
AZUMAYA ALGEBRAS (GG SEMINAR 2021 SPRING)

JINBO REN

This note is based on my 4 1
2 talks on March-May 2021 in the Galois-Grothendieck

seminar in the University of Virginia organized by Prof. Andrei Rapinchuk. The
aim of this seminar in the academic year 2020-2021 is to study Brauer groups. In
this note, we are using several standard references as in the end of this file.

In this note, R will denote a commutative ring with 1.
Our goal is to generalize the notion of Central Simple Algebras (CSA) to

similar objects over a commutative ring R. The obvious formulation “Central plus
simple R-algebra” is not a good candidate. Because the center of a simple ring is
necessarily a field, so this will not give us anything new. We need other formulation.

1. Definition of Azumaya Algebras

We will form a group out of the set of equivalence classes of Azumaya algebras
over a fixed commutative ring R.

Let A be an R-algebra. Let ϵ : R→ A be the R-algebra structure map of A.

Definition 1.1. Let Ae : = A⊗RA
o, where Ao denotes the opposite algebra of A.

The R-algebra Ae is called the enveloping algebra of A.

There is a natural R-algebra homomorphism ψ : Ae −→ EndR(A) defined by
a ⊗ αo 7→ (x 7→ axα) and extend linearly. This map is called the enveloping
homomorphism of A. Here EndR(A) stands for the algebra consisting of all
R-endomorphisms as R-modules (NOT R-algebras).

Definition 1.2. An R-module A is called faithfully projective if it is finitely
generated, projective and faithful as an R-module. An R-algebra A is called an
Azumaya Algebra if

• A is a faithfully projective R-module.
• The map ψ : Ae −→ EndR(A) defined above is an isomorphism.

Example 1.3. If R = k be a field, then a finitely generated k-algebra A is Azumaya
if and only if A is central simple.

⇐: Suppose A is central simple over k. The algebra A is a finite dimensional
vector space over k, hence free (thus projective) and faithful. Since A,Ao are both
central simple, so is A ⊗k A

o (recall that we defined the group law of the Brauer
group Br(k) in such way). Thus ψ is injective. Since dimk(A⊗Ao) = (dimk A)

2 =
dimk Endk(A), ψ is also surjective. Therefore ψ is an isomorphism.

⇒: Let A be an Azumaya k-algebra. In this case, a projective module is always
free. Thus A ≃ kn as a k-module for some n ∈ N. So

Ae ≃ Endk(A) ≃Mn(k),
1
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which is a central simple algebra. Recall that A1⊗kA2 is a Central Simple Algebra
if and only if both A1 and A2 are central simple. We conclude the argument.

As an equivalent description, Auslander and Goldman defined “Azumaya alge-
bra” to be both central and separable in their seminal paper in 1960 [1]. See also
the book by F. DeMeyer and E. Ingraham [2]. Being technical itself (separable
means A is a projective Ae-module), separable algebras will not discussed in detail
here, but we want to emphasize one important property.

Proposition 1.4. Azumaya algebras are central, i.e. Z(A) = R. Here we identify
R with the image R · 1 of the algebra-structure map ϵ : R→ A. (Since A is faithful,
this ϵ is injective.)

Proof. Consider the trace ideal of A in R (which is a two-sided ideal)

TR(A) = ⟨f(a); f ∈ HomR(A,R), a ∈ A⟩.
Since A is faithfully projective, there exists a dual basis {(fi, ai); 1 ≤ i ≤ n}, i.e.
for any a ∈ A,

a =

n∑
i=1

fi(a)ai.

This implies that TR(A)A = A, by Nakayama’s lemma, R = TR(A) + AnnR(A) = TR(A).
In other words, the trace ideal is all ofR (this meansA is a generator (progenerator)
over R in the context of Morita’s theorem).

(Remark: In fact, the trace ideal here is always principal.)

Claim. R : = R · 1 is an R-module direct summand of A.
In order to verify the existence of a left inverse for ε, it suffices to show that

HomR(A,R) → HomR(R,R), g 7→ g ◦ ε
is onto. Let m be any maximal ideal of R, then R/m⊗RA = A/mA is a progenerator
of the field R/m. In other words, A/mA is a non-zero finite dimensional vector
space over R/m.

Since 0 → R/m → A/mA is split exact over R/m, the map

HomR/m(A/mA,R/m) → HomR/m(R/m, R/m)

is onto. Therefore

R/m⊗R HomR(A,R) → R/m⊗R HomR(R,R)

is also onto. It remains to apply Lemma 1.5 below to get a section.
Let A = R ⊕ P be such a direct sum decomposition. Then for any p0 ∈ P\{0},

p0 ⊗ 1 and 1⊗ p0 are different elements in Ae ≃ EndR(A). In fact, by the universal
property of the tensor product,

HomR(A
e, A) ≃ BilR(A×Ao, A).

So it suffices to find a bilinear map Φ: A× Ao → A such that Φ(1, p0) ̸= Φ(p0, 1).
Recall that any element in A has a unique expression r + p where r ∈ R, p ∈ P .
Since x 7→ xp0 and x 7→ p0x are two different maps, the bilinear function

Φ: (r + p, r′ + p′) 7→ p(r′ + p′)

works.
□
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Lemma 1.5. Let M,N be R-modules, with N finitely generated. Then for f ∈
HomR(M,N), f is onto if and only if for any maximal ideal m of R, the induced
map f̄ : M/mM → N/mN is onto.

Proof. Let C be the cokernel of f . Then for any m ∈ Spm(R), we have C = mC.
Using Nakayama’s lemma for a maximal ideal m which contains AnnR(C), we have
C = 0. □

2. Constructing Brauer group over a commutative ring

Theorems about endomorphisms algebras of projective R-modules can often be
reduced to similar and much simpler questions about endomorphism algebras of
free R-modules. Concerning the latter, the following result is standard whose proof
needs nothing but linear algebra.

Proposition 2.1. For a commutative ring R, we have

(1) Mm(R)⊗Mm′(R) ≃Mmm′(R).

(2) The map w : EndR(R
m) ⊗ EndR(R

m′
) → EndR(R

m ⊗ Rm′
) defined by

f ⊗ g 7→ (x ⊗ y 7→ f(x) ⊗ g(y)) is an isomorphism. Notation: we will not
distinguish f ⊗ g and its image under w.

The result also holds if we replace free modules by projective modules.

Proposition 2.2. Let P,Q be finitely generated projective R-modules, then the map
w : EndR(P )⊗EndR(Q) → EndR(P ⊗Q) defined by f ⊗g 7→ (x⊗y 7→ f(x)⊗g(y))
is an isomorphism.

Before giving the proof, recall the following construction which generalizes matrix
representation of a linear transformation.

Lemma 2.3. Let E1, E2, ..., En;F1, F2, ..., Fm be R modules and

φ :

n⊕
i=1

Ei →
m⊕
j=1

Fj

be an R-module homomorphism. Then φ can be represented by a unique matrix

M(φ) =

 φ11 φ12 · · · φ1n

...
...

. . .
...

φm1 φ12 · · · φmn


where φij ∈ HomR(Ei, Fj).

If Ei, Fj are both free of rank 1, this is linear algebra since φij are giving by
x 7→ aijx, aij ∈ R.

Proof. In fact, φij is equal to the composition

Ei →
n⊕

k=1

Ek →
m⊕
l=1

Fl → Fj .

□
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In particular, for R-modules M and N , we have

i : End(M) → End(M ⊕N), f 7→ (x 7→ (f(πM (x)),

and

j : End(M ⊕N) → End(M), g 7→ (y 7→ πM (g(y))).

The composition j ◦ i is the identity, so i is injective and j is surjective.

Proof of Proposition 2.2. Let P ′, Q′ be finitely generated projective modules such
that P ⊕ P ′ ≃ Rm and Q⊕Q′ ≃ Rn. The following diagram commutes

EndR(P )⊗ EndR(Q) //

��

EndR(P ⊗R Q)

��
EndR(R

m)⊗ EndR(R
n)

OO

// EndR(Rm ⊗Rn)

OO

The bottom arrow is bijective, so is the top arrow. □

Just as matrix algebras Ml(k) represents the neutral element [1] ∈ Br(k), we
expect EndR(P ) for a faithfully projective R-module plays a similar role. First, we
have to verify that it is an Azumaya algebra itself.

Proposition 2.4. If P is a faithful projective R-module then EndR(P ) is an Azu-
maya algebra.

Proof. Since P is finitely generated projective, there is an R-module Q such that
P ⊕Q ≃ Rn. Consider homomorphisms

EndR(P ) → EndR(P ⊕Q) → EndR(P )

whose composition is the identity, we see that EndR(P ) is finitely generated pro-
jective.

If r ∈ Ann(EndR(P )), then it annihilates the identity map. So r = 0, which
implies the faithfulness EndR(P ).

To verify condition (2) in the definition of Azumaya algebra, consider the fol-
lowing commutative diagram.

EndR(P )⊗ EndR(P )
o ΨP //

��

EndR(EndR(P ))

��
EndR(P ⊕Q)⊗ EndR(P ⊕Q)o

OO

ΨP⊕Q // EndR(EndR(P ⊕Q))

OO

Thus it suffices to show that ΨP⊕Q is an isomorphism. Let e1, . . . , en be the natural
R-basis for P ⊕Q ≃ Rn, and let Eij ∈ EndR(R

n) such that Eij(ek) = δikej . Then
{Eij ; 1 ≤ i, j ≤ n} is an R-basis for EndR(R

n), and {Eij ⊗Eo
kl; 1 ≤ i, j, k, l ≤ n} is

an R-basis for EndR(R
n)⊗ EndR(R

n)o. We also have, by definition of ΨP⊕Q,

ΨP⊕Q(Eij ⊗ Eo
kl)(Est) = EijEstEkl = δjsδtkEil.

Thus ΨP⊕Q maps basis to basis, so it is an isomorphism. □

The next result tells us that ⊗R gives the operation of the Brauer group.

Proposition 2.5. If A and B are Azumaya algebras, so is A⊗R B.
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Proof. The following diagram is commutative

(A⊗B)⊗ (A⊗B)o
ΨA⊗B−→ End(A⊗B)

↑ ↑w
(A⊗Ao)⊗ (B ⊗Bo)

ΨA⊗ΨB−→ End(A)⊗ End(B)

Here ψA (resp. ψB) denotes the isomorphism coming from the fact A (resp. B) is
an azumaya algebra, w is the isomorphism given by Proposition 2.2. The left side
vertical isomorphism comes from the commutativity of the tensor product and the
fact that (A⊗B)o = Ao ⊗Bo. This shows that ψA⊗B is an isomorphism. □

Definition 2.6. Let A and B be Azumaya algebras over R. We write A ∼ B if
there exists faithfully projective R-modules P and Q such that

A⊗ End(P ) ≃ B ⊗ End(Q).

This is an equivalence relation. The only thing to check is transitivity, so suppose
that A ∼ B and B ∼ C for Azumaya algebras A,B and C, then there exist faithfully
projective R-modules P, P ′, Q and Q′ such that

A⊗ End(P ) ≃ B ⊗ End(Q), B ⊗ End(P ′) ≃ C ⊗ End(Q′).

Then
A⊗ End(P ⊗ P ′) ≃ C ⊗ End(Q⊗Q′).

Remark 2.7. When R = k is a field, and A,B are Central Simple Algebras, then
the ∼ is exactly the equivalence relation to define Br(k). In fact, if [A] = [B] ∈
Br(k), then there is a central division algebra D over k such that A ≃ Mn(D) ≃
D ⊗k Mn(k) and B ≃Mm(D) ≃ D ⊗k Mm(k). We see that

A⊗k Endk(k
m) ≃ A⊗k Mm(k) ≃ B ⊗k Mn(k) ≃ B ⊗k Endk(k

n).

For another direction, let D,D′ be central division algebras such that A ≃Mn(D) ≃
D ⊗k Mn(k) and B ≃Mm(D′) ≃ D′ ⊗k Mm(k). If

A⊗k Endk(k
s) ≃ B ⊗k Endk(k

t)

then sn = tm and D ≃ D′.

Definition 2.8. Define the Brauer set

Br(R) : = {Azumaya algebras over R}/ ∼ .

We denote by [A] the equivalence class of A under this ∼.

Now let us give an abelian group structure of Br(R).

(1) Group operation is the tensor product. This is well-defined. Suppose A1 ∼
A2 and B1 ∼ B2. Suppose Ai ⊗ End(Pi) ≃ Bi ⊗ End(Qi) for i = 1, 2, then
(A1 ⊗B1)⊗ End(P1 ⊗Q1) ≃ (A2 ⊗B2)⊗ End(P2 ⊗Q2).

(2) Associativity and commutativity come from those properties of ⊗.
(3) Identity element is [R]. For any Azumaya algebra, [A][R] = [A⊗R] = [A].

(More generally, for any faithfully projective R-module P , we have End(P )
corresponds to the identity element.)

(4) Inverse element. For any Azumaya algebra A, we have [A][Ao] = [A⊗Ao] =
[End(A)] = [1].

The next proposition gives a description of equivalence relation which is more sim-
ilar to the one in defining Brauer groups over a field.
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Proposition 2.9. For [A], [B] ∈ Br(R), we have

(1) [A] = [1] if and only if A ≃ EndR(P ) for some faithfully projective R-
module P .

(2) [A] = [B] if and only if A⊗R B
o ≃ EndR(Q) for some faithfully projective

R-module Q.

The proof needs Morita’s theory.

3. Functoriality of Br(·)

Our goal is to show that

Br(·) : CommRing −→ AbGp

is a covariant functor. The key ingredient of the demonstration is to understand
how Azumaya algebras behave under Base Change. Suppose that f : R → S is a
commutative ring homomorphism which makes S to be an R-algebra. Then if A
is an R-algebra, A⊗R S becomes an S-algebra. An obvious candidate for Br(f) is
[A] 7→ [A ⊗R S]. We need to show that this is well defined. Most efforts will be
spent to verify that (A⊗R S)⊗S (A⊗R S)

o → EndS(A⊗R S) is an isomorphism.

Lemma 3.1. If A is a faithfully projective R-algebra and S is a commutative R-
algebra, then EndR(A)⊗ S ≃ EndS(A⊗R S).

Proof. We define an S-algebra homomorphism

φA : EndR(A)⊗ S → EndS(A⊗R S), f ⊗ s 7→ (a⊗ s′ 7→ f(a)⊗ ss′).

As A is faithfully projective, there is an R-module B such that A ⊕ B ≃ Rn. We
then have the following commutative diagram:

EndR(A)⊗R S
φA //

��

EndS(A⊗R S)

��
EndR(R

n)⊗R S

OO

φRn // EndS(Rn ⊗R S)

OO

It suffices to show that φRn is an isomorphism, i.e. free case. Let e1, ..., en be the
natural basis for Rn, then ei ⊗R 1 is a natural basis for Rn ⊗R S. Take Eij ∈
EndR(R

n) such that Eij(ek) = δikej so that Eij is a basis for EndR(R
n). Thus

Eij ⊗ 1(1 ≤ i, j ≤ n) form a basis for EndR(R
n)⊗R S. Notice that

φRn(Eij ⊗R 1) = (ek ⊗R 1 7→ δikej ⊗R 1),

i.e. φRn maps a basis to a basis, thus it is an isomorphism. □

Now we can show that Br(f) is well-defined.

Proposition 3.2. If A is an Azumaya R-algebra and S is a commutative R-algebra,
then A⊗R S is an Azumaya S-algebra.

Proof. In fact, “being faithfully projective” is preserved under base change. Let B
be an R-module such that A ⊕ B ≃ Rn, then (A ⊗R S) ⊕ (B ⊗R S) ≃ Sn, thus
A ⊗R S is projective. Recall that Ann(M) ∩ Ann(N) = Ann(M ⊕ N), we obtain
that A⊕R S is faithful.

(It is important to notice that if A is faithful, then A ⊗R S is not necessarily a
faithful S-module. For example, R = Z, A = 2Z and S = Z/2Z.)
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Next it suffices to observe the following commutative diagram.

(A⊗R S)⊗S (A⊗R S)
o

ΨA⊗RS−−−−−→ EndS(A⊗R S)y x
(A⊗R A

o)⊗R S −−−−→ EndR(A)⊗R S

□

Now, let us prove the functoriality.

Theorem 3.3. We have Br(·) is a functor.

Proof. Suppose A ∼ A′ as R-algebras. Then there exists faithfully projective R-
modules P, P ′ such that

A⊗R EndR(P )) ≃ A′ ⊗R EndR(P
′).

Thus

(A⊗R S)⊗ S(EndR(P )⊗ S) ≃ (A′ ⊗R S)⊗ S(EndR(P
′)⊗ S).

This implies that A ⊗R S ∼ A′ ⊗ S, i.e. Br(f) : Br(R) → Br(S) is well-defined.
Now we verify that Br(f) is a group homomorphism. Suppose [A], [B] ∈ Br(R),
then [A][B] = [A⊗R B]. It remains to observe that

(A⊗R B)⊗R S = (A⊗R S)⊗S (B ⊗R S).

□

4. Quaternion algebras: first examples of Azumaya algebras

Example 4.1. Let H = R ⊕ Ri ⊕ Rj ⊕ Rk be the usual real quaternion algebra.
Then there is no subring A of H such that (1) A is free of rank four over Z, (2)
A ⊗Z R = H, (3) A is an Azumaya algebra over Z. Well, suppose the contrary,
then A ⊗Z F2 ≃ M2(F2), LHS is commutative, but not RHS, a contradiction. In
particular, the following algebras are NOT Azumaya over Z.

• A = Z⊕Zi⊕Zj⊕k = Z[i, j, k], i.e. the Z-algebra of “integer quaternions”;

• A = Z[i, j, k, 1+i+j+k
2 ] (as an maximal order, a more natural object).

In fact, Br(Z) ≃ {0}.

Example 4.2. Let R be a commutative ring in which 2 is invertible, then the
algebra of R-quaternions is an Azumaya algebra. That is Q : = R⊕Ri⊕Rj ⊕Rk
with i2 = j2 = k2 = −1, ij = k = −ji. The isomorphism can be obtained explicitly.
For example, 1

4 (1⊗1−i⊗i−j⊗j−k⊗k) maps to E11 matrix (under the enveloping
homomorphism). Thus the map is surjective, hence bijective due to the easy lemma
below.

Lemma 4.3. Let M be a finitely generated R-module, then any surjective endo-
morphism of M is an automorphism.

Proof. Let θ be such a surjection. View M as an R[X]-module via X ·m = θ(m).
Then (X)M =M . By Nakayama’s lemma, there exists p(X)X = Xp(X) ∈ XR[X]
such that (1− p(X)X)M = (1−Xp(X))M = 0. So p(θ) is an inverse of θ.

□
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5. Azumaya algebras are separable

Definition 5.1. An R-algebra A can be viewed an an Ae-module via (a1 ⊗ ao2a) =
a1aa2. The algebra A is called separable if A is a projective Ae-module.

Theorem 5.2. If A is Azumaya over R, then A is separable.

Proof. It suffices to show that A is a projective EndR(A)-module. We have already
seen that A = R ⊕ P as R-modules. Take R-module homomorphism g : A → R
such that g(r + p) = r. Then the surjection

EndR(A) → A, f 7→ f(1)

has an EndR(A)-module section, namely

a 7→ (a′ 7→ g(a′)a).

Thus A is projective EndR(A)-module. □

Remark 5.3. Up to now we have verified that all Azumaya algebras are central and
separable. The converse is also true but the proof is technical, so will be skipped.

6. Brauer group of a local ring

In this section, let (R,m, k = R̄) be a commutative Noetherian local ring.
In this situation, the definition of Azumaya Algebras is simpler, i.e. an R-

algebra A is Azumaya if it is free of finite rank as an R-module and the enveloping
homomorphism is an ismomorphism.

When defining the Brauer group, the equivalence relation is just the same as the
one of Central Simple Algebras.

Remark 6.1. Azumaya himself only defined the Azumaya algebras over local rings,
and Auslander and Goldman generalized this to arbitrary commutative rings.

Proposition 6.2 (Skolem-Noether). Let A be an Azumaya R-algebra, then any
automorphism of A is inner, that is, of the form a 7→ u−1au for some unit u in A.

Proof. Let φ : A → A be such an automorphism. We can realize A as an Ae =
A⊗R A

o-module in two different ways

(a1 ⊗ ao2)a = a1aa2 and (a1⊗o
2)a = φ(a1)aa2.

We denote the resulting Ae-modules to be A and A′ respectively. Both A′ : =
A′ ⊗R R/m and A are simple Ae-modules. Since Ae = A ⊗R/m Ao is a finite

dimensional simple algebra over k = R/m, there is only one simple Ae-module up
to isomorphism.

To see this, let Ae = Mm(P ) where P is a division algebra over k. Notice that
the category of Ae-modules is equivalent to the category of P -modules via

M 7→M⊕n and N 7→ E11N.

Also observe that every module over a division algebra is free.
So we have an Ae-module isomorphism

η : A→ A′.

By separability, A is a projective Ae-module. Now the map

A→ A→ A′
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lifts to an Ae-module homomorphism η : A→ A′. The surjectivity of η implies that
η(A)+mA′ = A′, now Nakayama’s lemma tells us η is also surjective. Let u = η(1).
Then for any a ∈ A, we have

η(a) = η(a1) = η((a⊗ 1)1) = φ(a)u,

and also

η(a) = η(1a) = η((1⊗ a)1) = ua

Thus φ(a)u = ua. It remains to check that u is a unit, in fact, by the surjectivity
of η, there is b ∈ A such that η(b) = 1, then φ(b) = u−1. □

Corollary 6.3. The automorphism group ofMn(R) (as an R-algebra) is PGLn(R) =
GLn(R)/R

×.

Next we talk about the existence of a “good splitting” of the Azumaya algebra.

Theorem 6.4 (Hensel’s lemma). Let (R,m) = (Ov, ϖOv) or (F [[X]], XF [[X]]).
Let f(X) ∈ R[X], if f̄ ∈ k[X] factors as f̄ = g0h0 as a product of two monic
coprime polynomials. Then there exist g, h ∈ R[X], both monic such that f =
gh, ḡ = g0, h̄ = h0

A local ring (R,m) satisfying the above lemma is called Henselian ring or
Hensel ring. It can be shown that if R is a complete local ring, i.e.

R ≃ R̂m : = lim
←−
i

R/mi,

then R is Henselian.

Lemma 6.5. Let R be a Henselian ring, then any finite local R-algebra B is also
Henselian. The same for every non-zero quotient ring R/J .

Proposition 6.6. Let R be a Henselian ring. Then the map Br(R) → Br(k), [A] 7→
[A⊗R k] is injective.

Proof. Let [A] be in the kernel of the above map. Then A is an Azumaya algebra
over R such that there is an isomorphism Ā → Mn(k). Let ε ∈ Ā be the unique
element which maps to E11 ∈ Mn(k). Then ε is idempotent, i.e. ε2 = ε. Let

ε =
∑l

i=1 ai ⊗ yi =
∑l

i=1 aiyi ⊗ 1. Then a : =
∑l

i=1 aiyi ∈ A maps to ε. Since A,
as an R-algebra, is finitely generated. We have a is integral over R. Let B = R[a].

Fact. Let A be a faithful R-algebra. Then a ∈ A is integral if and only if there
is an R-subalgebra B of A containing a such that B is a finitely generated R-
module (standard in “Algebraic Number Theory”, the proof uses Cayley-Hamilton’s
theorem).

(Remark 1: each Bi is in fact isomorphic to Bmi for some maximal ideal mi of
B.)

(Remark 2: an alternative definition of Hensel ring is that every finite R-algebra
is a direct product of local rings.)
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Now we want to show that ε lifts to an idempotent element e ∈ R[a] = B. Notice
that a2 − a ∈ mB, then there is a monic polynomial

η(X) = Xd +
∑

ajX
j with aj ∈ m,

such that η(a2 − a) = 0. Then f(X) = η(X2 −X) ∈ R[X] is a monic polynomial
such that f(X) ≡ Xd(X − 1)d (mod m) and f(a) = 0. Thus by Hensel property,
there exist monic g, h ∈ R[X] such that

g(X) ≡ Xd (mod m) and h(X) ≡ (X − 1)d (mod m)

Then b1 = g(a) ∈ B is a lift of εd = ε and b2 = h(a) ∈ B is a lift of (ε −
1)d = (−1)d(1 − ε) and moreover b1b2 = 0. Thus (b1, b2)B/mB = B/mB and
V (b1, b2) ⊂ Spec(B) is disjoint from V (mB). Since Spec(B) → Spec(R) is closed
(going-up property), we can find r ∈ R which maps to invertible elements in R/m
whose image in B lies in (b1, b2).

Easy lemma. Let S/R be a ring extension, I, J be ideal of R,S respectively. If
the closure of the image of V (J) is disjoint from V (I), then ∃t ∈ R which maps to
1 ∈ R/I and to an element in J in S.

Let I ′ be an ideal in R such that V (I ′) = image of V (J). Then V (I)∩V (I ′) = ∅
so I + I ′ = R. Write 1 = t+ s with t ∈ I and s ∈ I ′. We have V (J) ⊂ V (t′) where
t′ is the image of t in S. Hence t′n ∈ J for some n. Replacing t by tn, we win.

After replacing R by the localization Rr, we get (b1, b2) = B. Then Spec(B) =
D(b1)

∐
D(b2); disjoint because b1b2 = 0, covers Spec(B) because (b1, b2) = B. Let

e ∈ B correspond to the open and closed subset D(b1). Since b1 is a lift of ε and
b2 is a lift of (−1)d(1− ε), by the uniqueness property (one-to-one correspondence
between open and closed subsets and idempotents), e is a lifting of ε.

Then A = Ae⊕A(1−e), in fact, if a1e = a2(1−e), then a1e = a1e
2 = a2(1−e)e =

a20 = 0. So, the R-module Ae and A(1 − e) are finitely generated and free, now
we consider the former one. Let

φ : A→ EndR(Ae); a 7→ (xe 7→ axe).

Then ker(φ) ∩ R = {0} since Ae is free. Let A = Ra1 ⊕ · · · ⊕ Ral, consider

the χi ∈ End(A) such that χi(aj) = δij , then χi is given by y 7→
∑
θ
(k)
i yθ̃i

(k)

due to the enveloping isomorphism. For any a ∈ ker(φ), write a =
∑
riai, then

ri = χi(a) =
∑
θ
(k)
i aθ̃i

(k)
∈ ker(φ). Thus ri = 0 ⇒ φ is injective.

Now consider the induced map φ̄ : Ā→ Endk(Āε). Similar argument shows that
φ is also injective. Since Ā and Endk(Āε) have the same dimension= n2, φ̄ is
an isomorphism, thus surjective. Then Nakayama’s lemma shows that φ is also
surjective, cf. Lemma 1.5. □

Corollary 6.7. If R is strictly local, i.e. the residue field k of R is separably closed,
then Br(R) = {0}.

Remark 6.8. Using étale cohomology, we can show that if R is local Henselian
ring, then the map Br(R) → Br(k) is an isomorphism.
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Let us recall étale extension. An R-algebra S is called étale if it is (commuta-
tive,) separable, flat and finitely presented as an R-module. Here finitely presented
means S = R[X1, X2, · · · , Xl]/I for a finitely generated ideal I. If R is Noetherian,
then “finitely presented” above can be replace by “finitely generated”.

When R is a field, the description is simpler.

Recall. A finite commutative algebra L over a field k is called étale if one of the
following equivalent condition holds.

(1) L =
∏r

i=1 Li where Li/k is a finite separable field extension.
(2) [L : K] <∞ and L× L→ k, (x, y) 7→ Tr(xy) is non-degenerate.

(3) L⊗K K ≃ K
n
for some n ∈ N.

Lemma 6.9. If (R,m, k) is Henselian local. Then S 7→ S ⊗R k induces an equiv-
alence of the category of finite étale R-algebras and the category of finite étale
k-algebras.

In fact, for any étale k-algebra k′, write k′ = k[X]/(h̄(X)). Then S = R[X]/(h(X))
satisfies B ⊗R k = k′.

Proposition 6.10. If A is an Azumaya algebra over a Henselian local ring R,
then there is a finite étale faithfully flat ring homomorphism R → S such that
A⊗R S ≃Mn(S) as S-algebras.

This is because of Lemma 6.9 and that the proposition is true for fields. In fact,
there is a finite separable extension k′/k such that (A ⊗R k) ⊗k k

′ ≃ Mn(k
′), i.e.

[(A ⊗R k) ⊗k k
′] = [0] ∈ Br(k′)]. Now by Lemma 6.9, there exists S as a finite

étale R-algebra (being local itself) such that S ⊗R k = k′. Since [A⊗R S] maps to
[Mn(k

′)] = [0] under Br(S) → Br(k′). By the injectivity of this map, A⊗R S splits.
Thus, every Azumaya algebra over a Henselian local ring has rank n2 for some

n.

Before we continue, we want to review the faithfully flat descent. For a sys-
tematic introduction to descent theory, see Knus-Ojanguren’ book [5]. In particular,
we can find in [5] why the classical Galois descent is a special situation of faithfully
flat descent.

Definition 6.11. An R-module M is faithfully flat if any complex of R-modules

M1 →M2 →M3

it is exact if and only if

M ⊗R M1 →M ⊗R M2 →M ⊗R M3

is exact. Another equivalent description is A is flat and for every nonzero R-module
N , M ⊗R N is nonzero as well.

Theorem 6.12. If f : R→ S faithfully flat ring homomorphism, then the Amitsur
Complex, i.e. the sequence C•(S/R) defined by

(AC) 0 → R
f−→ S

d0

−→ S⊗2 → · · · → S⊗r
dr−1

−−−→ S⊗(r+1) → · · ·

is exact (as R-modules). Here dr =
r+1∑
i=0

(−1)iei and

ei(b0 ⊗ · · · ⊗ br−1) = b0 ⊗ · · · bi−1 ⊗ 1⊗ bi ⊗ · · · ⊗ br−1.
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If we tensor the above sequence by any R-module M , the we still get an exact
sequence.
(AC1)

0 →M
1⊗f−−−→M⊗RS

1⊗d0

−−−→M⊗RS
⊗2 → · · · →M⊗RS

⊗r 1⊗dr−1

−−−−−→M⊗RS
⊗(r+1) → · · ·

Proof. Since ∀r ⊗ s ∈ ker(f) ⊗R S, it is equal to 1 ⊗ f(r)s = 1 ⊗ 0 = 0, thus
ker(f)⊗R S = 0. Since S/R is faithfully flat, ker(f) = 0. Thus R can be viewed as
a subring of S.

Now the exactness at S, i.e. 1 ⊗ s = s ⊗ 1 if and only if s ∈ R. We proceed in
three steps.

Step 1. Suppose there is a section, i.e. g : S → R such that g ◦ f = g|R = IdR.
Consider the map h : = g ⊗ IdS : S ⊗R S → S. Let s ∈ ker(d0), then

0 = h(0) = h(1⊗ s− s⊗ 1) = s− g(s),

which implies that s = g(s) ∈ R.
In general, define a (contracting homotopy) operator kr : S⊗(r+2) → S⊗(r+1) by

kr(x0 ⊗ · · · ⊗ xr+1) = g(x0)x1 ⊗ · · · ⊗ xr+1.

We can verify by direct computation that dr−1kr−1 + krdr is equal to the identity
map on S⊗(r+1). Now for any y ∈ ker(dr), we have y = Id(y) = dr−1kr−1(y) ∈
Im(dr−1).

Step 2. Suppose R → R′ is a faithfully flat extension. Then S ⊗R R′ is also
faithfully flat over R′. Tensoring (AC) by ⊗RR

′ and notice that

(S ⊗R S)⊗R R
′ = (S ⊗R R

′)⊗R′ (S ⊗R R
′),

we get

0 → R′ → S ⊗R R
′ → (S ⊗R R

′)⊗R′ (S ⊗R R
′) → · · ·

Since R′ is faithfully flat, we can always replace the pair (R,S) with (R′, S⊗RR
′).

Step 3. Consider arbitrary f : S → R. We use the previous reduction to R′ = S.
So we get faithfully flat extension S → S ⊗R S, s 7→ s⊗ 1. We construct a section
g : S ⊗ S → S, s⊗ s′ 7→ ss′. But this puts us in Case 1, we win.

□

Now we will have a closer look at splitting rings of an Azumaya algebra. Recall
that a Central Division Algebra D over a field k is always split by a maximal
subfield P of D, the map is given by

D ⊗k P ≃ EndP (D) =Mn(P ), t⊗ p 7→ (y 7→ typ).

Conversely, and field P ⊃ F which splits D with [P : k] =
√
dimkD = l is

isomorphic to a maximal subfield of D. For a Central simple algebra A which is
not necessary division, we have the following generalization.

Proposition 6.13. Let A be a Central Simple Algebra over a field k of dimension
n2, then there exists a commutative k-subalgebra S ⊂ A such that

(1) S is a maximal commutative k-subalgebra of A.
(2) S is separable over k of dimension n.
(3) S = k(α) for some α ∈ A.
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(4) A is a free S-module of rank n.
(5) S is a splitting ring for A.

Proof. If k is finite, A ≃ Mn(k). Let P = k[a0] be a Galois extension of degree n
(In fact, if k = Fq, then let P = Fqn). Let P → Endk(P ) = A, p 7→ (x 7→ px) be the

left regular representation. Then it maps to a maximal commutative subalgebra S
of A.

Let k be infinite. By Artin-Wedderburn theorem, A = Mr(D) for a unique
Central Divison Algebra D over k. Let P = k(u) be a maximal subfield of D
where u is separable over k. Then [P : D] = l =

√
dimkD. Since k is infinite,

the set of minimal polynomials of au, a ∈ k× is an infinite subset of k[X] (they all
have degree n since P = k(au), i.e. au is a primitive element). So we can find r
irreducible polynomials fi(X) : = min.poly.k(aiu) such that f : = f1 · · · fr has no
repeated roots and deg(f) = rl = n. Take α = diag{a1u, · · · , aru} ∈Mr(D). Then
min.poly.k(α) = f . So S = k(α) is a subalgebra of A with dimk S = n.

Since f has no multiple roots, S = k[X]/(f) is separable over k. Thus A is
projective as an S-module. Notice that P r ≃ S via diagonal embedding. Let

S
′ ⊃ S be a commutative k-subalgebra of A. Then any y = (yij) ∈ S′ commutes

with elements in S. In particular, take Eii ∈ S.

yEii = Eiiy ⇒ yij = 0 if i ̸= j.

We see that y = diag{y11, · · · , yrr} ⊂ Dr. Since P is a maximal subfield of D,
we have yii ∈ P . So S is a maximal commutative subalgebra of A.

□

We have the following local ring analogue of Proposition 6.13.

Theorem 6.14. Let A be an Azumaya R-algebra of rank n2.

(1) Let a ∈ A. Let S be a faithfully flat R-algebra which splits A, and let
φS : A ⊗R S ≃ Mn(S) be an isomorphism. Then the characteristic poly-
nomial cha(X) of φS(a ⊗ 1) belongs to R[X], is independent of S and
cha(a) = 0. This cha(X) is called the Cayley-Hamilton polynomial of
a.

(2) There is a maximal commutative étale subalgebra S of A of rank n that is
a direct summand of A. Moreover, A is a free module over S. (Such S is
called a maximal étale subalgebra of A.)

(3) The subalgebra S as above splits A.

Proof. (1) We first remark that for any two isomorphisms φ1, φ2 : A⊗RS ≃Mn(S)
of S-algebras, φ1(a⊗ 1) and φ2(a⊗ 1) have the same characteristic polynomial. In
fact, for any maximal ideal n of S(S is not necessarily local), the Skolem-Noether
theorem implies that there is u ∈ GLn(Sn) such that φ2(a⊗1) = u−1φ1(a⊗1)u. So
two characteristic polynomials have the same image in Sn[X] for all n ∈ Spm(S).
This proves the remark.
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Now let T/R be another faithfully flat ring extension such that there is a

φT : A⊗R T
∼−→Mn(T ). Consider the commutative diagram of (S ⊗R T )-algebras

(A⊗R S)⊗R T
φS⊗IdT //

��

Mn(S)⊗R T =Mn(S ⊗R T )

��
S ⊗R (A⊗R T )

IdS⊗φT // S ⊗R Mn(T ) =Mn(S ⊗R T )

where the left vertical map is (a⊗ s)⊗ t 7→ s⊗ (a⊗ t), and the right vertical map
is the unique isomorphism defined by the rest of the diagram.

Let S = T then by the above remark, φS(a ⊗ 1S) ⊗ 1S , 1S ⊗ φT (a ⊗ 1S) ∈
Mn(S ⊗R T ) have the same characteristic polynomial. In other words,

1S[X] ⊗ chφS(a⊗1S)(X)− chφS(a⊗1S)(X)⊗ 1S[X] = 0.

Take M = R[X] in the Amitsur complex (AC1), we get the exact sequence

0 → R[X] → S[X] → S[X]⊗R[X] S[X] → · · ·
So chφS(a⊗1S)(X) ∈ ker(1⊗d0) = R[X], i.e. the characteristic polynomial is defined
over R.

Now let S, T be any two faithfully flat splitting extension of R. Then S ⊗R T is
also a faithfully flat algebra over R. We have the following Amitsur complex

0 → R[X] → (S ⊗R T )[X] → (S ⊗R T )[X]⊗R[X] (S ⊗R T )[X] → · · ·

Since (φS(a⊗ 1S))⊗ 1T and 1S ⊗ (φT (a⊗ 1T )) have the same characteristic poly-
nomial, due to the exactness at (S ⊗R T )[X], they come from the same element in
R[X].

Finally, let S/R be a faithfully flat splitting extension, then A → A ⊗R S is
injective. Thus cha(a) 7→ cha(a⊗ 1) = 0, which implies that cha(a) = 0.

(2) We can choose a ∈ A such that α = ā, so k(ā) = k(α) is a splitting ring of A
as Proposition 6.13.

Let S = R[X]/(cha(X)), this is an étale algebra over R of rank n there is a

canonical map S → A; X̄ 7→ a. As S ⊗R k
∼−→ k[ā] ↪→ Ā is injective, it follows from

a standard lemma below that S → A is injective and S is a direct summand of A.

Easy lemma. Let φ : M → N be a homomorphism of two finitely generated R-
modules with N -free. If φ̄ = φ ⊗ 1 is injective, then φ has a section, in particular
it is injective. Moreover, if φ̄ is an isomorphism, so is φ.

In fact, let φ′ : N → M such that φ̄′φ̄ = IdM̄ . Let ψ = φ′φ, then Nakayama’s
lemma implies that ψ is surjective. RegardM as an R[X]-module viaX ·m = ψ(m).
Then by Nakayama’s lemma, there is f(X) ∈ R[X] such that (1 − ψf(ψ))M = 0.
So f(ψ)φ′ is a left inverse of φ.

In fact, we can show that A is a free module over S. We need the following

Lemma. Let S be a semilocal ring, i.e. a commutative ring with finitely many
maximal ideals, then any finitely generated projective S-module M of constant
rank is free.
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We just need to mimic the proof of the fact “projective modules over local rings
are free” to prove this Lemma (use Nakayama’s lemma). Since A/R is projective,
S/R separable (modulo m and use the Proposition 6.13), so A/S is projective. In
our situation, S ⊗R k = S/mS = k(α) is isomorphic to P r, thus S has at most
finitely many maximal ideals. For very n ∈ Spm(S), A/nA is free over S/n of rank
n, i.e. A is of constant rank.

(3) Let S as in (2), view A as a right S-module. Consider the map

α : A⊗R S → EndS(A); a0 ⊗ s 7→ (x 7→ a0xs).

Modulo m, we get

αm : A⊗k S/m → EndS/m(A⊗k S/m),

this is an isomorphism by theory of Central Simple Algebras over fields (since
S ⊗R K is a splitting ring of A). Since both A ⊗R S and EndS(A) are finitely
generated over S and since A is free over S, so is EndS(A). Thus the previous
lemma tells us α is an isomorphism. □

7. The Brauer group over a scheme, a brief introduction

Let X be a local Notherian scheme. An OX -algebra A is called an Azumaya
algebra over X if it is coherent as an OX -module and if, for every closed point x of
X, Ax is an Azumaya algebra over the local ring OX,x. The condition imply that
A is locally free of finite rank as an OX -module. We also have for every point x
of X, Ax is an Azumaya algebra over OX,x. To see this, consider the affine case
X = Spec(R), take any prime ideal p ∈ X and take a maximal ideal m containing
p. There is a natural map Rm → Rp, a/t 7→ a/t. Then using standard commutative
algebra, we get

Ap = Am ⊗Rm
Rp.

By the functoriality of Br(·), we see that Ap is an Azumaya algebra over OX,p = Rp.
There are several equivalent descriptions of Azumaya algebra over X.

Theorem 7.1. Let A be an OX-algebra which is of finite type as an OX-module.
Then the following are equivalent.

(1) A is an Azumaya algebra over X.
(2) A is locally free as an OX-module and for all x ∈ X, A(x) : = Ax ⊗OX,x

κ(x) is a Central Simple Algebra over κ(x).
(3) A is locally free as an OX-module and the enveloping homomorphism ψ : A⊗OX

Ao → EndOX
(A) is an isomorphism.

(4) There is a covering (Ui → X) for the étale topology on X such that for
each i, there exists an ri ∈ N, A⊗OX

OUi
≃ Mri(OUi

).
(5) Same thing holds as above when replacing “étale topology” by “flat topol-

ogy”.

In particular, if X = Spec(R), then any Azumaya algebra over X has shape Ã
for some Azumaya algebra A over R (as defined in Section 1).

Artin’s Question. Suppose X is proper over SpecZ, is Br(X) finite?
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If dimX = 1, the class field theory gives the positive response. But this question
is open even for a surface over a finite field. Known situation: for all K3 surfaces,
the answer is yes.
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