof. We know that 1 and 2 are equivalent and that 3 implies 2, so it suffices to show 1 implies 3.
Suppose the set map f : X → Y is injective. We know Set has all pushouts, including the pushout at
hand:

X Y

Y Y ∪X Y

f

f

j

i

where:

Y ∪X Y :=
Y
∐
Y

(f(x), 0) ∼ (f(x), 1) , x ∈ X
and i and j include in the first and second coordinate, respectively. We also know that an equalizer
of the pair of pushout maps i and j in Set is:

eq(i, j) Y Y ∪X Yι
i

j

where eq(i, j) := {y ∈ Y : [y, 0] = [y, 1]} = f (X) and ι : eq(i, j) → Y is the subset inclusion. The

injective set map f : X → Y restricts to a bijection f : X
≈−→ f(X) = eq(i, j), and the diagram below

commutes in Set:

eq(i, j) Y Y ∪X Y

X

ι
i

j
f

f≈

We conclude that f : X → Y is also an equalizer in Set of the pair of pushout maps i and j. Overall,
f : X → Y is a strict monomorphism, and 1 implies 3, completing the proof.
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The result of proposition 7.8.214 holds by the exact same proof in the category Setf of finite sets:

Proposition 7.8.215. Let f : X → Y be a set map of finite sets. The following are equivalent:

1. f is injective.

2. f is a monomorphism in Setf .

3. f is a strict monomorphism in Setf .

Overall, we have the following strict implications:

isomorphism strict monomorphism monomorphismp p

The dual notion to that of a strict monomorphism is that of a strict epimorphism:

Definition 7.8.216 (Strict epimorphism). A strict epimorphism is a morphism f : X → Y in
a category C such that:

1. the pullback square below exists in C:

X ×Y X X

X Y
f

fp

q

2. and f : X → Y is a co-equalizer in C of the pair of pullback maps p : X ×Y X → X and
q : X ×Y X → X.

Remark 7.8.217. Beware that the terminology for strict epimorphisms is ambiguous: they are some-
times called ‘effective epimorphisms’, and the term ‘strict epimorphism’ is sometimes used to name a
different kind of strengthening of the notion of an epimorphism. We are only using the term ‘strict
epimorphism’.

Remark 7.8.218. ‘Duality’ precisely translates to the fact that:

1. a strict monomorphism in a category C is equivalent to a strict epimorphism in the opposite
category Cop;

2. a strict epimorphism in a category C is equivalent to a strict monomorphism in the opposite
category Cop.

Example 7.8.219. Isomorphisms, as well as composites of strict epimorphisms, are strict epimor-
phisms.

Example 7.8.220. Every strict epimorphism is a co-equalizer, thus, by proposition 7.8.185, an epi-
morphism.

Example 7.8.221. In the category CRing of commutative, unital rings and ring homomorphisms
respecting the multiplicative unit, the inclusion j : Z→ Q is an epimorphism but not a strict epimor-
phism. We know that j : Z→ Q is an epimorphism in CRing. We also know that j is a monomorphism
in CRing, for it is injective, so the pullback at hand is:

Z Z

Z Qj

j
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We show j : Z → Q is not a co-equalizer of the pair of pullback maps 1Z = 1Z. Consider the
commutative diagram in CRing:

Z Z Q

Z/2Z

j

π

where π is the quotient map. However, the only ring homomorphism from Q to Z/2Z is the zero
homomorphism because Q is a field, but the diagram below in CRing does not commute:

Z Z Q

Z/2Z

j

π 0

since 0j = 0 ̸= π. Hence, j : Z → Q fails to be a co-equalizer of the pair of pullback maps 1Z = 1Z
in CRing, thus failing to be a strict epimorphism in CRing. Overall, the inclusion j : Z → Q is an
epimorphism but not a strict epimorphism in CRing.

Example 7.8.222. In T2, the inclusion ι : Q → R is an epimorphism but not a strict epimorphism.
We know the dense subspace inclusion ι : Q → R is an epimorphism in T2. We also know that ι is a
monomorphism in T2, for it is injective, so the pullback at hand is:

Q Q

Q Rι

ι

We show ι : Q → R is not a co-equalizer of the pair of pullback maps 1Q = 1Q. Consider the
commutative diagram in T2:

Q Q R

Q

ι

Since R is path-connected and Q is totally disconnected, every continuous map from R to Q is forced
to be constant, and no constant map from R to Q fills out the above diagram of continuous maps so
that it commutes. Hence, ι : Q → R fails to be a co-equalizer of the pair of pullback maps 1Q = 1Q
in T2, thus failing to be a strict epimorphism in T2. Overall, ι : Q → R is an epimorphism but not a
strict epimorphism in T2. Note that, overall, ι : Q→ R is both a monomorphism and an epimorphism
in T2, but not a strict monomorphism or a strict epimorphism or an isomorphism in T2.

Proposition 7.8.223. Let f : X → Y be a set map. The following are equivalent:

1. f is surjective.

2. f is an epimorphism in Set.

3. f is a strict epimorphism in Set.

Proof. We know that 1 and 2 are equivalent and that 3 implies 2, so it suffices to show 1 implies 3.
Suppose the set map f : X → Y is surjective. We know Set has all pullbacks, including the pullback
at hand:

X ×Y X X

X Y
f

fp

q

where:
X ×Y X := {(x1, x2) ∈ X ×X : f (x1) = f (x2)} ⊂ X ×X
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and p and q project to the first and second coordinate, respectively. We also know that a co-equalizer
of the pair of pullback maps p and q in Set is:

X ×Y X X coeq(p, q)

p

q
π

where coeq(p, q) is the quotient ofX under the co-equalizer equivalence relation generated by decreeing
that x ∼ x′ when f(x) = f(x′), and π : X → coeq(p, q) is the quotient map. By the universal property
of quotients, there exists a unique set map ϕ : coeq(p, q)→ Y such that the diagram below commutes
in Set, and ϕ is surjective because f is surjective and ϕ is injective by the definition of our co-equalizer
equivalence relation, so ϕ is bijective:

X ×Y X X coeq(p, q)

Y

p

q
π

f
ϕ≈

We conclude that f : X → Y is also a co-equalizer in Set of the pair of pullback maps p and q. Overall,
f : X → Y is a strict epimorphism in Set, and 1 implies 3, completing the proof.

The result of proposition 7.8.223 holds by the exact same proof in the category Setf of finite sets:

Proposition 7.8.224. Let f : X → Y be a set map of finite sets. The following are equivalent:

1. f is surjective.

2. f is an epimorphism in Setf .

3. f is a strict epimorphism in Setf .

Overall, we have the following strict implications:

isomorphism strict epimorphism epimorphismp p

We proceed with studying the preservation and reflection of strict monomorphisms and strict epimor-
phisms:

Definition 7.8.225 (Preservation of strict monomorphisms). A functor G : C → C′ preserves
strict monomorphisms if, for every strict monomorphism f of C, its image morphism G(f) under
G is a strict monomorphism in C′. If reflects strict monomorphisms if the converse implication
is true: a morphism f of C is a strict monomorphism if its image morphism G(f) under G is a strict
monomorphism in C′.

Example 7.8.226. Propositions 7.8.214 and 7.8.215 together imply that the inclusion functor from
the category Setf of finite sets to the category Set of sets preserves and reflects strict monomorphisms.
However, the forgetful functor from T2 to Set does not reflect strict monomorphisms: the inclusion
ι : Q→ R is a strict monomorphism in Set because it is injective, but ι is not a strict monomorphism
in T2.

Definition 7.8.227 (Preservation of strict epimorphisms). A functor G : C → C′ preserves
strict epimorphisms if, for every strict monomorphism f of C, its image morphism G(f) under G
is a strict epimorphism in C′. If reflects strict epimorphisms if the converse implication is true: a
morphism f of C is a strict epimorphism if its image morphism G(f) under G is a strict epimorphism
in C′.

Example 7.8.228. Propositions 7.8.223 and 7.8.224 together imply that the inclusion functor from
the category Setf of finite sets to the category Set of sets preserves and reflects strict epimorphisms.
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7.8.10 Reflection of isomorphisms

We conclude this appendix by defining and studying the reflection of isomorphisms by functors:

Definition 7.8.229 (Reflection of isomorphisms). A functor G : C → C′ reflects isomorphisms
if a morphism f of C is an isomorphism whenever its image morphism G(f) under G is an isomorphism
of C′.

Remark 7.8.230. Every functor G : C → C′ preserves isomorphisms. If f : X → Y is an isomorphism
in C with unique two-sided inverse isomorphism g : Y → X in C, then G(f) : G(X) → G(Y ) is an
isomorphism in C′ with unique two-sided inverse isomorphism G(g) : G(Y )→ G(X) in C′ as the two
functoriality axioms for G yield:

G(g)G(f) = G (gf) = G (1X) = 1G(X)

G(f)G(g) = G (fg) = G (1Y ) = 1G(Y )

Example 7.8.231. Fully faithful functors, such as equivalences of categories, reflect isomorphisms.

Example 7.8.232. The inclusion functor from Setf to Set, the forgetful functors from Ab, CRing,
Div, Grp, Grpf , or R-Mod to Set, the inclusion functors from Ab, Div, or Grpf to Grp, the inclusion
functor from Div to Ab, and the forgetful functor from R-Mod to Ab all reflect isomorphisms.

Example 7.8.233. The forgetful functor from Top to Set does not reflect isomorphisms: neither the
continuous bijection f : [0, 1)

≈−→ S1 defined by f(t) := e2πit nor the continuous bijection 1S1 : S1
d

≈−→
S1
i , the identity from the circle with the discrete topology S1

d to the circle with the indiscrete topology
S1
i , is a homeomorphism. However, both the left adjoint of the forgetful functor from Top to Set,

which is the discrete topology functor from Set to Top, and the right adjoint of the forgetful functor
from Top to Set, which is the indiscrete topology functor from Set to Top, reflect isomorphisms, so
reflection of isomorphisms does not play well with adjunctions. Lastly, note that the failure of the
forgetful functor from Top to Set to reflect isomorphisms is rectified if one restricts to the set-valued
forgetful functor from the full subcategory T c

2 of Top consisting of compact and Hausdorff spaces, for
every continuous bijection with compact source and Hausdorff target is a homeomorphism.

Example 7.8.234. The fundamental group functor π1 : Top∗ → Grp fails to reflect isomorphisms:
the terminal map gR : R→ ∗ induces the identity of the zero group at the level of fundamental groups,
but is not a homeomorphism.
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7.9 Table of standard categories

We follow the example of [7], p. 293, in assembling a table of standard categories appearing in these
notes:

Ab Abelian groups and abelian group homomorphisms
Cat Small categories and functors between them

CovSf Finite-sheeted covering spaces of a connected space24 S, and finite-sheeted covering space maps
CRing Commutative, unital rings and ring homomorphisms preserving the multiplicative unit
C−Vectfd Finite-dimensional complex vector spaces and C-linear maps between them
Div Divisible abelian groups and abelian group homomorphisms between them
FétS Finite étale covers of a connected scheme S, and scheme morphisms of finite étale covers25

Grp Groups and group homomorphisms.
Grpf Finite groups and group homomorphisms between them
Grp̸=0 Non-zero groups and group homomorphisms between them

G− Setf Finite and discrete G-spaces, where G is a group, and G-equivariant continuous maps
MS Metric spaces and continuous maps between them
R-Mod Left modules over a unital ring R, and R-linear maps
Set Sets and set maps
Setf Finite sets and set maps between them
Set̸=1 Non-singleton sets and set maps between them
Set≥1 Non-empty sets and set maps between them
Top Topological spaces and continuous maps (also called the ‘continuous category’26)
Top∗ Pointed topological spaces and pointed continuous maps
Top≥2 Simply connected spaces and continuous maps between them
T2 Hausdorff spaces and continuous maps between them
T c
2 Compact and Hausdorff spaces and continuous maps between them

24This space is also called the ‘base space’ of the covering space, a term that has the same meaning in the study of
vector bundles, fiber bundles, and fibrations. Then, the source space of said covering space is called the ‘total space’ of
said covering space.

25The latter are precisely morphisms of schemes over S, so FétS is a full subcategory of the overcategory - also called
the ‘slice category’ - of schemes and morphisms of schemes over the connected scheme S.

26This terminology is used in differential topology to distinguish Top from the ‘smooth category’ of smooth manifolds
and maps.
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