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Abstract

At the AMS Summer Institute in Algebraic Geometry in 1974, Deligne
gave a series of lectures “Inputs of étale cohomology” intended to explain the
basic étale cohomology required for his recent proof of the Weil conjectures.
The lectures were written up by Boutot (in French) and published in SGA 41

2

(Lecture Notes in Math., Springer, 1977). This is a translation. It is available
at www.jmilne.org/math/ under Documents. Corrections should be sent to
the email address on that page. The original numbering has been retained. All
footnotes have been added by the translator.

Original preface
This work contains the notes for six lectures given by P. Deligne at Arcata in August
1974 (AMS Summer School1 on algebraic geometry) under the title “Inputs of étale
cohomology”. The seventh lecture became “Rapport sur la formule des traces”,
published in SGA 41

2
. The purpose of the lectures was to give the proofs of the

fundamental theorems in étale cohomology, freed from the gangue2 of nonsense that
surrounds them in SGA 4. We have not sought to state the theorems in their most
general form, nor followed the reductions, sometimes clever, that their proof requires.
We have on the contrary emphasized the “irreducible” case, which, once the reductions
have been made, remains to be treated.

We hope that this text, which makes no claim to originality, will help the reader
consult with profit the three volumes of SGA 4.

Conventions. We consider only schemes that are quasi-compact (= finite union
of open affines) and quasi-separated (= such that the intersection of two open affines
is quasi-compact), and we simply call them schemes.

1Actually, Institute.
2The commercially valueless material in which ore is found (Oxford English Dictionary).
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I Grothendieck topologies
Grothendieck’s topologies first appeared as the foundation of his theory of descent (cf.
SGA 1, VI, VIII); their use in the corresponding cohomology theories came later. The
same path is followed here: by formalizing the classical notions of localization, local
property, and patching (§1, 2, 3), we obtain the general concept of a Grothendieck



I GROTHENDIECK TOPOLOGIES 3

topology (§6). To justify its introduction into algebraic geometry, we prove a faithfully
flat descent theorem (§4), generalizing the classical theorem 90 of Hilbert (§5).

The reader will find a more complete, but concise, exposition of this formalism in
Giraud 1964. The notes of M. Artin: “Grothendieck topologies” Artin 1962 (Chapters
I to III) also remain useful. The 866 pages of Exposés I to VI of SGA 4 are valuable
when considering exotic topologies, such as the one that gives rise to crystalline
cohomology; in working with étale topology, so close to the classical intuition, it is
not strictly necessary to read them.

1 Sieves (Cribles)
Let X be a topological space and f WX ! R a real-valued function on X . The
continuity of f is a local property. In other words, if f is continuous on every
sufficiently small open3 of X , then f is continuous on the whole of X . To formalize
the notion of “local property” we introduce some definitions.

We say that a set4 U of opens of X is a sieve if, for all U 2 U and V � U , we
have V 2 U . We say that a sieve is covering if the union of the opens belonging to it
equals X .

The sieve generated by a family fUig of opens of X is defined to be the set of
open subsets U of X such that U is contained in some Ui .

We say that a property P.U /, defined for all open U in X , is local if, for every
open U of X and every covering sieve U of U , P.U / is true if and only if P.V / is
true for all V 2 U . For example, for a map f WX ! R, the property “f is continuous
on U ” is local.

2 Sheaves (Faisceaux)
We make precise the notion of a function given locally on X .

2.1 The sieve point of view

Let U be a sieve of opens of X . We call a function given U-locally on X the data of,
for every U 2 U , a function fU on U such that, if V � U , then fV D fU jV .

2.2 The Čech point of view

If the sieve U is generated by a family of opens Ui of X , then to give a function
U-locally on X amounts to giving a function fi on each Ui such that fi jUi \Uj D
fj jUi \Uj for all i;j .

In other words, if we let Z D
`
Ui , then to give a function U-locally amounts to

giving a function on Z that is constant on the fibres of the natural projection Z!X .
The continuous functions form a sheaf. This means that for every covering sieve

U of an open V of X and every function ffU g given U-locally on V such that each

3“ouvert” isn’t a noun in French, but the French mathematicians treat it as if it were. I’ve copied the
solecism into English (should be “open subset”).

4Underlined mathcal U in the original has been replaced by mathcal U .
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fU is continuous on U , there exists a unique continuous function f on V such that
f jU D fU for all U 2 U .

3 Stacks (Champs)
We make precise the notion of vector bundle (fibré vectoriel) given locally on X .

3.1 The sieve point of view

Let U be a sieve of opens of X . We call a vector bundle given U -locally on X the data
of

(a) a vector bundle EU on each U 2 U ,

(b) if V � U , an isomorphism �U;V WEV
�
�!EU jV , these being such that

(c) if W � V � U , then the diagram

EW EU jW

EV jW

�U;W

�V;W �U;V jW

commutes, that is, �U;W D .�U;V restricted to W /ı�V;W :

3.2 The Čech point of view

If the sieve U is generated by a family of opens Ui of X , then to give a vector bundle
U-locally on X amounts to giving:

(a) a vector bundle Ei on each Ui ,

(b) if Uij D Ui \Uj D Ui �X Uj , an isomorphism �j i WEi jUij
�
�!Ej jUij , these

being such that
(c) if Uijk D Ui �X Uj �X Uk , then the diagram

Ei jUijk EkjUijk

Ej jUijk

�ki jUijk

�ji jUijk �kj jUijk

commutes, that is, �ki D �kj ı�j i on Uijk .

In other words, if Z D
`
Ui and we let � WZ!X be the natural projection, then

to give a vector bundle U-locally on X amounts to giving

(a) a vector bundle E on Z,
(b) if x and y are two points of Z such that �.x/ D �.y/, an isomorphism

�yx WEx
�
�!Ey between the fibres of E at x and y depending continuously on

.x;y/, these being such that
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(c) if x, y, and z are three points of Z such that �.x/ D �.y/ D �.z/, then
�zx D �zy ı�yx .

A vector bundle E on X defines a vector bundle given U -locally EU , namely, the
system of restrictions EU of E to the objects of U . The fact that the notion of vector
bundle is local can be expressed as follows: for every covering sieve U of X , the
functor E 7! EU from vector bundles on X to vector bundles given U-locally is an
equivalence of categories.

If in §1, we replace “open of X” by “subset of X”, we get the notion of a sieve of
subspaces of X . In this context also there are patching theorems. For example, let X
be a normal space and C a sieve of subspaces of X generated by a finite locally closed
covering of X ; then the functor E 7!EC from vector bundles on X to vector bundles
given C-locally is an equivalence of categories.

In algebraic geometry, it is useful to also consider “sieves of spaces above X”;
this is what we will see in the next paragraph.

4 Faithfully flat descent
4.1. In the setting of schemes, the Zariski topology is not fine enough for the study

of nonlinear problems, and one is led to replace the open immersions in the preceding
definitions with more general morphisms. From this point of view, descent techniques
appear as localization techniques. Thus the following statement of descent can be
paraphrased by saying that the properties considered are local for the faithfully flat
topology. [A morphism of schemes is said to be faithfully flat if it is flat and surjective.]

PROPOSITION 4.2. Let A be a ring and B a faithfully flat A-algebra. Then
(i) A sequence ˙ D .M 0!M !M 00/ of A-modules is exact if the sequence

˙.B/, deduced from ˙ by extension of scalars to B , is exact.
(ii) An A-module M is of finite type (resp. finite presentation, flat, locally free of

finite rank, invertible (i.e. locally free of rank one) if the B-module M.B/ is.

PROOF. (i) As the functor M 7!M.B/ is exact (flatness of B), it suffices to show
that, if an A-module N is nonzero, then N.B/ is nonzero. If N is nonzero, then it
contains a nonzero monogenic submodule A=a, and so N.B/ contains a monogenic
submodule .A=a/.B/ D B=aB , which is nonzero by the surjectivity of the structure
morphism 'WSpec.B/! Spec.A/ (if V.a/ is nonempty, then '�1.V .a//D V.aB/ is
nonempty).

(ii) For any finite family .xi / of elements ofM.B/, there exists a finitely generated
submodule M 0 of M such that M 0

.B/
contains the xi . If M.B/ is of finite type and the

xi generate M.B/, then M 0
.B/
DM.B/, so M 0 DM and M is of finite type.

If M.B/ is of finite presentation, then, from the above, we can find a surjection
An!M . If N is the kernel of this surjection, then the B-module N.B/ is of finite
type, so N is, and M is of finite presentation. The assertion for “flat” follows
immediately from (i). The condition “locally free of finite rank” means “flat and of
finite presentation”, and the rank can be tested after extension of scalars to a field. 2
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4.3. Let X be a scheme and S a class of X -schemes stable under fibre products over
X . A class U � S is a sieve on X (relative to S) if, for every morphism 'WV ! U

of X-schemes with U;V 2 S and U 2 U , we have V 2 U . The sieve generated by a
family fUig ofX -schemes in S is the class of V 2 S such that there exists a morphism
of X -schemes from V into one of the Ui .

4.4. Let U be a sieve on X . We define a quasi-coherent module given U-locally on
X to be the data of

(a) a quasi-coherent module5 EU on each U 2 U ,
(b) for every U 2 U and every morphism 'WV !U of X -schemes in S , an isomor-

phism �' WEV
�
�! '�EU , these being such that

(c) if  WW ! V is a morphism of X -schemes in S, then the diagram

EW  �'�EU

 �EV

�'ı 

�  �� 

commutes, in other words, �'ı D . ��'/ı� .

A quasi-coherent module E on X defines a quasi-coherent module EU given
U-locally, namely, for 'U WU ! X take the quasi-coherent module '�UE, and for
a morphism  WV ! U take the restriction isomorphism � to be the canonical
isomorphism EV D .'U ı /

�E
�
�!  �'�UED  

�EU .

THEOREM 4.5. Let fUig 2 S be a finite family of X-schemes flat over X such that
X is the union of the images of the Ui , and let U be the sieve generated by fUig. Then
the functor E 7! EU is an equivalence from the category of quasi-coherent modules
on X to the category of quasi-coherent modules given U-locally.

PROOF. We treat only the case where X is affine and U is generated by an affine
X-scheme U faithfully flat over X . The reduction to this case is formal. Let X D
Spec.A/ and U D Spec.B/.

If the morphism U ! X has a section, then X belongs to the sieve U , and the
assertion is obvious. We will reduce the general case to this case.

A quasi-coherent module given U-locally defines modules M 0, M 00, and M 000

on U , U �X U , and U �X U �X U , and isomorphisms � W p�M � 'M � for every
projection morphism p between these spaces. There is a cartesian diagram

M � WM 0 M 00 M 000

over
U� W U U �X U U �X U �X U .

5We use script (eucal) instead of roman for sheaves.
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Conversely, M � determines the module given U-locally: for V 2 U , there exists
'WV ! U , and we put MU D '

�M 0; for '1;'2WV ! U , we have natural identifica-
tions '�1M

0 ' .'1�'2/
�M 00 ' '�2M

0, and we see using M 000 that these identifica-
tions are compatible, and so the definition is valid. In summary, to give a coherent
module U-locally is the same as giving a cartesian diagram M � over U�.

Let us translate this into algebraic terms: to giveM � amounts to giving a cartesian
diagram of modules

M 0 M 00 M 000
@0

@1

@0

@1

@2

over the diagram of rings

B B˝AB B˝AB˝AB .
@0

@1

@0

@1

@2

[More precisely: we have @i .bm/D @i .b/ �@i .m/, the usual identities such as @0@1 D
@0@0 are true, and “cartesian” means that the morphisms @i WM 0˝B;@i .B˝AB/!
M 00 and M 00˝B˝AB;@i .B˝AB˝AB/!M 000 are isomorphisms.]

Now E 7! EU becomes the functor sending an A-module M to

M � D
�
M ˝AB M ˝AB˝AB M ˝AB˝AB˝AB

�
It admits the functor

(M 0 M 00 M 000) 7! Ker (M 0 M 00)

as a right adjoint. We have to prove that the adjunction arrows

M ! Ker.M ˝AB�M ˝AB˝AB/

and
Ker.M 0�M 00/˝AB!M 0

are isomorphisms. According to 4.2(i), it suffices to do this after a faithfully flat base
change A! A0 (B becoming B 0 D B˝AA0). Taking A0 D B brings us back to the
case where U !X admits a section. 2

5 A special case: Hilbert’s theorem 90

5.1. Let k be a field, k0 a Galois extension of k, and G D Gal.k0=k/. Then the
homomorphism

k0˝k k
0
!

Y
�2G

k0

x˝y 7! fx ��.y/g�2G
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is bijective.
It follows that to give a module locally for the sieve generated by Spec.k0/ over

Spec.k/ is the same as giving a k0-vector space with a semi-linear action of G, i.e.,

(a) a k0-vector space V 0,
(b) for all � 2G, an endomorphism '� of the underlying group of V 0 such that

'� .�v/D �.�/'� .v/, for all � 2 k0 and v 2 V 0;

satisfying the condition
(c) for all �;� 2G, we have '�� D '� ı'� .

Let V D V 0G be the group of invariants for this action of G. It is a k-vector space
and, according to Theorem 4.5, we have

PROPOSITION 5.2. The inclusion of V into V 0 defines an isomorphism V ˝k k
0
�
�!

V 0.

In particular, if V 0 has dimension 1 and v0 2 V is nonzero, then '� is determined
by the constant 6 c.�/ 2 k0

� such that '� .v0/D c.�/v0, and the condition c) becomes

c.��/D c.�/ � �.c.�//.

According to the proposition, there is a nonzero invariant vector v D �v0, � 2 k0�.
Therefore, for all � 2G,

c.�/D � ��.��1/.

In other words, every 1-cocycle of G with values in k0� is a coboundary:

COROLLARY 5.3. We have H 1.G;k0
�
/D 0.

6 Grothendieck topologies
We now rewrite the definitions of the preceding paragraphs in an abstract framework
that encompasses both the case of topological spaces and that of schemes.

6.1. Let S be a category and U an object of S. We call a sieve on U a subset U of
Ob.S=U / such that, if 'WV ! U belongs to U and  WW ! V is a morphism in S,
then ' ı WW ! U belongs to U .

If f'i W Ui ! U g is a family of morphisms, then the sieve generated by the Ui is
defined to be the set of morphisms 'WV ! U which factor through one of the 'i .

If U is a sieve on U and 'WV ! U is a morphism, then the restriction UV of U to
V is defined to be the sieve on V consisting of the morphisms  WW ! V such that
' ı WW ! U belongs to U .

6.2. A Grothendieck topology on S is the data of a set C.U / of sieves for every
object U of S , called the covering sieves, such that the following axioms are satisfied:

(a) The sieve generated by the identity morphism of U is covering.

6A� (group of units in the ring A) in the original has been replaced by A�.
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(b) If U is a covering sieve U and V ! U is a morphism, then the sieve UV is
covering.

(c) A locally covering sieve is covering. In other words, if U is a covering sieve on
U and U 0 is a sieve on U such that, for all V ! U belonging to U , the sieve
U 0V on V is covering, then U 0 is covering.

A site is defined to be a category equipped with a Grothendieck topology.

6.3. Let S be a site. A presheaf F on S is a contravariant functor from S to the
category of sets. A section of F over an object U is an element of F.U /. For a
morphism V ! U and an s 2 F.U /, we let sjV (s restricted to V ) denote the image
of s in F.V /.

Let U be a sieve on U . We call a section of F given U-locally the data of, for
every V ! U belonging to U , a section sV 2 F.V / such that, for every morphism
W ! V , we have sV jW D sW . We say that F is a sheaf if, for every object U of
S, every covering sieve U on U , and every section fsV g given U-locally, there is a
unique section s 2 F.U / such that sjV D sV for all V ! U belonging to U .

We define in a similar way abelian sheaves by replacing the category of sets
by that of abelian groups. One shows that the category of abelian sheaves on S is

a abelian category with enough injectives. A sequence F
f
�! G

g
�!H of sheaves is

exact if, for every object U of S and every s 2 G.U / such that g.s/D 0, there exists
locally a t such that f .t/D s, i.e., there exists a covering sieve U of U and sections
tV 2 F.V / for all V 2 U such that f .tV /D sjV .

6.4 Examples

We have seen two above.

(a) Let X be a topological space and S the category whose objects are the opens of
X and whose morphisms are the natural inclusions. The Grothendieck topology
on S corresponding to the usual topology X is that for which a sieve on an
open U of X is covering if the union of its opens equals U . It is clear that the
category of sheaves on S is equivalent to the category of sheaves on X in the
usual sense.

(b) Let X be a scheme and S the category of schemes over X . We define the fpqc
(faithfully flat quasi-compact) topology on S to be the Grothendieck topology
for which a sieve on an X-scheme U is covering if it is generated by a finite
family of flat morphisms whose images cover U .

6.5 Cohomology

We will always assume that the category S has a final object X . The group of global
sections of an abelian sheaf F, denoted � F or H 0.X;F/, is defined to be the group
F.X/. The functor F 7! � F from the category of abelian sheaves on S to the category
of abelian groups is left exact, and we denote its derived functors (or satellites) by
H i .X;�/. These cohomology groups represent the obstructions to passing from the
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local to the global. By definition, if

0! F! G!H! 0

is an exact sequence of abelian sheaves, then there is a long exact cohomology
sequence:

0!H 0.X;F/!H 0.X;G/!H 0.X;H/!H 1.X;F/! �� �

� � � !Hn.X;F/!Hn.X;G/!Hn.X;H/!HnC1.X;F/! �� �

6.6 7

Given an abelian sheaf F on S, we define an F-torsor to be a sheaf G endowed with
an action F�G! G of F such that locally (after restriction to all the objects of a
covering sieve of the final object X ) G equipped with the F-action is isomorphic to F

equipped with the canonical action F�F! F by translations.
The set H 1.X;F/ can be interpreted as the set of isomorphism classes of F-

torsors.

II The étale topology
We specialize the definitions of the preceding chapter to the case of the étale topology
of a scheme X (§1, 2, 3). The corresponding cohomology coincides in the case that
X is the spectrum of a field K with the Galois cohomology of K (§4).

1 The étale topology
We begin by reviewing the notion of an étale morphism.

DEFINITION 1.1. Let A be a (commutative) ring. An A-algebra B is said to be étale
if it is of finite presentation and if the following equivalent conditions are satisfied:

(a) For every A-algebra C and ideal J of square zero in C , the canonical map

HomA-alg.B;C /! HomA-alg.B;C=J /

is a bijection.
(b) B is a flat A-module and ˝B=A D 0 (here ˝B=A denotes the module of relative

differentials).
(c) Let B D AŒX1; : : : ;Xn�=I be a presentation of B . Then, for every prime ideal

p of AŒX1; : : : ;Xn� containing I , there exist polynomials P1; : : : ;Pn 2 I such
that Ip is generated by the images of P1; : : : ;Pn and det.@Pi=@Xj / … p.

[Cf. SGA 1, Exposé I, or Raynaud 1970, Chapitre V.]
We say that a morphism of schemes f WX ! S is étale if, for all x 2 X , there

exists an affine open neighbourhood U D Spec.A/ of f .x/ and an affine open neigh-
bourhood V D Spec.B/ of x in X �S U such that B is an étale A-algebra.

7The original repeats the number 6.5.
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1.2 Examples

(a) When A is a field, an A-algebra B is étale if and only if it is a finite product of
separable extensions of A.

(b) When X and S are schemes of finite type over C, a morphism f WX ! S

is étale if and only if the associated analytic map f anWX an! S an is a local
isomorphism.

1.3 Sorite

(a) (base change) If f WX! S is an étale morphism, then so also is fS 0 WX�S S 0!
S 0 for any morphism S 0! S .

(b) (composition) The composite of two étale morphisms is an étale morphism.
(c) If f WX ! S and gWY ! S are two étale morphisms, then every S-morphism

from X to Y is étale.
(d) (descent) Let f WX!S be a morphism. If there exists a faithfully flat morphism

S 0! S such that fS 0 WX �S S 0! S 0 is étale, then f is étale.

1.4. Let X be a scheme and S the category of étale X -schemes. According to (1.3.c)
every morphism in S is étale. We define the étale topology on S to be the topology
for which a sieve over U is covering if it is generated by a finite family of morphisms
'i WUi ! U such the union of the images of the 'i covers U . We define the étale site
of X , denoted Xet, to be S endowed with the étale topology.

2 Examples of sheaves

2.1 Constant sheaf

Let C be an abelian group, and suppose for simplicity that X is noetherian. We let
CX (or just C if there is no ambiguity) denote the sheaf defined by U 7! C�0.U /,
where �0.U / is the (finite) set of connected components of U . The most important
case will be C D Z=n. By definition

H 0.X;Z=n/D .Z=n/�0.X/ .

In addition, H 1.X;Z=n/ is the set of isomorphism classes of Z=n-torsors (I.6.6), i.e.,
of Galois finite étale coverings of X with group Z=n. In particular, if X is connected
and �1.X/ is its fundamental group for some chosen base point, then

H 1.X;Z=n/D Hom.�1.X/;Z=n/.

2.2 Multiplicative group

We denote by Gm;X (or Gm if there is no ambiguity) the sheaf U 7! � .U;O�U /. It
is indeed a sheaf thanks to the faithfully flat descent theorem (I.4.5). We have by
definition

H 0.X;Gm/DH 0.X;OX /
�.
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In particular, if X is reduced, connected, and proper over an algebraically closed field
k, then

H 0.X;Gm/D k�.

PROPOSITION 2.3. There is an isomorphism

H 1.X;Gm/D Pic.X/,

where Pic.X/ is the group of isomorphism classes of invertible sheaves on X .

PROOF. Let � be the functor which, to an invertible sheaf L over X , attaches the
following presheaf L� on Xet: for 'WU !X étale,

L�.U /D IsomU .OU ;'�L/.

According to I.4.2(i) and I.4.58 (full faithfulness), this presheaf is a sheaf; it is even a
Gm-torsor. We see immediately that

(a) the functor � is compatible with (étale) localization;
(b) it induces an equivalence of the category of trivial invertible sheaves (i.e.,

isomorphic to OX ) with the category of trivial Gm-torsors: L is trivial if and
only if L� is.

Moreover, according to I.4.2(ii) and I.4.5,

(c) the notion of invertible sheaf is local for the étale topology.

It follows formally from a), b), c) that � is an equivalence from the category
of invertible sheaves on X to the category of Gm-torsors on Xet. It induces the
isomorphism sought. The inverse equivalence can be constructed as follows: if T is
a Gm-torsor, then there exists a finite étale covering fUig of X such that the torsors
TjUi are trivial; T is then trivial on every V étale over X belonging to the sieve
U �Xet generated by fUig. On each V 2 U , TjV corresponds to an invertible sheaf
LV (by b)) and the LV constitute an invertible sheaf given U-locally LU (by a)). By
c), the latter comes from an invertible sheaf L.T/ on X , and T 7! L.T/ is the inverse
of � sought. 2

2.4 Roots of unity

For an integer n > 0, we define the sheaf of nth roots of unity, denoted �n, to be the
kernel of “raising to the nth power” on Gm . If X is a scheme over a separably closed
field k and n is invertible in k, then the choice of a primitive nth root of unity � 2 k
defines an isomorphism i 7! �i of Z=n with �n.

The relationship between cohomology with coefficients in �m and cohomology
with coefficients in Gm is given by the exact cohomology sequence deduced from

KUMMER THEORY 2.5. If n is invertible on X , then raising to the nth power in Gm
is a sheaf epimorphism, so there is an exact sequence

0! �n!Gm!Gm! 0.
8The original had 4.2 and 4.5. Similar corrections are made elsewhere.
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PROOF. Let U !X be an étale morphism and let a 2Gm.U /D � .U;O�U /. As n is
invertible onU , the equation T n�aD 0 is separable, i.e.,U 0DSpec.OU ŒT �=.T n�a//
is étale over U . As U 0! U is surjective and a admits an nth root on U 0, we obtain
the result. 2

3 Fibres, direct images
3.1. A geometric point of X is a morphism xx! X , where xx is the spectrum of a

separably closed field k.xx/. By an abuse of language, we denote it by xx, the morphism
xx!X being understood. If x is the image of xx in X , then we say that xx is centred at
x. When the field k.xx/ is an algebraic extension of the residue field k.x/, we say that
xx is an algebraic geometric point of X .

We define an étale neighbourhood of xx to be a commutative diagram

U

xx X;

where U !X is an étale morphism.
The strict localization of X at xx is the ring OX;xx D lim

�!
� .U;OU /, where the

inductive limit is over the étale neighbourhoods of xx. It is a strictly henselian local
ring whose residue field is the separable closure of the residue field k.x/ of X at x in
k.xx/. It plays the role of the local ring for the étale topology.

3.2. Given a sheaf F onXet, we define the fibre of F at xx to be the set (resp. the group,
. . . ) Fxx D lim

�!
F.U /, where the inductive limit is again over the étale neighbourhoods

of xx.
In order for a homomorphism F! G of sheaves to be a mono-/epi-/isomorphism,

it is necessary and sufficient that this is so of the morphisms Fxx! Gxx induced on the
fibres at all the geometric points of X . When X is of finite type over an algebraically
closed field, it suffices to check this for the rational points of X .

3.3. If f WX ! Y is a morphism of schemes and F a sheaf on Xet, then the direct
image f �F of F by f is the sheaf on Yet defined by f�F.V /D F.X �Y V / for all
V étale over Y .

The functor f�WSh.Xet/! Sh.Yet/ is left exact. Its right derived functors Rqf�
are called its higher direct images. If xy is a geometric point of Y , we have

.Rqf�F/xy D lim
�!

H q.V �Y X;F/,

the inductive limit being over the étale neighbourhoods V of xy.
Let OY;xy be the strict localization of Y at xy, let eY D Spec.OY;xy/, and let eX D

X �Y eY . We can extend F to eX et (this is a special case of the general notion of an
inverse image) as follows: if eU is a scheme étale over eX , then there exists an étale
neighbourhood V of xy and a scheme U étale over X �Y V such that eU D U �V eY ;
we put

F.eU/D lim
�!

F
�
U �V V

0
�

,
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the inductive limit being over the étale neighbourhoods V 0 of xy which dominate V .
With this definition, we have �

Rqf�F
�
xy
DH q.eX;F/.

The functor f� has a left adjoint f �, the “inverse image” functor. If xx is a
geometric point of X and f .xx/ its image in Y , we have .f �F/xx D Ff .xx/. This
formula shows that f � is an exact functor. The functor f � thus transforms injective
sheaves into injective sheaves, and the spectral sequence of the composite functor
� ıf� (resp. g� ıf�) gives the

LERAY SPECTRAL SEQUENCE 3.4. Let F be an abelian sheaf onXet, and let f WX!

Y be a morphism of schemes (resp. let X
f
�! Y

g
�!Z be morphisms of schemes). We

have a spectral sequence

E
pq
2 DH

p.Y;Rqf�F/)HpCq.X;F/

(resp. E
pq
2 DR

pg�R
qf�F)RpCq.gf /�F/:

COROLLARY 3.5. If Rqf�FD 0 for all q > 0, thenHp.Y;f�F/DH
p.X;F/ (resp.

Rpg�.f�F/DR
p.gf /�F) for all p > 0.

This applies in particular in the following case:

PROPOSITION 3.6. Let f WX ! Y be a finite morphism (or, by passage to the limit,
an integral morphism) and F an abelian sheaf on X . Then Rqf�FD 0, for all q > 0.

Indeed, let xy be a geometric point of Y , eY the spectrum of the strict localization of
Y at y, and eX DX�Y eY . According to the above, it suffices show thatH q.eX;F/D 0
for all q > 0. But eX is the spectrum of a product of strictly Henselian local rings
(cf. Raynaud 1970, Chapter I), and the functor � .eX;�/ is exact because every étale
surjective map to eX admits a section, whence the assertion.

4 Galois cohomology
For X D Spec.K/, the spectrum of a field, we shall see that étale cohomology can be
identified with Galois cohomology.

4.1. Let us begin with a topological analogy. If K is the field of functions of an
integral affine algebraic variety Y D Spec.A/ over C, then

K D lim
�!
f 2A

AŒ1=f �:

In other words, X D lim
 �

U , where U runs over all open sets of Y . We know that
there are arbitrarily small Zariski opens which are K.�;1/’s for the classical topology.
Therefore, we should not be surprised if we can consider Spec.K/ itself to be a
K.�;1/, � being the fundamental group (in the algebraic sense) of X D Spec.K/,
i.e., the Galois group of xK=K, where xK is a separable closure of K.
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4.2. More precisely, let K be a field, xK a separable closure of K, and G D
Gal. xK=K/ the Galois group with its natural topology. To any finite étale K-algebra
A (finite product of separable extensions of K), attach the finite set HomK.A; xK/.
The Galois group G acts on this set through a discrete (hence finite) quotient. If
ADKŒT �=.F /, then this set can be identified with the set of roots of the polynomial
F in xK. Galois theory, in the form given to it by Grothendieck says that,

PROPOSITION 4.3. The functor�
finite étale
K-algebras

�
!

�
finite sets on which
G acts continuously

�
;

which to an étale algebra A attaches HomK.A; xK/, is an anti-equivalence of cate-
gories.

We can deduce from this an analogous description of the sheaves for the étale
topology on Spec.K/;

PROPOSITION 4.4. The functor�
étale sheaves
on Spec.K/

�
!

�
sets on which
G acts continuously

�
;

which to a sheaf F attaches its fibre F xK at the geometric point Spec. xK/, is an
equivalence of categories.

The groupG is said to act continuously on a setE if the stabilizer of every element
of E is an open subgroup of G. The functor in the reverse direction has an obvious
description: let A a finite étale K-algebra, U D Spec.A/, and U. xK/D HomK.A; xK/
the G-set corresponding to A; then F.U /D HomG-sets.U. xK/;F xK/.

In particular, if X D Spec.K/, then F.X/D FG
xK

. When we consider only abelian
sheaves, we get, by passage to the derived functors, canonical isomorphisms

H q.Xet;F/DH
q.G;F xK/

4.5 Examples

(a) The constant sheaf Z=n corresponds to Z=n with the trivial action of G.
(b) The sheaf of nth roots of unity �n corresponds to the group �n. xK/ of nth roots

of unity in xK with the natural action of G.
(c) The sheaf Gm corresponds to the group xK� with the natural action of G.

III The cohomology of curves
In the case of topological spaces, unwindings9 using the Künneth formula and simpli-
cial decompositions allow one to reduce the calculation of the cohomology to that of
the interval I D Œ0;1� for which we have H 0.I;Z/D Z and H q.I;Z/D 0 for q > 0.

9“dévissages” in the original. The word “dévissage”, literally “unscrewing”, is used by French
mathematicians to mean the reduction of a problem to a special case, often by fairly standard arguments.
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In our case, the unwindings lead to more complicated objects, namely, to curves
over an algebraically closed field. We will calculate their cohomology in this chapter.
The situation is more complex than in the topological case because the cohomology
groups are zero only for q > 2. The essential ingredient for the calculations is the
vanishing of the Brauer group of the function field of such a curve (Tsen’s theorem,
§2).

1 The Brauer group
First recall the classical definition:

DEFINITION 1.1. LetK be a field andA aK-algebra of finite dimension. We say that
A is a central simple algebra over K if it satisfies the following equivalent conditions:

(a) A has no nontrivial two-sided ideal and its centre is K.
(b) There exists a finite Galois extension K 0=K such that AK0 D A˝K K 0 is

isomorphic to a matrix algebra over K 0.
(c) A is K-isomorphic to a matrix algebra over a skew field with centre K.

Two such algebras are said to be equivalent if the skew fields associated with them
by c) are K-isomorphic. When the algebras have the same dimension, this is the same
as requiring that they are K-isomorphic. Tensor product defines by passage to the
quotient an abelian group structure on the set of equivalence classes. It is this group
that we classically call the Brauer group of K and that we denote Br.K/.

1.2. We let Br.n;K/ denote the set ofK-isomorphism classes ofK-algebras A such
that there exists a finite Galois extension K 0 of K for which AK0 is isomorphic to the
algebra Mn.K

0/ of n�n matrices over K 0. By definition Br.K/ is the union of the
subsets Br.n;K/ for n 2 N. Let xK be a separable closure of K and G D Gal. xK=K/.
Then Br.n;K/ is the set of “forms ” of Mn. xK/, and so it is canonically isomorphic to
H 1

�
G;Aut.Mn. xK//

�
. Every automorphism of Mn. xK/ is inner. Therefore the group

Aut.Mn. xK// can be identified with the projective linear group PGL.n; xK/, and there
is a canonical bijection

�nWBr.n;K/
�
�!H 1

�
G;PGL.n; xK/

�
.

On the other hand, the exact sequence

1! xK�! GL.n; xK/! PGL.n; xK/! 1, (1.2.1)

defines a coboundary map

�nWH
1
�
G;PGL.n; xK/

�
!H 2.G; xK�/.

On composing �n with �n, we get a map

ınWBr.n;K/!H 2.G; xK�/.

It is easily checked that the maps ın are compatible among themselves and define a
group homomorphism

ıWBr.K/!H 2.G; xK�/.
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PROPOSITION 1.3. The homomorphism ıWBr.K/!H 2.G; xK�/ is bijective.

This is a consequence of the next two lemmas.

LEMMA 1.4. The map �nWH 1
�
G;PGL.n; xK/

�
!H 2.G; xK�/ is injective.

According to Serre 1965, cor. to prop. I-44, it suffices to check that, if the exact
sequence (1.2.1) is twisted by an element of H 1

�
G;PGL.n; xK/

�
, then the H 1 of

the middle group is trivial. This middle group is the group of xK-points of the
multiplicative group of a central simple algebra A of degree n2 over K. To prove that
H 1.G;A�

xK
/D 0, we interpret A� as the group of automorphisms of a free A-module

L of rank 1 and H 1 as the set of “forms” of L; these are A-modules of rank n2 over
K, which are automatically free.

LEMMA 1.5. Let ˛ 2H 2.G; xK�/, let K 0 be a finite extension of K contained in xK
with ŒK 0 WK�D n, and letG0DGal. xK=K 0/. If the image of ˛ inH 2.G0; xK�/ is zero,
then ˛ belongs to the image of �n.

Note first that we have

H 2.G0; xK�/'H 2
�
G;. xK˝KK

0�
�

.

(From a geometric point of view, if we let x D Spec.K/ and x0 D Spec.K 0/, and we
let � Wx0! x denote the canonical morphism, then Rq��.Gm;x0/D 0 for q > 0 and
hence H q.x0;Gm;X 0/'H q.x;��Gm;X 0/ for q > 0.)

Furthermore, the choice of a basis for K 0 as a vector space over K allows us to
define a homomorphism

. xK˝KK
0/�! GL.n; xK/;

which sends an element x to the endomorphism “multiplication by x” of xK˝KK 0.
We then have a commutative diagram with exact rows

1 xK� . xK˝KK
0/� . xK˝KK

0/�= xK� 1

1 xK� GL.n; xK/ PGL.n; xK/ 1

The lemma now follows from the commutative diagram deduced from the above
diagram by passing to the cohomology

H 1.G;. xK˝KK
0/�= xK�/ H 2.G; xK�/ H 2.G;. xK˝KK

0/�/

H 1.G;PGL.n; xK// H 2.G; xK�/:
�n

The knowledge of the Brauer group, in particular its vanishing, is extremely
important in Galois cohomology as the following proposition shows.
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PROPOSITION 1.6. Let K a field, xK a separable closure of K, and G D Gal. xK=K/.
Suppose that Br.K 0/D 0 for every finite extension K 0 of K. Then

(i) H q.G; xK�/D 0 for all q > 0.
(ii) H q.G;F /D 0 for all torsion G-modules F and all q > 2.

For the proof, cf. Serre 1965 or Serre 1968.

2 Tsen’s theorem
DEFINITION 2.1. A field K is said to be C1 if every nonconstant homogeneous
polynomial f .x1; : : : ;xn/ of degree d < n has a non-trivial zero.

PROPOSITION 2.2. If K is a C1 field, then Br.K/D 0.

We have to show that every skew field D, finite over K with centre K, equals
K. Let r2 be the degree of D over K and NrdWD!K the reduced norm. [Locally
for the étale topology on K, D is isomorphic — non canonically — to a matrix
algebra Mr and the determinant map on Mr defines a reduced norm map on D.
This is independent of the isomorphism chosen between D and Mr because all
automorphisms of Mr are inner and similar matrices have the same determinant. This
map, defined locally for the étale topology, descends because of its local uniqueness,
to a map NrdWD!K.]

The only zero of Nrd is the zero element of D because, if x ¤ 0, then Nrd.x/ �
Nrd.x�1/ D 1. On the other hand, if fe1; : : : ; er2g is a basis for D over K and
xD

P
xiei , then the function Nrd.x/ is a homogeneous polynomial Nrd.x1; : : : ;xr2/

of degree r [this is clear locally for the étale topology]. As K is C1, we have r2 6 r ,
which implies that r D 1 and D DK.

THEOREM 2.3 (TSEN). Let K be an extension of transcendence degree 1 of an
algebraically closed field k. Then K is C1.

Suppose first that K D k.X/. Let

f .T /D
X

ai1;:::inT
i1
1 � � �T

in
n

be a homogeneous polynomial of degree d < n with coefficients in k.X/. After
multiplying the coefficients by a common denominator we may suppose that they
are in kŒX�. Let ı D supdeg.ai1:::in/. We search by the method of undetermined
coefficients for a non-trivial zero in kŒX� by writing each Ti (i D 1; : : : ;n) as a
polynomial of degree N in X . Then the equation f .T /D 0 becomes a system of
homogeneous equations in the n� .N C 1/ coefficients of the polynomials Ti .X/
expressing the vanishing of the polynomial coefficients in X obtained by replacing Ti
with Ti .X/. This polynomial is of degree at most ıCND, so there are ıCNd C1
equations in n� .N C1/ variables. As k is algebraically closed this system has a non-
trivial solution if n.N C1/ > Nd C ıC1, which will be the case for N sufficiently
large when d < n.
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It is clear that, to prove the theorem in the general case, it suffices to prove it when
K is a finite extension of a pure transcendental extension k.X/ of k. Let f .T /D
f .T1; : : : ;Tn/ be a homogeneous polynomial of degree d < n with coefficients in
K. Let s D ŒKWk.X/� and let e1; : : : ; es be a basis for K over k.X/. Introduce sn
new variables Uij such that Ti D

P
Uij ej . In order for the polynomial f .T / to have

a non-trivial zero in K, it suffices that the polynomial g.Xij /DNK=k.f .T // have
a nontrivial zero in k.X/. But g is a homogeneous polynomial of degree sd in sn
variables, whence the result.

COROLLARY 2.4. Let K be an extension of transcendence degree 1 of an alge-
braically closed field k. Then the étale cohomology groups H q.Spec.K/;Gm/ are
zero for q > 0.

3 The cohomology of smooth curves
Henceforth, and unless expressly mentioned otherwise, the cohomology groups con-
sidered are the étale cohomology groups.

PROPOSITION 3.1. Let k be an algebraically closed field and X a connected nonsin-
gular projective curve over k. Then

H 0.X;Gm/D k�,

H 1.X;Gm/D Pic.X/,

H q.X;Gm/D 0 for q > 2:

Let � be the generic point of X , j W�!X the canonical morphism, and Gm;� the
multiplicative group of the field of fractions k.X/ of X .10 For a closed point x of X ,
let ix Wx!X be the canonical immersion and Zx the constant sheaf with value Z on
x. Then j�Gm;� is the sheaf of nonzero meromorphic functions on X and

L
x ix�Zx

is the sheaf of divisors. We therefore have an exact sequence of sheaves

0 Gm j�Gm;�
L
x ix�Zx 0:

div (3.1.1)

LEMMA 3.2. We have Rqj�Gm;� D 0 for all q > 0.

It suffices to show that the fibre of this sheaf at every closed point x of X is zero.
If zOX;x is the henselization of X at x and K the field of the fractions of zOX;x , then
we have

Spec.K/D ��X Spec.zOX;x/,

and so .Rqj�Gm;�/x DH q.Spec.K/;Gm/. ButK is an algebraic extension of k.X/,
and hence an extension of transcendence degree 1 of k. The lemma now follows from
Corollary 2.4.

LEMMA 3.3. We have H q.X;j�Gm;�/D 0 for all q > 0.

10Better, Gm;� is the sheaf on �et defined by Gm.
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Indeed from 3.2 and the Leray spectral sequence for j , we deduce that

H q.X;j�Gm;�/DH q.�;Gm;�/

for all q > 0, and the second term is zero for q > 0 by 2.4.

LEMMA 3.4. We have H q
�
X;
L
x2X ix�Zx

�
D 0 for all q > 0.

Indeed, for a closed point x of X , we have Rqix�Zx D 0 for q > 0 because ix is
a finite morphism 3.6, and so

H q.X; ix�Zx/DH q.x;Zx/.

The second term is zero for q > 0 because x is the spectrum of an algebraically closed
field. [The lemma is true more generally for all “skyscraper” sheaves on X .]

We deduce from the preceding lemmas and the exact sequence (3.1.1), equalities

H q.X;Gm/D 0 for q > 2;

and an exact cohomology sequence in low degrees

1!H 0.X;Gm/!H 0.X;j�Gm;�/!H 0.X;
M

x
ix�Zx/!H 1.X;Gm/! 1;

which is nothing but the exact sequence

1! k�! k.X/�! Div.X/! Pic.X/! 1.

From Proposition 3.1 we deduce that the cohomology groups of X with values in
Z=n, n prime to the characteristic of k, have the expected values.

COROLLARY 3.5. IfX has genus g and n is invertible in k, then the groupsH q.X;Z=n/
are zero for q > 2, and free over Z=n of rank 1;2g;1 for q D 0;1;2. Replacing Z=n
with the isomorphic group �n, we get canonical isomorphisms

H 0.X;�n/D �n

H 1.X;�n/D Pic0.X/n
H 2.X;�n/D Z=n.

As the field k is algebraically closed, Z=n is isomorphic (noncanonically) to �n.
From the Kummer exact sequence

0! �n!Gm!Gm! 0,

and Proposition 3.1, we deduce the equalities,

H q.X;Z=n/D 0 for q > 2;

and, in low degrees, exact sequences

0 H 0.X;�n/ k� k� 0

0 H 1.X;�n/ Pic.X/ Pic.X/ H 2.X;�n/ 0:

n

n
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We also have an exact sequence

0 Pic0.X/ Pic.X/ Z 0;
deg

and Pic0.X/ can be identified with the group of k-rational points of an abelian variety
of dimension g, the Jacobian X . In such a group, multiplication by n is surjective
with kernel a Z=nZ-free module of rank 2g (because n is invertible in k); whence the
corollary.

A clever unwinding, using the “trace method,” allows one to obtain the following
corollary.

PROPOSITION 3.6 (SGA 4, IX, 5.7). Let k be an algebraically closed field, X an
algebraic curve over k, and F a torsion sheaf on X . Then

(i) H q.X;F/D 0 for q > 2.
(ii) If X is affine, then we even have H q.X;F/D 0 for q > 1.

For the proof, as well as for an exposition of the “trace method”, we refer to
SGA 4, IX, 5.

4 Unwindings
To calculate the cohomology of varieties of dimension > 1 we fibre by curves, which
reduces the problem to the study of morphisms with fibres of dimension 6 1. This
principle has several variants. We mention some of them.

4.1. Let A be a k-algebra of finite type with generators a1; : : : ;an. If we put

X0 D Spec.k/; : : : ;Xi D Spec.kŒa1; : : : ;ai �/; : : : ;Xn D Spec.A/;

then the canonical inclusions kŒa1; : : : ;ai �! kŒa1; : : : ;ai ;aiC1� define morphisms

Xn!Xn�1! �� � !X1!X0

whose fibres are of dimension 6 1.

4.2. In the case of a smooth morphism, we can be more precise. We define an
elementary fibration to be a morphism of schemes f WX ! S that can be embedded
in a commutative diagram

X xX Y

S

j

f
xf

i

g

satisfying the following conditions:

(i) j is an open immersion dense in each fibre and X D xX XY ;
(ii) xf is smooth and projective with irreducible geometric fibres of dimension 1;
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(iii) g is a finite étale covering with no empty fibres.

We define a good neighbourhood relative to S to be an S-scheme X such that
there exist S-schemes X D Xn; : : : ;X0 D S and elementary fibrations fi WXi !
Xi�1, i D 1; : : : ;n. One can show SGA 4, XI, 3.3 that, if X is a smooth scheme
over an algebraically closed field k, then every rational point of X admits an open
neighbourhood that is a good neighbourhood (relative to Spec.k/).

4.3. We can unwind a proper morphism f WX! S as follows. According to Chow’s
lemma, there exists a commutative diagram

X xX

S
f

�

xf

where � and xf are projective morphisms, � being moreover an isomorphism over
a dense open of X . Locally on S , xX is a closed subscheme of a projective space of
type PnS .

We unwind this last statement by considering the projection 'WPnS ! P1S that
sends the point with homogeneous coordinates .x0;x1; : : : ;xn/ to .x0;x1/. It is a
rational map defined outside the closed subset Y ' Pn�2S of PnS with homogeneous
equations x0 D x1 D 0. Let uWP ! PnS be the blow up with centre Y ; the fibres of u
have dimension 6 1. Moreover, there exists a natural morphism vWP ! P1S extending
the rational map ', and v makes P a P1S -scheme locally isomorphic to the projective
space of type Pn�1, which can in turn be projected onto P1, etc.

4.4. A smooth projective variety X can be fibred by a Lefschetz pencil. The blow upeX of the intersection of the axis of the pencil with X projects onto P1, and the fibres
of this projection are the hyperplane sections of X by the hyperplanes of the pencil.

IV The proper base change theorem

1 Introduction
This chapter is devoted to the proof and applications of

THEOREM 1.1. Let f WX ! S be a proper morphism of schemes and F a torsion
abelian sheaf on X . For every q > 0, the fibre of Rqf�F at a geometric point s of S
is isomorphic to the cohomology H q.Xs;F/ of the fibre Xs DX˝S Speck.s/ of f
at s.

For f WX ! S a separated proper continuous map (separated means that the
diagonal of X �S X is closed) between topological spaces and F an abelian sheaf
on X , the analogous result is well known and elementary: as f is closed, the sets
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f �1.V / for V a neighbourhood of s form a fundamental system of neighbourhoods
of Xs , and it can be shown that H �.Xs;F/D lim

�!U
H �.U;F/ with U running over

the neighbourhoods of Xs . In practice, Xs even has a fundamental system U of
neighbourhoods U for which it is a deformation retract, and, for F constant, we
therefore have H �.Xs;F/DH �.U;F/. In pictorial terms: the special fibre swallows
the general fibre.

In the case of schemes the proof is more delicate and it is essential to assume that
F is torsion SGA 4, XII, 2. Taking account of the description of the fibres of Rqf�F
in II.3.3, we see that the Theorem 1.1 is essentially equivalent to

THEOREM 1.2. Let A be a strictly henselian local ring and S D Spec.A/. Let
f WX ! S be a proper morphism with closed fibre X0. Then, for every torsion
abelian sheaf F on X and q > 0,

H q.X;F/
�
�!H q.X0;F/:

By passage to the limit, we see that it suffices to prove the theorem when A is the
strict henselization of a Z-algebra of finite type at a prime ideal. We first treat the case
q D 0 or 1 and F D Z=n (§2). An argument based on the notion of a constructible
sheaf (§3) shows that it suffices to consider the case that F is constant. On the other
hand, the unwinding (III.4.3) allows us to assume that X0 is a curve. In this case it
only remains to prove the theorem for q D 2 (§4).

Among other applications (§6), the theorem makes it possible to define the notion
of cohomology with proper support (§5).

2 Proof for q D 0 or 1 and FD Z=n
The result for q D 0 and F constant is equivalent to the following proposition [Zariski
connectedness theorem].

PROPOSITION 2.1. Let A be a noetherian henselian local ring and S D Spec.A/. Let
f WX ! S be a proper morphism and X0 the closed fibre of f . Then the sets of
connected components �0.X/ and �0.X0/ are in natural bijection.

Proving this amounts to showing that the sets of subsets of X and X0 that are
both open and closed, Of.X/ and Of.X0/, are in natural bijection. We know that
the set Of.X/ is in natural bijection with the set of idempotents of � .X;OX /, and
similarly Of.X0/ is in natural bijection with the set of idempotents of � .X0;OX0/. It
is therefore a question of showing that the canonical map

Idem� .X;OX /! Idem� .X0;OX0/

is bijective.
Let m denote the maximal ideal ofA, � .X;OX /^ the completion of � .X;OX / for

the m-adic topology, and, for every integer n> 0, Xn DX˝AA=mnC1. According
to the finiteness theorem for proper morphisms (EGA, III, 3.2), � .X;OX / is a finite
A-algebra; as A is henselian, it follows that the canonical map

Idem� .X;OX /! Idem� .X;OX /^
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is bijective.
According to the comparison theorem for proper morphisms (EGA, III, 4.1), the

canonical map
� .X;OX /

^
! lim
 �

� .Xn;OXn/

is bijective. In particular, the canonical map

Idem� .X;OX /^! lim
 �

Idem� .Xn;OXn/

is bijective. But, since Xn and X0 have the same underlying topological space, the
canonical map

Idem� .Xn;OXn/! Idem� .X0;OX0/

is bijective for all n, which completes the proof.
As H 1.X;Z=n/ is in natural bijection with the set of isomorphism classes of

Galois finite étale coverings ofX with group Z=n, the theorem for qD 1 and FDZ=n
follows from the next proposition.

PROPOSITION 2.2. Let A be a noetherian henselian local ring and S D Spec.A/. Let
f WX ! S be a proper morphism and X0 the closed fibre of f . Then the restriction
functor11

Rev:et.X/! Rev:et.X0/

is an equivalence of categories.

[If X0 is connected and we have chosen a geometric point of X0 as base point,
this amounts to saying that the canonical map �1.X0/! �1.X/ on the (profinite)
fundamental groups is bijective.]

Proposition 2.1 shows that this functor is fully faithful. Indeed, if X 0 and X 00 are
two finite étale coverings of X , then an X -morphism from X 0 to X 00 is determined by
its graph, which is an open and closed subset of X 0�X X 00.

It remains to show that every finite étale covering X 00 of X0 extends to X . The
finite étale coverings do not depend on nilpotent elements (SGA 1, Chapt. 1), and so
X 00 lifts uniquely to a finite étale coverng X 0n of Xn for all n> 0, i.e., to a finite étale
covering X0 of the formal scheme X obtained by completing X along X0. According
to Grothendieck’s theorem on the algebraization of formal coherent sheaves [existence
theorem, EGA, III, 5], X0 is the formal completion of a finite étale covering xX 0 of
xX DX˝A yA.

By passage to the limit, it suffices to prove the proposition in the case that A is the
henselization of a Z-algebra of finite type. We can then apply Artin’s approximation
theorem to the functor FW.A� algebras/! .sets/ which, to an A-algebra B , makes
correspond the set of isomorphism classes of finite étale coverings ofX˝AB . Indeed,
this functor is locally of finite presentation: if Bi is an filtered inductive system of
A-algebras and B D lim

�!
Bi , then F.B/D lim

�!
F.Bi /. According to Artin’s theorem,

given an element � 2 F. yA/, there exists a � 2 F.A/ having the same image as x� in
F.A=m/. When we take � to be the isomorphism class of xX 0, this gives us a finite
étale covering X 0 of X whose restriction to X0 is isomorphic to X 00.

11A “revêtement étale” is a “finite étale covering”, and so these are the categories of finite étale
coverings.
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3 Constructible sheaves
In this paragraph, X is a noetherian scheme, and “sheaf on X” means an abelian
sheaf on Xet.

DEFINITION 3.1. We say that a sheaf F on X is locally constant constructible (ab-
breviated l.c.c) if it is represented by a finite étale covering of X .

DEFINITION 3.2. We say that a F sheaf on X is constructible if it satisfies the
following equivalent conditions:

(i) There exists a finite surjective family of subschemes Xi of X such that the
restriction of F to Xi is l.c.c..

(ii) There exists a finite family of finite morphisms pi WX 0i ! X and a monomor-
phism F!

Q
pi�Ci , where, for each i , Ci is a constant constructible sheaf (=

defined by a finite abelian group) over X 0i .

It is easily checked that the category of constructible sheaves on X is abelian.
Moreover, if uWF! G is a homomorphism of sheaves and F is constructible, then the
sheaf im.u/ is constructible.

LEMMA 3.3. Every torsion sheaf F is a filtered inductive limit of constructible
sheaves.

Indeed, if j WU ! X is étale of finite type, then an element � 2 F.U / such that
n� D 0 defines a homomorphism of sheaves jŠZ=nU ! F whose image (the smallest
subsheaf of F having � as a local section) is a constructible subsheaf of F. It is clear
that F is the inductive limit of such subsheaves.

DEFINITION 3.4. Let C be an abelian category and T a functor from C to the category
of abelian groups. We say that T is effaceable in C if, for every object A of C and
every ˛ 2 T .A/, there exists a monomorphism uWA!M in C such that T .u/˛ D 0.

LEMMA 3.5. The functors H q.X;�/ for q > 0 are effaceable in the category of
constructible sheaves on X .

It suffices to remark that, if F is a constructible sheaf, then there exists an integer
n > 0 such that F is a sheaf of Z=n-modules. Then there exists a monomorphism
F ,! G, where G is a sheaf of Z=n-modules such thatH q.X;G/D 0 for all q > 0. We
can, for example, take G to be the Godement resolution

Q
x2X ix�Fxx , where x runs

through the points of X and ix W xx!X is a geometric point centred at x. According
to 3.3, G is an inductive limit of constructible sheaves, from which the lemma follows,
because the functors H q.X;�/ commute with inductive limits.

LEMMA 3.6. Let '�WT �! T 0
� be a morphism of cohomological functors defined on

an abelian category C with values in the category of abelian groups. Suppose that T q

is effaceable for q > 0 and let E be a subset of objects of C such that every object of C
is contained in an object belonging to E . Then the following conditions are equivalent:

(i) 'q.A/ is bijective for all q > 0 and all A 2 ObC.
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(ii) '0.M/ is bijective and 'q.M/ is surjective for all q > 0 and all M 2 E .
(iii) '0.A/ is bijective for all A 2 ObC and T 0q is effaceable for all q > 0.

The proof is by induction on q and does not present difficulties.

PROPOSITION 3.7. Let X0 be a subscheme of X . Suppose that, for all n > 0 and
every X 0 scheme finite over X , the canonical map

H q.X 0;Z=n/!H q.X 00;Z=n/; X 00 DX
0
�X X0,

is bijective for q D 0 and surjective for q > 0. Then, for every torsion sheaf F on X
and all q > 0, the canonical map

H q.X;F/!H q.X0;F/

is bijective.

By passage to the limit, it suffices to prove the assertion for a constructible F. We
apply Lemma 3.6 taking C to be the category of constructible sheaves on X , T q to
be H q.X;�/, T 0q to be H q.X0;�/, and E to be the set of constructible sheaves of
the form

Q
pi�Ci , where pi WX 0i !X is a finite morphism and Ci is a finite constant

sheaf on X 0i .

4 End of the proof
By the method of fibring by curves (III.4.3), it suffices to prove the theorem in relative
dimension 6 1. According to the preceding paragraph, it suffices to show that, if
S is the spectrum of a strictly henselian local noetherian ring, f WX ! S a proper
morphism whose closed fibre X0 is of dimension 61, and n an integer > 0, then the
canonical homomorphism

H q.X;Z=n/!H q.X0;Z=n/

is bijective for q D 0 and surjective for q > 0.
We saw the cases q D 0 and 1 earlier, and we know that H q.X0;Z=n/D 0 for

q >3; it therefore suffices to treat the case q D 2. We can obviously assume that n
is a power of a prime number. If nD pr , where p is the residue field characteristic
of S , then Artin-Schreier theory shows that we have H 2.X0;Z=pr/D 0. If nD `r ,
`¤ p, then we deduce from Kummer theory a commutative diagram

Pic.X/ H 2.X;Z=`r/

Pic.X0/ H 2.X0;Z=`r/

˛

ˇ

where the map ˇ is surjective. [We saw this in Chapter III for a smooth curve over an
algebraically closed field, but similar arguments apply to any curve over a separably
closed field.]

To conclude, it suffices to show
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PROPOSITION 4.1. Let S be the spectrum of a henselian noetherian local ring and
f WX ! S a proper morphism whose closed fibre X0 is of dimension 6 1. Then the
canonical restriction map

Pic.X/! Pic.X0/

is surjective. [In fact, this holds with f any separated morphism of finite type.]

To simplify the proof, we will assume that X is integral, although this is not
necessary. As every invertible sheaf on X0 is associated with a Cartier divisor
(because X0 is a curve, and so quasi-projective), it suffices to show that the canonical
map Div.X/! Div.X0/ is surjective.

Every divisor on X0 is a linear combination of divisors whose support is concen-
trated in a single non-isolated closed point of X0. Let x be such a point, t0 2 OX0;x
a non-invertible regular element of OX0;x , and D0 the divisor with support in x and
local equation t0. Let U be an open neighbourhood of x in X such that there exists a
section t 2 � .U;OU / lifting t0. Let Y be the closed subscheme of U with equation
t D 0; by taking U sufficiently small, we can assume that x is the only point of
Y \X0. Then Y is quasi-finite above S at x. As S is the spectrum of a local henselian
ring, we deduce that Y D Y1

`
Y2, where Y1 is finite over Sand Y2 does not meet X0.

In addition, as X is separated over S , Y1 is closed in X .
After replacing U with a smaller open neighbourhood of x, we can assume that

Y D Y1, that is, that Y is closed in X . We then define a divisor D on X lifting D0 by
putting DjX XY D 0 and DjU D div.t/, which makes sense because t is invertible
on U XY .

4.2 Remark

In the case that f is proper, we could also make a proof in the same style as that
of the Proposition 2.2. Indeed, as X0 is a curve, there is no obstruction to lifting an
invertible sheaf on X0 to the infinitesimal neighbourhoods Xn of X0, and so to the
formal completion X of X along X0. We can then conclude by applying successively
Grothendieck’s existence theorem and Artin’s approximation theorem.

5 Cohomology with proper support
DEFINITION 5.1. Let X be a separated scheme of finite type over a field k. Accord-
ing to a theorem of Nagata (1962, 1963), there exists a scheme xX over k and an open
immersion j WX ! xX . For a torsion sheaf F on X , we let jŠF denote the extension
by 0 of F to xX , and we define the cohomology groups with proper support H q

c .X;F/

by setting
H q
c .X;F/DH

q. xX;jŠF/.

We show that this definition is independent of compactification j WX! xX chosen.
Let j1WX ! xX1 and j2WX ! xX2 be two compactifications. Then X maps into
xX1 � xX2 by x 7! .j1.x/;j2.x//, and the closed image xX3 of X by this map is a
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compactification of X . We have a commutative diagram

xX1

X xX3 ;

xX2

j1

.j1;j2/

j2

p1

p2

where p1 and p2, the restrictions of the natural projections to xX3, are proper mor-
phisms.

It suffices therefore to treat the case where we have a commutative diagram

xX2

X

xX1

p

j2

j1

with p a proper morphism.

LEMMA 5.2. We have p�.j2ŠF/D j1ŠF and Rqp�.j2ŠF/D 0, for q > 0 .

Note immediately that the lemma completes the proof because, from the Leray
spectral sequence of the morphism p, we can deduce that, for all q > 0,

H q. xX2;j2ŠF/DH
q. xX1;j1ŠF/.

To prove the lemma, we argue fibre by fibre using the base change theorem (1.1)
for p. The result is immediate because, over a point of X , p is an isomorphism, and
over a point of xX1XX , the sheaf j2ŠF is zero on the fibre of p.

5.3. Similarly, for a separated morphism of finite type of noetherian schemes
f WX ! S , there exists a proper morphism xf W xX ! S and an open immersion
j WX ! xX over S . We then define the higher direct images with proper support
of a torsion sheaf F on X by setting

RqfŠFDR
qf�.jŠF/.

One can check as before that this definition is independent of the chosen compact-
ification.

THEOREM 5.4. Let f WX ! S be a separated morphism of finite type of noetherian
schemes and F a torsion sheaf on X . Then the fibre of RqfŠF at a geometric point s
of S is canonically isomorphic to the cohomology with proper support H q

c .Xs;F/ of
the fibre Xs of f at s.
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This is a simple variant of the base change theorem for a proper morphism (1.1).
More generally, if

X X 0

S S 0

f

g 0

f 0

g

is a cartesian diagram, we have a canonical isomorphism

g�.RqfŠF/'R
qf 0Š .g

0�F/: (5.4.1)

6 Applications
VANISHING THEOREM 6.1. Let f WX ! S be a separated morphism of finite type
whose fibres are of dimension 6 n and F a torsion sheaf on X . Then RqfŠFD 0 for
q > 2n.

Thanks to the base change theorem, we can assume that S is the spectrum of a
separably closed field. If dimX D n, then there is an open affine U of X such that
dim.X XU/ < n. We then have an exact sequence 0! FU ! F! FXXU ! 0 and,
by induction on n, it suffices to prove the theorem for X D U affine. Then the method
of fibring by curves (III.4.1) and the base change theorem reduce the problem to the
case of a curve over a separably closed field for which we can deduce the desired
result from Tsen’s theorem (III.3.6).

FINITENESS THEOREM 6.2. Let f WX ! S be a separated morphism of finite type
and F a constructible sheaf on X . Then the sheaves RqfŠF are constructible.

We consider only the case where F is killed by an integer invertible on X .
Proving the theorem comes down to the case where F is a constant sheaf Z=n and

f WX ! S is a smooth proper morphism whose fibres are geometrically connected
curves of genus g. For n invertible on X , the sheaves Rqf�F are then locally free of
finite rank and zero for q > 2 (6.1). Replacing Z=n with the locally isomorphic sheaf
(on S ) �n, we have canonically

R0f��n D �n

R1f��n D Pic.X=S/n
R2f��n D Z=n.

(6.2.1)

THEOREM 6.3 (COMPARISON WITH THE CLASSICAL COHOMOLOGY). Let f WX!
S be a separated morphism of schemes of finite type over C and F a torsion sheaf
on X . We use the exponent an to denote the functor of passing to the usual topologi-
cal spaces, and Rqf an

Š
the derived functors of the direct-image functor with proper

support f an. Then
.RqfŠF/

an
'Rqf an

Š Fan.

In particular, for S D a point and F the constant sheaf Z=n,

H q
c .X;Z=n/'H

q
c .X

an;Z=n/.
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Unwinding using the base change theorem brings us back to case that X is a
smooth proper curve with S D a point and FDZ=n. The relevant cohomology groups
are then zero for q ¤ 0;1;2, and we can invoke GAGA (Serre 1956): indeed, if X is
proper over C, we have �0.X/D�0.X an/ and �1.X/D profinite completion of �1.X an/,
whence the assertion for q D 0;1. For q D 2, we use the Kummer exact sequence and
the fact that, by GAGA again, Pic.X/D Pic.X an/.

THEOREM 6.4 (COHOMOLOGICAL DIMENSION OF AFFINE SCHEMES). LetX be an
affine scheme of finite type over a separably closed field and F a torsion sheaf on X .
Then H q.X;F/D 0 for q > dim.X/.

For the very pretty proof, we refer to SGA 4, XIV, §2 and 3.

6.5 Remark

This theorem is in a way a substitute for Morse theory. Indeed, consider the classical
case, where X is affine and smooth over C and is embedded in an affine space of
type CN . Then, for almost all points p 2 CN , the function “distance to p” on X is
a Morse function and the indices of its critical points are less than dim.X/. Thus X
is obtained by gluing handles of index smaller than dim.X/, whence the classical
analog of (6.4).

V Local acyclicity of smooth morphisms
Let X be a complex analytic variety and f WX !D a morphism from X to the disk.
We denote by Œ0; t � the closed line segment with endpoints 0 and t in D and by �0; t �
the semi-open segment. If f is smooth, then the inclusion

j Wf �1 .�0; t �/ ,! f �1 .Œ0; t �/

is a homotopy equivalence: we can push the special fibreX0Df �1.0/ into f �1.Œ0; t �/.
In practice, for t small enough, f �1.�0; t �/ will be a fibre bundle on �0; t � so that

the inclusion
Xt D f

�1.t/ ,! f �1 .�0; t �/

will also be a homotopy equivalence. We then define the cospecialization morphism
to be the homotopy class of maps

cospWX0 ,! f �1 .Œ0; t �/
��
 � f �1 .�0; t �/

��
 �Xt .

This construction can be expressed in pictorial terms by saying that for a smooth
morphism, the general fibre swallows the special fibre.

Let us assume no longer that f is necessarily smooth (but assume that f �1.�0; t �/
is a fibre bundle over �0; t �). We can still define a morphism cosp� on cohomology
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provided j�ZD Z and Rqj�ZD 0 for q > 0. Under these assumptions, the Leray
spectral sequence for j shows that we have

H
�
�
f �1 .Œ0; t �/ ;Z

� �
�!H

�
�
f �1 .�0; t �/ ;Z

�
and cosp� is the composite morphism

cosp�WH �.Xt ;Z/
�
 �H

�
�
f �1 .�0; t �/ ;Z

� �
 �H

�
�
f �1 .Œ0; t �/ ;Z

�
!H

�
.X0;Z/:

The fibre of Rqj�Z at a point x 2 X0 is computed as follows. We take in the
ambient space a ball B" with centre x and sufficiently small radius ", and for �
sufficiently small, we put E DX \B"\f �1.�t/; it is the variety of vanishing cycles
at x. We have

.Rqj�Z/x
�
 �H q

�
X \B"\f

�1 .�0;�t �/ ;Z
� �
�!H q.E;Z/;

and the cospecialization morphism is defined in cohomology when the varieties of
vanishing cycles are acyclic [H 0.E;Z/D Z and H q.E;Z/D 0 for q > 0], which
can be expressed by saying that f is locally acyclic.

This chapter is devoted to the analogue of this situation for a smooth morphism of
schemes and the étale cohomology. However it is essential in this context to restrict
the coefficients to be torsion of order prime to the residue characteristics. Paragraph
1 is devoted to generalities on locally acyclic morphisms and cospecialization maps.
In paragraph 2, we show that a smooth morphism is locally acyclic. In paragraph 3,
we combine this result with those of the preceding chapter to deduce two applications:
a specialization theorem for cohomology groups (the cohomology of the geometric
fibres of a proper smooth morphism is locally constant) and a base change theorem
for a smooth morphism.

In the following, we fix an integer n, and “scheme” means “scheme on which
n is invertible”. “Geometric point” will always mean “algebraic geometric point”
x W Spec.k/!X with k algebraically closed (II.3.1).

1 Locally acyclic morphisms

1.1. NOTATION. Given a S scheme and a geometric point s of S , we let eSs denote
the spectrum of the strict localization of S at s.

DEFINITION 1.2. We say that a geometric point t of S is a generization of s if it is
defined by an algebraic closure of the residue field of a point ofeSs . We also say that s
is a specialization of t , and we call the S -morphism t !eSs the specialization arrow.

DEFINITION 1.3. Let f WX ! S be a morphism of schemes. Let s be a geometric
point of S , t a generization of s, x a geometric point ofX above s, and eXxt D eXx�eSs t .
Then we say that eXxt is a variety of vanishing cycles of f at the point x.

We say that f is locally acyclic if the reduced cohomology of every variety of
vanishing cycles eXxt is zero:

yH
�
.eXxt ;Z=n/D 0, (1.3.1)

i.e., H 0.eXxt ;Z=n/D Z=n and H q.eXxt ;Z=n/D 0 for q > 0.
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LEMMA 1.4. Let f WX ! S be a locally acyclic morphism and gWS 0! S a quasi-
finite morphism (or projective limit of quasi-finite morphisms). Then the morphism
f 0WX 0! S 0 deduced from f by base change is locally acyclic.

One can show that, in fact, every variety of vanishing cycles of f 0 is a variety of
vanishing cycles of f .

LEMMA 1.5. Let f WX ! S be a locally acyclic morphism. For every geometric
point t of S and corresponding cartesian diagram

Xt X

t S;

"0

f

"

we have "0�Z=nD f �"�Z=n and Rq"0�Z=nD 0 for q > 0.

Let xS be the closure ".t/ and S 0 the normalization of xS in k.t/. Consider the
cartesian diagram

Xt X 0 X

t S 0 S:

i 0 ˛0

f 0 f

i ˛

The local rings of S 0 are normal with separably closed fields of fractions. They are
therefore strictly henselian, and the local acyclicity of f 0 (1.4) gives i 0�Z=nD Z=n,
Rqi 0�Z=nD 0 for q > 0. As ˛ is integral, we then have

Rq"0�Z=nD ˛
0
�R

qi 0�Z=nD ˛
0
�f
0�Rqi�Z=nD f �˛�Rqi�Z=nD f �Rq"�Z=n,

and the lemma follows.

1.6. Given a locally acyclic morphism f WX! S and a specialization arrow t!eSs ,
we will define canonical homomorphisms, called cospecialization maps

cosp�WH �.Xt ;Z=n/!H
�
.Xs;Z=n/

relating the cohomology of the general fibre Xt DX �S t to that of the special fibre
Xs DX �X s.

Consider the cartesian diagram

Xt eX Xs

t eSs s:

"0

f 0

"

deduced from f by base change. According to 1.4, f 0 is still locally acyclic. From
the definition of local acyclicity, we deduce immediately that the restriction to Xs of
the sheaf Rq"0�Z=n is Z=n for q D 0, and 0 for q > 0. By 1.5, we even know that
Rq"0�Z=nD 0 for q > 0. We define cosp� to be the composite

H
�
.Xt ;Z=n/'H �.X;"0�Z=n/!H

�
.Xs;Z=n/ . (1.6.1)
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Variant: Let xS be the closure of ".t/ in eSs , let S 0 be the normalization of xS in
k.t/, and let X 0=S 0 be deduced from X=S by base change. The diagram (1.6.1) can
also be written

H
�
.Xt ;Z=n/'H �.X 0;Z=n/!H

�
.Xs;Z=n/.

THEOREM 1.7. Let S be a locally noetherian scheme, s a geometric point of S , and
f WX ! S a morphism. We assume that

(a) the morphism f is locally acyclic,
(b) for every specialization arrow t !eSs and for all q > 0, the cospecialization

maps H q.Xt ;Z=n/!H q.Xs;Z=n/ are bijective.
Then the canonical homomorphism .Rqf�Z=n/s!H q.Xs;Z=n/ is bijective for all
q > 0.

In proving the theorem, we can clearly assume that S D eSs . We will in fact
show that, for every sheaf of Z=nZ-modules F on S , the canonical homomorphism
'q.F/W.Rqf�.f

�F//s!H q.Xs;f
�F/ is bijective.

Every sheaf of Z=nZ-modules is a filtered inductive limit of constructible sheaves
of Z=nZ-modules (IV.3.3). Moreover, every constructible sheaf of Z=nZ-modules
embeds into a sheaf of the form

Q
i��C�, where .i�W t�! S/ is a finite family of

generizations of s and C� is a free Z=nZ-module of finite rank over t�. After the
definition of the cospecialization maps, condition b) means that the homomorphisms
'q.F/ are bijective if F is of this form.

We conclude with the help of a variant of Lemma 3.6 from Chapter IV:

LEMMA 1.8. Let C be an abelian category in which filtered inductive limits exist.
Let '�WT �! T 0

� be a morphism of cohomological functors, commuting with filtered
inductive limits, defined on C and with values in the category of abelian groups.
Suppose that there exist two subsets D and E of objects of C such that

(a) every object of C is a filtered inductive limit of objects belonging at D,
(b) every object belonging to D is contained in an object belonging to E .

Then the following conditions are equivalent:
(i) 'q.A/ is bijective for all q > 0 and all A 2 ObC.

(ii) 'q.M/ is bijective for all q > 0 and all M 2 E .

The lemma is proved by passing to the inductive limit, using induction on q,
and by repeated application of the five-lemma to the diagram of exact cohomology
sequences deduced from an exact sequence 0! A!M ! A0! 0, with A 2 D,
M 2 E , A0 2 ObC.

COROLLARY 1.9. Let S be the spectrum of a strictly henselian local noetherian
ring and f WX ! S a locally acyclic morphism. Suppose that, for every geometric
point t of S we have H 0.Xt ;Z=n/D Z=n and H q.Xt ;Z=n/D 0 for q > 0 (i.e., the
geometric fibres of f are acyclic). Then f�Z=nD Z=n and Rqf�Z=nD 0 for q > 0.

COROLLARY 1.10. Let f WX!Y and gWY !Z be morphisms of locally noetherian
schemes. If f and g are locally acyclic, then so also is g ıf .
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We may suppose that X , Y , and Z are strictly local and that f and g are local
morphisms. We have to show that, if z is an algebraic geometric point of Z, then
H 0.Xz;Z=n/D Z=n and H q.Xz;Z=n/D 0 for q > 0.

As g is locally acyclic, we have H 0.Yz;Z=n/D Z=n and H q.Yz;Z=n/D 0 for
q > 0. Moreover, the morphism fz WXz! Yz is locally acyclic (1.4) and its geometric
fibres are acyclic because they are varieties of vanishing cycles of f . From 1.9, we
have Rqfz�Z=nD 0 for q > 0. Moreover, fz�Z=n is constant with fibre Z=n over
Yz . We conclude with the help of the Leray spectral sequence of fz .

2 Local acyclicity of a smooth morphism
THEOREM 2.1. Smooth morphisms are locally acyclic.

Let f WX! S be a smooth morphism. The assertion is local for the étale topology
on X and S , so we can assume that X is affine space of dimension d over S . By
passage to the limit, we can assume that S is noetherian, and the transitivity of local
acyclicity 1.10 shows that it suffices to treat the case d D 1.

Let s be a geometric point of S and x a geometric point of X centred at a closed
point of Xs . We have to show that the geometric fibres of the morphism eXx!eSs
are acyclic. We now put S DeSs D Spec.A/ and X D eXx . We have X ' SpecAfT g,
where AfT g is the henselization of AŒT � at the point T D 0 above s.

If t is a geometric point of S , then the fibre Xt is a projective limit of smooth
affine curves over t . ThereforeH q.Xt ;Z=n/D 0 for q > 2 and it suffices to show that
H 0.Xt ;Z=n/D Z=n and H 1.Xt ;Z=n/D 0 for n prime to the residue characteristic
of S . This follows from the next two propositions.

PROPOSITION 2.2. Let A be a strictly henselian local ring, S D Spec.A/, and X D
SpecAfT g. Then the geometric fibres of X ! S are connected.

By passage to the limit, we need only consider the case that A is a strict henseliza-
tion of a Z-algebra of finite type.

Let xt be a geometric point of S , localized at t , and k0 a finite separable extension
of k.t/ in k.xt /. We put t 0 D Spec.k0/ and Xt 0 D X �S Spec.k0/. We have to show
that, for all xt and t 0, Xt 0 is connected (by which we mean connected and nonempty).
Let A0 be the normalization of A in k0, i.e., the ring of elements of k0 integral over
the image of A in k.t/. We have AfT g˝AA0

�
�! A0fT g: the ring on the left is

indeed henselian local (because A0 is finite over A and local) and a limit of étale
local algebras over A0ŒT �D AŒT �˝AA0. The scheme Xt 0 is again the fibre at t 0 of
X 0 D Spec.A0fT g/ on S 0 D Spec.A0/. The local scheme X 0 is normal, therefore
integral; its localization Xt 0 is still integral, a fortiori, connected.

PROPOSITION 2.3. Let A be a strictly henselian local ring, S D Spec.A/, and X D
Spec.AfT g/. Let xt be a geometric point of S and Xxt the corresponding geometric
fibre. Then every finite étale Galois covering of Xxt of order prime to the characteristic
of the residue field of A is trivial.
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LEMMA 2.3.1 (ZARISKI-NAGATA PURITY THEOREM IN DIMENSION 2). LetC be
a regular local ring of dimension 2 and C 0 a finite normal C -algebra, étale over the
open complement of a closed point of Spec.C /. Then C 0 is étale over C .

IndeedC 0 is normal of dimension 2, so prof.C 0/D 2. As prof.C 0/Cdimproj.C 0/D
dim.C /D 2, we conclude that C 0 is free over C . Then the set of points of C where
C 0 is ramified is defined by a single equation, namely, the discriminant. As it does
not contain a point of height 1, it is empty.

LEMMA 2.3.2 (SPECIAL CASE OF ABHYANKAR’S LEMMA). Let V be a discrete
valuation ring, S D Spec.V /, � a uniformizer, � the generic point of S , X irreducible
and smooth over S of relative dimension 1, eX1 a finite étale Galois covering X� of

degree n invertible on S , and S1 D Spec
�
V Œ�1=n�

�
. Denote by a subscript 1 base

change from S to S1. Then, eX1� extends to a finite étale covering of X1.

Let eX1 be the normalization of X1 in eX1�. In view of the structure of the tame
inertia groups of the discrete valuation rings that are localizations of X at generic
points of the special fibre Xs , we see that eX1 is étale over X1 over the generic fibre
and at generic points of the special fibre. By 2.3.1, it is étale everywhere.

2.3.3. We now prove Proposition 2.3. Let t denote the point at which xt is localized.
We are free to replace A with the normalization of A in a finite separable extension
k.t 0/ of k.t/ in k.xt / (cf. 2.2). This, and a preliminary passage to the limit, allow us to
assume that

(a) A is noetherian and normal, and t is the generic point of S .
(b) The finite étale covering of Xxt in question comes from a finite étale covering of

Xt .
(c) In fact, it comes from a finite étale covering eXU of the inverse image XU of a

nonempty open U of S (consequence of (b): t is the limit of the U ).
(d) The complement of U is of codimension > 2 (this at the cost of enlarging k.t/;

apply 2.3.2 to the discrete valuation rings obtained by localizing S at points of
S XU of codimension 1 in S ; there are only finitely many such points).

(e) The finite étale covering eXU is trivial above the subscheme T D 0 (this requires
that k.t/ be further enlarged).

When these conditions are met, we will see that the finite étale covering eXU is
trivial.

LEMMA 2.3.4. Let A be a noetherian normal strictly local henselian ring, U an
open of Spec.A/ whose complement has codimension > 2, V its inverse image in
X D Spec.AfT g/, and V 0 a finite étale covering of V . If V 0 is trivial over T D 0,
then V 0 is trivial.

Let B D � .V 0;O/. As V 0 is the inverse image of V in Spec.B/, it suffices to
show that B is finite and étale over AfT g (hence decomposed as AfT g is strictly
henselian). Let bX D AŒŒT ��, and denote by .�/^ base change from X to bX . The
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scheme bX is faithfully flat over X . Therefore � .bV 0;O/ D B˝AfT gAŒŒT ��, and it
suffices to show that this ring bB is finite and étale over AŒŒT ��.

Let Vm (resp. V 0m) be the subscheme of bV (resp. bV 0) defined by the equation
TmC1 D 0. By hypothesis, V 00 is a trivial finite étale covering of V0, i.e., a sum of n
copies V0. Likewise V 0m=Vm is trivial because finite étale coverings are insensitive to
nilpotents. We deduce a map

'W� .bV 0;O/! lim
 �
m

� .V 0m;O/D .lim �
m

� .V;O//n.

By hypothesis, the complement of U is of depth > 2: we have

� .Vm;O/D AŒT �=.T
mC1/;

and ' is a homomorphism from bB to AŒŒT ��n. Over U , it provides n distinct sections
of bV 0=bV ; it follows that bV 0 is trivial, i.e., a sum of n copies of bV . The complement
of bV in bX still being of codimension > 2 (therefore of depth > 2), we deduce thatbB D AŒŒT ��, whence the lemma.

3 Applications
THEOREM 3.1 (SPECIALIZATION OF COHOMOLOGY GROUPS). Let f WX ! S be
a proper locally acyclic morphism, for example, a proper smooth morphism. Then
the sheaves Rqf�Z=n are constant and locally constructible and for every specializa-
tion arrow t !eSs , the cospecialization arrows H q.Xt ;Z=n/!H q.Xs;Z=n/ are
bijective.

This follows immediately from the definition of the cospecialization morphisms
and the finiteness and base change theorems for proper morphisms.

THEOREM 3.2 (SMOOTH BASE CHANGE). Let

X 0 X

S 0 S

g 0

f 0 f

g

be a cartesian diagram with g smooth. For every torsion sheaf F on X whose torsion
is prime to the residue characteristics of S ,

g�Rqf�F
�
�!Rqf 0�.g

0�F/

By passing to an open covering of X , we may suppose that X is affine, and then
by passing to the limit, that X is of finite type on S . Then f factors into an open
immersion j WX ! xX and a proper morphism xf W xX ! S . From the Leray spectral
sequence for xf ıj and the base change theorem for proper morphism, we deduce that
it suffices to prove the theorem in the case where X ! S is an open immersion.

In this case, if F is of the form "�C , where "W t ! X is a geometric point of X ,
then the theorem is a corollary of 1.5. The general case follows from Lemma 1.8.
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COROLLARY 3.3. Let K=k be an extension of separably closed fields, X a k-
scheme, and n an integer prime to the characteristic of k. Then the canonical map
H q.X;Z=n/!H q.XK ;Z=n/ is bijective for all q > 0.

It suffices to remark that xK is an inductive limit of smooth xk-algebras.

THEOREM 3.4 (RELATIVE PURITY). Consider a diagram

U X Y

S

j

f

i

h

(3.4.1)

with f smooth of pure relative dimensionN , h smooth of pure relative dimensionN �
1, i a closed immersion, and U DX XY . For n prime to the residue characteristics
of S , we have

j�Z=nD Z=n
R1j�Z=nD Z=n.�1/Y
Rqj�Z=nD 0 for q > 2.

In these formulas, Z=n.�1/ denotes the Z=n-dual of �n. If t is a local equation
for Y , then the isomorphism R1j�Z=n' Z=n.�1/Y is defined by the map

aWZ=n!R1j��n

sending 1 to the class of the �n-torsor of nth roots of t .
The question is local. This allows us to replace .X;Y / with a locally isomorphic

pair, for example,

A1T P1T T

T

j

g
f

i

with T D An�1S and i the section at infinity. Corollary 1.9 applies to g, and shows
that Rqg�Z=nD Z=n for q D 0 and 0 for q > 0. For f , we have moreover (6.2.1)

Rqf�Z=nD Z=n; 0; Z=n.�1/; 0 for q D 0; 1; 2; > 2:

It is easily checked that j�Z=nD Z=n, and that the Rqj�Z=n are concentrated
on i.T / for q > 0. The Leray spectral sequence

E
pq
2 DR

pf�R
qj�Z=n H) RpCqg�Z=n

therefore simplifies to

i�Rqj�Z=n 0 : : :

i�R1j�Z=n 0 : : :

Z=n 0 Z=n.�1/ 0 : : : :

d2
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Rqj�Z=n D 0 for q > 2, and R1j�Z=n is the extension by zero of a locally free
sheaf of rank one over T (isomorphic, via d2, to Z=n.�1/). The map a defined above,
being injective (as can be checked fibre by fibre), is an isomorphism, which completes
the proof of Theorem 3.4.

3.5. We refer to SGA 4, XVI, §4, §5 for the proofs of the following applications of
the acyclicity theorem (2.1).

3.5.1. Let f WX ! S be a morphism of schemes finite type over C and F a con-
structible sheaf on X . Then

.Rqf�F/
an
�Rqf an

� .F
an/

(cf. IV.6.3; in ordinary cohomology, it is necessary to assume that F is constructible
and not just torsion).

3.5.2. Let f WX ! S be a morphism of schemes of finite type over a field k of
characteristic 0 and F a sheaf on X . If F is constructible, then so also are the sheaves
Rqf�F.

The proof uses resolution of singularities and Theorem 3.4. It is generalized to the
case of a morphism of finite type of excellent schemes of characteristic 0 in SGA 4,
XIX, 5. Another proof, independent of resolution, is given in SGA 41

2
Th. Finitude,

1.1. It applies to a morphism of schemes of finite type over a field or over a Dedekind
ring.

VI Poincaré duality

1 Introduction
Let X be an oriented topological manifold of pure dimension N , and assume that X
admits a finite open covering U D .Ui /16i6K such that all nonempty intersections of
the opens Ui are homeomorphic to balls. For such a manifold, the Poincaré duality
theorem can be described as follows.

A. The cohomology of X is the Čech cohomology of the covering U . This is the
cohomology of the complex

0! ZA0 ! ZA1 ! �� � (1)

where
Ak D f.i0; : : : ; ik/ W i0 < � � �< ik and Ui0 \� � �\Uik ¤¿g:

B. For aD .i0; : : : ; ik/ 2 Ak , let Ua D Ui0 \� � �\Uik and let ja be the inclusion
of Ua into X . The constant sheaf Z on X admits the (left) resolution

� � �

M
a2A1

jaŠZ
M
a2A0

jaŠZ 0

Z.

(2)
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The cohomology with compact support H �c .X;jaŠZ/ is nothing but the cohomology
with proper support of the (oriented) ball Ua:

H i
c .X;jaŠZ/D

(
0 if i ¤N
Z if i DN .

The spectral sequence of hypercohomology for the complex (2) and cohomology
with proper support, show therefore that H i

c .X/ is the .i �N/th cohomology group
of the complex

� � � ! ZA1 ! ZA0 ! 0. (3)

This complex is the dual of the complex (1), whence Poincaré duality.
The essential points of this construction are

(a) the existence of a cohomology theory with proper support:
(b) the fact that every point x of a manifold X of pure dimension N has a funda-

mental system of open neighbourhoods U for which

H i
c .U /D

(
0 for i ¤N ,
Z for i DN .

(4)

Poincaré duality in étale cohomology can be constructed on this model. For X
smooth of pure dimension N over an algebraically closed field k, n invertible on X ,
and x a closed point of X , the key point is to calculate the projective limit over the
étale neighbourhoods U of x,

lim
 �

H i
c .U;Z=n/D

(
0 if i ¤ 2N
Z=n if i D 2N .

(5)

Just as when working with topological manifolds we have to directly treat first
the case of an open ball (or simply the interval .0;1�), here we must directly treat first
the case of the curves (§2). The local acyclicity theorem for smooth morphisms then
allows us to reduce the general case (5) to this particular case (§3).

The isomorphisms (4) and (5) are not canonical: they depend on the choice of an
orientation of X . For n invertible on a scheme X , �n is a sheaf of free Z=n-modules
of rank one. We denote by Z=n.N / its N th tensor power (N 2 Z). The intrinsic form
of the second line of (5) is

lim
 �

H 2N
c .U;Z=n.N //D Z=n, (50)

and Z=n.N / is called the orientation sheaf of X . The sheaf Z=n.N / is constant and
isomorphic to Z=n, and so we can move the sign N and write instead

lim
 �

H 2N
c .U;Z=n/D Z=n.�N/. (500)

Now Poincaré duality takes the form of a perfect duality, with values in Z=n.�N/,
between H i .X;Z=n/ and H 2N�i

c .X;Z=n/.



VI POINCARÉ DUALITY 40

2 The case of curves

2.1. Let xX be a smooth projective curve over an algebraically closed field k, and let
n be invertible on xX . When xX is connected, the proof of (III.3.5) gives us a canonical
isomorphism

H 2. xX;�n/D Pic. xX/=nPic. xX/ Z=n:deg
�

Let D be a reduced divisor on xX and X D xX XD,

X xX D:
j i

The exact sequence
0! jŠ�n! �n! i��n! 0

gives us an isomorphism

H 2
c .X;�n/DH

2. xX;jŠ�n/ H 2. xX;�n/ Z=n.� �

becauseH i . xX;i��n/DH
i .D;�n/D 0 for i > 0. When xX is disconnected, we have

similarly
H 2
c .X;�n/' .Z=n/

�0.X/;

and we define the trace morphism to be the sum

TrWH 2
c .X;�n/' .Z=n/�0.X/ Z=n.˙

THEOREM 2.2. The form Tr.a[b/ identifies each of the two groups H i .X;Z=n/
and H 2�i

c .X;�n/ with the dual (with values in Z=n) of the other.

Transcendental proof. If xX is a smooth projective curve over the spectrum S of a
discrete valuation ring and j WX ,! xX is the inclusion of the complement of a divisor
D étale over S the cohomologies (resp. the cohomologies with proper support) of the
special and generic geometric fibres of X=S are “the same,” i.e., the fibres of locally
constant sheaves on S . This can be deduced from the similar facts for xX and D using
the exact sequence 0! jŠZ=n! Z=n! .Z=n/D! 0 (for cohomology with proper
support) and the formulas j�Z=nD Z=n, R1j�Z=n' .Z=n/D.�1/, Rij�Z=nD 0
(i > 2) (for ordinary cohomology) (V.3.4).

This principle of specialization reduces the general case of 2.2 to the case where
k has characteristic 0. By V.3.3, we can then take k D C. Finally, for k D C, the
groups H �.X;Z=n/ and H �c .X;�n/ coincide with the groups of the same name,
calculated for the classical topological space Xcl and, via the isomorphism Z=n!
�nWx 7! exp

�
2�ix
n

�
, the trace morphism becomes identified with “integration over

the fundamental class,” so that 2.2 results from Poincaré duality for Xcl .

2.3. Algebraic proof
For a very economical proof, see SGA 41

2
, Dualité §2. Here is another, tied to the

autoduality of the Jacobian.
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We return to the notation of 2.1. We may suppose — and we do suppose — that
X is connected. The cases i D 0 and i D 2 being trivial, we suppose also that i D 1.
Define DGm by the exact sequence

0! DGm!Gm! i�Gm! 0

(sections of Gm congruent to 1 modD). The group H 1. xX;DGm/ classifies the
invertible sheaves on xX trivialized overD. It is the group of points of PicD. xX/, which
is an extension of Z (the degree) by the group of points of Rosenlicht’s generalized
Jacobian Pic0D. xX/ (corresponding to the conductor 1 at each point of D). This last is
itself an extension of the abelian variety Pic0. xX/ by the torus GDm=.Gm diagonal/.

(a) The exact sequence 0! jŠ�n! DGm
x 7!xn

����! DGm! 0 provides an isomor-
phism

H 1
c .X;�n/D Pic0D. xX/n. (2.3.1)

(b) The map sending x 2 X.k/ to the class of the sheaf invertible O.x/ on xX
trivialized by 1 over D comes from a morphism

f WX ! PicD. xX/.

For the rest, we fix a base point 0 and we put f0.x/ D f .x/� f .0/. For a
homomorphism vWPic0D. xX/n! Z=n, let xv 2H 1

�
Pic0D. xX/;Z=n

�
denote the image

by v of the class in H 1
�
Pic0D. xX/;Pic0D. xX/n

�
of the torsor defined by the extension

0 Pic0D. xX/n Pic0D. xX/ Pic0D. xX/ 0
n

Geometric class field theory (as explained in Serre 1959) shows that the map v 7!
f �0 .xv/:

Hom
�
Pic0D. xX/n;Z=n

�
!H 1.X;Z=n/ (2.3.2)

is an isomorphism. To deduce (2.2) from (2.3.1) and (2.3.2), it remains to show that

Tr
�
u[f �0 .xv/

�
D�v.u/. (2.3.3)

This compatibility is proved in SGA 41
2

, Dualité, 3.2.4.

3 The general case
Let X be a smooth algebraic variety of pure dimension N over an algebraically closed
field k. To state the Poincaré duality theorem, we must first define the trace morphism

TrWH 2N
c .X;Z=n.N //! Z=n.

The definition is a painful unwinding starting from the case of curves SGA 4. XVIII,
§2. We then have

THEOREM 3.1. The form Tr.a[b/ identifies each of the groups H i
c .X;Z=n.N //

and H 2N�i .X;Z=n/ with the dual (with values in Z=n) of the other.
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Let x 2X be a closed point and Xx the strict localization of X at x. We suppose
that, for U running over the étale neighbourhoods of x,

H
�

c .Xx;Z=n/D lim
 �

H
�

c .U;Z=n/. (1)

It would be better to consider rather the pro-object “ lim
 �

”H �c .U;Z=n/ but, the groups
in play being finite, the difference is inessential. As we endeavored to explain in the
introduction, (3.1) follows from

H i
c .Xx;Z=n/D 0 for i ¤ 2N and

TrWH 2N
c .Xx;Z=n.N //

�
�! Z=n is an isomorphism.

(2)

The case N D 0 is trivial. When N > 0, let Yy denote the strict localization at a
closed point of a smooth scheme Y of pure dimension N �1, and let f WXx ! Yy
be an essentially smooth morphism (of relative dimension one). The proof uses the
Leray spectral sequence for cohomology with proper support for f to reduce the
question to the case of curves. The “cohomology with proper support” considered
being defined by limits (1), the existence of such a spectral sequence poses various
problems of passage to the limit, treated with too much detail in SGA 4, XVIII. Here
we are content to calculate. For every geometric point z of Yy , we have

.RifŠZ=n/z DH i
c .f
�1.z/;Z=n/.

The geometric fibre f �1.z/ is a projective limit of smooth curves over an algebraically
closed field. It satisfies Poincaré duality. Its ordinary cohomology is given by the
local acyclicity theorem for smooth morphisms,

H i .f �1.z/;Z=n/D

(
Z=n for i D 0
0 for i > 0.

By duality, we have

H i
c .f
�1.z/;Z=n/D

(
Z=n.�1/ for i D 2
0 for i ¤ 2,

and the Leray spectral sequence becomes

H i
c .Xx;Z=n.N //DH

i�2
c

�
Yy ;Z=n.N �1/

�
.

We conclude by induction on N .

4 Variants and applications
It is possible to construct, in étale cohomology, a “duality formalism” (D functors
Rf�, RfŠ, f �, Rf Š, satisfying various compatibilities and adjunction formulas)
parallel to that existing in coherent cohomology. In this language, the results of the
preceding paragraph can be rewritten as follows: if f WX ! S is smooth of pure
relative dimension N and S D Spec.k/ with k algebraically closed, then

Rf ŠZ=nD Z=nŒ2N �.N /.

This statement is valid without hypothesis on S . It admits the
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COROLLARY 4.1. If f is smooth of pure relative dimension N , and the sheaves
RifŠZ=n are locally constant, then the sheaves Rif�Z=n are also locally constant,
and

Rif�Z=nD Hom
�
R2N�ifŠZ=n.N /;Z=n

�
.

In particular, under the hypotheses of the corollary, the sheaves Rif�Z=n are
constructible. Starting from that, we can show that, if S is of finite type over the
spectrum of a field or Dedekind ring, then, for every morphism of finite type f WX!S

and every constructible sheaf F on X , the sheaves Rif�F are constructible SGA 41
2

,
Th. finitude, 1.1.
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